Defense Advanced Research Projects AgencyAbout UsHistory and Timeline

Where the Future Becomes Now

The Defense Advanced Research Projects Agency was created with a national sense of urgency in February 1958 amidst one of the most dramatic moments in the history of the Cold War and the already-accelerating pace of technology. In the months preceding the official authorization for the agency’s creation, Department of Defense Directive Number 5105.15, the Soviet Union had launched an Intercontinental Ballistic Missile (ICBM), the world’s first satellite, Sputnik 1, and the world’s second satellite, Sputnik II… More

Vertical-Cavity Surface-Emitting Lasers
1989
First proposed in 1977 by Japanese researcher Kenichi Iga, the vertical-cavity surface-emitting laser (VCSEL) would have characteristics similar to light-emitting diodes and could be coupled to optical fibers. Over the next decades, a small research community began chipping away at the technical challenges it would take to produce practical VCSEL devices. But not until 1989 when DARPA began a series of programs that would support, among other technology goals, the government-wide High Performance Computing and Communications (HPCC) Initiative, did the financial and institutional resources become adequate to move technical promise toward technological reality. VCSELs could provide short-distance, high-speed digital interconnections that would be important to meet goals of the HPCC initiative. One thrust of this effort led to the formation of the Optoelectronic Technology consortium, which led to an industry-stimulating demonstrating of multi-gigabit optoelectronic interconnect components that were based on VCSELs. At this point, still with some DARPA support, industry began to take the development baton. By 2000, VCSELs began to emerge from their developmental status into applications in fiber-fiber interconnections, optical data storage, and sensing applications. They later subsequent find roles in technologies, such as free-space chip-to-chip communications and atomic clocks, which were supporting or leading players in later DARPA programs.
Cermet Armor Material
1991

In addition to supporting advanced materials development since its early years, DARPA has at times been called upon to identify technologies for specific near-term applications. One of these tasks occurred for Operation Desert Storm (1991-1992) when ground forces experienced a critical need for more effective armor. The DARPA solution in this case, particularly for roof protection for the U.S. Marine Corps’ Light Armored Vehicles (LAVs) against artillery, was to ask the Lanxide Corporation to modify its cermet (ceramic/metallic) process and to work with a partner Foster Miller to produce appliqué armor.

From 1984 to 1986, DARPA supported the materials research and engineering that led to these cermet materials. With DARPA funding, 75 LAVs were up-armored with the tough composite materials. In the early 1990s, M-9 Armored Combat Earthermoves (ACE) also employed this lightweight armor. Variations of these cermet materials have been used for cockpit armor by the U.S. Air Force in C-130, C-141, and C-14 aircraft in Bosnia.

The Lanxide material has also been employed as high-power-density heat sinks for the F/A-18 and F-16 radars, turbine tip shrouds, commercial satellite heat sinks, very stiff parts for semiconductor lithography machines, and as vehicle brake components. All of the military and civil uses of Lanxide evolved directly from DARPA’s program. The military uses were under DARPA support, and then transitioned to U.S. Army and Air Force programs.

Interferometric Synthetic Aperture Radar – Elevation (IFSARE)
1991
In the early 1990s, DARPA developed an airborne, all-weather, radar-based mapping capability that generated maps of the terrain with an accuracy to within six feet of elevation and that could do so day or night, and in adverse weather conditions, such as thick cloud cover or rain. Under DARPA sponsorship, the Environmental Research Institute of Michigan (ERIM) carried out the project and mounted an interferometric radar system on a Learjet 36A to collect data, which was then processed on the ground into digital elevation models.
Affordable Short Takeoff Vertical Landing
1991

In 1983, DARPA began working with the U.K. Ministry of Defense (MoD) to develop a follow-on supersonic generation to the AV-8 Harrier, a pioneer aircraft for short takeoff and landing (STOL) capabilities. The international program that emerged from this intention, the Advanced Short Takeoff Vertical Landing (ASTOVL), expired in 1991, but various component efforts toward the same end continued. For its part, DARPA worked with the U.S. Navy to establish a development program for an STOVL Strike Fighter with capabilities specified by the Navy in 1988. The program evolved toward an aircraft that could build on much of the design base for the Air Force F-16.

In 1992, DARPA and the Navy initiated a revised ASTOVL program with an objective of demonstrating an affordable STOVL strike fighter for the U.S. Marine Corps with a conventional takeoff and landing version for possible U.S. Air Force service. In 1993 and 1994, this morphed into the DARPA-managed Common Affordable Lightweight Fighter (CALF) and into subsequent evolutionary incarnations managed by other Department of Defense entities.

| Air | History |
Uncooled IR Detection
1991
DARPA proved that practical, uncooled infrared detector technology was possible under the Low Cost, Uncooled Sensor Program (LOCUSP) of the late 1980’s. Previous generations of IR sensors used cryogenics to cool the detector materials and reduce system noise. Although these steps proved to be effective – these earlier systems were credited with being a major factor in the U.S. ground victory in Desert Strom, for example – the sensors were costly to develop, prohibiting widespread distribution to combat troops. Under the LOCUSP program, cost-effective, uncooled IR detector technology was developed, fabricated, and demonstrated for use across various military applications. In 1991, the Uncooled Focal Plane Arrays (UCFPA) project was started under the Balanced Technology Initiative to create practical applications of DARPA’s research into uncooled sensor arrays. Under this effort, uncooled focal plane arrays were advanced for applications such as surveillance systems for perimeter defense and weapon sights.
Brilliant Anti-Tank Munition
1992
DARPA and the U.S. Army’s Fort Belvoir Research, Development and Engineering Center ran a series of concept studies in the early 1970s to define requirements for an anti-tank weapon referred to as the Terminally Guided Anti-Armor Indirect Fire Weapon System. Under DARPA’s wing, that morphed into the Brilliant Anti-Tank Munition (BAT)), a terminally guided anti-armor munition originally intended to be carried aboard the TriService Standoff Attack Missile. Its design featured dual seekers to minimize spoofing and a novel acoustic sensor that could cue on the sound of running tank engines. A decade after the program began, more than 1,100 pre-production and low-production units had been built.
Non-Penetrating Periscope
1992

In response to a call by Congress to establish a program to develop and efficiently transfer new hull, mechanical, and electrical technologies outside of normal U.S. Navy research and development channels, DARPA answered with the Advanced Submarine Technology (SUBTECH) program. Among ten technology demonstrations that successfully transitioned from the program to the Navy between 1989 and 1994 was the Non-Penetrating Periscope (NPP).

The NPP transformed submarine mast development when a prototype system using commercial visible and infrared spectrum cameras was built and demonstrated on the submarine USS Memphis in 1992. Using fiber optic data transmission, the new telescoping mast eliminated the need for the deep, hull-penetrating well that had been required to accommodate the optics tube on the then-current generation of submarines. The NPP also allowed greater flexibility in hull and interior design for future submarines.

DARPA becomes ARPA
1993
In character with President Clinton’s emphasis on economic growth, the Department of Defense restored DARPA’s original name, ARPA, to, in the words of a letter distributed by William Perry, then Deputy Secretary of Defense, “to expand the agency’s mission to pursue imaginative and innovative research and development projects having a significant potential for both military and commercial (dual-use) applications.” In 1996, the Agency again would pick up that D, for Defense, and become known once again as DARPA.