

Software Users Manual

Program Title:	META Adaptive, Reflective, Robust Workflow (ARRoW)
Contract No.:	HR0011-10-C-0108

Prepared For:	Defense Advanced Research Projects Agency
	3701 North Fairfax Drive
	Arlington, VA 22203-1714
[bookmark: _Toc514749014]

	DISTRIBUTION STATEMENT B: Distribution authorized to U.S. Government agencies only due to the inclusion of proprietary information and to prevent Premature Dissemination of potentially critical technological information (4/13/11). Other requests for this document shall be referred to DARPA Technical Office via email at tio@darpa.mil

	EXPORT OF TECHNICAL INFORMATION
The export of certain information contained herein is governed by the U.S. International Traffic in Arms Regulations (ITAR). This information may not be exported without proper authorization by the U.S. Department of State. This information may only be used for the specific application and user organization/country identified in the export license and may not be released to any other country or organization without the proper U.S. Department of State written authorization.

Total number of pages: 96

[image: BAE Blk-Wht Logo]	Number:	TR-2736
	Revision:	–
		CAGE Code:	1S983
	Date:	October 12, 2011

BAE Systems
Information and Electronic Systems Integration Inc.
4800 East River Road, Minneapolis, MN 55421-1498 USA
Telephone (781) 273-3388

AI5BH.5BH241A
03633

Software Users Manual

Prepared by: 	K. Fischer
	Principal Software Engineer

Approved by:	S. Spielman
	Director

[image: BAE Blk-Wht Logo]	Number:	TR-2736
	Revision:	–
	CAGE Code:	1S983

ITAR CONTROLLED		Use or disclosure of data contained on this sheet
		is subject to the restriction on the title page.
REVISION RECORD
A change is indicated by a change bar in the margin of the page.
	REV
	PAGE NUMBER
(Enter page numbers of changed, added or deleted information)
	DATE

	–

	INITIAL RELEASE

	10/12/11

ITAR CONTROLLED	RR-1	Use or disclosure of data contained on this sheet
		is subject to the restriction on the title page.
TABLE OF CONTENTS

Section/
Paragraph	Page

1.	Introduction	1
2.	Applicable Documents	1
3.	Development Tools	1
3.1	Subversion Repository	1
3.1.1	META Repository	1
3.1.2	Generating an SSH Key Pair to Skip Password Entry	2
3.1.3	Installing and using the SSH Private Key on Linux	2
3.1.4	Installing and using the SSH Private Key on Windows®	2
3.2	SpringSource Tool Suite	3
4.	ARRoW Tools	5
4.1	ARRoW Web Services	5
4.2	ARRoW Model Interface Language	10
4.2.1	AMIL Interpreter	11
4.2.2	AMIL as a Web Service	18
4.2.3	Querying the Ontology	18
4.2.4	Dynamic Nodes	20
4.2.5	AmilLib	24
4.3	Component Model Library	33
4.3.2	OWL	35
4.3.3	OWL Ontologies used in CML	36
4.3.4 	Populating the CML	36
4.3.5	Artifactory	38
4.5	Metrics	41
4.5.1	Metrics Demo	41
4.5.2	Framework Implementation	44
4.5.3	Available Metrics	49
4.5.4	Walkthrough	51
4.5.5	Developers Notes	54
4.6	Ecto	55
4.6.1	User Interface	56
4.6.2	Models	62
4.6.3	Example Walkthrough	64
4.6.4	Generative Ensemble Archetype Reasoner Integration	66
4.6.5	Developers Notes	67
4.7	Systems Modeling Language (SysML) Plug-in for MagicDraw	67
4.7.1	Plug-in Setup	67
4.7.2	SysML ARRoW Stereotypes	68
4.7.3	Mapping Requirements to the Reference Architecture	69
4.7.4	Parametrics with ParaMagic	72
4.7.5	CML Interface	76
4.7.6	OWL Schema Generation	78
4.7.7	Load from AMIL	78
4.7.8	Archetype Refinement	79
4.8	Pro Engineer plug-in	80
4.8.1	Apache ActiveMQ	82
4.8.2	Pro/E Plug-in	82
4.8.3	Pro/E Plug-in Client	82
4.8.4	Additional Information	83
4.9	GEAR	83
4.10	Qualitative Envisioner	84
4.10.1	Producing a Viewable Envisionment Graph	84
4.10.2	Computing a Design Metric	86

LIST OF FIGURES
Figure	Page

Figure 1. ARRoW Web Services Home Page	5
Figure 2. AMIL Class Structure	11
Figure 3. CML query from client application (Magic Draw)	34
Figure 4. Protégé OWL editor	36
Figure 5. Semantic web developers and modeling engineers populate the CML	37
Figure 6. Example engine ontology visualization (exported from Protégé)	37
Figure 7. RDF snippet describing the engine ontology	38
Figure 8. Artifactory Web Interface	39
Figure 9. Example Metrics Demo Dashboard	42
Figure 10. Design Dashboard Displaying Content from Ecto	43
Figure 11. Refreshing Widget Content	43
Figure 12. Robust Z Metric Configuration	45
Figure 13. Evaluators and Statistics Implemented	46
Figure 14. Assessors and Measures Implemented	46
Figure 15. Combat Vehicle Metrics Gumball Chart	48
Figure 16. Responsibilities of the Frame Fabricator Role	51
Figure 17. Tasks for the Metric Developer	52
Figure 18. Functions of a Dashboard Presentation Layer Maintainer	52
Figure 19. Ecto User Interface Layout	56
Figure 20. Zulu (Ecto's 3D Visualization)	57
Figure 21. System Design Panel	58
Figure 22. System Design Toolbar	58
Figure 23. System Visualization Toolbar	59
Figure 24. System Requirements and Properties Panel	60
Figure 25. Example Component Properties Panel	61
Figure 26. Example Component Model Library Panel	62
Figure 27. Example Tool Log	62
Figure 28. Example Hull Shaper Model	63
Figure 29. Component Model Library Panel Query Results	65
Figure 30. Abstract Engine Location in System Hierarchy	65
Figure 31. GEAR Reasoner’s Indirect Connection to Ecto	66
Figure 32. Response to AMIL Reasoner Query	66
Figure 33. Link from Requirement to IFV Engine Instance	70
Figure 34. New Constraint in the Requirements Block Dialog	71
Figure 35. IFV Engine Constraint Structure	72
Figure 36. An Engine Being Loaded from CML	77
Figure 37. Engine Instance Block Populated with Appropriate Properties	77
Figure 38. High Level Components Related through a Link	78
Figure 39. Traction Block Definition Diagram	79
Figure 40. New Ground Vehicle Implementation Diagram	80
Figure 41. Pro Engineer Plug-in Main Components	81

LIST OF TABLES
Table	Page

Table 1. ARRoW Web Services Menu Items and HTTP Requests	6
Table 2. AMIL Interpreter Operations	13
Table 3. OWL Class Methods used to Access CML	34
Table 3. JSON Configuration References	49
Table 4. Metric Data Sources	49
Table 5. Guidelines for ParaMagic Use with Various SysML Components	73

ACRONYMS AND ABBREVIATIONS

ABCL	Armed Bear Common Lisp
AMIL	ARRoW Model Interface Language
API	Application Programming Interface
ARRoW	Adaptive, Reflective, Robust Workflow

BBN	Bolt, Beranek and Newman
BDD	Block Definition Diagram

CAD	Computer-Aided Design
CAGE	Commercial and Government Entity
CML	Component Model Library

DARPA	Defense Advanced Research projects Agency

FF	Framework Fabricator

GEAR	Generative Ensemble Archetype Reasoner

HTTP	Hypertext Transfer Protocol

ID	Identification
IDE	Integrated Development Environment
IFV	Infantry Fighting Vehicle
ITAR	International Traffic in Arms Regulations

JEE	Java Enterprise Edition
JMS	Java Message Service
JSON	JavaScript Object Notification

MD	Metric Developer
MOM	Message Oriented Middleware
MPH	Miles per Hour

NGV	New Ground Vehicle

OLP	Onto-Logical Programming

PCC	Probalistic Certificate of Correctness
Pro/E	Pro Engineer

QML	Qualitative Modeling Language

REST	Representational State Transfer

ACRONYMS AND ABBREVIATIONS (Continued)

STS	SpringSource Tool Suite™
SysML	Systems Modeling Language

UDP	User Datagram Protocol
UI	User Interface
URL	Universal Resource Locator
USD	United States Dollars

VDD	Version Description Document

WA	Web Architect

XML	Extensible Markup Language

ITAR CONTROLLED	vi	Use or disclosure of data contained on this sheet
		is subject to the restriction on the title page.
[bookmark: _Toc306260315]1.	Introduction
The goal of the META program is to reduce development cycle time for complex cyber-physical systems such as aircraft, rotorcraft, and ground vehicles by a factor of 5x over current cycle times. Adaptive, Reflective, Robust Workflow (ARRoW) tools implement model-based methodologies to speed up design and verification processes currently used in industry. ARRoW is an integrated system design, verification and validation toolset for encoding the expertise and methods of professional systems engineers, and supporting multiple asynchronous workflows, continuous design evaluations, and integrated data with heterogeneity of tools. This document describes how to:
Use the ARRoW tools
Use the programming interfaces within the tool infrastructure
Setup the ARRoW development environment
[bookmark: _Toc306260316]2.	Applicable Documents
	TR-2737
13 October 2011
	META Adaptive, Reflective, Robust Workflow (ARRoW) Version Description Document

	TR-2742
13 October 2011
	META Adaptive, Reflective, Robust Workflow (ARRoW) Phase 1b Final Report

[bookmark: _Toc306260317]3.	Development Tools
[bookmark: _Toc306260318]3.1	Subversion Repository
[bookmark: _Toc306260319]3.1.1	META Repository
The META svn source code repository is located on the remote server cvsext.ait.na.baesystems.com. The META trunk is located in the /proj/meta/svn/trunk subfolder. A server user account is required to access the repository.

The META trunk can be checked out from a Linux shell or from Windows Internet Explorer®. To check out the trunk from a Linux shell, enter the following command
svn checkout svn+ssh://<username>@cvsext.ait.na.baesystems.com/proj/
meta/svn/trunk
where <username> is the user account for the server.

To checkout the META trunk from Windows Internet Explorer®, right-click the mouse in the destination folder, select svn checkout, and enter the following in the URL field:
svn+ssh://<username>@cvsext.ait.na.baesystems.com/proj/meta/svn/trunk.
[bookmark: _Toc306260320]3.1.2	Generating an SSH Key Pair to Skip Password Entry
An SSH key pair can be used instead of a password for accessing the svn repository. The public key is stored on the remote server, and the private key is stored on the users local machine. The procedure follows:

a.	Log on to the remote server cvsext.ait.na.baesystems.com using ssh or PuTTY.
b.	Enter ssh-keygen –b 1024 –t dsa –f mykey to generate a key pair. When prompted for a passphrase, press Enter.
c.	Type mkdir .ssh.
d.	Type mv mykey.pub .ssh/authorized_keys.
[bookmark: _Toc306260321]3.1.3	Installing and using the SSH Private Key on Linux
If you use Linux or Cygwin, use the following procedure to install the private key from the SSH key pair.

a.	A .ssh directory should exist in the users home directory. If it does not exist, create it.
b.	Copy the private key from the remote server to a file named id_dsa in the .ssh directory on the local computer using the scp <username>@ cvsext.ait.na.baesystems.com:./mykey id_dsa command.
c.	Log on to the remote server cvsext.ait.na.baesystems.com using ssh. Verify that no password is required.
d.	Initiate a checkout of trunk from the svn repository using the svn+ssh://<username>@cvsext.ait.na.baesystems.com/proj/meta/
svn/trunk command. Verify that not password is required.
[bookmark: _Toc306260322]3.1.4	Installing and using the SSH Private Key on Windows®
If you use Windows® and TortoiseSVN, follow this procedure to install the private key from the SSH key pair. The procedure requires the PuTTY application, install it if it is not already installed.

a.	Start a new command prompt and navigate to the PuTTY applications folder (C:\Program Files\Putty, for example).
b.	Copy the private key from the remote server to a localFolder (e.g., C:\META\key) using the pscp <username>@ cvsext.ait.na.baesystems.com:./mykey <path to local folder> command.
c.	Type puttygen.
d.	When puttygen comes up, click Load and navigate to the localFolder you just saved your private key in.
e.	Click Save private key so that the private key is saved in the native .ppk format.
f.	Start the PuTTY application and enter the address of the remote server cvsext.ait.na.baesystems.com in the host name box. Make sure the default Port number is 22 and the type is SSH.
g.	Under the SSH>Auth tab, add the .ppk formatted private key just created in the Private key file in the authentication box.
h.	Under Connection>Data, enter the username for accessing the svn repository in the Auto-login username box.
i.	Under Session, create a name for this session and enter it in the Saved Sessions box and click Save.
NOTE
It is required to add the key to pageant each time the computer starts.

j.	Go back to the command prompt and enter pageant. The pageant application should start running in the background and its icon should display in the Windows® toolbar on the bottom right.
k.	Right-click the icon and select Add key. Navigate to the .ppk formatted private key file and add it.
[bookmark: _Toc306260323]3.2	SpringSource Tool Suite
The following procedure configures the SpringSource Tool Suite (STS)[footnoteRef:1] Integrated Development Environment (IDE), and then builds the source code and runs Arrow Web Services from the IDE. It is assumed that STS has been installed, the software environment has been configured and the system software has been installed and built as specified in the Version Description Document (VDD). [1: www.springsource.com]

a.	Start STS from the Start menu.
b.	When prompted, set the workspace to a desired location (e.g., C:\X\meta_workspace, recommended without spaces). If you are not prompted, a workspace already exists, you might want to setup a new one for META.
c.	When the Welcome window displays, close it.
NOTE
The default STS uses the Maven version it comes packaged with. META needs the newer 3.0.3 version[footnoteRef:2]. [2: http://maven.apache.org/]

d.	Navigate to Windows>Preferences>Maven>Installations and add an installation for apache-maven-3.0.3.
e.	Navigate to Windows>Preferences>Java>Installed JREs and select 1.6.0_22 or greater.
f.	Navigate to Windows>Web Browser and select 1 Default system web browser (which should be FireFox).
g.	Select File>Import Maven and select Existing Maven Projects. Click Next.
h.	Navigate to the Trunk, select the arrow-mvn-init subfolder, click OK, then click Finish.
i.	Repeat steps g and h to import subfolders ManualArtifacts and arrow-mvn-all.
j.	Wait for STS progress to indicate completion of the import.
k.	In the STS Package Explorer window, right click arrow-mvn-init and select Run As>Maven Install.
k.	In the STS Package Explorer window, right click ManualArtifacts and select Run As>Maven Install.
l.	Open a new run configuration window by selecting Run on the STS main menu.
m.	Select Run Configuration and then select m2 Maven Build in the navigation window. Right click on it and select New.
n.	Enter the name arrow-mvn-all-skip-test for the new run configuration.
o.	Select to Browse Workspace and then select arrow-mv-all.
p.	Next to the Goals, enter clean install –Dmaven.test.skip=true.
q. 	Select Run to run the new configuration
r.	In the STS Package Explorer, right click ArrowWebServices and select Run As>Run On Server.
s.	Verify that the ARRoW Web Services Home Page is displayed as depicted in Figure 1.
[bookmark: _Toc306260324]4.	ARRoW Tools
[bookmark: _Toc306260325]4.1	ARRoW Web Services
The main ARRoW application resides as a set of Java-enabled web services, coupled together via an Apache Tomcat server. The procedure for building and launching the ARRoW Web Services application is provided in the VDD. At startup, a menu of selectable links is displayed (figure 1).

[image:]
[bookmark: _Toc306260145]Figure 1. ARRoW Web Services Home Page

The links serve as entry points into ARRoW tools, services and diagnostics. Table 1 provides the purpose of each menu item along with the menu item’s HTTP request and Request Mapping. The table also provides additional HTTP requests that are not associated with menu items, but can be passed to the ARRoW web server using a browser’s address field.

[bookmark: _Toc306259364]Table 1. ARRoW Web Services Menu Items and HTTP Requests

	Menu Item
	HTTP Request
	Purpose
	RequestMapping

	Load ARRoW Demo AMIL Graph

	http://localhost/ArrowWebServices/arrow/loadDemoAmilGraph

	Demo interface that clears the AMIL and loads amil metric, component nodes, link nodes, master model test nodes, sysml data nodes, and dashboard view nodes into AMIL
	loadDemoAmilGraph()
“loadDemoAmilGraph”

	View Arrow Graph

	http://localhost/ArrowWebServices/arrow/arrowGraphView

	Demo interface to display Arrow graph read from the AMIL
	executeAarrowGraphDisplay()
“arrowGraphView”

	Make button on the
View Galileo test form link
	http://localhost/ArrowWebServices/galileo/testPrologOptimize

	Debug interface to perform calculations using he ramp-kbase.pro knowledge base
	executeTest()
“testPrologOptimize”

	Design view

	http://localhost/ArrowWebServices/arrow/design/view

	Demo interface to explore features in the design exploration space
	designView()
“view”

	Metrics Dashboard demo

	http://localhost/ArrowWebServices/dashboard/dashboard.html

	Demo interface to display the three categories of dashboard via the selector
	populateDashboardPanel()
“dashboardPanelView”

	Load Single Node Graph

	http://localhost/ArrowWebSeravices/arrow/ loadSingleNodeGraph
	Debug interface to load a single node to the into AMIL
	loadSingleNodeGraph()
“loadSingleNodeGraph”	

	Load Default Amil Graph

	http://localhost/ArrowWebSeravices/arrow/ loadDefaultAmilGraph
	Debug interface to load Amil nodes into AMIL
Loads amilmetrics, component nodes and links
Similar to loadDemoAmilGraph, with same metric nodes and different sets of the nodes and links
	loadDefaultAmilGraph()
“loadDefaultAmilGraph”

	Load ARRoW Demo Metrics

	http://localhost/ArrowWebSeravices/arrow/loadDemoAmilMetrics
	Debug interface to load metric nodes into AMIL.
Loads the amilmetrics component nodes, links, and dashboard view nodes into AMIL
	loadDemoAmilMetrics()
“loadDemoAmilMetrics”

	Export ARRoW Graph

	http://localhost/ArrowWebSeravices/arrow/arrowGraphExport
	Debug interface to export the amil graph in JSON format to the web browser
	executeArrowGraphExport()
“arrowGraphExport”

	Import ARRoW Graph

	http://localhost/ArrowWebSeravices/arrow/arrowGraphImport
	Debug interface to import JSON formatted amil graph into AMIL
	executeArrowGraphImport()
“arrowGraphImport”

	Clear ARRoW Graph

	http://localhost/ArrowWebSeravices/arrow/clearGraph
	Debug interface to clear the amil graph
	clearAmilGraph ()
“/clearGraph”

	View Execution Form

	http://localhost/ArrowWebServices/exec/execForm
	Debug interface to submit commands to AMIL
	executeLegacy()
“/execForm”

	View AMIL WebService Form

	http://localhost/ArrowWebServices/amil/amil
	Debug interface to submit commands to the AMIL and return to main menu page
	executeAmil()
“/amil”

	Envisionment

	http://localhost/ArrowWebServices/arrow/envisionerView?id=0
	Debug interface to run envisionment use cases
	envisionerView()
“envisionerView”

	testCMLLoad

	http://localhost/ArrowWebServices/arrow/testCMLLoad
	Debug interface to reads CML node from AMIL
(not sure if it is used)

	testCMLLoad()
“testCMLLoad”

	

	http://localhost/ArrowWebServices/galileo/galileoTestView
	
	executeGalileoTest()
“galileoTestView”

	
	http://localhost/ArrowWebServices/arrow/amilsetLocation?loc=”http://localhost/ArrowWebServices/”

	AMIL View to submit query command to sets the base location of the AMIL
	setLocation()
“/amilsetLocation”

	
	http://localhost/ArrowWebSeravices/arrow/amilclearDatabase
	Debug facility to clear the AMIL and return to amil view
	clearDatabase()
“/amilclearDatabase”

	
	http://localhost/ArrowWebServices/amil/amilclearDatabaseREST
	Debug API facility to clear the AMIL
	get()
clearDatabaseREST()
"/amilclearDatabaseREST”

	
	http://localhost/ArrowWebServices/arrow/amilclearDatabaseREST

	Debug API facility to clear the AMIL
	post()
“/amilexecuteREST”

	
	http://localhost/ArrowWebServices/amil/amilexecute

	Debug facility
	Execute()
“/amilexecute”

	
	http://localhost/ArrowWebServices/arrow/amilexecuteREST
	Debug API facility
	“/amilexecuteREST”

	
	http://localhost/ArrowWebServices/amil/amilshutdownDatabase
	Debug facility to shutdown AMIL
flush owl connection and
shutdown amil graphDb
Displays the AMIL view
	shutdownDatabase()
“/amilshutdownDatabase”

	
	http://localhost/ArrowWebServices/amil/amilshutdownDatabaseREST
	Debug API facility to shutdown AMIL
(appears to be a duplicate of amilshutdownData)
	shutdownDatabaseREST()
“/amilshutdownDatabaseREST”

	
	http://localhost/ArrowWebServices/amil/query
	Presents a form for executing amil queries
	queryView()
“query”

	
	http://localhost/ArrowWebServices/arrow/arrowView
	Demo interface to run test and verify feature
	executeArrow()
“arrowView”

	
	http://localhost/ArrowWebServices/arrow/testAndVerify
	Demo interface that actually runs the Test an
Verify feature from the arrowView page
	testAndVerify()
“testAndVerify”

	
	http://localhost/ArrowWebServices/arrow/refresh

	Demo interface that actually refresheshes the testAndVerify page

	Refresh()
“refresh”

	
	http://localhost/ArrowWebServices/arrow/calcPCC

	
	calcPCC()
“calcPCC”

	
	http://localhost/ArrowWebServices/arrow/arrowGraphData
	Displays amil graph in raw format.

	arrowGraphData()
“arrowGraphData”

	
	http://localhost/ArrowWebServices/arrow/design/design

	
	DesignController()
“/design”

	Detailed Metrics
 in the experimental page of the design View
	http://localhost/ArrowWebServices/arrow/design/detailedMetrics
	Displays the detailed cost effectiveness

	detailedMetrics()
“detailedMetrics”

	Update Attributes button
 in the experimental page of the design View
	http://localhost/ArrowWebServices/arrow/design/view

	updates the attributes in the design view page
(experiment)
	updateAttributes()
“updateAttributes”

	Components selection in the “RunT and V” page that can be reached from the experimental page of the design View
	http://localhost/ArrowWebServices/arrow/design/view

	Components selection in the “RunT and V” page that can be reached from the experimental page of the design View
	selectComponent()
“selectComponent”

	“RunT and V” page that can be reached from the experimental page of the design View
	http://localhost/ArrowWebServices/arrow/design/view

	Run the T and V from the selected
Components in the “RunT and V” page that can be reached from the experimental page of the design View
	runDownselect()
“runDownselect”

	

	http://localhost/ArrowWebServices/arrow/design/ scoreboard

	Downloads the scoreboard data found in the experimental page found in the experimental page of the design view to a file
	getScoreboard()
“scoreboard”

[bookmark: _Toc306260326]4.2	ARRoW Model Interface Language
The ARRoW Model Interconnection Language (AMIL) is implemented as a Java library, usually deployed as a web service. It is built on the neo4j[footnoteRef:3] graph database, using Apache Lucene[footnoteRef:4] for indexing, and Tinkerpop Blueprints[footnoteRef:5] to manage ontology data.In a sense, “language” is a misnomer; AMIL is an active data repository, supporting the usual sorts of database operations. Access to the low-level AMIL library is through calls expressed in JSON[footnoteRef:6], but most clients will use either the AmilLib Java library or its C++ equivalent; in either case, the client software will see a set of classes and methods that conceal both the web service and the use of JSON as a transport language. [3: http://www.neo4j.org] [4: http://lucene.apache.org] [5: https://github.com/tinkerpop/blueprints/wiki/] [6: http://json.org]

AMIL exposes a set of uniquely named nodes, connected by links. Each node has an arbitrary set of named properties; some of the names, described below, have specific meanings to the system. Each link has an arbitrary type name as well as an arbitrary set of named properties; some of the type names, as well as some of the property names, have specific meanings. A property value stored in the database can be a string, a number (integer or floating point), or an array of strings or numbers.

Two features of its design distinguish AMIL from completely standard graph databases:

· One of the distinguished properties in nodes identifies the node’s type, which is either “immediate” or “dynamic.” Immediate nodes are retrieved as stored: the client application receives the node’s associated set of name-value pairs. Dynamic nodes are associated with a Java class that will be called by AMIL to generate the set of name-value pairs returned to the client.
· Part of the client-visible graph stored in AMIL is an overlay on an OWL ontology: classes in the ontology are visible to AMIL clients, but their features, which are represented as separate nodes in the physical data store, are exposed as properties of the class nodes (and of course as instances of those classes). AMIL maintains consistency between the properties in the nodes and the separate “thin” nodes needed by the ontology. This allows queries against the ontology, as discussed in Section 4.2.3 Querying the Ontology, without inflicting its difficult graph structure on AMIL’s clients.
In what follows, we will cover the three ARRoW subsystems that directly support AMIL, and separate discuss the implementation and use of the OWL ontology that is stored in the AMIL repository. Here is what will follow:
· The AMIL “interpreter,” which directly manages the physical data store.
· The web service interface to AMIL.
· The ontology that is stored in the repository: where it comes from, how it is used.
· The AmilExtern subsystem, which supports the extensible set of dynamic node classes.
· AmilLib, which is the Java client library for accessing AMIL.
Figure 2 shows some of the classes defined in these three subsystems, and their relationships.[image:]
[bookmark: _Ref305573492][bookmark: _Toc305687784][bookmark: _Toc306260146]Figure 2. AMIL Class Structure
[bookmark: _Toc306095146][bookmark: _Toc306260327]4.2.1	AMIL Interpreter
The AMIL interpreter is deployed as a web service; the service exposes methods defined by the top-level AmilInterpreter class. Clients will also depend on some definitions from the AmilInterface interface. In what follows, we will first describe the methods and definitions of most interest, then describe the actual database operations supported by AmilInterpreter.
Although AmilInterpreter provides a number of methods, only three are of interest here: the constructor, the execute method, and the shutdownDatabase method. The constructor takes a string, which which is the path to the directory where the database exists (or will be created). The directory will be created if it doesn’t exist. Due to locking issues, only one instance of AmilInterpreter can use any given database at any given time.

The shutdownDatabase method has no parameters; after it’s called, the database connection managed by the AmilInterpreter object will be closed. Any attempt to do anything else with the object will cause a runtime error; you’d need to make a new instance to access the database again.

Finally, the execute method takes a JSONArray representing a database operation and its parameters, and returns a JSONArray representing the result of performing the operation. For some operations, the return array should be empty; these cases will be documented.

The first element of the array is a JSONObject describing the operation to perform; this includes the operation name, some currently unused pre- and post-condition specifiers, and in some cases some additional qualifiers. The remaining elements, if present, are JSONObjects that become parameters for the operation: descriptors for nodes to create or retrieve, query components, and so on. The use of JSONObjects here allows AMIL to function conveniently as a web service, since it is easy to convert them to and from strings.

The operations supported in the execute method are all defined as string constants in AmilInterface. In the following descriptions, we include the constant name, without the AmilInterface qualifier, as well as the literal string.

There is a standard form of JSONObject used to represent nodes and links in the database. It is used in the input parameters for methods that create and, except as noted, retrieve database objects, as well as being used to represent objects that have been retrieved when they’re returned to the client. For a node, the representation is:
{
	“type” : “node”,
	“NODE_ID” :
	{
		“ATTRIBUTE_NAME” : ATTRIBUTE_VALUE,
		“ATTRIBUTE_NAME” : ATTRIBUTE_VALUE,
		…
	}
}
The first line identifies this as a description of a database node, rather than a link. The string “type” is AmilInterface.TYPE; the string “node” is AmilInterface.NODE. The NODE_ID string is the node’s unique name among nodes in the database—in effect, the database key. The contained JSONObject represents the set of named attributes for the specified node.

For links the structure is quite similar:
{
	“type” : “edge”,
	“LINK_ID”,
	{
		“type” : “LINK_TYPE”,
		“from” : “SOURCE_NODE_ID”,
		“to” : “DESTINATION_NODE_ID”,
		“ATTRIBUTE_NAME” : ATTRIBUTE_VALUE,
		…
	}
}
The structure is very similar to that for nodes, with these differences:
· The “type” is “edge” (AmilInterface.EDGE).
· The LINK_ID string can be used to retrieve the node by name, but there is no requirement that it be unique.
· In the contained JSONObject, there are three required fields (when creating a link; these fields will always be returned when a link is retrieved): “type,” “from” (AmilInterface.FROM), and “to” (AmilInterface.TO). This type field is the link type in the database. You can create as many link types as you like, but certain names, listed later, have specific meanings within AMIL. The “from” and “to” fields identify the pair of nodes that the link runs between; it follows that all links have a direction assigned, though it is possible to navigate a link in either direction. The triple LINK_TYPE, SOURCE_NODE_ID, DESTINATION_NODE_ID must be unique in the database: there can only be one link of a given type from any node A to any other node B. Taking the database as a triple store, the source node is the subject, the link type is the predicate, and the destination node is the object.
The following table shows the operations supported by AmilInterpreter.execute.

[bookmark: _Toc306259365]Table 2. AMIL Interpreter Operations

	Operation name
	Constant name
	Parameters

	create
	CREATE
	Any number of JSONObjects representing nodes and links.

	This adds the specified nodes and links to the database, if possible; it will log an error if any of the nodes or links already exists, but continue to process the command. It returns an array containing all of the nodes and links referenced in the parameters, whether they already existed or not. Note that a link can only be created if its source and destination nodes already exist; this command creates all the nodes described in the parameter vector first, then links.

	createNodes
	CREATE_NODES
	Any number of JSONObjects representing nodes.

	Like create, but only creates new nodes.

	createLinks
	CREATE_LINKS
	Any number of JSONObjects representing links.

	Like create, but only creates new links.

	findLinks
	FIND_LINKS
	The command array contains a single object followed by any number of strings, as shown in the next line; all parameters are attributes of that object. Returns an array containing a JSONObject for each identified link. The string arguments name link types that we will return (if there are no named types, we return all applicable links).

	Attributes in the command object (all are optional):
node: The NODE_ID of the node whose links we care about.
direction (AmilInterface.Direction): one of “both” (AmilInterface.BOTH), “from” (or “outgoing”, AmilInterface.OUTGOING), or “to” (or “incoming”, AmilInterface.INCOMING). Ignored unless “node” is supplied; determines whether to include only links to the named node, from the named node, or both.
Thus, we can ask for all links of type “parameter,” or all links of type “parameter” originating from “node_a,” or simply all links in the databse.

	findNodes
	FIND_NODES
	Takes a single command object, with additional parameters as attributes, as described below.

	Find all nodes whose “valueType” (AmilInterface.VALUE_TYPE) attribute matches the corresponding parameter, and return them. Parameter details:
valueType: String providing the value to be searched for in the “valueType” field.
getNodesRaw (AmilInterface.GET_NODES_RAW): if “true,” the nodes will be retrieved as if they were immediate nodes, even if they are dynamic.
parameters (AmilInterface.PARAMETERS): a JSONObject whose contents will be added destructively to the object returned for each of the nodes.
See Section 4.2.4 Dynamic Nodes for details on how the “valueType” attribute is used.

	getNodes
	GET_NODES
	Any number of JSONObjects; each contains a NODE_ID and, optionally, supplies a “parameters” (AmilInterface.PARAMETERS) attribute.

	For each specified node, retrieve it based on its ID. If the spec for the node has a “parameters” attribute, destructively add the contents of that JSONObject to the name-value pairs for the node before returning it. If a particular node doesn’t exist, nothing will be returned for it.

	getNodesRaw
	GET_NODES_RAW
	Any number of JSONObjects, each containing a NODE_ID.

	For each specified node, retrieve it based on its ID. As with findNodes with GET_NODES_RAW, all nodes will be retrieved as if they were immediate, even if they’re dynamic.

	getLinks
	GET_LINKS
	In the command object, there may be a “depth” (AmilInterface.DEPTH) parameter, which must be either an integer or the string representation of one; it defaults to 1 if not supplied or uninterpretable.
The command array is then filled with any number of link specifiers: JSONObjects with a LINK_ID (which can be any string at all) whose associated value is another object with, optionally, attributes “type,” “from,” and “to.”

	This returns an array of links, the union of all the links produced by each of the link specifiers. At least one of “to” and “from” must be specified in each case. If both are specified, the depth parameter is silently set to 1 for that case. Here are the cases:
from and to both set, type set: returns the single link (if it exists) of type “type” originating at “from,” terminating at “to.”
from and to both set, type not set: returns all links of any type originating at “from,” terminating at “to.”
from or to set: return links originating at “from” (or terminating at “to”), of any type (or of the specified type). If “depth” is greater than 1, then this will recursively chase links from the nodes arrived at in the first pass. Circularity is detected.

	deleteNodes
	DELETE_NODES
	Takes any number of node specifiers. Only the NODE_ID is used.

	This deletes all the referenced nodes from the database. Any links associated with a deleted node will also be deleted. It returns an empty array.

	deleteLinks
	DELETE_LINKS
	Takes any number of link specifiers, which must specify “from,” “to,” and “type.”

	Each link specifier identifies exactly one link, which is deleted. Returns an empty array.

	updateNodes
	UPDATE_NODES
	The command object can have an optional parameter, “destructiveUpdate” (AmilInterface.DESTRUCTIVE_UPDATE); if it is present, the update is destructive (see explanation). The command array then contains any number of node objects.

	In a destructive update, for each node object the node’s attributes in the database are replaced with those from the command array: if an attribute does not exist in the command array version, but does exist in the database, it will be deleted. In a non-destructive update, the node’s attributes in the database are updated with those from the command array. New attributes can be added, but none will be deleted. This returns an empty array. The simplest use is updating a single attribute of a single node.

	updateLinks
	UPDATE_LINKS
	Generally like updateNodes; the link specifiers must specify “from,” “to,” and “type,” as with deleteLinks.

	Like updateNodes, this performs either a destructive or an additive update of a set of nodes.

	getClosure
	GET_CLOSURE
	This takes three optional parameters as attributes of the command object:
“entryPoints” (AmilInterface.ENTRY_POINTS): An array of strings, the node IDs for the set of nodes that are the starting points for the closure.
“relationships” (AmilInterface.RELATIONSHIPS): An array of strings, the edge types to follow in computing the closure.
“doRelationshipClosure” (AmilInterface.DO_RELATIONSHIP_CLOSURE): A string. If this is present, the closure will include all links associated with the returned nodes; if not, it will include only the links that were followed.

	Given a set of nodes to start from, the entry points, this follows any links whose type is in the relationships parameter (if that is not supplied, it follows all links) originating from any of those nodes. The nodes and links are added to the return set; this continues until no more nodes are found to add. The returned array includes all of the nodes found, and all of the links traversed; if doRelationshipClosure was supplied, then it includes all links originating at any of the nodes found.

	getAllNodes
	GET_ALL_NODES
	None.

	This returns an array containing all of the AMIL nodes in the graph. Nodes associated only with the ontology will not be returned.

	getEntireGraph
	GET_ENTIRE_GRAPH
	None.

	Returns an array containing all of the AMIL nodes and links in the graph. Again, nodes and links associated only with the ontology will not be returned.

	clearDatabase
	CLEAR_DATABASE
	None.

	This deletes the entire contents of the database, and reloads the default ontology. It returns an empty array.

	loadOntology
	LOAD_ONTOLOGY
	The command object contains a required “ontology” (AmilInterface.ONTOLOGY) attribute, which in effect is the contents of a properly formatted and complete .owl file.

	The specified bits of OWL are loaded into the database, and linked as appropriate into AMIL structures. This returns an empty array.

	SPARQLQuery
	SPARQL_QUERY
	The command object contains a required “query” (AmilInterface.QUERY) attribute, which is a SPARQL[footnoteRef:7] query string. [7: http://www.w3.org/TR/rdf-sparql-query/]

	This executes the SPARQL query against the current ontology in the repository. See Section 4.2.3 Querying the Ontology for the details of this. The return value is an array of JSONObjects based on the structure of the query; for each object returned by the query, there will be a JSONObject whose attributes are named by the query’s return variables. Generally you’ll be looking for things in the database rather than values, so the value of the attribute will be an OWL-style URI that is, as discussed below, the NODE_ID for an AMIL node. It is possible for the query to return the ID of a node that cannot be retrieved via AMIL, but you should consider that a bug in your query. If your query does ask for values, they will come back as strings, even if they’re numeric. See Section 4.2.3.2	Example queries.

	classDefinition
	CLASS_DEFINITION
	The command object has a required parameter, a “className” (AmilInterface.CLASS_NAME) string, and optional parameters “parentClass” (AmilInterface.PARENT_CLASS_NAME), a string, and “featureNames” (AmilInterface.FEATURE_NAMES), an array of strings.

	This creates a new class in the existing ontology. The class name and parent class name are not full URIs; rather, they are nicknames, as discussed below. Similarly, the set of feature names is a set of nicknames. AMIL executes this by constructing an ontology string (prepending appropriate text to make each supplied name into a URI) and passing it to loadOntology.

	datatypeDefinition
	DATATYPE_DEFINITION
	

	Defines a data type in the ontology. Strongly deprecated.

	getClass
	GET_CLASS
	The command object has a single required parameter, “className” (AmilInterface.CLASS_NAME), a string.

	Finds and returns an array containing a single node, representing the specified class. The name supplied is not a full OWL URI; rather, it’s the short version of the class name. Thus, “FightingVehicle” rather than “http://projects.baesystems.com/META/ontology/2011/8/meta#FightingVehicle”.

	createInstances
	CREATE_INSTANCES
	Creates and returns any number of instances in the ontology (that is, instances of existing classes). Each element of the command array after the first specifies a single instance. It may have an “OBJECT_ID” (AmilInterface.OBJECT_ID) attribute, a string, and a “features” (AmilInterface.FEATURES) attribute, a JSONObject. It must have a “className” (AmilInterface.CLASS_NAME) string.

	This creates an instance of the named class (the class name is, as with getClass, the short name). The node ID is set to the OBJECT_ID attribute if supplied; in that case, if the node already exists, creation fails. If the OBJECT_ID is not supplied, one is generated as follows. If one of the attributes of the features object is a “NICKNAME” (AmilInterface.OBJECT_NICKNAME), we first try to create an object with that nickname (the object’s ID will be a full URI with the nickname after the “#”); if no nickname was supplied, we begin with the short form of the class name. In the latter case, we simply append a sequence number until we find a name that’s unique (Engine1, Engine2, etc.); in the former, we try the undecorated nickname first, then append sequence numbers. The “features” object, if supplied, is used to initialize the node’s attributes.

[bookmark: _Toc306095147]
[bookmark: _Toc306260328]4.2.2	AMIL as a Web Service
Although most AMIL clients will connect using either AmilLib, below, or a corresponding C++ interface, it is useful to be able to call it from other languages. The web service interface is very simple.
The base URL for accessing AMIL is of the form SCHEME://HOST:PORT/ArrowWebServices/amil, where SCHEME is either http or https, depending on how the target server is configured, and HOST and PORT depend on the target server’s location and configuration. Calls may be submitted using either HTTP GET or POST calls; the commands themselves are sent as the string form of JSON objects as described above, and the results are always returned as the string form of JSON arrays.

The only call that is generally required is amilexecuteREST, which provides access to all of the operations previously described. Using HTTP POST, which is strongly preferred, the URL is simply SCHEME://HOST:PORT/ArrowWebServices/amil/amilexecuteREST, with the string representation of the JSON array described in the previous section as the parameter. The return from the call will, when processed, be the string representation of another JSON array.

[bookmark: _Ref305599507][bookmark: _Toc306095148][bookmark: _Toc306260329]4.2.3	Querying the Ontology
When AMIL initializes its data store, it loads a standard OWL ontology into it; this defines a basic class hierarchy, as well as creating instances to match the sample Component Model Library. This allows clients to create new instances, as documented above, and to execute semantic queries against the ontology—for example, to return all instances of Engine whose power output is greater than 400 kW.

The query language supported is SPARQL; we use the OpenRDF SPARQL query engine, which provides a forward-chaining RDF Schema inference, as specified in the W3CRDF Semantics document.[footnoteRef:8] The inference types covered are: [8: http://www.w3.org/TR/rdf-mt/]

· rdf:type
· rdfs:domain
· rdfs:range
· rdfs:subClassOf
· rdfs:subPropertyOf
· owl:inverseOf
· owl:sameAs
As an example, given that object A is of type DieselEngine, and DieselEngine is a subclass of Engine, then you can infer that object A is also of type Engine. The OpenRDF SPARQL engine contains numerous inference rules, which work by adding extra data to the graph (inferred data), and then the SPARQL query is performed. The forward inferencing is performed when the ontology is loaded, not when queries are executed; the queries see more relationships in the data store than were specified directly by the ontology source files.

4.2.3.1	Implementation
As mentioned above, AMIL overlays its graph on the standard ontology. After the ontology has been loaded, AMIL identifies all of the classes and instances associated with it, and converts those nodes and some of their relationships into a form that can conveniently be made visible to AMIL’s clients. The features of classes and instances, identified by “hasFeature” relationships from the class or instance to instances of the Feature class, are more tightly associated with the class, and are actually pulled into the instance node as additional attributes. AMIL ensures that changes in feature values made by its clients (using, for example, the updateNode operation) are propagated to the nodes needed to support SPARQL queries. Similarly, when a client creates a new class or a new instance, AMIL ensures that the correct inferenced data is provided for it.

For nodes associated with OWL classes, AMIL will provide the following attributes:
· classDefinition (AmilInterface.CLASS_DEFINITION) is the short form of the class’s name (“Engine” rather than http://...#Engine).
· The node’s ID, as well as its “value” (AmilInterface.OWL_VALUE) attribute, will be the full URI associated with the class in the ontology.
· If there are any features associated with the class or its ancestors in the ontology, the union of all of those sets will be stored in a pair of attributes whose values are arrays of strings: “featureNames” (AmilInterface.FEATURE_NAMES) contains the short names of the features; “featureIds” (AmilInterface.FEATURE_IDS) is parallel, but contains the full URI associated with each feature definition.
If the class has a parent, then it will have a link of type “subclassOf” (AmilInterface.SUBCLASS_OF) to the parent class.

Class instances have similar attributes and links created. The short name of a class instance is stored as its “NICKNAME” (AmilInterface.OBJECT_NICKNAME) attribute; again, parallel arrays of feature names and Ids are maintained. The instance will have an “instanceOf” (AmilInterface.INSTANCE_OF) link to its parent class.

To keep the OpenRDF code happy, some other attributes have to be set on nodes and links. Nodes must all have a “kind” property, and the “value” property always matches the node ID. Links—that is, predicates—must all have “c,” “cp,” and “p” attributes. These are visible upon retrieval, but should never be changed.

[bookmark: _Ref305654833]4.2.3.2	Example queries
AMIL’s query capability is essentially a SPARQL query capability, so that the full expressiveness of SPARQL can be used. In addition, the RDFS inferencing capability is available. Below are examples of the sort of queries that the AMIL query capability can answer.
· Get all instances of Engines (includes subclasses of Engine e.g. DieselEngine):
SELECT ?engine WHERE { ?engine a meta:Engine . }
Finds all instances of the Engine class or any of its subclasses. The “a” is shorthand for the rdf:type relationship, that is, find all objects that have a type relationship with the Engine class.
· Get all types of engine:
SELECT ?class WHERE { ?class rdfs:subClassOf meta:Engine . }
Find anything that has the subClassOf relationship with the engine class.
· Get all Diesel Engines with a power output > 12kW, and their power:
SELECT ?engine ?power WHERE { ?engine a meta:DieselEngine .
 ?engine amil:hasFeature ?feature .
 ?feature a meta:Power . ?feature meta:power_watt ?power . FILTER (?power > 12000) }
The first clause limits the query to instances of DieselEngine; the second, to those instances that have the “Power” feature. Finally, we consider only those cases where the power is expressed in watts, then filter for the value being numerically greater than 12000. In AMIL, this will return an array of JSONObjects, where each object will have two attributes: “engine,” the ID of the engine instance node, and “power,” the string representation of the associated engine’s output power. This will match the “Power” attribute of the engine instance node itself.

[bookmark: _Ref305589326][bookmark: _Toc306095149][bookmark: _Toc306260330]4.2.4	Dynamic Nodes
Dynamic nodes are, in normal usage, not returned from the AMIL repository directly. Instead, AMIL causes some code to be executed to produce the attributes that the user will see. The code runs in the same process that AMIL is in, but of course can invoke other web services or run executables to obtain results that can’t readily be obtained in that environment. It is given a connection back to AMIL, so can access anything else in the database during its computation.
Dynamic nodes are identified by their “valueType” (AmilInterface.VALUE_TYPE) attribute; if it is not present, or has the value “immediate” (AmilInterface.IMMEDIATE_VALUE), then the node will be returned as stored. Otherwise, AMIL attempts to invoke the code identified by the string stored in the valueType attribute.

[bookmark: _Ref306196808]4.2.4.1	Dynamic Node Services
The base implementation for dynamic nodes uses Java’s ServiceLoader implementation to locate the code associated with any particular dynamic node. In particular, the valueType attribute names a service that is known to AMIL’s DynamicNodeService class; ServiceLoader.load is used to find all providers for the IDynamicNode interface, one of which should match the valueType attribute. If a provider cannot be found, AMIL will retrieve the node as if it were immediate.

To retrieve the node’s attributes, AMIL invokes the appropriate provider’s getNodeMap method, which is defined by IDynamicNode. The method signature is:
Map<String, Object> getNodeMap(AmilInterface amil, Node nd, Map<String, Object> externalMap,
 JSONObject clientParameters)

The return value is the set of attribute values that will represent this node—it will be converted to a JSONObject for transport if necessary. The first parameter, the AmilInterface, is a handle to the running instance of AMIL. Although it is possible to use it directly, it is better to obtain an AmilLib object using it, and make all calls through that. The Node is a neo4j object, from which any interesting locally-stored attributes can be obtained. The externalMap parameter is built by AMIL, as follows:

First it follows any outbound links of type “nodeParameter” (AmilInterface.NODE_PARAMETER) from the target node; for any such links, AMIL retrieves the destination node—which may itself be dynamic—and copies its attributes into the externalMap. It then follows outbound links of type “parameter” (AmilInterface.PARAMETER). Again, attributes are extracted from the link’s destination node, but with more control. The link’s attributes have the following meanings:
· The link’s name, unless it is “multi,” is the name by which the parameter value will be identified in the externalMap.
· If the link’s name is “multi” (AmilInterface.PARAMETER_MULTI), then we need to retrieve multiple attribute values from the destination node. Recall that there can only be one link of any given type between a particular pair of nodes; otherwise, this could be handled by having several “parameter” links to the same node.
· Finally, if the link has a “foreignValueName” (AmilInterface.FOREIGN_VALUE_NAME) attribute, it determines the names of the attributes that are retrieved from the destination node, as follows:
If the link’s name is not “multi,” then we’re retrieving a single attribute. The foreignValueName identifies the attribute that will be retrieved; its name in the externalMap will match the link’s name. If there is no foreignValueName in this case, the link name also names the attribute to be retrieved.
If the link’s name is “multi,” and foreignValueName was not supplied, then AMIL will retrieve all attributes from the destination node, and put them into the external map under their original names.
If the link’s name is “multi,” then foreignValueName is an array of strings identifying the attributes from the destination node to retrieve. They will be stored in the external map under their original names.
The final parameter for getNodeMap is clientParameters, which contains additional attributes that were provided by the client in the node retrieval call. These might be used to identify the target node for a metric, for example, or to provide a parameter for a model when the client application is evaluating it over some range of inputs.
The service providers for dynamic nodes are located in the AmilExtern module. Each provider class must implement IDynamicNode, and be annotated with @ProviderFor(IDynamicNode.class). The annotation is defined by the free spi-full-2.4.jar library, which is delivered in ArrowManualArtifacts. In addition to getNodeMap, IDynamicNode defines the method getServicedType, which returns a string; AMIL iterates over the set of providers until it finds one whose “serviced type” matches the valueType attribute of the node being retrieved.

4.2.4.2	External Nodes
The providers defined in AmilExtern include some to support the Component Model Library (CML), and some to support metrics. These are documented elsewhere. In addition, the “external” service provides a general method to invoke additional code; it is used primarily to run executable models through the GenericExecutable class.

The external service provider uses the target node’s “className” (AmilInterface.CLASS_NAME) attribute to identify a Java class that it will attempt to load and use. The class as named will be loaded using Java’s Class.forName method; if found, the service provider will then create an instance of the class. The named class must implement IExternal, defined in AmilExtern, which has a single method, invoke:
Map<String, Object> invoke(AmilLib amil, Map<String, Object> params)
The return value is the attribute set that will represent the node; the inputs are an AmilLib instance (the external service provider gets the AmilLib instance to represent the AmilInterface it was given) and the attributes obtained as described above, from the node, user-supplied parameters, and links in the database.

4.2.4.3	GenericExecutable Class
The GenericExecutable class provides an interface that will run external binaries; it is a valid class name to supply in an “external” node. The full name, which is what must be used, is "com.bae.meta.amilextern.GenericExecutable”.

GenericExecutable provides fairly general mechanisms for constructing an executable’s command line from constants and from the parameters supplied to its invoke method. It will only process values delivered on the standard output of the invoked process, and can only provide information to the process on its command line: it doesn’t write to the standard input. Output on the process’s standard error will be captured and logged, but otherwise ignored. The process output must be in a form that can be converted into name-value pairs, using a very simple parser: items must be separated by whitespace or colons, and cannot themselves contain any whitespace (there is no way to quote characters).

GenericExecutable uses a number of attributes from its input parameter set:
· “executableName” (AmilInterface.EXECUTABLE_NAME) is the path to the executable to run. It may be relative or absolute; if relative, it’s relative to the web server’s root directory. Relative paths are preferable, since it is easier to make them portable; be aware that the PATH environment variable will not be used to assist in locating the executable. The executable name will generally be given a suitable extension, so this attribute should only include the name of the program, without any trailing “.exe” or “.bat” or “.sh.”
· “executableIsScript” (AmilInterface.EXECUTABLE_IS_SCRIPT) identifies commands that are script files rather than binaries. It is true if the value is a non-zero integer; if so, then the executable name will have “.sh” appended to it on Linux or MacOS, and “.bat” appended to it on Windows. If it is not true, then on Windows the executable name will have “.exe” appended to it.
· “parameterMap” (AmilInterface.PARAMETER_MAP), if supplied, must be accompanied by “parameterFormat” (q.v.). It is an array of strings, naming the elements from the parameter set that can be included on the command line, in order.
· “parameterFormat” (AmilInterface.PARAMETER_FORMAT) is paired with “parameterMap.” This is a string that will be passed to the Java MessageFormat class for processing.
The executable will be invoked using a call that passes the command line already broken into individual strings, rather than passing it as a single string. This reduces opportunities for misunderstanding, since Java otherwise tokenizes the command line itself before running the program. It is constructed as follows:
· The actual executable is identified. If the supplied path name is absolute, then it is used unmodified (except for the possible addition of an appropriate extension). If it is relative, then the code will look in four places for the executable:
The path as obtained from the “executableName” parameter (perhaps with “.exe” or “.bat” appended).
The same path, with an operating system directory name prepended: “windows,” “linux,” or “mac.”
An absolute path obtained by concatenating the server directory name with the path from 1.
An absolute path obtained by concatenating the server directory name with the path from 2.
The first element of the command vector is the path to the executable.
· If “parameterMap” and “parameterFormat” were not specified, the remaining elements of the command vector will be populated from the complete parameter set, in a random order. The parameter name will be added, preceded by a hyphen, then the parameter value, converted to a string if necessary. If the parameter value is an array, each array element will be added as a separate argument to the command.
· If the two were specified, then the parameterMap will be converted into an array of strings, alternately a parameter name from the parameterMap, and the value of the corresponding attribute from the input parameters. This will then be processed according to the parameterFormat. MessageFormat objects support positional addressing of their input parameters; parameter 0 to the format will be the first element from parameterMap, while parameter 1 will be the attribute value named by parameter 0, and so on. The actual elements added to the command vector depend on the location of whitespace in the format string.
Once the command vector has been constructed, the process will be launched. Standard output is collected and parsed into a set of attribute-value pairs; standard error is collected and logged. Output is collected asynchronously, so the process will not block if it’s generating a large amount.

[bookmark: _Toc306095150][bookmark: _Toc306260331]4.2.5	AmilLib
AmilLib provides a more conventional object-oriented interface to AMIL, hiding interactions with the web service and maintaining a local cache to reduce traffic across the network. The transaction model is somewhat primitive at the moment, because that hasn’t been important for demos. Caveat emptor.

Usage is generally very simple: obtain a connection to the repository by constructing a new AmilLib instance, then use that to retrieve existing nodes and links, create new ones, and so on. Changes are contained in the local cache until committed, at which point all changes extant in the cache are pushed out to the server; at any time, you can clear the cache, which removes the ability to commit changes but does not destroy any objects that you might have references to. It is possible to have multiple connections to the same AMIL instance; this allows, for example, changes to be made against one connection, while the other retains data from before the change.

The class diagram in Figure shows the most interesting AmilLib classes. Others will be mentioned as needed. The AmilLib class contains operations on the whole database, as well as operations to retrieve nodes and links, execute queries, and so on. Once retrieved or created, the AmilNode and AmilLink classes provide access to the properties of the individual objects.

4.2.5.1	AmilLib Class
An AmilLib instance wraps a connection to a running AMIL, and a cache of objects that have been retrieved from it. As is common, the “connection” is really just a URL; AMIL does not keep any state for the connection on its end, and the only state kept in AmilLib is the cache. In what follows, we cover most of the useful methods on the class, roughly grouped by function. For each, we begin with the method signature, then describe the parameters and behavior. The first group described general database management methods.

public static String getAmilUrl(String scheme, int port);
public static String getAmilUrl(String scheme, String hostName, int port);
These return a URL to use for establishing an AMIL connection. The scheme will be either “http” or “https,” depending on the server configuration, and the port of course depends on the server configuration. The first form assumes “localhost,” while the second takes a host name or IP address (in dotted-quad form).

public static AmilLib getAmilInterface();
public static AmilLib getAmilInterface(AmilInterface amil);
public static AmilLib getAmilInterface(String baseUrl);
These return an AmilLib instance. If there is already an instance associated with the specified URL or AmilInterface, it will be returned; otherwise, a new one will be created. The first form is equivalent to getAmilInterface(getAmilUrl(“http”, 80)). The second form is most useful in a dynamic service provider, as discussed in Section 4.2.4.1 Dynamic Node Services; it wraps the JSON-based AMIL instance in the same interface that most client code will use. The third form allows you to specify protocol, host, and port, using a result from getAmilUrl; you can also supply a non-standard URL here.

public static AmilLib getNewAmilInterface();
public static AmilLib getNewAmilInterface(AmilInterface amil);
public static AmilLib getNewAmilInterface(String baseUrl);
public static AmilLib getNewAmilInterface(AmilLib amil);
These are like getAmilInterface, except that the AmilLib instance returned is guaranteed to be new, and will not subsequently be returned by a call to getAmilInterface. The fourth form is used to clone an existing connection.

public boolean isServerAvailable();
This pings the AMIL instance to see if it’s responding. It does not access the repository, but will only return true if the web server is up and able to launch the AMIL service. Since AMIL ensures that the repository is in a consistent state at startup, this call make take some time to execute.

public boolean isDirect();
Returns true if this is a “direct” connection, meaning that it was created by passing an AmilInterface to one of the factory methods.

There are several bulk operations on the database—for clearing it, loading the contents of a file, and so on. Generally speaking, these are only appropriate during testing or from the user interface; obviously a shared database should not be cleared willy-nilly.

public String clearDatabase() throws JSONException;
Clears the repository. As discussed in the AMIL section, the standard ontology will be reloaded as part of this operation. This also silently flushes the local cache.

public String shutdownDatabase();
A fairly dangerous operation: causes the remote AMIL instance to shut down. The repository is not cleared.

public JSONArray entireDatabase() throws JSONException;
This is primarily a debuggingtool. It returns an array of JSONObjects representing every node and link in AMIL’s repository, including those that are not visible as AmilNodes or AmilLinks. Each node is followed in the array by all of its outbound links.

public JSONArray executeJSON(JSONArray command) throws JSONException;
Executes an arbitrary command on the server; the array returned is dependent on the command executed, of course. This can be useful for loading a file of nodes and links into the database in bulk. Note that this entirely bypasses the local cache.

Public void loadOntology(String ilename) throws JSONException;
This loads an RDF file into the repository on the server, doing all the processing associated with forward inferencing and overlaying AMIL objects on the ontology. The local cache is unaffected.

Like entireDatabase, these operations are mostly applicable to testing and debugging, though one can imagine an algorithm that is expected to operate on the whole database where using these might provide substantial efficiency. In both cases, all of the data is coming back from the server; it is best to commit or flush the cache before invoking them.

public ArrayList<AmilNode> getAllNodes() throws JSONException, AmilException;
This retrieves all AMIL nodes from the repository, and returns an array containing them.

public ArrayList<AmilObject> getEntireGraph() throws JSONException, AmilException;
This retrieves all nodes and links, and returns them all in the array.
The following two operations are the rough equivalent of rollback and commit on normal databases. In the current implementation, commit does not execute as a single transaction on the server; this would be a bug in production, but does not have any ill effects for demos.

public void flushCache();
Flushes the local cache. Any uncommitted changes will no longer be available for commit, and any retrievals of objects will access the server rather than the cache. References to existing objects remain valid, but changes to them will be lost.
Public void commit() throws JSONException;
Commits all changes in the local cache: new nodes and links, deleted nodes and links, modified properties on nodes and links.

The following methods are used to retrieve nodes from the AMIL repository in various ways.

public AmilNode getNode(String nodeName, boolean create);
public AmilNode getNodeWithParameters(String nodeName,
 Map<String, Object> parameters) throws JSONException, AmilException;
public AmilNode getNode(String nodeName,
 Object... parameters) throws JSONException, AmilException;
These methods retrieve a single node (or create it, in the first case) from the repository, using its node ID. The parameters argument for the third form must have an even length, and be string-value pairs, As described above, the parameters arguments are merged into the attributes associated with the node before it is returned, or in the case of dynamic nodes before the associated method is called.

public Set<AmilNode> getNodes(String[] nodeNames) throws JSONException, AmilException;
This returns a set containing the named nodes. No nodes are created; if one of the names is not associated with a node, that name is silently ignored.

public ArrayList<AmilNode> findNodes(String nodeType, boolean raw)
 throws JSONException, AmilException;
This returns all nodes whose “valueType” field matches the first argument—thus, all “external” nodes, or all “metrics” nodes. If the second argument is true, the nodes will be retrieved as if they were immediate, regardless of their valueType setting.

public AmilNode createNode(String nodeName) throws JSONException, AmilException;
This creates a new node with the specified unique ID, and no attributes. This node will not exist on the server until commited.

public AmilLink getLink(String linkType, String name, AmilNode from, AmilNode to, boolean create) throws JSONException, AmilException;
public AmilLink getLink(String linkType, String name, AmilNode from, AmilNode to) throws JSONException, AmilException;
public AmilLink getLink(String linkType, String name, String from, String to, boolean create) throws JSONException, AmilException;
public AmilLink getLink(String linkType, String name, String from, String to) throws JSONException, AmilException;
These all return a single link (or, in some cases, create it). As described above, a link is uniquely identified by the combination of its source, destination, and type; in these calls, the source and destination may be supplied either as a pair of AmilNode objects, or as a pair of strings, which must be the unique node IDs. Although the name argument is always present, it is ignored unless a new link is created—which requires that the create argument be supplied and true. These will all return a single link; should you require multiple links (for example, all the links originating from a node, there are other methods, either in this class or in the AmilNode class.

public ArrayList<AmilLink> getLinks(String linkType, String linkName, AmilNode baseObject);
Returns a list of all outbound links that originate at the baseObject parameter and match the linkType and linkName parameters. Either or both of the latter may be null, in which case any link would match; thus getLinks(null, null, AMILNODE) will return all outbound links from the specified node.

public ArrayList<AmilLinkSpec> findLinks(String...relNames) throws JSONException;
public ArrayList<AmilLinkSpec> findLinks(AmilNode node, String...relNames) throws JSONException;
public ArrayList<AmilLinkSpec> findLinksAtNode(String nodeName, String...relNames) throws JSONException;
public ArrayList<AmilLinkSpec> findLinksFromNode(String nodeName, String...relNames) throws JSONException
Returns a list describing all links on the server matching the request. AmilLinkSpec objects are simple structures containing the unique IDs of the source and destination nodes, and the link type. All of these calls bypass the local cache. The first form finds all links matching any of the specified link types; the second and third forms find all links matching any of the link types, and either starting or ending at the specified node. The fourth form finds all matching links originating at the specified node.

public ArrayList<AmilNode> getTransitiveClosure(AmilNode entry, List<AmilLink> rels,
 List<AmilNode> extraEntries, boolean doRelationshipClosure)
 throws JSONException, AmilException
See the description of the getClosure AMIL operation above for a full description of this. As with the various findLinks operations, this bypasses the local cache; however, all of the returned objects will be in the cache on completion.

public ArrayList<Object> getByQuery(AmilQuery query);
Executes an AmilQuery object. See Section 4.2.5.5 AmilQuery Class for details.
public ArrayList<HashMap<String, String>> executeSPARQLQuery(String query) throws JSONException;
Executes a query against the OWL ontology on the server, returning a list of maps for each item found. In each returned map, the keys are the query output variables, and the values are the associated query results: each map will have the same set of keys.

public String createOntologyDatatype(String datatypeName, String...typeNames)
 throws JSONException;
See the description of the AMIL datatypeDefinition operation.
public AmilNode createOntologyClass(String className, String parentName,
 String...featureNames) throws JSONException, AmilException;
Creates a new OWL class, a child of the specified parent—which may be null. The class will have the associated features, which will be added to any inherited from its parent class and its ancestors.

public AmilNode getClass(String className) throws JSONException, AmilException;
Returns the node corresponding to the named OWL class. This corresponds to the getClass AMIL operation.

public AmilNode createInstance(String className, String id, HashMap<String, Object> features) throws JSONException, AmilException;
Creates and returns a new instance of the named OWL class, with the specified unique ID. As with the AMIL operation, if the id is null, one will be generated from the class name. The features map describes attribute-value pairs that will set in the node after creation.

4.2.5.2	AmilObject Class
AmilObject is an abstract class from which both AmilNode and AmilLink are derived. Rather than describing the shared methods twice, they are covered here.

public AmilLib getOwner();
This returns the owning AmilLib instance for this object. Be aware that AmilLib.flushCache does not clear this link; the AmilLib instance will not know about the object, even though the object retains its memory of the AmilLib.

public boolean isNode();
public boolean isLink();
In some cases, it’s possible to have an AmilObject; this allows you to know whether it’s a node or a link.

public String getName();
Returns the name of the object. For a node, this is the node ID; for a link, it’s the link name rather than the link type.

public boolean isDirty();
Returns true if AmilLib thinks that this object has changes that need to be committed.

public boolean isNew();
Returns true if AmilLib thinks that this object has never been committed.

public void setCommitted();
Not recommended for use. Clears the dirty and new bits; if this is done outside the context of a commit, any changes made to the object will be lost.

public void clearProperties();
Deletes the current property set for the object, and marks it dirty.

public Object setProperty(String propName, Object newValue) throws AmilException;
Sets a property (attribute) on the cached representation of the object, making it dirty. The change will not be visible in the repository until a commit; in particular, note that if you change an ontology property, then execute a SPARQL query, the query will not see the change unless you’ve committed it.

public Object getProperty(String propName);
Gets a single attribute from the cached object.

public HashMap<String, Object> getProperties();
The returned map is a copy of the property set for the object; changes to it will not affect the object.

public void delete() throws JSONException, AmilException;
Marks the object for deletion at the next commit.

4.2.5.3	AmilNode Class
The AmilNode class represents nodes in the AMIL database. Retrieval and creation of nodes is generally done through the AmilLib class; here, they can be changed, deleted, and so on. Retrieval of a node may happen in several stages; the complete set of attributes is always retrieved in one lump, but that will not get any links that are associated with the node. Every node object is owned by an AmilLib instance; it is possible to have two copies of the same database node in two separate AmilLib caches. Sometimes this is not a bad thing.

The following description exludes several methods that, although public, are intended only for use within AmilLib, primarily for managing the conversion from a JSONObject coming from the repository to an AmilNode in Java.

public static AmilNode getNodeByName(AmilLib owner, String name, boolean create);
This retrieves or creates a node by using its unique ID. It does not access the repository; if the node is cached, it will be returned immediately; if not, it will be created, even if there is such a node already in the repository. Caveat emptor.

public void printJSONRepresentation(PrintStream output);
Sends the JSON representation of the node, which will correspond very closely to how it’s stored in the repository, to the supplied PrintStream.

public AmilNodeType getNodeType();
Returns one of AmilNodeType.NO_VALUE, AmilNodeType.IMMEDIATE_VALUE, or AmilNodeType.DYNAMIC_VALUE, depending on the type of the node. NO_VALUE would be anomalous; on the server, it is equivalent to IMMEDIATE_VALUE.

public AmilLink createLinkTo(AmilNode destination, String linkType);
Creates a link of the specified type from this node to the specified destination. It will exist only in the cache until committed.

public ArrayList<AmilLinkSpec> findLinks(String...relName) throws JSONException;
Equivalent to the AmilLib findLinks method.

public ArrayList<AmilLink> getOutboundLinks() throws JSONException, AmilException;
Returns all links originating from this node.

public ArrayList<AmilLink> getInboundLinks() throws JSONException, AmilException;
Returns all links whose destination is this node.

public ArrayList<AmilLink> getLinksTo(AmilNode dest) throws JSONException, AmilException;
Returns all links from this node to the specified node.

public ArrayList<AmilLink> getLinksFrom(AmilNode dest) throws JSONException, AmilException;
Returns all links from the specified node to this node.

public AmilLink getLinkTo(AmilNode node, String linkType) throws JSONException, AmilException;
Returns a link of the specified type from this node to the specified node, or null if none exists.

public boolean outboundLinkExists(String linkType, String otherName);
Returns true if there is a link of the specified type from this node to the named node.

public boolean inboundLinkExists(String linkType, String otherName);
Returns true if there is a link of the specified type from the named node to this node.

4.2.5.4	AmilLink Class
AmilLink represents a link between nodes in the graph. As with AmilNode, it is a descendant of the AmilObject class, and inherits all of the methods documented there. Links are simpler than nodes in that they are always “immediate”—they are retrieved as stored, with no opportunity to execute any external code in the process. A link cannot exist without a beginning node and an end node, and is uniquely identified by its source, destination, and link type. The link’s name is significant in some cases (as documented in Section 4.2.4 Dynamic Nodes), but generally is used for clarity.

public void printJSONRepresentation(PrintStream output);
See printJSONRepresentation in AmilNode.
public AmilNode getTo();
Returns the origin node of this link.

public AmilNode getFrom();
Returns the destination node of this link.

public String getLinkType();
Returns the link’s type.

public static AmilLink getLink(AmilLib amilInterface, String linkType,
 String name, String from, String to, boolean create) throws JSONException, AmilException;
Finds or creates the specified link. For the search, the name parameter is ignored; the linkType must be specified, as well as the from and to parameters. If the link does not already exist, a new one will be created, and given the specified name. No nodes will be created; it is an error if either of the from or to parameters is null, or if either names a node that does not exist.

[bookmark: _Ref306051085]4.2.5.5	AmilQuery Class
AmilQuery and its related classes provide a mechanism for retrieving sets of values from the repository. The implementation is entirely user-level code—that is, nothing specific to this runs on the server—so it provides convenience rather than efficiency. Its primary usage has been in the interface between ESKER, which is written in Prolog, and AMIL.

To a first approximation, a query is a list of terms, alternately specifying nodes and links. The query object is not associated with a specific instance of AmilLib; the AmilLib getByQuery method evaluates whatever it’s given. Evaluation is a simple process: the first term of the query identifies a starting set, typically a single named node; subsequent terms are applied to the current starting set, producing, typically, a somewhat larger set. Finally, in typical usage, the last term specifies a property to return from each element of the final set—for example, the mass of each piece of a specified component.

The constructor for AmilQuery initializes the query object and supplies the first term for it. The very simple case new AmilQuery("massOfFrame1", AmilNode.class) constructs a query that will return the “massOfFrame1” node. Generally speaking, it is unnecessary to use the related AmilQueryLinkTerm and AmilQueryNodeTerm classes, since they can be created and added to an existing query using methods on the query itself. The useful methods on AmilQuery follow.
public AmilQuery(String name, Class clazz);

Constructs a query whose starting set will be either the node with the specified node ID, if the second argument is AmilNode.class, or the link with the specified type, if the second argument is AmilLink.class. This creates a query pre-populated with an instance of either AmilQueryLinkTerm or AmilQueryNodeTerm, as appropriate. Because the link type is not unique, one will generally begin a query from a node.

public AmilQuery(AmilQueryTerm term);
Constructs a query and makes its first term the supplied query term.

public AmilQuery();
Constructs an empty query.

public AmilQuery Node(String name) throws AmilException;
This adds a node term to an existing query—the name parameter becomes the name parameter of the node term. It is an error if the previous term in the query is not one that returns links—that is, query terms must always alternate between returning links and nodes. Because this returns the query object, it is possible to construct relatively complex queries on a single line.

public AmilQuery Link(String name) throws AmilException ;
Like Node, except the query is for a link of the specified type—that is, this term will chase any links of the specified type originating from any of the nodes in the set identified by the previous term. In this form, the links themselves become the set for the next term.

public AmilQuery LinkSnap(String name) throws AmilException;
This adds a query term that finds links of the given type, as with the Link method; the difference is that the set for the next term of the query will contain the destination nodes of those links, rather than the links themselves.

public AmilQuery Attr(String name, Object value);
Either node or link terms of the query can filter objects based on their attributes: if the query term has attributes defined, any elements of that attribute set must match attributes of a returned object before it’s added to the result set of the current query term. This method adds attributes to the last term currently in the query.

public AmilQuery Parm(String name, Object value);
This method only applies when the current last term of the query is a node term; it is silently ignored if that’s not the case. This adds parameters to a set that will be passed to AmilLib.getNodeWithParameters during the evaluation of the current term.

public String toString();
Returns a string representation of the query; for historical reasons, it looks quite a bit like the Prolog representation.

public AmilQuery setFinal(String valueName);
This identifies the attribute to return from the query. If this is not set, the the final set of objects, either nodes or links, will be returned from the query; if it is, the valueName attribute of each of those objects will be returned instead. This method can be called at any time during query construction; it applies to the query itself, not to a particular term.

public String getFinal();
Returns the attribute name stored by setFinal, or null if it has not been called.

public boolean isEmpty();
Returns true if the query has no terms.
public void addAttribute(String attribute, Object attributeValue) throws AmilException;
Adds an attribute to the current last term of the query. Like Attr, but this doesn’t return the query object.

public void addParameter(String parameter, Object parameterValue) throws AmilException;
Adds a parameter to the current last term of the query.

public void snapTerm() throws AmilException;
Marks the current last term of the query as one that will “snap” a link; this is a no-op if the last term is not a link term.

Here are some sample queries, with brief descriptions.

AmilQuery(“LowFidelityRampMass”, AmilNode.class).Parm(“ArmorThickness”, NNN).setFinal(“AMILValue”)
This constructs a query that will retrieve the “LowFidelityRampMass” node with the “ArmorThickness” parameter set to the specified value. It has a single term, and will return the “AMILValue” attribute of the node. In the demo repository, “LowFidelityRampMass” is a dynamic node that calls a C executable to compute the mass of a fighting vehicle ramp, based on its thickness and dimensions.

AmilQuery(“WeightMarginOfRamp”, AmilNode.class).setFinal(“REQUIREMENT_VALUE”)
This constructs a query that will retrieve the “REQUIREMENT_VALUE” attribute of the “WeightMarginOfRamp” node.

AmilQuery(“Electric Motor”, AmilNode.class).Snap(“InstanceOf”).setFinal(“OBJECT_ID”)
This constructs a query that will return the node ID of every object linked to the “Electric Motor” node by a link of type “InstanceOf.” Absent the OWL ontology and SPARQL queries, this provides a similar mechanism: get me all instances of the specified class.

[bookmark: _Toc306260332]4.3	Component Model Library
The Component Model Library (CML) provides a flexible vehicle component storage and search capability, which is accessible from the ARRoW tool set over a web service. It utilizes several open-source software packages including a Neo4j[footnoteRef:9] database as a backing store for OWL[footnoteRef:10] ontologies; the OpenRDF[footnoteRef:11] SAIL package for SPARQL query handling; and Tinkerpop Blueprints[footnoteRef:12] libraries handle the interaction between the RDF ontology data and the Neo4j graph database. Figure 3 shows an example CML client/server scenario. [9: http://www.neo4j.org/] [10: http://www.w3.org/TR/owl-features/] [11: http://www.openrdf.org/] [12: https://github.com/tinkerpop/blueprints/wiki/]

[image:]
[bookmark: _Ref306114263][bookmark: _Toc306260147]Figure 3. CML query from client application (Magic Draw)

4.3.1 The OWL Class

trunk/lang/src/main/java/com/ait/meta/lang/OWL.java file defines the OWL class which is used accesses the CML. Table 3 provides the purpose of each method.

[bookmark: _Toc306259366]Table 3. OWL Class Methods used to Access CML

	Method name
	Purpose

	createClass
	Append class definition in the form of an RDF text string with the given parent to ontology, and return the updated ontology

	createDatatype
	Append datatype in the form of an RDF text string with the given parent to ontology, and return the updated ontology

	createInstance
	Create a concrete instance of an OWL class

	deleteLinkedNodes
	Delete specified nodes from the ontology

	executeSPARQLQuery
	Wrapper around executeSparql method. Returns a JSON array.

	executeSparql
	Wrapper around OpenRDF prepare/execute SPARQL methods. Returns an array of result strings.

	flushConnection
	Close connection to SAIL repository

	forceCommit
	Force commit of the current transaction on the SAIL connection

	forceRollback
	Force rollback of the current transaction on the SAIL connection

	getConnection
	Wrapper around SAIL repository getConnection method

	getParentClass
	Return parent class node

	getRawGraph
	Wrapper around getRawGraph Neo4j method

	loadOntologies
	Load OWL ontologies into AMIL Neo4j graph. Fatten all nodes. Fattened nodes store the entire lineage of their inherited properties locally.

	loadOntologyString
	Load OWL XML data into AMIL Neo4j graph. Fatten all nodes.

	setManualMode
	Wrapper around neo4j graph setTransactionMode method

	setLinkOntologyProperties
	Wrapper around Neo4j graph setProperty method

[bookmark: _Toc306260333]4.3.2	OWL
Web Ontology Language (OWL) is a W3C-sanctioned ontology language built off of XML and RDF. OWL ontologies describe CML objects and their relationships in a machine-understandable format.

4.3.2.1	OWL editor: Protégé
OWL ontologies can be created manually or with the help of an OWL editor, such as Protégé[footnoteRef:13]. An OWL editor shields the developer from the complexity of RDF syntax, and provides a more intuitive environment for developing ontologies. For example, Figure 4 shows the simple addition of a subclass to an existing CML ontology using Protege. [13: http://protege.stanford.edu/]

[image:]
[bookmark: _Ref306086325]
[bookmark: _Toc306260148]Figure 4. Protégé OWL editor

For more information on Protégé, visit http://protege.stanford.edu.

[bookmark: _Toc306260334]4.3.3	OWL Ontologies used in CML
Several OWL ontologies composed of sample vehicle components make up the data definition part of CML: trunk/ontology/amil.owl is the main ARRoW ontology; trunk/ontology/meta.owl is layered atop amil.owl to classify META objects (e.g., engines, drivetrains, chassis, etc.); and trunk/ontology/cml.owl contains concrete instance data of several classes defined in amil.owl.

[bookmark: _Toc306260335]4.3.4 	Populating the CML
Models can be created using a variety of tools such as Simulink and OpenModelica. These tools export data files, which CML stores as artifacts in a Maven repository. The CML ontologies manage the relationships between components, while also providing references to the data files in the Maven repository (see Figure 5).

[image:]
[bookmark: _Ref306102012]
[bookmark: _Toc306260149]Figure 5. Semantic web developers and modeling engineers populate the CML

4.3.4.1	Example engine ontology
The amil.owl ontology includes some sample engine data. The following visualization (exported from Protégé) in Figure 6 displays the engine ontology.

[image:]
[bookmark: _Ref306020903]
[bookmark: _Toc306260150]Figure 6. Example engine ontology visualization (exported from Protégé)

The XML snippet in Figure 7 describes the ontology depicted in Figure 6.

	…
 <owl:Class rdf:about="meta#GasEngine">
 <rdfs:subClassOf rdf:resource="meta#Engine"/>
 </owl:Class>
 …
 <ClassAssertion>
 <Class abbreviatedIRI="meta:GasEngine"/>
 <NamedIndividual IRI="#LM500"/>
 </ClassAssertion>
 <ClassAssertion>
 <Class abbreviatedIRI="meta:GasEngine"/>
 <NamedIndividual IRI="#AGT1500_turbine_engine"/>
 </ClassAssertion>
 <ClassAssertion>
 <Class abbreviatedIRI="meta:GasEngine"/>
 <NamedIndividual IRI="#GE_T700-701C"/>
 </ClassAssertion>
 <ClassAssertion>
 <Class abbreviatedIRI="meta:GasEngine"/>
 <NamedIndividual IRI="#GE_T700-T6A/-T6A1"/>
 </ClassAssertion>
 <ClassAssertion>
 <Class abbreviatedIRI="meta:GasEngine"/>
 <NamedIndividual IRI="#GE_T700-T6E1"/>
 </ClassAssertion>
 …
 <owl:NamedIndividual rdf:about="cml#LM500">
	<rdf:type rdf:resource="meta#GasEngine"/>
	<amil:hasFeature rdf:resource="cml#LM500_Mass"/>
	<amil:hasFeature rdf:resource="cml#LM500_Power"/>
	<amil:hasFeature rdf:resource="cml#LM500_Height"/>
	<amil:hasFeature rdf:resource="cml#LM500_Width"/>
	<amil:hasFeature rdf:resource="cml#LM500_Length"/>
	<amil:hasFeature rdf:resource="cml#LM500_Cost"/>
 </owl:NamedIndividual>

[bookmark: _Toc306260151]Figure 7. RDF snippet describing the engine ontology

[bookmark: _Toc306260336]4.3.5	Artifactory
Artifactory[footnoteRef:14] is a popular Maven[footnoteRef:15] repository manager used to minimize bandwidth usage by proxying Maven requests to online repositories. CML semantics borrows heavily from Maven semantics, which enables the use of Artifactory to build the CML infrastructure. The procedures for configuring and launching Artifactory for CML are provided in the VDD; the usage of the tool is described in the following paragraphs. [14: http://www.jfrog.com/] [15: http://maven.apache.org/]

4.3.5.1	Web Interface
Artifactory ships with an AJAX web interface used to manage Maven repositories. See figure 8. This browser interface provides artifact management, Maven repository monitoring, backup scheduling, and user management.

[image:]

[bookmark: _Toc306260152]Figure 8. Artifactory Web Interface

4.3.5.2	REST Interface
The downloading and uploading of Maven artifacts is possible through a Representational State Transfer (REST) interface. Maven coordinates (artifact ID, group ID, version, and packaging) can be specified for uploaded artifacts using command-line options to the mvn command. The Maven deploy plug-in is used in the following example to deploy the engine1.xml file to the libs-release-local repository.

NoteS
Repositories containing the string “release”, are for artifacts which will never be changed. In contrast, “snapshot” repositories imply a set of artifacts in ongoing development which can be overwritten periodically.

$ mvn deploy:deploy-file -Dfile=engine1.xml -DgroupId=com.bae.meta.cml.engines -DartifactId=engine1 -Dversion=0.0.1 -Dpackaging=xml -DgeneratePom=true -Durl='http://localhost:8888/artifactory/libs-release-local'
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --
[INFO]
[INFO] --- maven-deploy-plugin:2.5:deploy-file (default-cli) @ standalone-pom
Uploading: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.xml
Uploaded: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.xml (50 B at 0.5
Uploading: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.pom
Uploaded: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.pom (433 B at 3.0
Downloading: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/maven-metadata.xml
Downloaded: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/maven-metadata.xml (365 B at 5.7
Uploading: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/maven-metadata.xml
Uploaded: http://localhost:8888/artifactory/libs-release-local/com/bae/meta/cml/engines/engine1/maven-metadata.xml (338 B at 7.0 KB/sec)
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.077s
[INFO] Finished at: Wed Aug 24 11:25:52 EDT 2011
[INFO] Final Memory: 3M/111M
[INFO] --

A simple Hypertext Transfer Protocol (HTTP) client, such as cURL[footnoteRef:16], can be used to access artifacts through the REST interface. The following command performs a search for all artifacts whose artifact ID matches the pattern, engine*. Artifactory responds to REST calls in JavaScript Object Notification (JSON) format. The search query results below contain the URLs of the matching artifacts. [16: http://curl.haxx.se/]

$ curl -X GET -u admin:password \
 'http://localhost:8888/artifactory/api/search/artifact?name=engine*'
{ "results" : [{ "uri" : "http://localhost:8888/artifactory/api/storage/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.xml" },
{ "uri" : "http://localhost:8888/artifactory/api/storage/libs-release-local/com/bae/meta/cml/engines/engine1/0.0.1/engine1-0.0.1.pom" }
]
}

4.3.5.3	Common Authentication Error
Insufficient credentials causes Artifactory to report authorization errors (Error Code 401). Ensure the credentials in the $HOME/.m2/settings.xml file match the settings on the Artifactory server. The following is a excerpt from a settings.xml file:

…
<settings>
 <servers>
 <server>
 <id>central</id>
 <username>admin</username>
 <password>********</password>
 </server>
 </servers>
</settings>

4.3.5.4	Additional Information
For further information on Artifactory, the user guide is available at the following address:

http://wiki.jfrog.org/confluence/display/RTF/Artifactory+User+Guide

[bookmark: _Toc306260337]4.5	Metrics
The Metrics Dashboard is accessible from the Arrow Web Services home page (shown in figure 1) by clicking the Metrics Dashboard demo link. However, the Metrics Dashboard requires extensive configuration data to be loaded in order to show the specific widgets and design metrics that are of interest to the user. Accessing the Metrics Dashboard without loading necessary configuration data will yield widgets displaying the message “The content of this widget is not available anymore. You may remove this widget”.
[bookmark: _Toc306260338]4.5.1	Metrics Demo
Because authoring metrics to interact with design data and the metrics dashboard requires extensive configuration, the following paragraphs describe the process for loading the metrics demo and navigating the Metrics Dashboard.
4.5.1.1	Loading the Metrics Demo
A link is available on the Arrow Web Services home page to load all metrics configuration data used in the META demos. Metrics configuration data must be the first thing loaded in the demo due to the fact that it will clear all design data previously published into AMIL. Clicking the Load ARRoW Demo Metrics link will load pre-configured demo data for use in the Metrics Dashboard.
Since the demo metrics make use of design specifications modeled in the Ecto tool, the second step is to publish the tank model in Ecto to AMIL. For more information regarding publishing models into AMIL from Ecto, refer to paragraph 4.6. Optionally, The SysML IFV model may also be published to AMIL in order to make use of metrics involving transport carrier requirements (paragraph 4.7).
After loading the Metric Dashboard configuration data and model(s), the Metric dashboard can be viewed by clicking Metrics Dashboard Demo. Figure 9 shows the Metrics Dashboard displayed in a web browser.
[image:]

[bookmark: _Ref305069965][bookmark: _Toc305082325][bookmark: _Toc305329110][bookmark: _Toc306260153]Figure 9. Example Metrics Demo Dashboard

4.5.1.2	Navigating the Dashboard
The Metrics Dashboard allows a few different ways to display and adjust metric information for analysis. The dashboard is divided into 'widgets', used to organize and display metric information in a particular way. Widgets are capable of displaying metric information in graphs, tables, charts etc. Figure 9 shows the default widgets that are displayed upon first visiting the dashboard webpage.
4.5.1.2.1	Dashboard Layouts
One way to view different widgets is to use the drop-down menu in the top left corner of the dashboard. The drop-down menu allows the users to select different preconfigured dashboard layouts, each specifying a different layout of widgets to be displayed. The metrics demo contains three different dashboard layouts: Demo Dashboard, Design Dashboard and Requirements Dashboard.

The default layout displayed when viewing the metrics dashboard is the Demo Dashboard. The Demo Dashboard is used to demonstrate a sample of a top level cost analysis and capability assessment. The Design Dashboard layout, on the other hand, displays both demo metrics as well as metrics utilizing the design details modeled in Ecto. Model changes in Ecto directly affect the Design Measure Details, Monitors and TPMs widgets in this layout. The Design Dashboard can be seen in figure 10 incorporating design data (System Mass, Cost Estimate, Acceleration, Top Speed, etc.) from a model in Ecto.

[image:]

[bookmark: _Toc306260154]Figure 10. Design Dashboard Displaying Content from Ecto

The Requirements Dashboard provides a table of the integrated PARC and BBN Signal complexity results.
4.5.1.2.2	Adding Widgets
Another way to alter the dashboard is to use the Add Widget link in the top right corner menu. This allows added flexibility for adding specific widgets without requiring the user to change the entire dashboard layout.

The two widgets availabe in the demo display metrics designed by PARC and BBN.

4.5.1.2.3	Refreshing Content
Often times widgets may not immediately display relevant metric data and may require the widget to be refreshed. For this reason, the Refresh Content link in the top right menu is available for refreshing the content on all displayed widgets. In addition, individual widgets may be refreshed by clicking on the refresh button from the pull-down menu in the top right corner of the widget. See figure 11.

[image:]
[bookmark: _Toc306260155]Figure 11. Refreshing Widget Content

[bookmark: _Toc305082338][bookmark: _Toc305329076][bookmark: _Toc306260339]4.5.2	Framework Implementation
The framework controls the flow, data collection, and metrics interface with AMIL. The following paragraphs discuss the internals of the metrics framework, individual metrics, and the dashboard display.

4.5.2.1	Configuration
The metrics framework configuration is essentially a graph comprising of a variety of specially handled AMIL nodes and links. The configuration is defined in a text file using Java Standard Object Notation (JSON) to define the configuration. The metrics JSON definition file can be found within the META source code directory at the following location:
ArrowWebServices/src/main/webapp/data/arrow_demo_AMILmetrics.txt.

[bookmark: _Toc305082339][bookmark: _Toc305329077]4.5.2.2	Metric Design
Individual metrics used in the framework configuration provide the methodology. A metric within the framework is defined by an AMIL node. The metric configuration is also written in JSON, and uses node properties and links to define the metrics used in META.
NOTE
The metrics framework deals heavily with both immediate and dynamic nodes. It is recommended that the AMIL section "Dynamic Nodes" (paragraph X.X) be reviewed prior to continuing.

The metrics framework uses three different core types of AMIL nodes, which are defined by setting the node property "valueType" to each of the three type names: immediate, external, and metric. Both external and metric nodes are dynamic AMIL nodes. However, a metric node is a special type of dynamic node and is executed differently within AMIL. The node type 'metric' is extensible, and has a number of subtypes. For instance, a node might have the valueType 'metric' or the subtype 'metric:eval'. Currently, the metrics framework supports three subtypes: 'metric:eval', 'metric:statistic' and 'eval:externalMeasure'.

The purpose of a metric node is to provide a root node for the graph of metric components it uses for the calculation or assessment. This node has at least one link to an 'evaluator,' and may contain links to 'statistics' or even more evaluators.

For example, consider the 'Robust Z Score' metric, which employs two evaluators. The Robust Z Metric configuration is shown in figure 12.

[bookmark: _Ref305047038][bookmark: _Toc305082327][bookmark: _Toc305329112][bookmark: _Toc306260156]Figure 12. Robust Z Metric Configuration

A full list of implemented evaluator and statistic classes is shown in figure 13.

	Evaluator Name (*.java)
	
	Statistics Name (*.java)

	ChangeParameters
	
	BivariateLinearTrend

	CollectNodeData
	
	Count

	ConstantParameter
	
	DescriptiveStats

	EvaluateModels
	
	Maximum

	EvaluateNodesByType
	
	Mean

	ExtractAllNodeValues
	
	Median

	PercentageParameterChange
	
	Minimum

	RangeParameter
	
	PwrSum

	RefineArchetype
	
	Sum

	RobustZScore
	
	WtSum

	StochasticRangeParameter
	
	

	TrendLine
	
	

[bookmark: _Toc305082328][bookmark: _Toc305329113][bookmark: _Toc306260157]Figure 13. Evaluators and Statistics Implemented

In addition, figure 14 shows a list of available assessor and measure classes implemented in the metrics framework.

	Assessor Name (*.java)
	
	Measure Name (*.java)

	Assessment
	
	CostByWeight

	Bounds
	
	DesignConcept

	IBounds
	
	ExtractNodeValues

	LinearObjective
	
	MeasureMaxTimeHoldingPeakTorque

	Objective
	
	

	PassFailObjective
	
	

	QuadradicObjective
	
	

	RadiusBounds
	
	

[bookmark: _Toc305082329][bookmark: _Toc305329114]
[bookmark: _Toc306260158]Figure 14. Assessors and Measures Implemented

For more information on the differences between these four class types and how they are used in the metrics framework, refer to Final Report 1B, paragraph 1.1.7.3.
4.5.2.3	Metric Evaluation Implementation
As mentioned in paragraph 4.2, retrieving a dynamic node from AMIL causes the node's associated Java function or executable to be executed. In the case of evaluating a metric node, each of the connected evaluator nodes will also be evaluated. The connected evaluators are evaluated in alphabetical order according to the evaluator's name. As with all dynamic nodes, the results of evaluation are passed back to the parent class in a JSON map, named evalResultsMap. Immediate AMIL nodes, on the other hand, will default to storing their value in the node property AMILvalue.

As mentioned previously, metric nodes may optionally be connected to statistic nodes. The results from each evaluator connected to the metric node are appended to the statistic parameters. The statistic node is retrieved in AMIL using these appended properties, and the result is returned.

The control and flow of a metric's calculation is handled by the Metric class (located in the com.bae.meta.dynamic package). The interfaces IEval and IStatistic are used to define evaluator and statistic classes respectively.

[bookmark: _Toc305082340][bookmark: _Toc305329078]4.5.2.4	Dashboard Implementation
Each widget displayed in the dashboard renders an analysis view displaying metric information. The following analysis views are implemented in the dashboard:

Assessment view: “Gumball” analyses of metric assessments
Progress bars/bar charts: Dynamically evaluates a calculated value against an objective value (most likely from a requirement)
Details view: Displays a table of data values
Metric Details view: Displays a table of evaluator data values (inputs and outputs for each data point)
Summary view: HTML summary of the statistic results contained within a metric
The dashboard supports eight different display types for rendering the above five views: BarChartPanel, LineGraphPanel, ScatterPlotPanel, ProgressBarPanel, ContentTablePanel, TablePanel, AssessmentPanel, and HtmlPanel.

Each of these views are defined in a different JavaScript Page (.jsp) file, which can be found in the META source code directory ArrowWebServices\src\main\webapp\WEB-INF\views\. An example of gumball analyses are shown in figure 15.

[bookmark: _Ref305054814][bookmark: _Toc305082330][bookmark: _Toc305329115][bookmark: _Toc306260159]Figure 15. Combat Vehicle Metrics Gumball Chart

The dashboard layout is configured using a four different text files, found within the ArrowWebServices/src/main/webapp/dashboard/jsonfeed directory. Table 3 provides a summary for each file.

[bookmark: _Ref304975549][bookmark: _Toc305329142]

[bookmark: _Toc306259367]Table 3. JSON Configuration References

	FileName
	Purpose
	Restrictions

	add_widgets.json
	Specifies the widges available from the Add Widgets link.
	The link variable 'contentName' must be unique in all files. Add Widget is currently only configured to work on the default dashboard, Demo Dashboard.

	category_widgets.json
	Categorizes the BBN and Xerox PARC widgets into category 1 and category 2 respectively.
	

	dash.json
	Names the widgets to be used on a dashboard. Node name is used as a label in the corresponding dashboard JSON test file.
	

	widgetcategories.json
	Names the widgets to be defined for a dashboard.
	

[bookmark: _Toc305082341][bookmark: _Toc305329079]
[bookmark: _Toc306260340]4.5.3	Available Metrics
Table 4 describes the available metrics used in META, denoting the client tools that they interact with.

[bookmark: _Toc305329144][bookmark: _Toc306259368]Table 4. Metric Data Sources

	METRIC
	SysML
	Ecto
	OTHER
	DESCRIPTION

	Max Torque Variation Example
	
	X
	
	Vary the input parameters of an executable node according to (exhaustive, search, sampling algorithm} and calculate a metric of how outputs change in relation to how much the inputs were changed. This metric is small when larger inputs produce little change in outputs, and large when small changes in inputs produce large changes in outputs.

	Total Procurement Cost
	
	X
	X

	Total Procurement Cost calculated as a function of Weight by SubSystem Type in 2011-USD($).

	METRIC
	SysML
	Ecto
	OTHER
	DESCRIPTION

	AMIL Complexity
	
	X
	
	Number of Nodes and Incoming and Outgoing Links of a specified type. CollectNodeData.java is the evaluator for this metric.

	Status - indicated by stoplight color
	X
	X
	
	Updated dynamically using a threshold (base value to distinguish between bad and good), an optimum (used to distinguish good from excellent), and a direction (High or Low, this defines relative good values).

	AccelerationTo20MPH
	
	X
	
	The time it takes for a vehicle to get to 20 MPH in seconds is output from the Mobility Simulink Model. The inputs are total system weight and total system power. The outputs are Top Speed, AccelerationTo20MPH (this), and Fuel Efficiency.

	Weight
	
	
	X
	Sum of the weights of a system of connected AMIL nodes traversed from the headnode. Configured to calculate on AMIL nodes output from Ecto. Can compare to the Ground Vehicle mass from SysML.

	Fuel Efficiency
	
	X
	
	Mobility Simulink Model. See AccelerationTo20MPH.

	Engine.power
	
	
	X
	Sum of the power of a system of connected AMIL nodes traversed from the headnode. Configured to calculate on AMIL nodes output from Ecto.

	Max Speed
	
	X
	
	Mobility Simulink Model. See AccelerationTo20MPH.

	Physical dimensions
	
	X
	
	Length, Height, and Width summed from Ecto AMIL Graph.

	Cost
	
	
	X
	Sum of the cost of a system of connected AMIL nodes traversed from the headnode. Configured to calculate on AMIL nodes output from Ecto.

	Transportability
	X
	
	
	List the Transport Types contained within the SysML nodes and the assessment, using a Pass/Fail criteria, of whether their Height Limit envelope is lower that a specified value.

	METRIC
	SysML
	Ecto
	OTHER
	DESCRIPTION

	SysML Reasoner
	X
	
	
	A reasoner to find the best platform type based on comparisons between constraints of the design and constraints of the candidate platform types. It consists of an evaluator that visits pertinent AMIL nodes and extracts attributes, and a Minimum statistic to “reason” and return the numeric minimum along the node having that value.

	BBN Signal Complexity
	
	X
	
	Compute the entropy of a supplied data vector implemented via a command line executable script and java application (jar file).

	PARC PCC
	
	X
	
	Compute the probabilistic certificate of correctness (PCC) using envisionment implemented in Lisp.

[bookmark: _Toc305082343][bookmark: _Toc305329081]
[bookmark: _Toc306260341]4.5.4	Walkthrough
There are roles other that the metrics stakeholder who will assist in the interactions with metrics. They are the framework Fabricator (FF, figure 16), the Metric Developer (MD, figure 17), and the Web Architect (WA, figure 18). Some of the tasks for each role are listed in the subsections below.

[bookmark: _Ref305061100][bookmark: _Toc305082331][bookmark: _Toc305329116][bookmark: _Toc306260160]Figure 16. Responsibilities of the Frame Fabricator Role

[bookmark: _Ref305061119][bookmark: _Toc305082332][bookmark: _Toc305329117][bookmark: _Toc306260161]Figure 17. Tasks for the Metric Developer

[bookmark: _Ref305061155][bookmark: _Toc305082333][bookmark: _Toc305329118][bookmark: _Toc306260162]Figure 18. Functions of a Dashboard Presentation Layer Maintainer

4.5.4.1	Adding a Metric
The metrics framework handles two types of metric implementations: native and non-native. Native metric implementations use java classes and are more deeply integrated into the ARRoW toolset. Native metrics employ behavior dependent on design data available in AMIL prior to their calculations. Non-native metric implementations, on the other hand, are typically binary executables (and may include proprietary information) and are only dependent on input parameters. Examples of native metrics are AMIL Complexity and Max Time Holding Peak Torque, whereas examples of non-native metrics include BBN Signal Complexity and PARC PCC.

Add a new metric to the metrics framework by performing the following:

a.	Determine the problem feature or requirement of interest.
b.	Determine the metric(s) to implement to measure progress towards this feature.
c.	Identify data source(s) required. The accuracy of the data can evolve over time, starting with a rough estimate with updates as needed. Data components can have varying levels of accuracy but are usually synchronized in time. Check for required data synchronization and accuracy.
d.	Decide if the implementation will be native or non-native. Proceed with the appropriate steps below.
(1)	Native:
(a)	Determine if the metric follows a pre-established pattern. A Framework Fabricator (FF) should assist in this and the next evaluation.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]	When should the desired data be collected; in the measurement step for individual measurement transformation, or attached to the evaluator?
	Are explicit edges to the measurement nodes necessary?
	Additional properties to add?
(b)	Author any metric specific java code required for the Evaluator, Measure, Statistic or Assessor as required. Add the code to the metrics package.
(2)	Non-native:
(a)	Upload the jar or other executables in ArrowWebServices/src/main/webapp/metrics/ package.
(b)	Develop scripts to execute on each of the platforms and load them into the ArrowWebServices/src/main/webapp/{linux, Macintosh®,or Windows®} directory.
(c)	Determine if a tailored assessor or statistic is desired. If so, write the java classes to implement the processing.
e.	Add a test driver and test resource JSON definition file to the metrics package. Test the metric and make sure that it works.
f.	Ask the FF to add the AMIL nodes defining the metric to arrow_demo_AMILmetrics.txt file, which will use the ExecuteModels evaluator and the DesignConcept external measure classes.
g.	Confer with the FF who will modify the demo nodes and edges to connect to the metric.
h.	Determine how to display the results. This includes configuring a dashboard, panel and view to display the results. The Web Architect will assist in this task. This may be as simple as adding a view and assessment node to an existing AssessmentPanel or Table.
4.5.4.2	Adding a Dashboard
The Web Architect (WA) may decide that a new dashboard is required. To add a dashboard, perform the following:

a.	Create the necessary view and metric nodes in a JSON file. Current configuration data is located in the ArrowWebServices/src/main/webapp/data/dashboard directory.
b.	Configure the dashboard layout in a new JSON file under the ArrowWebServices/src/main/webapp/dashboard/jsonfeed/ directory. For each widget in the dashboard, ensure that the correct node and contentNode parameters are specified in the link (if necessary) from the configuration created in step a.
c.	Add new dashboard to the dashboardManager in ArrowWebServices/src/main/webapp/dashboard/dashboard.html under the javascript function initDashboard(), referencing the newly created metric configuration file (from step b). In the same file, add a new div element (at the bottom of the file) as a placeholder for the generated HTML. Lastly, under the div titled "header_title_image", add the new dashboard name to the switcher (drop-down menu).
[bookmark: _Toc305082344][bookmark: _Toc305329082][bookmark: _Toc306260342]4.5.5	Developers Notes
Metrics Framework is written in Java, using the STS and Eclipse IDE and utilizing the Apache Maven build tool. The dashboard includes JQuery, CSS, HTML, AJAX, PhP, and JavaScript as well a thin open source dashboard client. JSON is used for interfacing.
All AMIL nodes and edges must have a unique name. Numeric data is represented as floating point in the JSON files and must contain a decimal.
Because the communication between Metrics and AMIL is performed using JSON, results from an Evaluator and Statistic need to be stringifiable. Thus an evaluator must output simple array structures and cannot handle complex objects (without creating additional AMIL nodes).

While metric nodes usually have no properties, often times an evaluator may specify a targetNode property. The target node specifies the name of another node (which may not be directly connected to the evaluator) to retrieve node data. If an evaluator node does not have a target node specified, the information message, “Metric node invoked without recognized target." will appear in the system console.
A metric is executed by the framework using an AMIL getNodeWithParameters or getNode statement on the AMIL metric node. After evaluation, the resultant parameters can be extracted using the getProperties() method. If provided an AMIL node, and trying to extract the properties of that node without executing it, one can use the AMIL dynamic utility method DynUtil.nodeToMap().
When used in conjunction with an external script, as in the BBN signal entropy Design Concept node, property values may contain a string label (e.g., "targetProp.Values" : "measurements:[1.2,3.4,5.6]"). When defining a valueNodeField to refer to a the result of a statistic within this file, refer to the statistic using the following convention:

<MetricEvaluatorNodeName>.<StatisticName>.<StatisticPropretyLabel> value.

For example, the PwrComponentType.PwrSum.Sum AMILvalue is the value from the metric using the evaluator class PwrComponentType and statistic class PwrSum, outputting the property Sum.
One can use the isDummy property to enable or disable assessment (and thus metric) calculations for a node in an assessment panel. When a node is designated as a dummy (by setting the property isDummy =1) the contentSource property on the node must be defined. Without this assignment, the assessment and metric will be evaluated.
[bookmark: _Toc306260343]4.6	Ecto
Ecto is a system design tool that enables editing of the master model primarily through the hierarchical assembly and manipulation of components from the CML. It is focused primarily on empowering a designer in the early design phase to be able to incorporate and manipulate major design drivers and rapidly assess the qualities of system concepts. Resultant concepts can be used as the basis for more detailed design.

Ecto includes a 3D viewer called Zulu to represent the vehicle design concept and to aid in initial spatial layout and rudimentary packaging without the burden of a commercial Computer-Aided Design (CAD) tool.

Procedures for building, installing and launching Ecto are provided in the VDD, directions for using Ecto are provided in the following paragraphs.

[bookmark: _Toc306260344]4.6.1	User Interface
4.6.1.1	Ecto Main Window
Ecto is made up of several configurable panels. All but the system design panel are dockable widgets which can be undocked or moved around by dragging the title bar of the panel. Ecto saves the layout configuration and window position when the program is closed and restores it when opened. This is saved in the layout.ini file which can be deleted or modified if desired. Initially there is no layout.ini file so the system determines a typical layout which looks similar to the layout shown in figure 19.

[bookmark: _Toc306260163]Figure 19. Ecto User Interface Layout

By default, the file system.xml is loaded when Ecto is started. If you want to start fresh, you can press the Clear All button.

4.6.1.2	Zulu
Zulu is the 3D visualization component to Ecto which runs as a separate process. No state is stored in the visualization and it is not required to be run for Ecto to function, though this provides the easiest way to move components around and get a spatial view of the system. If Zulu is started after Ecto or gets out of synch for any reason, you can always press the Synch Vis with the system button [image:] located in the System Visualization toolbar described in paragraph 4.6.1.4.2. See figure 20.

[bookmark: _Toc306260164]Figure 20. Zulu (Ecto's 3D Visualization)

4.6.1.3	Zulu Camera Control
Zulu starts out in a free fly camera mode whereby pressing the left mouse button and moving the mouse changes the direction of the camera. When the left mouse button is held, the W, A, S, and D keys translate the camera around the scene.

You can tether the camera to look at any node in your system by selecting a node and pressing the Tether Camera to Selected Node button [image:]. Once tethered the camera spins around the selected node by holding the left mouse button down and dragging the mouse. Rolling the middle mouse button will zoom the view in/out. To go back to free fly mode, press the ‘g’ key or tab to view the Buttons Window and click the Free Camera button on the Controls tab.
4.6.1.4	System Design Panel
The System Design panel is shown in figure 21.

[image:]

[bookmark: _Toc306260165]Figure 21. System Design Panel

4.6.1.4.1	System Design Toolbar
The System Design toolbar is shown in figure 22.

[bookmark: _Toc306260166]Figure 22. System Design Toolbar

XML Load and Save buttons store/load the state of the system design using local XML files. Loading a new system files clears the existing system.
AMIL Import/Export buttons store and load the state of the system design using the Arrow Web Services AMIL graph. Importing from AMIL clears the current system. Ecto maintains a list of all the elements it creates during an import or export process. When performing subsequent exports, it first removes all the AMIL elements in this list and the new system tree is then saved. It does not currently attempt to merge what currently exists in AMIL and what is being exported. Ecto essentially assumes it owns the system hierarchy while it is editing it.
Run Selected Model/Run all Models: Ecto models can be run explicitly by selecting a model or more commonly all at once by pressing the Run All Models button on the System Design toolbar. Run all Models executes all of the models in the system hierarchy. See paragraph 4.6.2 for more information.
The Query CML button creates a SPARQL query for refinements of the selected component. It generated as query for things in the ontology that are valid refinements of an abstract item selected. Note for the demo version (as delivered), the only component that had the CML populated for it to illustrate how this works is the Engine. See paragraph 4.6.3 for an example.
The Delete Selected Component button removes the selected component and all its children from the system hierarchy
The Clear All button deletes the entire system hierarchy
4.6.1.4.2	System Visualization Toolbar
The System Visualization toolbar is shown in figure 23.

[bookmark: _Toc306260167]Figure 23. System Visualization Toolbar

The Synch Vis button clears what is in the Vis and resends the entire system design. No state is ever persisted in the visualization so it is generally ok to do this any time. Once synched the vis typically should stay in synch as changes are made. Zulu can be closed and restarted anytime and the synch can be used to re-establish the 3D representation of the system in Ecto.
Toggle Vis Updates is enabled by default and generally does not need to be changed. When enabled tells the Zulu visualization to automatically send positional updates back to Ecto when things are moved around. A designer may want to disable this if they want to manipulate the 3D visualization without changing the system.
Tether Spin to Selected forces the camera to always look at the selected node in the system hierarchy
Hide Selected tells the visualization to not render the component in the visualization. This is only a visual preference and does not affect the system design and is not saved in XML or AMIL.
Show Selected turns a previously hidden component visible again
Toggle Move Axis turns the Axis control in Zulu on and off which allows you to move or rotate a component
Toggle Highlight Selected turns the highlighting of edges on and off around the component which is currently selected
Set Selected Transparency makes the selected component’s alpha value transparent
4.6.1.4.3	System Hierarchy
The system hierarchy is where the hierarchical representation of the system is displayed. You can drag and drop (move) components as desired.

As you select components in the tree you will see the values of the major states displayed in a table under the system hierarchy tree. The Local State column is the state values for the component selected only. The Rollup State column displays a rollup of values for the selected state and all that state’s children. System level rollups for Mass, Cost, Length, Width and Height are always displayed in the System Properties panel.

4.6.1.5	System Requirements and Properties Panel
This panel stores all the system level properties or any properties that need to be exchanged between component models. See figure 24. The Value column indicates the current systems estimated performance and the Req column is used to maintain the system requirement or derived requirements for that property. Most key system inputs are considered requirements but they can be adjusted by a designer so they can assess how particular inputs drive a design.

[image:]

[bookmark: _Toc306260168]Figure 24. System Requirements and Properties Panel

4.6.1.6	Component Properties Panel
This panel shows and allows one to edit the properties of a specific component. See figure 25. Components with associated models will frequently have additional properties that are specific to that model. For example, the SoldierCompartment model uses additional properties to construct the soldier compartment such as seating arrangement, squad size assumptions, clearances, etc.

[image:]

[bookmark: _Toc306260169]Figure 25. Example Component Properties Panel

4.6.1.7	Component Model Library Panel
The panel shows components from the CML which can be included into the system hierarchy by dragging a component from this panel to the parent in the system you want to attach this component to. See figure 26. Alternatively, you can select a parent in the system hierarchy and select a component in the Component Model Library panel and press the Copy Selected Component to CML button [image:].

Components can be loaded into this panel either through XML files using the Load File button [image:] or as a result of a query to the CML service in Arrow Web Services. Query results are inserted at top of the component list under the Query Results collapsible category.

As additional ways to interact with and search a CML are established, this panel can evolve to support additional approaches. Additionally, CML repositories should be able to easily export indexes of components into a compatible XML file. The CML.xml file in the Ecto working directory provides an example of various CML components used to build up the Infantry Fighting Vehicle (IFV) in the demo walkthrough (paragraph 4.6.3).

[image:]

[bookmark: _Toc306260170]Figure 26. Example Component Model Library Panel

4.6.1.8	Tool Log
The Tool Log provides informational output to the user as the tool is used. See figure 27. The output level can be adjusted so more or less output is displayed in this panel. The Clear button erases the current contents of the log.

[image:]

[bookmark: _Toc306260171]Figure 27. Example Tool Log

[bookmark: _Toc306260345]4.6.2	Models
Certain nodes, indicated by a green background in the system hierarchy, have Models associated with them. These are typically parametrically driven components or systems that change their properties or are ‘built’ based on inputs to those models. For example, the SoldierCompartment Model, when executed takes the requirement from the System Properties panel for number_soldiers and various other inputs in the Component Properties panel to construct the space claim and mass for the Soldier Compartment. If you change the number_soldiers requirement and run this model, you will see the number of soldiers and the various properties of the compartment (bench, egress volumes, etc) change to reflect this.
Ecto models are run from the System Design toolbar, either individually on a selected model or by executing all models in the system. Running all models traverses the tree and executes models from children models up, models under the sub-tree of another Model node are executed before the ancestor node’s model. Executing Models can retrieve and set data in the System Properties widget as they run, so one model’s output can be used as input or modified by another model. This data flow can also be used to control the execution order of models or to establish an implicit causal network of models.

Another kind of model is the Hull Shaper model. See figure 28. If you select the ‘Hull’ Model component you should see a Hull Shaper UI popup in the Zulu visualization. By modifying these fourteen dimensions a designer can capture the essential shape of most traditional combat vehicles. As the Hull is modified, estimates of weight are calculated and cost is calculated using the cost per pound input parameter. If this model is insufficient to represent a design a different Hull model or component can be used in its place.

[image:]

[bookmark: _Toc306260172]Figure 28. Example Hull Shaper Model

[bookmark: _Toc306260346]4.6.3	Example Walkthrough
The following demo provides an example of how Ecto could be used in the ARRoW workflow to quickly assess different system concepts.

a.	Load Tracked IFV Archetype - Ecto loads the system.xml file by default when it is launched. For purposes of this example system.xml is provided as a generic tracked IFV model. Other system configurations can be saved or loaded at any time using the XML Save and Load buttons. Click the Run All Models button on the System Design toolbar.
b.	Synch with 3D Vis (Zulu) and System Properties - If Zulu does not show current vehicle, click Synch Vis with System button.
c.	Upload to AMIL master model and view Metrics Dashboard:
(1)	Click the Export to AMIL button.
(2)	From Arrow Home, open the Metrics Dashboard, select Design metrics, Refresh metrics, and observe results showing the updated metrics for the current design.
d.	Modify system requirements (increase number squad from 6 to 9) and re-execute all models (rebuild system):
(1)	Change number_soldiers from 6 to 9 in the Systems Properties panel.
(2)	Press the Run All Models button in the System Design toolbar.
e.	Update to AMIL master model again and view metrics change -
(1)	Click the Export to AMIL button.
(2)	From Arrow Home, open the Metrics Dashboard, select Design metrics, Refresh metrics, and observe a rerun of the metrics with the updated system design.
f.	Observe quick look mobility model and Engine Power derived requirement:
(1)	In the System Properties panel, as you modify the vehicle a quick look calculation is made that generates a minimum Engine Power that would be required for a vehicle of this weight class to achieve the required maximum speed (shown in the System Properties panel as top_speed). If you modify the system to make it heavier the required Engine Power will go up. Additionally, if you modify the top_speed requirement in the System Property panel, the minimum required Engine Power will also change. This calculated, or derived, requirement for minimum Engine Power is used when you query for viable refinements of Engine.

(2)	One way to quickly change the weight of the vehicle is to modify the AvgThickness component property for the Hull Model component. You can change the average hull thickness from 0.02 m to 0.03 and run the Hull model (or Run All Models) to represent a heavier armored vehicle.
g.	Query for viable engines in CML:
(1)	Select Engine model node in system hierarchy,
(2)	Click the Query CML for Candidate Component Refinements button.
(3)	You can observe the details of the SPARQL query in Output Log panel.
(4)	Observe Query Results added to CML panel, only engines returned that exceed the minimum Engine Power calculated in the System Property panel. See figure 29.
[image:]

[bookmark: _Toc306260173]Figure 29. Component Model Library Panel Query Results

h.	Replace abstract engine with specific engine:
(1)	Delete AbstractEngine by selecting it in system hierarchy and clicking the Delete Selected Component button.
(2)	Drag an engine from the CML to the Engine model component.
(3)	Click the Export to AMIL button to save the change to the AMIL graph (Master Model). See figure 30.
[image:]

[bookmark: _Toc306260174]Figure 30. Abstract Engine Location in System Hierarchy

[bookmark: _Toc306260347]4.6.4	Generative Ensemble Archetype Reasoner Integration
The example Generative Ensemble Archetype Reasoner (GEAR) is connected indirectly to Ecto through the AMIL graph database. See figure 31. GEAR requests the data and the AMIL server responds with a graph. For more information on GEAR refer to paragraph 4.9.

 (
AMIL
Ecto
GEAR
)

[bookmark: _Toc306260175]Figure 31. GEAR Reasoner’s Indirect Connection to Ecto

To run the GEAR demonstration on a Windows® platform perform the following:

a.	Change directory to trunk\galileo\gear.
b.	Execute run_lp.bat and leave it running as a server (exit if needed by entering halt.)
c.	From a web browser connect to http://localhost:5000/home.
d.	Any new load will clear out the previous set of data. The query should return something interesting if the DESIGN_SET node is in AMIL, otherwise no match on return. See figure 32.
[image:]
[bookmark: _Toc306260176]Figure 32. Response to AMIL Reasoner Query

[bookmark: _Toc306260348]4.6.5	Developers Notes
Ecto was developed as a tool which could be used independently or that can fit naturally into the ARRoW toolchain and interact closely with the projects AMIL graph. To this end both system design data and CML data can be stored or retrieved interchangeably using either local Extensible Markup Language (XML) files or the Arrow Web Services AMIL graph. The interface between Ecto and the Arrow Web Services is intended to be very transparent and provides an example for how a design tool would interface with these services.

Ecto is written in C++ and built on top of the Qt application framework. Ecto uses a C++/Qt based AMIL client library to facilitate all its interactions with the AMIL graph. Zulu is built using the Unity Engine and communicates with Ecto using User Datagram Protocol (UDP) messages.

[bookmark: _Toc306260349][bookmark: OLE_LINK3][bookmark: OLE_LINK4]4.7	Systems Modeling Language (SysML) Plug-in for MagicDraw
[bookmark: _Toc306260350]4.7.1	Plug-in Setup
The SysML plug-in requires the use of MagicDraw[footnoteRef:17], a commercial SysML modeling tool available for download on the products web page. The SysML plug-in developed for META has been primarily tested to work with MagicDraw version 17.0. [17: http ://www.magicdraw.com/]

4.7.1.1	Installation
After installing MagicDraw, perform the following steps to install the ARRoW MagicDraw plug-in for use in MagicDraw:

a.	Make sure the MDUML_HOME environment variable is set to the MagicDraw installation directory (i.e., C:\Program Files\MagicDraw UML)
b.	Install the ARRoW MagicDraw plug-in by navigating to the mdplugin directory within the source code (i.e., ~/META/trunk/mdplugin) and executing the command mvn install. Alternatively, this can be done from within SpringSource Tool Suite (or Eclipse with a Maven plug-in) and running a Maven install from the project's context menu. This installs the ARRoW plug-in in the com.bae.meta.sysml.arrow directory within the {MDUML_HOME}\plug-ins directory.
c.	(Optional) In order to use the parametrics solving capability, the ParaMagic plug-in must be installed as well as either OpenModelica[footnoteRef:18] or Mathematica[footnoteRef:19]. While OpenModelica is open source and more aligned with the goals of the META project, Mathematica is another option and provides support for a larger array of capabilities in MagicDraw. For documentation comparing the two alternatives, refer to the ParaMagic documentation located in {MDUML_HOME}\manual\ParaMagic\User_Guide.pdf. [18: http://www.openmodelica.org/] [19: http://www.wolfram.com/mathematica/]

4.7.1.2	Configuration
a.	If the ARRoW web services are not running locally, configure the 'AMILURL' parameter within the properties.windchill file in the bae plug-in directory ({MDUML_HOME}\plugins\com.bae.meta.sysml.arrow). The URL should follow the format {external_server_address}/ArrowWebServices/amil. For reference, the two server instances setup on the Amazon cloud are listed in a comment under the parameter's default setting to localhost.
NOTE
Re-installing the plug-in will reset this property to a localhost configuration. It is advised that you re-configure this property upon an installation or adjust the windchill.properties file in the src/main/resources directory of the source code to reflect the permanent server address.

b.	(Optional) If intending on using the parametric solver with Mathematica, further reconfiguration is necessary. In most cases, this is as simple as setting com.intercax.xaitools.solver.name=Mathematica in the ParaMagic.ini configuration file in {MDUML_HOME}\plugins\com.intercax.paramagic\xfw\conf. More detailed and advanced configurations can be found in the ParaMagic documentation (location noted in step c).
[bookmark: _Toc306260351]4.7.2	SysML ARRoW Stereotypes
The ARRoW plug-in makes use of two custom SysML stereotypes, found in the ARRoW Profile, for recognizing AMIL relevant content. In order to publish models from MagicDraw to AMIL, the ARRoW Profile must be loaded and used accordingly

a.	Load the ARRoW Profile by selecting Use Module… from the File menu in MagicDraw.
b.	Select the ARRoW Profile.mdzip file from the mdplugin/src/main/resources directory from within the META source code.
4.7.2.1	Applying ARRoW Stereotypes
There are a few ways in which you can apply the ARRoW-specific stereotype (RequirementValues) to blocks and instance blocks in MagicDraw. As with other stereotypes, the RequirementValues stereotype may be applied to blocks and instance blocks through the blocks context menu under Stereotype. For convenience, the ARRoW MagicDraw plug-in provides two other options for applying this stereotype. In instance and block diagrams, the Apply ARRoW Stereotypes button automatically applies the RequirementValues stereotype to all blocks and instance blocks. In addition, this action is also available from the context menu of a package in the package browser.

Similarly, the ARRoW Requirement stereotype must be applied to all requirement blocks desired for publishing to AMIL, and can be done so through the standard requirement context menu under Stereotypes. In order to uniquely identify requirements in AMIL, it is recommended that both the Published Name and Published Value properties be specified in all requirements using the ARRoW Requirement stereotype.

[bookmark: _Toc306260352]4.7.3	Mapping Requirements to the Reference Architecture
4.7.3.1	Requirement Values Dialog
In order to allow requirements to effectively drive design space exploration, requirements may be used to constrain the range of a component property to within an upper and lower bound. Using the ARRoW MagicDraw plug-in, this can easily be done in a few simple steps.

To constrain a component property, the requirement representing the constraint must first be linked directly to the component through a dependency link. Next, the user opens the Block Requirements dialog, accessible from the ARRoW submenu in the context menu of an instance block. After selecting the instance block of choice and bringing up the Block Requirements dialog, the user may select one requirement from the dependent requirement list and one property from the component property list. Clicking the Add button adds a new constraint in which the user may define the lower and upper bound for which the selected requirement constrains the property.

As an example, suppose a requirement exists that requires the engine of an IFV to be within 400 kW and 1 MW. Anything outside this range is either too expensive or not powerful enough for the IFV. First, the user creates a link from the requirement to the IFV engine instance, as shown in figure 33.

[image:]

[bookmark: _Toc306260177]Figure 33. Link from Requirement to IFV Engine Instance

From the ifvEngine's context menu, the Block Requirements dialog is accessed and a new constraint is created relating powerReq to Power. See figure 34.

[image:]

[bookmark: _Toc306260178]Figure 34. New Constraint in the Requirements Block Dialog

For convenience, clicking on a requirement in the requirement list will show its description above the Add/Delete buttons. This helps the user relate requirements to properties when the list grows large so that he/she does not need to continually refer back to the instance diagram.

4.7.3.2	AMIL Representation
The goal of creating constraints using the Block Requirements dialog is to store the constraint data in AMIL. With constraint data stored in AMIL, META client applications with access to AMIL are capable of retrieving this information for further analysis and reasoning. The constraint data is represented by a constraint link between the requirement and the component property. The upper and lower bound of the constraint are stored as properties on this link. A diagram of this structure representing the IFV engine example is shown in figure 35.

[bookmark: _Toc306260179]Figure 35. IFV Engine Constraint Structure

[bookmark: _Toc306260353]4.7.4	Parametrics with ParaMagic
ParaMagic is a parametric solver and integrator plug-in for MagicDraw SysML models.[footnoteRef:20] By modeling property relationships with constraint blocks and assigning input values to various properties, ParaMagic uses a solver to calculate unknown property values satisfying the constraint equations. It subsequently integrates with MagicDraw by populating the instance diagram with the property values calculated from the solver. It currently allows the parametric solver to be wrapped around the tools Mathematica, OpenModelica, MATLAB and Simulink. [20: Before using MagicDraw check for license availability as it is commercial software.]

Overall, the use of ParaMagic in MagicDraw to populate property values in an instance diagram requires a significant amount of configuration and rigidity in the structure of the block definition diagrams. While this may seem like a downside to using ParaMagic, it actually enforces a level of completeness that should likely be required for the archetype models in the CML. The following paragraphs should help identify the steps necessary for constructing a parametric model capable of successfully cooperating with ParaMagic.

4.7.4.1	ParaMagic Documentation
A complete user manual for ParaMagic can be found in the MagicDraw installation directory under: {MDUML_HOME}/manual/ParaMagic/User_Guide.pdf. It is recommended that this manual be used as a reference/clarification.

4.7.4.2	Preliminary Steps
a.	First design block definition diagram, outlining necessary blocks, value properties, part properties and relationships.
b.	Create the constraint blocks for the equations needed for completing the parametrics model.
c.	Create the parametric diagrams for blocks in the block definition diagram.
d.	Create instance diagram and run.
4.7.4.3	Design Guidelines
Table 5 lists guidelines for proper ParaMagic usage with various SysML components in MagicDraw.

[bookmark: _Toc306259369]Table 5. Guidelines for ParaMagic Use with Various SysML Components

	SysML Component
	Usage Guidelines

	Block
		Properties used in parametric equations must exist as type ‘value property’
	All value properties must have a name and type
	If creating a new value type – the type must inherit ‘Real’
	The value type must also have a ‘quantity kind’ (such as speed, force, energy, etc) specified.
	Any referenced block, or part, must be named

	Constraint Block
		Only one output per equation may be specified in a constraint block
	The output variable and all input variables must be specified as parameters
	All parameters must have a type specification (which may be one the user creates, as long as it adheres to the rules outlined above)

	Constraint Block (cont)
		The constraint equation must be entered as a constraint and must have a name
	The constraint equation may take the form of “A_out = A_in * 0.1”, etc

	Parametric Diagram
		All constraint blocks used must be named
	Constraint blocks may not be directly connected together (output of one constraint equation may not be directly connected to the input of another)
–	All inputs and outputs of constraint blocks must be connected to a value property
–	This means that additional value properties must be specified, named, and appropriately typed in order to connect constraint blocks together
	MagicDraw enforces type consistency: all inputs and outputs must be type matched
	ParaMagic only allows a ‘crossing depth’ of 1, meaning it can only cross into a block and reference a value property once (for instance, you cannot reference a value property such as Vehicle.traction.speed as this is of depth 2. There are ways around this, and it is detailed in the ParaMagic documentation. This is true primarily for the support with multiplicity (as digging into further depths requires complex, non-linear solutions).

	Association/
Composition Link
		ParaMagic only allows compositions and uni-directional associations between blocks
	Association/composition ends must be named
	Block associations have been demonstrated to work - allowing the blocks to reference properties on the block association without causing validation issues – but requires tweaking (still under investigation)
	Any unused association and composition links must be deleted
	Link End Multiplicity:
–	Associations and Compositions with multiplicity are supported only with the use of a Mathematica solver backend (licensed software)
–	Common functions used with multiplicity are sum(), average(), etc. (A library of functions available for handling multiplicity is described in the ParaMagic documentation.)

	Instance Block
		All instance blocks must be named
	Value properties must be initialized to either an input value or empty (an empty string)
	Decimal input values must use a leading 0 (such as 0.1)
	Any value property with an input value specific must have the type ‘given’ under causality in slot tags. This allows ParaMagic to discern what it needs to calculate from what it’s given.
	Value properties that are goals for the parametric solver must have the type ‘target’ under causality in slot tags
	All part properties, value properties, etc must be specified and named

4.7.4.4	Additional Notes
To operate the plug-in, a ‘root block’ must be specified. This block essentially is the top level block and can essentially get to every other relevant block through composition or uni-directional associations. This block must be placed within a package. A CXS_Heading must be created for this root node, which can be accomplished by accessing the ParaMagic context menu from right clicking the node of interest in the package browser.

The instance diagram must be placed in its own package. In addition, a CXI_Heading must be created for this package (and can be done in the same manner as creating the CXS_Heading, but right clicking on the package containing the instance diagram).

ParaMagic has a handy validate feature that may be accessed from the context menu of the package. The validate feature checks to make sure the model respects many of the requirements outlined above. In the event of a failed validation, it will display an error message that is often times very useful to quickly remedy the issue. Common error messages that may be seen include:

ERROR: SysML block structure is invalid. The specification in "thermal_system_power = FanRule * engine_power" in "IFV Reference Architecture::Reference Architecture Components::GroundVehicle::PowerTrain::PowertrainConstraints::Engine Thermal System Power::power::" is an invalid expression. Problem in connecting parameter "engine_power" of the constraint property "IFV Reference Architecture::Reference Architecture Components::GroundVehicle::PowerTrain::Engine::thermalPowerEqn" to value properties.
The example above means the parameter engine_power in the block constraint is not connected to anything. On occasion, however, the error message may be convoluted and difficult to track down. In the worst case, improper modeling can even create an error, crashing the plug-in all together and requiring a restart.

[bookmark: _Toc306260354]4.7.5	CML Interface
The models defined in SysML have a close relationship with elements in the component model library (CML). The following section describes the interface between MagicDraw and CML.

4.7.5.1	Load Component from CML
The ARRoW MagicDraw plug-in provides a convenient interface for loading CML components into instance diagrams. In order to load a CML component into MagicDraw, an instance block of the component type must first be added to the instance diagram. Once the instance block is created, CML may be queried by accessing the Populate from CML action from within the ARRoW menu in the context menu of the instance block. A dialog displaying all available CML components of the instance block's type will appear, revealing all of the component's properties in a table for further inspection by the user. Clicking Populate on the dialog will populate the instance block with all the specific property values describing the CML component.

For example, figure 30 depicts an engine being loaded from CML by first creating an instance of the Engine block and bringing up the Populate from CML dialog.

After inspecting the various engines available in CML, selecting the Norinco 12150L-7BW and clicking Populate automatically populates the instance block with the appropriate engine properties. See figure 31.

4.7.5.2	Load Archetype from CML
In a similar fashion to loading components in CML, archetypes in CML may also be loaded into MagicDraw through the Import Archetype dialog found under the File menu. The main purpose of this feature is to allow archetypes specified in .mdzip (MagicDraw file extension) files to be dynamically loaded into MagicDraw from CML. The Import Archetype dialog displays all available items of type Archetype that contain a reference to an .mdzip packaged model. From here, any archetype selected will automatically download the .mdzip file and import it into the current MagicDraw project.

One of the difficulties in dynamically loading MagicDraw projects is the lack of ability to automatically interconnect components. For instance, a high level architecture may contain an IFV with a chassis or a speed boat with a hull. In either case, a powertrain connects to a different component. In addition, SysML is not capable of modeling association links that dynamically attach to different components depending on the scenario.

[image:]

[bookmark: _Toc306260180]Figure 36. An Engine Being Loaded from CML

[image:]

[bookmark: _Toc306260181]Figure 37. Engine Instance Block Populated with Appropriate Properties
In order to limit the amount of configuration required by the user to utilize dynamic loading of archetypes in SysML, links to packages are used to relate high level components. While SysML cannot handle dynamic association links, package structure is retained. See figure 38.

[image:]

[bookmark: _Toc306260182]Figure 38. High Level Components Related through a Link

As long as the package structure stays the same throughout various MagicDraw projects, dynamically loading one project into another will automatically populate the appropriate packages. For instance, in the simple case of an IFV chassis above, dynamically loading a powertrain archetype into the IFV model will automatically populate the PowerTrain package with all of the powertrain archetype data. Through this mechanism the ARRoW MagicDraw plug-in is capable of dynamically loading and linking archetypes in one project.

[bookmark: _Toc306260355]4.7.6	OWL Schema Generation
The OWL ontology used in the demo is derived automatically from the SysML reference architecture models. Using the custom report generation of the SysML tool, the report maps the SysML blocks, properties, associations, and data types into OWL classes, properties, and types. Some manual tweaks were made to accommodate earlier ontologies, but these can be fed back into the report template to completely automate the process. To run from MagicDraw, select Tools>ReportWizard, select New on the dialog and fill out the form (Name=OWL, Description=OWL schema, Category = ARRoW, Template file=SVN\mdplugin\src\main\resources\templates\owl.txt), click OK, then click Next. Select the IFV Reference Architecture package on the left as the scope of the report and add it to the right side, click Next, and then click Generate. MagicDraw remembers these setting the next time you run. The file owl.txt should come up, containing the generated schema, which needs to be saved as a .owl file.

[bookmark: _Toc306260356]4.7.7	Load from AMIL
ARRoW allows reading back out of the AMIL graph for a single node. The ARROW SysML tools support reading back designProperty values back from the AMIL graph (from AMIL nodes corresponding to SysML properties), allowing tools to exchange design information. Since SysML is the authoritative source for requirements in our application of ARRoW, requirement values are not read from AMIL.

This feature will also read back properties in Ecto’s format of name-value pairs on the AMIL node (from AMIL nodes corresponding to a SysML block). Named AMIL properties that do not align with SysML properties are ignored.

The feature is accessible from the ARRoW category within the context menu of a block instance.

[bookmark: _Toc306260357]4.7.8	Archetype Refinement
SysML supports the automated selection of design archetypes through the use of a reasoner embedded within the AMIL graph and integrated as part of metrics. When an instance of a block is a supertype in the reference architecture, the block instance stands in for a design decision yet to be made between the subtypes. For example, the traction of a ground vehicle has two design patterns to choose from; wheeled and tracked implementations.

[image: cid:image001.jpg@01CC8354.866AA7D0]

[bookmark: _Toc306260183]Figure 39. Traction Block Definition Diagram

The supertype Traction defines a set of critical measures or vehicle properties that affect the choice of subtype. The subtypes define their applicable ranges of values for these measures, i.e., a wheeled vehicle is better for high fuel efficiency and low weight, while tracked is better for high weight and high off-road speed. These applicability ranges are stored in SysML the same way property ranges for requirements are captured, in the ARRoW dialog box on the instances of the applicability ranges (shown on the Traction Block Definition Diagram (BDD); right click on the tracked/wheeledRanges block instances).

[image: cid:image002.jpg@01CC8354.866AA7D0]

[bookmark: _Toc306260184]Figure 40. New Ground Vehicle Implementation Diagram

When a supertype design archetype such as Traction is used on an implementation diagram within a vehicle’s design (such as the NGV implementation diagram shown in figure 40), it is a placeholder for a decision, one of the archetypical subtypes. The user may right-click the block and select ARRoW>RefineArchetype to trigger the refinement algorithm and make a selection, and add it to the diagram. Note that supertypes already refined, such as the powertrain pt, have an association (A3) to their refinement, and that the RefineArchetype menu item is disabled.

The reasoner algorithm obtains the context property values, either as design values or as the required range of values for the property.

[bookmark: _Toc306260358]4.8	Pro Engineer plug-in
The Pro Engineer (Pro/E) plug-in dynamically provides parametric information for generating mass, moments of inertia, model structure, and baselines of Pro/E objects.

The information generated uses JSON (JavaScript Object Notation) for lightweight data-interchange. JSON provides an easy text format that is language independent but has conventions that are familiar to programmers. In addition, since the AMIL language is a derivative of JSON it allows for easy input into the META systems.

The Pro/E plug-in can be divided into three main components: Pro/E plug-in, Apache ActiveMQ server, and the Pro/E plug-in Client. See figure 41. The ActiveMQ server is a Java Message Service provider. It implements the JMS interface for a Message Oriented Middleware (MOM) and provides access to a JMS queue. Each request from the Pro/E client is placed on a queue to await consumption. The Pro/E plug-in consumes the request then produces the parametric information.

[bookmark: _Toc306260185]Figure 41. Pro Engineer Plug-in Main Components

The Pro/E plug-in provides most of the calculation of the parametric information and produces the necessary output. The plug-in consumes information placed on the queue, with the JMS provider ensuring that item in the queue are only processed once.

The architecture design for the Pro/E plug-in is configured to leverage cloud technology. For example, if the demand for processing Pro/E objects increases additional workers can be started. This offers parallel processing for on demand resource utilization. The plug-in dynamically analyzes and calculates mass properties of any Pro/E object.

Procedures for installing and launching Apache ActiveMQ, Pro/E plug-in, and Pro/E plug-in Client are provided in the VDD.

[bookmark: _Toc306260359]4.8.1	Apache ActiveMQ
Apache ActiveMQ is a JMS provider. It implements the JMS interface for a Message Oriented Middleware (MOM).

[bookmark: _Toc306260360]4.8.2	Pro/E Plug-in
The Pro/E plug-in is a JMS consumer. It receives messages from a JMS queue and process the request.

[bookmark: _Toc306260361]4.8.3	Pro/E Plug-in Client
The Pro/E plug-in Client is a JMS producer. It creates and sends synchronized messages to a JMS (Apache ActiveMQ) queue for consumption.

4.8.3.1	Implementing Pro/E plug-in Client
The Pro/E plug-in Client can be implemented in any section of META by including the dependency in the Maven POM.xml. The following are the methods that can be implemented:

calculateMassAndInertia
public org.json. JSONObject calculateMassAndInertia(String modelName, double thickness)

The method calculates the mass and inertia for the modeled object. Returns a JSONObject contain the applicable information.

baseline
public org.json.JSONObject baseline(String modelName)

The method baselines the modeled object by converting the parametric information into a JSONObject.

replaceParts
public org.json.JSONObject replaceParts(String modelName, String partToReplace, String partReplacement)

The method replaces one modeled part or assembly with another then returns a JSONObject contain the parametric information.

baselineStructure
public org.json.JSONObject baselineStructure(String modelName)

The method baselines the modeled object and any additional parts and assemblies used to build its bill of material. Returns the parametric information in an indented JSONObject.

[bookmark: _Toc306260362]4.8.4	Additional Information
Apache ActiveMQ link
http://activemq.apache.org/

Java Message Service
The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) API for sending messages between two or more clients. JMS is a part of the Java Platform, Enterprise Edition, and is defined by a specification developed under the Java Community Process as JSR 914. It is a messaging standard that allows application components based on the Java Enterprise Edition (JEE) to create, send, receive, and read messages. It allows the communication between different components of a distributed application to be loosely coupled, reliable, and asynchronous.

JMS queue
A staging area that contains messages that have been sent and are waiting to be read. Note that, contrary to what the name queue suggests messages don't have to be delivered in the order sent. A JMS queue only guarantees that each message is processed only once.

[bookmark: _Toc306260363]4.9	GEAR
The Generative Ensemble Archetype Reasoner is the name for a suite of external reasoners that will operate on semantic web style data such as OWL or with an AMIL graph database. Many examples are described in the final report and reasoner code snippets can be modified from the text. ESKER is a GEAR reasoner that was integrated into the ARRoW Web Services using a Java-based tuProlog inference engine.

Instructions for launching GEAR are provided in the VDD.

An integrated GEAR example using AMIL is demonstrated in paragraph 4.6.4. This uses a different inference engine (SWI-Prolog) than the one used for OLP and ESKER (tuProlog).

A precursor standalone version of ESKER[footnoteRef:21] that uses GNU gprolog and a standalone Python web server is included in the trunk/galileo/esker directory. Check the readme files located in galileo/, galileo/esker/, and galileo/gear for more information. [21: See the final report for ESKER and GEAR design rationale.]

[bookmark: _Toc306260364]4.10	Qualitative Envisioner
Our qualitative envisioner works with design models built in qualitative modeling language (QML). These models capture the topology of the design, and can be used to create a representation (called an envisionment) of all significantly different qualitative states that the system can reach in a test environment. The states in the envisionment are evaluated by using qualitative versions of system requirements. Paths with failed requirements are ones that should be avoided. This can usually be done by choosing quantitative parameters appropriately.

The envisioner was written and tested in Allegro Common Lisp. The code includes the basic envisioner, which can produce a data structure that corresponds to the envisionment; it has a display package that will produce a visual representation of the envisionment. It also includes code to compute a design metric that can be used by an automatic design exploration tool, and to focus attention on possible requirements that might fail with inappropriate choice of values for components.

To make the envisioner portable and usable without need for a Lisp license, we also made much of it run on an open source Java-based Common Lisp, Armed Bear Common Lisp (ABCL). We describe here how to load and run the envisioner in this environment. The PARC envisioner has several library dependencies, which are packaged for use within a Tomcat web container. All the files are available in the BAE svn repository under ArrowWebServices. It has been tested under OS/X and several variants of Windows® and Linux.

[bookmark: _Toc306260365]4.10.1	Producing a Viewable Envisionment Graph
Navigate to the envisioner directory and start Armed Bear:
$ cd svn/trunk/ArrowWebServices/src/main/webapp/metrics/parc/
envisioner
$ java -jar interface/abcl.jar
Armed Bear Common Lisp 0.27.0 Java 1.6.0_26 Sun Microsystems Inc.
CL-USER(1):

Load the envisioner with these commands:
CL-USER(1): (defvar *my-meta-path* (namestring (truename "../")))
MY-META-PATH
CL-USER(2): (load "loader")
[...]
; Compilation unit finished
; Caught 38 WARNING conditions
T
D(3): (setf *print-circle* t)
T
D(4): (in-package :env)
#<PACKAGE ENV>
ENV(5):

There is a model for an IFV ramp in the controller-examples.lisp file which has been loaded. The controller definition for mod-door-pd-c-4 is one in which there is a possible singular point where the piston is aligned with the door, and the door has no velocity to take it past that point (see paragraph 4.10.2). We can see this in the envisionment for the controller. The envisionment can be produced by executing this function:

ENV(5): (envision-mod-door-pd-c-4)
Envisionment complete.
#<situation: 1> #S(SYSTEM :ID 963 :NAME MOD-DOOR-PD-C-4 :CONSTRAINTS (#<v-constraint: 99 GENERAL-SUMMER> #<v-constraint:... ENV(6):

The envisionment returns situation 1, the root of the graph, and produces a GraphViz graph.dot file in the current directory. To view this envisionment, create a viewable PDF version of that file, exit Lisp and use the command dot:

$ dot -Tpdf -o graph.pdf graph.dot

This sequence of commands has been automated through a shell script. After connecting to the appropriate directory as above, run the shell script controller-3-4-graphs-abcl.sh.

This shell script runs the lisp functions that produce the envisionments for both controllers 3 and 4, and creates a pair of viewable PDF files in the envisionments directory.

With an editor like emacs we may inspect and alter qualitative models:

$ make TAGS && emacs --eval='(find-tag "mod-control-pd-6")'

Note these two constraints:

:equations ((q= out (- ref))
 (q= (deriv out 1) (- (deriv ref 1))))

The first is a qualitative inverter; the second ensures that the same constraint holds for the 1st derivative with respect to time, as well.

Use M-x find-tag envision-mod-door-pd-c-4 to locate the success and failure conditions corresponding to specifications for the ramp system.
If one edits the models in controller-examples.lisp, the same shell script may be rerun to produce new PDF files.

Details on Common Lisp functions may be found in Common Lisp the Language by Guy Steele.

[bookmark: _Toc306260366]4.10.2	Computing a Design Metric
A controlled actuator may have kinematic singularities, regions in state space where the controller loses command authority. A simple example is a steam locomotive that, when stopped with its single driving piston fully extended, cannot restart. Depending on the design and the terrain beneath the vehicle, a hydraulic ramp actuator could similarly be faced with operating the ramp when it is nearly parallel to the piston. Since increased stress and possible overloads are experienced near such regions, designers want to understand singularities and verify they will be avoided during anticipated operating conditions. Cooperating components, with non-overlapping singularities, may be required for a robust design.

We qualitatively modeled a ramp actuator with such a parallel piston singularity, and computed the envisionment of all states to which this "controller 4" might transition during Use Case 1. This includes a qualitative failure state due to possible overshoot and two singularity-induced failure states, plus a success state where the door opens as required.

We also modeled an actuated revolute joint, "controller 3", that lacks singularities. Its envisionment has just one failure state, due to possible overshoot, plus a success state.

A simple design metric, the success fraction, helps programs or people to compare competing designs. It is the ratio of number of success states to total number of terminal states in an envisionment. Here, controller 3 is judged better than controller 4 because ½ is greater than ¼. A system envisionment may contain many transitions to failure states and grow to be much larger than the graphs found in this illustrative example. One way to think of a metric that penalizes failure states is it accounts for the additional effort needed after part selection to quantitatively verify that potential transitions to failure states will not be possible during operation.

The metrics may be obtained by running a pair of Bourne scripts:

$./controller-4-metric-abcl.sh
0.25
$./controller-3-metric-abcl.sh
0.5

These are the expected outputs, 0.25 for the controller with a singularity and 0.5 for the simpler controller 3.
ITAR CONTROLLED	87	Use or disclosure of data contained on this sheet
		is subject to the restriction on the title page.
image2.jpeg

image3.emf
Amil Implementationpackage Untitled1[]

AmilExtern

Dynamic

ComponentModelLibrary

IExternal

CmlLink External Metric

AmilExtern

GenericExecutable

Metric

IStatistic

Statistic

IEval

Eval

CML

MavenLink

AmilLib

«implementationClass»

AmilLibInterface

AmilManager

AmilObject

AmilNode

AmilLink

AmilLib

AMIL

«implementationClass»

AmilInterpreter

IDynamicNode

AmilInterface

-Owner1

-OwnedBy

0..*

-ManagedBy

1

-Manager 1..*

image4.png

image5.png

image6.png

image7.png

image8.png

image9.jpeg

image10.jpeg

image11.png

image12.emf
Component Model

Library

System Design

System Requirements

and Properties

Component Properties

Tool Log

oleObject1.bin

image13.png

image14.emf

oleObject2.bin

image15.png

image16.png

image17.emf
Load/Save

XML file

Load/Save

from AMIL

Run

Selected

Model /

Run All

Models

Query CML

Delete

Selected

Component

/ Clear All

oleObject3.bin
Load/Save XML file

Load/Save from AMIL

Run Selected Model / Run All Models

Query CML

Delete Selected Component / Clear All

image18.emf
Synch

Vis

Toggle

Vis

Updates

Tether

Spin to

Selected

Hide

Selected

Show

Selected

Toggle

Move

Axis

Toggle

Highlight

Selected

Set Selected

Transparency

oleObject4.bin
Synch Vis

Toggle Vis Updates

Tether Spin to Selected

Hide Selected

Show Selected

Toggle Move Axis

Toggle Highlight Selected

Set Selected Transparency

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.emf

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.wmf
Pro E Plug

-

in

Client

ActiveMQ Server

:

Queue

Send Message

Pro E Plug

-

in

(

s

)

Consume Message

oleObject5.bin
�

�

�

�

image1.png

