UTRC CODA Code Summary

UTRC Technical Point of Contact:
Brian Murray
Phone: 860.610.7696
Email: MurrayBT @utrc.utc.com

Design Flow Models & Tools

The design flow code includes two main artifacts: models and modeling tools. Models for components
and topologies of typical electric power systems for aerospace applications are written in
Matlab/Simulink. Models for the thermal management system are also written in Matlab. Models for a
UAV aircraft engine are implemented in SysML. A System Dynamics Model for predicting Non-recurring
Engineering (NRE) cost and schedule as a function of different META design process parameters is
provided in Vensim. An extensive library of models have been developed in the PACELAB tool and
include steady state models of all the sub-systems of a small UAV as well as mission models. All the
models are considered non-ITAR.

UTRC CODA implements Platform-Based Design (PBD). Platform modeling tools are implemented as an
Eclipse plug-in. The plug-in provides an editor to write models in the TinyCSL platform design language
developed by UTRC. In addition, the plug-in is able to parse the model and perform verification.

In addition, in order to animate and demonstrate the design flow, the UTRC team developed a tool
integration architecture and prototype implementation. The prototype framework employs a mini-SOA
architecture to include different tools/modules. These modules were developed independently in
different environments. The distribution includes the files necessary to demonstrate the design of an
engine for the UAV case study. The design starts from a formal definition of a library of devices and
design rules, from which the architecture enumeration tool generates all feasible engine architectures.
These results were further refined by an optimization module that minimizes fuel consumption. The
optimized results are stored in a repository and can be analyzed by design metrics tools, such as
adaptability analysis. The results to carry forward to the more detailed design can be selected based
upon analysis tools or handpicked. The META Vensim Design Flow Model allows prediction of speedup
factor, NRE, number of design iterations, schedule and number of required design personnel. Outcomes
can depend on META parameters such as the number of levels of abstractions, model library coverage
and integrity and the ability to catch emergent behaviors during early design cycles.

Manufacturing Modeling

Engine Cost model:

Jet engine cost models at two levels of abstraction (Level 0 and Level 1) are included as an example for
how to include manufacturing modeling in PBD. For Level 0, a parametric cost model was developed
using historic data including development cost. The cost estimation relationship is a linear regression of
historical cost data with engine weight, thrust, and fuel burn. The preliminary Level 1 cost model is
based on first principal physics (thermal dynamic parameters). The cost is estimated considering
component size, temperature and material strength requirements derived from thermal dynamic
parameters. The constants in those equations are calibrated by available public domain engine data. The
cost models are integrated in the engine design flow demo.

Feature-based Cost model:

A feature-based cost model was developed for estimating the cost of an integrally bladed rotor (IBR)
using commercial DFM cost estimation software and is included as an example of the use of such models

Approved for Public Release, Distribution Unlimited


mailto:MurrayBT@utrc.utc.com

in PBD. The design of the IBR is loaded from a CAD file. The first step is to specify the bulk material
property and the manufacturing process parameters for the bulk material manufacturing such as
powder metallurgy or casting. Machining operations to follow include multiple roughing and finishing
steps. The machine equipment, machining process parameters and related costs such as material unit
cost, labor rate, as well as machining time need to be specified. The equations to calculate these costs
are coded in a language similar to C.

Design Space Exploration Tools

Architecture Enumeration and Evaluation (AEE) is a method for rapidly searching a combinatorically
large design space to find feasible architectures (an element of Design Space Exploration: DSE). Rather
than constructing every complete system architecture in the design space, and then using “evaluative”
rules to check each architecture for feasibility, “generative rules” are used to build and test partial
architectures progressively, checking them as each new technology option is added. The AEE tool
applies the AEE algorithm for a single abstraction layer and can be called repeatedly with different input
data at different abstraction layers.

In the CODA methodology, AEE is followed by optimization. Four different types of optimization were
explored in CODA: off-the-shelf optimizers Matlab and AMPL, Diversity in the Objective Space,
Maximum Diversity in Design Variable Space and Grey Box Modeling.

Diversity in the Objective Space (DMA) is a method for generating the efficient frontier for
multiobjective problems. This approach is capable of solving mixed-integer and combinatorial problems.
DMA finds Pareto optimal solutions by maximizing a proposed diversity measure and guarantees
generating the complete set of efficient frontier points.

Maximum Diversity in Design Variable Space considers the problem of computing maximum diversity of
the design variables in Multi-Objective optimization.

Grey-Box Modeling: Many researchers have addressed the optimization challenges for system models
where explicit mathematical models are not available or accessible (e.g. CFD code). Such models are
called black-box models. However, many times, mathematical equations are indeed available for a
subset of the system, such as component connectivity information. Such models Gray-box models in
CODA. A seamless optimization approach has been developed that can handle mixed types of systems
models — White, Gray, and Black box. It is demonstrated that formulating gray-box structures that
maintains dependency (new approach) is faster than treating an entire model as a black-box function
(conventional approach). Code to wrap convert black box models to grey box is included.

The Emitter-Propagator-Absorber (EPA) code computes the EPA ratio for an architecture without
resorting to an exhaustive quasi Monte Carlo (gMC) simulation of the whole architecture. The EPA ratios
for individual subcomponents are computed using gqMC. Depending upon the connectivity of the
subcomponents in the architecture, the EPA ratio of the overall architecture is computed in a fraction of
the time it would take to do the same computation using gMC. This is achieved using EPA composition
rules for series and parallel subcomponent connectivity.

The clustering tool computes a complexity formulation for a directed graph and uses this to partition the
graph into clusters that can be shown to have lower complexity than alternative partitions. This
technique is intended to support the design of lower complexity design hierarchies.

Metrics

The distribution includes a toolbox for computing various complexity metrics related to large-scale
engineered systems. The main functionalities of this toolbox are:

1. Structural Complexity - The structural complexity metric is computed based on the system
architecture (represented by the binary DSM or the adjacency matrix). This metric expresses the

Approved for Public Release, Distribution Unlimited



complexity inherent in the physical architecture of the system and is based on an analogy with quantum
chemistry of complex molecules, using graph energy as a central concept.

2. Dynamic Complexity — multiplicative metric based on (a) connectivity of functional responses of
the system and (b) their associated uncertainty which is quantified using a Shannon-entropy derived
metric. It can be computed for Black-Box models where explicit mathematical models are unavailable.

3. Cycle Complexity - based on the underlying physical architecture of the system and captures
complexity arising from cycles alone in the physical architecture and also computes a clustering of
components into different layers (i.e., a layered decomposition of the architecture).

In addition, code to compute an adaptability metric is included in the engine demo - The adaptability
and cost analysis tool produces adaptability metric and development cost estimations according to a
definition of adaptability that indicates to what extent an architecture can adapt to different missions,
based on the supported missions and associated switching costs. Switching costs are an aggregate
measure that capture the component-level and interface-level changes that are required to transition
from one engine architecture and operating mode to another.

Approved for Public Release, Distribution Unlimited



	Design Flow Models & Tools
	Manufacturing Modeling
	Design Space Exploration Tools
	Metrics

