
The views expressed are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. 

 
 

 

COMPLEXITY-REDUCING DESIGN PATTERNS FOR  
CYBER-PHYSICAL SYSTEMS 
 

Dr. Darren Cofer 
 
Rockwell Collins, Inc. 
400 Collins Rd. NE 
Cedar Rapids, IA 52498 
 
 
September 2011 
 
FINAL REPORT 
 
 

 
Approved for Public Release, Distribution Unlimited.   

 

 
 
 
 
 
 

 
 



i 

TABLE OF CONTENTS 

Section Page 

U1.0U USummary U ................................................................................................................................ 1 

U2.0U UIntroductionU ............................................................................................................................ 2 

U3.0U UMethods, Assumptions, and Procedures U ................................................................................ 4 

U3.1U UDesign Problems and CharacteristicsU ......................................................................................4 

U3.2U UDesign Flow and Methodology U ...............................................................................................4 

U3.3U UDesign Pattern ModelsU ............................................................................................................4 

U3.4U USystem Architecture ModelsU ...................................................................................................4 

U3.5U UPattern VerificationU .................................................................................................................5 

U3.6U USystem VerificationU ................................................................................................................5 

U4.0U UResults and DiscussionU .......................................................................................................... 6 

U4.1U UDesign Problems and CharacteristicsU ......................................................................................6 

U4.2U UDesign Flow and Methodology U .............................................................................................35 

U4.3U UDesign Pattern ModelsU ..........................................................................................................55 

U4.4U USystem Architecture ModelsU .................................................................................................72 

U4.5U UPattern VerificationU ...............................................................................................................86 

U4.6U USystem VerificationU ............................................................................................................118 

U5.0U UConclusionsU ........................................................................................................................ 131 

U6.0U UReferencesU .......................................................................................................................... 132 

UAPPENDIX A AADL MODELS OF AVIONICS SYSTEM U ................................................... 136 

UAPPENDIX B Mode Logic OverviewU ....................................................................................... 152 

UList of AcronymsU ....................................................................................................................... 154 
 



ii 

LIST OF FIGURES 

Figures Page 

UFigure 1 – System Development Process Design FlowU .................................................................. 2 

UFigure 2 – Design FlowU................................................................................................................. 35 

UFigure 3 – Specification Phase Design Flow and ToolsU ............................................................... 36 

UFigure 4 – System Development Phase Design Flow and ToolsU .................................................. 43 

UFigure 5 – Pattern Transform Editor: Transform TabU ................................................................... 47 

UFigure 6 – Pattern Transform Editor: Instantiation TabU ................................................................ 48 

UFigure 7 – Pattern Verifier for InstantiationU ................................................................................. 49 

UFigure 8 – Model Verification ViewU ............................................................................................. 50 

UFigure 9 – System Analysis Concerns ViewU ................................................................................. 51 

UFigure 10 – Lute Theorem for Verifying Process DeadlinesU ........................................................ 53 

UFigure 11 – AADL graphical model for PALS patternU ................................................................. 57 

UFigure 12 – AADL graphical model for Replication pattern (input context) U ............................... 59 

UFigure 13 – After application of Replication pattern (replicate inputs and outputs)U .................... 59 

UFigure 14 – After application of Replication pattern (shared inputs and merged outputs)U ........... 60 

UFigure 15 – Leader Thread T Inserted Into Each ProcessU ............................................................. 62 

UFigure 16 – Voter thread inserted into process by Fusion patternU ................................................ 65 

UFigure 17 – AADL graphical model of the system blocks for multi-rate PALSU .......................... 70 

UFigure 18 – Process component before inserting the multi-rate synchronizerU .............................. 70 

UFigure 19 – Process component after inserting the multi-rate synchronizerU ................................ 70 

UFigure 20 – Top Level Logical and Physical Overview U ............................................................... 72 

UFigure 21 – Avionics System ArchitectureU ................................................................................... 73 

UFigure 22 – Typical Primary Flight DisplayU ................................................................................. 74 

UFigure 23 – Flight Control System OverviewU ............................................................................... 75 

UFigure 24 – Typical Flight Control PanelU ..................................................................................... 76 

UFigure 25 – Flight Guidance System OverviewU ............................................................................ 77 

UFigure 26 – Flight Guidance Process OverviewU ........................................................................... 78 

UFigure 27 – Autopilot System OverviewU ...................................................................................... 79 

UFigure 28 – Autopilot Process OverviewU ...................................................................................... 80 

UFigure 29 – Air Data System OverviewU ........................................................................................ 80 

UFigure 30 – Air Data Process OverviewU ....................................................................................... 81 

UFigure 31 – IMA Platform OverviewU ............................................................................................ 82 



iii 

UFigure 32 – Fast CCM ArchitectureU .............................................................................................. 83 

UFigure 33 – System Design through Pattern ApplicationU ............................................................. 84 

UFigure 34 – Verification in Design FlowU ...................................................................................... 87 

UFigure 35 – PALS design patternU .................................................................................................. 89 

UFigure 36 – PALS timelineU ........................................................................................................... 91 

UFigure 37 – PALS causality constraint U ......................................................................................... 92 

UFigure 38 – PALS period constraintU ............................................................................................. 92 

UFigure 39 – A System Using Perfectly Synchronized ClocksU ...................................................... 94 

UFigure 40 – Logical Equivalence to Causality ViolationU .............................................................. 95 

UFigure 41 – Clock C1 leads Clock C2 U ............................................................................................ 95 

UFigure 42 – Clock C2 leads Clock C1 U ............................................................................................ 96 

UFigure 43 – Synchronous Leader Selection algorithm in C++U ................................................... 102 

UFigure 44 – NuSMV implementation of Node (called device)U ................................................... 106 

UFigure 45 – Main NuSMV Module U ............................................................................................. 107 

UFigure 46 – Multi-rate PALS design patternU ............................................................................... 110 

UFigure 47 – Multi-rate PALS timelineU ........................................................................................ 113 

UFigure 48 – Final FCS System ArchitectureU ............................................................................... 119 

UFigure 49 – Contract for Flight Control SystemU ......................................................................... 121 

UFigure 50 – AGAT PSL FragmentU .............................................................................................. 122 

UFigure 51 – Facts for Leader Select implemented in FCSU .......................................................... 123 

UFigure 52 – Architecture Data DependenciesU ............................................................................. 124 

UFigure 53 – FGS contract U ............................................................................................................ 126 

UFigure 54 – AP ContractU ............................................................................................................. 126 

UFigure 55 – AGAT Plug-InU ......................................................................................................... 128 

UFigure 56 – Verification ResultsU ................................................................................................. 128 

UFigure 57 – CounterexampleU ....................................................................................................... 129 

UFigure 58 – Final Proof ResultU .................................................................................................... 130 

UFigure 59 – Impact of correct-by-construction development processU ........................................ 131 

UFigure 60 – A Simple Mode U........................................................................................................ 152 

UFigure 61 – An Arming Mode U .................................................................................................... 153 

UFigure 62 – A Capture/Track ModeU ............................................................................................ 153 

 



iv 

LIST OF TABLES 

Table Page 

UTable 1 – Summary of System Design ProblemsU ........................................................................... 7 

UTable 2 – Information Needed to Define a ComponentU ................................................................ 38 

UTable 3 – Fundamental Model TransformationsU ........................................................................... 39 

UTable 4 – Information Needed to Define a Design PatternU ........................................................... 41 

UTable 5 – AADL Constructs Supported by the SysML TranslatorU ............................................... 52 

UTable 6 – Analysis times to check requirements R1–R4 on group of N nodes U .......................... 108 

 



 

1 

1.0  SUMMARY 
Advanced capabilities planned for the next generation of commercial and military aircraft will be 
based on complex new software.  These aircraft will incorporate adaptive control algorithms and 
sophisticated mission software providing enhanced functionality and robustness in the presence 
of failures and adverse flight conditions.  Unmanned aircraft have already displaced manned 
aircraft in most surveillance missions and will soon do so in combat missions with increasing 
levels of autonomy.  Manned and unmanned aircraft will be required to coordinate their activities 
safely and efficiently in both military and commercial airspace.     

The cyber-physical systems that provide these capabilities are so complex that software 
development and verification is one of the most costly development tasks and therefore poses the 
greatest risk to program schedule and budget.  Without significant changes in current 
development processes, the cost and time of software development will become the primary 
barriers to the deployment of the advanced capabilities needed for the next generation of military 
aircraft.  

DARPA’s META program seeks to significantly improve the design, manufacture, and 
verification of complex cyber-physical systems.  The work described in this report directly 
addresses this goal by allowing the system architecture to be composed from libraries of 
complexity reducing design patterns with formally guaranteed properties. This allows new 
system designs to be developed rapidly using patterns that have been shown to reduce 
unnecessary complexity and coupling between components. This work also deeply embeds 
formal verification into the design process to enable correct-by-construction development of 
systems that work the first time. The use of components with formally specified contracts, design 
patterns that provide formally guaranteed properties, and an architectural modeling language 
with a formal semantics ensures that the system design is known to meet its requirements even 
before it is implemented.   

Rockwell Collins and its teammates, the University of Illinois at Urbana-Champaign (UIUC), the 
University of Minnesota (UMN), and the WW Technology Group (WWTG), addressed these 
challenges by developing capabilities in three key areas:  

1. Complexity-reducing system design patterns with formally guaranteed properties, 
supporting correct-by-construction composition of system designs 

2. Architectural modeling and analysis to support virtual integration, composition, and 
verification of system-level properties 

3. Automated formal verification deeply embedded in the system design process in order to 
prevent errors, resulting in dramatic schedule efficiencies 



2 

2.0 INTRODUCTION 
The design flow and supporting tool chain for the project are shown in XFigure 1X.  The overall 
development process can be divided three phases, Specification, System Development, and 
Foundry.  

 
Figure 1 – System Development Process Design Flow 

In the Specification phase, models of architecture patterns and components are developed and 
verified.  Each model is annotated with its verified properties and the constraints that must be 
satisfied for those properties to hold.  Creation and verification of these patterns is an 
infrastructure activity outside of the main development path.  As new patterns are identified, they 
will be formally modeled and key properties specified.  The properties will be verified through a 
combination of test and formal methods, and constraints for their correct usage specified.  These 
constraints may include the external environment of the system, the physical system being 
controlled (the plant, in control theory terms), or interfaces with other systems.  Existing 
component models that will be used in system design must also have their properties 
(requirements) specified and verified, with necessary usage constraints identified.  The resulting 
annotated models of system architecture patterns and components are published in a library for 
consumption by the system development phase.   

In the System Development phase, architecture patterns are instantiated to create a system 
model.  Starting at a relatively high level of abstraction, a system architecture is created or 
instantiated from the library to create an initial system model. This model is then refined by 
repeated applications of design patterns and manual modeling to create a detailed system model 
from which an implementation can be generated. During system development, a transformed 
model may be loaded into the architectural modeling environment and checked using the 
performance, security, and safety tools available in that environment. At the appropriate levels of 
refinement, requirements for the system model itself are formalized and mechanically verified.  

Finally, the Foundry phase is entered and the system implementation for a given target is 
generated from the system model and referenced component models.  The Foundry phase draws 
upon component models and the fully elaborated system model to auto-generate an 
implementation.  This may be a prototype system to support evaluation in a lab or other test 

PATTERN & 
COMP SPEC

LIBRARY

INSTANTIATE 
ARCH PATTERNS 

& CHECK 
CONSTRAINTS

SYSTEM 
MODELING 

ENVIRONMENT

COMPOSITIONAL 
REASONING & 

ANALYSIS

AADL 
SYSTEM 
MODEL

AUTO
GENERATE 

SYSTEM

SYSTEM 
IMPLEMENTATION

ARCH 
PATTERN 
MODELS

COMPONENT 
MODELS

ANNOTATE 
& VERIFY 
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

TASK 1.1 TASK 1.2

TASK 1.3

TASK 1.5 TASK 1.6 TASK 1.4

TASK 1.7



3 

environment, or the final system for delivery and deployment.  The system model provides 
sufficient level of detail to generate component interface code (“glue code”), along with network 
or system calls to services provided by the underlying platform.  Component specifications must 
provide sufficient level of detail for their implementation to be linked in with the interface code.   

This project developed technology for the Specification and System Development phases.   



4 

3.0 0BMETHODS, ASSUMPTIONS, AND PROCEDURES 
This section provides a summary of the main project results. These are described in greater detail 
in the following sections. 

3.1 4BDesign Problems and Characteristics 
This study identified the system design problems to be addressed through the use of complexity-
reducing patterns, specified sources of complexity, relevant parameters, and desired resolution, 
and selected candidate problems to be addressed in the project. The study was conducted by 
surveying design data and development process feedback for a set of existing aircraft systems.  
Based on the data collected, the most critical problems in developing and verifying complex 
cyber-physical systems were determined to be 1) asynchronous computing, 2) unreliable 
computing platforms, and 3) untrusted or unreliable components. 

3.2 5BDesign Flow and Methodology 
This section defines a design flow methodology for the rapid development of cyber-physical 
systems based on the application of verified design patterns on verified system component 
models. This design flow models the system at increasing levels of abstraction and embeds 
verification at all stages through automated support for compositional reasoning about system 
correctness, formally verified design patterns, and components with guaranteed properties.  

This project developed technology for the specification and system development phases.  Tools 
developed to support this design flow include 1) an Eclipse plug-in to translate SysML models to 
and from AADL, 2) and Eclipse plug-in to check structural properties of an AADL model, 3) a 
pattern application tool implemented as part of the EDICT tool suite, and 5) an Eclipse plug-in to 
generate system architectural models for which behavioral properties can be formally verified 
using the NuSMV X[30]X or Kind X[35]X model checkers. 

3.3 6BDesign Pattern Models 
This section describes the design patterns developed in the project.  Patterns were developed for 
PALS, Replication, Leader Selection, and Fusion (voting or source selection).  For each pattern, 
a description of the pattern’s behavior is provided, as well as how a developer would use the 
pattern in a system design.   Also provided for each pattern are the arguments for the pattern, the 
environmental assumptions that must be satisfied before the pattern can be applied, the 
guarantees that are provided by the pattern after it is applied, a textual description of the 
algorithm for applying the pattern to a system model, and exemplar before/after AADL models 
that illustrate the effect of the pattern application. 

3.4 7BSystem Architecture Models 
This section describes the architectural models developed in the project. These architectural 
models provide examples that can be used to evaluate the design and verification tools created.  
The architectural models describe a Flight Control System (FCS) for a typical regional jet 
aircraft. An overview of this architecture is provided along with detailed SysML and AADL 
specifications. An example shows how this architectural model can be generated from simpler 
“sunny day” architecture through application of a sequence of patterns.  



5 

3.5 8BPattern Verification 
This section describes the verification of the design patterns developed in the project.  A key 
element of these design patterns is that they provide guarantees of correct behavior when used in 
accordance with their specifications.  Their behavior is proven through the use of formal 
methods as part of the pattern development process.  The verification effort for the generic 
pattern is amortized over all subsequent instantiations of the pattern in specific system models.  
This amounts to reuse of the initial pattern verification.  Analysis of system-level behavior can 
subsequently make use of the proven pattern guarantees without having to reprove them.   

3.6 9BSystem Verification 
This section describes the compositional verification of system level properties.  One of the key 
goals of this process is to reuse the verification already performed on the components and design 
patterns. To do this, it is first necessary to prove that that the system architecture satisfies the 
assumptions made by each component or design pattern. Once this is done, the guarantees 
provided by the component or design pattern can be used in proving that the system constructed 
from design patterns and components provides the desired system behavior. To do this, a formal 
semantics must be assigned to the system architectural modeling language that correctly 
incorporates the assumptions and guarantees of the system components and design patterns.   



6 

4.0 RESULTS AND DISCUSSION 
This chapter discusses the main project results in detail.  

4.1 10BDesign Problems and Characteristics 
This study identified the system design problems to be addressed through the use of complexity-
reducing patterns, specified sources of complexity, relevant parameters, and desired resolution, 
and selected candidate problems to be addressed in the project. The study was conducted by 
surveying design data and development process feedback for a set of existing aircraft systems.  
Based on the data collected, the most critical problems in developing and verifying complex 
cyber-physical systems were determined to be: 

 Asynchronous computing 

 Unreliable computing platforms 

 Untrusted or unreliable components 
4.1.1 16BSources of Data 
The sources consulted in compiling the design problems described below are listed in the 
References (Chapter X6.0X) in indicated by reference in the tables below.  These documents, 
presentations, and interviews describe different types of errors encountered in the development 
of complex systems, their characteristics, and (sometimes) their causes.  
4.1.2 17BCatalog of System Design Problems 
XTable 1X is a summary of the system design problems identified during our survey, along with 
their possible solutions.  The problems listed here are candidates to be addressed through the use 
of complexity-reducing design patterns. A detailed description of each design problem is 
provided in the following subsections.  

  



7 

Table 1 – Summary of System Design Problems 

 Design Problem Description Approach 

1 Asynchronous 
Computation 

Race conditions lead to inconsistent 
state information across asynchronous 
nodes in distributed systems. 

Implement real-time logical 
synchrony to simplify 
agreement on global state. 

2 Unreliable 
Computing 
Platform 

Incorrect designs for fault tolerance 
result in system failures. 

Use of verified architectural 
design patterns for fault 
tolerant design. 

3 Unreliable Data 
Sources 

Incorrect designs for voting or 
selection of redundant sensors lead to 
use of invalid inputs. 

Use of verified architectural 
design patterns for source 
selection and voting. 

4 Unreliable 
Actuators 

Failure of incorrect arrangement of 
actuators leads to improper actuation 
of controlled devices. 

Use of redundant actuators 
with feedback monitoring and 
logic to override actuator 
failures. 

5 Unintended 
Interaction/ 
Interference 

Failure or unexpected behavior of a 
component causes the failure of a 
logically unrelated component. 

Use of verified architectures 
that prevent interference. Use 
of assume/guarantee 
contracts. 

6 Resource 
Contention 

Incorrect use of shared resources 
leads to inconsistent global state, 
corrupted resource, or denial of 
service. 

Use of verified architectural 
design patterns for concurrent 
access to shared resources. 

7 Platform Hardware 
Dependencies 

Dependencies on low-level hardware 
or platform behavior make it 
prohibitively expensive to port 
systems to new platforms. 

Use of layered virtual 
interfaces based on formally 
specified assume/ guarantee 
contracts. Automated 
generation of correct by 
construction implementations 
for each level of design 
refinement. 

8 Allocation to the 
Target Platform 

Incorrect prediction of required 
physical resources leads to late 
changes to system architecture and 
extensive rework.. 

Use of system design patterns 
and auto-generation of 
correct-by-construction 
implementations. 

9 Untrusted/ 
Unreliable 
Components 

Use of complex components that 
provide highly desirable performance 
are prohibitively expensive to verify. 

Use of formally verified 
simplex design pattern that 
monitors boundary conditions 
and switches to a simpler 
reliable controller. 



8 

 Design Problem Description Approach 

10 Requirements 
Errors 

Missing or incorrect requirements are 
not discovered until system 
integration resulting in extensive 
rework. 

Use executable system 
models and automated 
compositional verification to 
enable early identification of 
requirements errors. 

11 Unspecified 
Dependencies 

Missing or incorrect dependencies of 
components on other components are 
not discovered until system 
integration. 

Use of formal assume/ 
guarantee contracts and 
automated compositional 
verification to enable early 
identification of unspecified 
dependencies. 

12 Poorly Defined 
Interfaces 

Lack of industry standards for certain 
classes of interfaces leads to 
significant system redesign even for 
small changes. 

Use of standard design 
patterns for interface 
definitions to guide 
developers. 

 



9 

4.1.2.1 39BAsynchronous Computation 

Problem Asynchronous Computation 

Description Race conditions lead to inconsistent state information across 
asynchronous nodes in distributed systems. 

Many cyber-physical systems must be implemented as redundant, 
distributed systems in order to provide the necessary level of reliability. 
To correctly perform their function, the individual nodes of these systems 
must agree on some part of the global system state. Developing protocols 
to achieve such agreement in an asynchronous environment can be 
extremely difficult. Great care must be taken to establish the necessary 
coordination between the distributed components to avoid race and 
deadlock conditions and to implement the correct behavior. Failure to do 
this can result in subtle timing dependences between components that 
manifest themselves as system failures that are extremely difficult to 
reproduce and debug, often referred to as “no fault found” (NFF) errors. 

Approach Implement real-time logical synchrony to simplify agreement on global 
state. 

Use a design pattern that implements logical synchrony in real time over 
the physically asynchronous platform to simplify achieving agreement on 
the relevant portion of the global system state. This allows developers to 
design and verify a distributed, redundant system as though all nodes 
execute synchronously, making design and verification much simpler. 
This synchronous design can then be distributed over a physically 
asynchronous architecture following constraints that ensure that the 
logical correctness of the synchronous design is preserved.  

As the design pattern is mapped onto a specific architecture, the 
characteristics of that architecture (e.g., maximum clock error, maximum 
communication delay) can be checked against the timing constraints 
specified in the pattern. 

Parameters • Global state to be synchronized 

• Nodes to be synchronized 

• Timing constraints for synchronization 

 



10 

 Documentation – Asynchronous Computation 

Source Supporting Data 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense.  

X[7] 
Airlines voted NFF "the most important issue" in a poll of delegates at the 
annual Avionics Maintenance Conference (AMC) in 2004 and it continues to 
be amongst the top-most items AMC discusses each year. 

X[7] 

At that time (1997), ATA estimated annual NFF costs for an airline operating 
200 aircraft at $20 million, or $100,000 per aircraft per year. Remove the 
economies of scale and add a decade of inflation, and at least twice that figure 
could be closer to the truth today. 

X[7] 

The chief culprits are avionics systems, which by function, account for 74 
percent of NFF events. By comparison, pneumatics add 19 percent, hydraulics 
4 percent and others 3 percent, according to Air Canada. Moreover, the 
typical, industry-wide average NFF-rate for avionics systems is around 30 
percent, according to Axel Müller, manager processes and controlling, 
Lufthansa Technik Component Maintenance Services, who chairs the ARINC 
672 working group. But this is down from an average NFF rate of 50 percent 
some 20 years ago. 

X[16] Many avionics systems must be implemented as redundant, distributed systems 
in order to provide the necessary level of fault tolerance. 

X[16] 

In many IMA architectures, each processing resource is driven by its own 
clock. While these clocks may have the same period, they execute 
asynchronously relative to each other with their own offset, drift, and jitter. 
This results in an architecture in which synchronous components execute 
asynchronously relative 

to each other. 

X[16] 
Great care must be taken to establish the necessary coordination between the 
distributed components to avoid race and deadlock conditions and to 
implement the correct behavior 

X[16] 

This paper presents a simple design pattern, Physically 
Asynchronous/Logically Synchronous (PALS) that allows developers to design 
and verify a distributed, redundant system as though all nodes execute 
synchronously. This synchronous design can then be distributed over a 
physically asynchronous architecture following a few simple constraints that 
ensure that the logical correctness of the synchronous design is preserved. 

X[16] 
Thirty hours required to formally verify (model check) an asynchronous 
implementation of a protocol as compared to approximately 30 seconds to 
formally verify a synchronous implementation of the same protocol. 



11 

X[3] 

“… the process model community has found that software engineering, 
software development, system engineering, and other activities are integrated, 
have dependencies, and cannot be adequately performed and optimized 
independently of each other …” 

 
 

 



12 

4.1.2.2 40BUnreliable Computing Platform 

Problem Unreliable Computing Platform 

Description Incorrect designs for fault tolerance result in system failures. 

Cyber-physical systems with high reliability requirements must be 
implemented as redundant, distributed systems due to the failure rates of 
individual hardware computing elements. Standard fault-tolerant designs 
have been developed over the years to provide high levels of reliability 
for various fault models. Often, these designs are implemented over 
bounded asynchronous networks. Correct development of concurrent, 
asynchronous, distributed algorithms is one of the most difficult design 
problems in software engineering. 

Unfortunately, engineers frequently develop fault-tolerant algorithms as a 
variation of a design they’re familiar with. The debugging of these 
algorithms can be extremely expensive and often fails to find all errors. 
The resulting systems appear to work in the lab but do not actually 
provide the required level of reliability in the field. 

Approach Use of verified architectural design patterns for fault tolerant design. 

Develop a library of formally verified reusable design patterns that can be 
applied to a functional element to produce a correct fault tolerant design 
with known reliability for specific fault models. 

Formal verification of fault tolerant design patterns is greatly simplified if 
the nodes execute synchronously rather than asynchronously. For this 
reason, the fault tolerant design patterns may be based on the logical 
synchrony design pattern. 

Parameters • Functional logic to be made fault tolerant 

• Required reliability of fault-tolerant design 

• Reliability of each computing element 

• Failure model of each computing element 

 



13 

 Documentation – Unreliable Computing Platform 

Source Supporting Data 

X[1]X X[12] [Aerospace systems] design is intrinsically complex due to high reliability 
requirements, … 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense.  

X[2] 
The implementation of a reliable, well tested single software design system is a 
cost effective alternative to costly multiple "independent" program 
developments. 

X[2] 

Recent developments show unexpected correlation of errors in independently 
developed software designs, reducing expected improvements in reliability. 
This, coupled with the significant portion of errors imbedded in requirements, 
points toward well tested single software designs as a method of meeting 
software reliability requirements.  

X[2] Models for predicting reliability of hardware exist but the software intensive 
system doesn't have the benefit of realistic reliability models. 

X[16] 

In many IMA architectures, each processing resource is driven by its own 
clock. While these clocks may have the same period, they execute 
asynchronously relative to each other with their own offset, drift, and jitter. 
This results in an architecture in which synchronous components execute 
asynchronously relative 

to each other. 

X[8]X X[9]X X[10] Insufficient validation of new concepts 

X[8]X X[9]X X[10] Pushing too many technology envelopes during a production program 

 



14 

4.1.2.3 41BUnreliable Data Sources 

Problem Unreliable Data Sources 

Description Incorrect designs for voting or selection of redundant sensors lead to use 
of invalid inputs. 

Sensors for cyber-physical systems often have higher failure rates than the 
system itself, requiring that redundant, distributed sensors be used to 
provide information about the environment and the physical system being 
controlled. Components for voting or selecting among these redundant 
sensors are often quite complex, using history and complex algorithms  to 
estimate the true value, logic to declare sensors failed when their outputs 
deviate too much, and logic to readmit sensors when their outputs have 
healed. Often, the precise behavior of these critical components is not 
well understood. For example, the magnitude of the transient change in 
voter outputs may not be known for all combinations of voter state and 
sensor failures. Pathological conditions in which the voter declares a good 
sensor failed and instead uses a failed sensor are also surprisingly 
common. 

This problem may be further complicated by the fact that there are often 
multiple consumers of data sources that may use different voting, 
selection, or estimation techniques, resulting in divergent views of the 
sensed state. 

Approach Use of verified architectural design patterns for source selection and 
voting. 

Develop a library of reusable design patterns for sensor voting or 
selection that have been formally verified to be correct for a given fault 
model of the sensors. Each pattern should specify the possible error in the 
voter output for all possible combinations of sensor outputs. Pathological 
conditions in which failed sensors are used or good sensors are declared 
failed should be eliminated through formal verification. 

Parameters • Number of sensors 
• Range and type of sensor inputs 
• Range and type of sensor outputs 
• Fault/error model of each sensor 
• Required accuracy of voter output 

• Thresholds used in declaring sensors failed 

• Readmission policy for healed sensors 



15 

 Documentation – Unreliable Data Sources 

Source Supporting Data 

X[1]X X[12] [Aerospace systems] design is intrinsically complex due to high reliability 
requirements, …, and extensive safety-critical sensor dependencies. 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense.  

X[8]X X[9]X X[10] Difficult to import legacy product data into architecture modeling tools 

 



16 

4.1.2.4 42BUnreliable Actuators 

Problem Unreliable Actuators 

Description Incorrect designs for coordination and selection of redundant actuators 
leads to loss of control or degraded system performance 

Cyber-physical systems are required to interact with the world around 
them and often use actuators to dynamically control system behavior and 
effect changes in interfacing systems.  When reliable actuation is required 
for safety or overall system reliability redundant actuators are often used 
to provide “operate through” capabilities in the presence of an actuator 
failure.  The arrangement of the actuators on the physical device, the 
selection logic and actuator coordination strategy, and the information 
used to monitor the actuator performance and determine failure all have 
major impacts on the ability of the system to overcome actuator failures. 

Improper alignment of the system requirements for control stability, error 
recovery and fault tolerance with the actuator management approach can 
lead to situations where actuator failures are not detected or the switching 
logic does not provide robust and rapid fail over, leading to system 
failure. 

Approach Use of verified architectural design patterns for actuator feedback 
monitoring and coordination and selection of multiple actuators 

Develop a library of reusable design patterns for actuator monitoring and 
control strategies that have been formally verified to be correct.  Each 
library element will address the type of coverage required for actuator 
failures, the allowable latency in detection of actuator failures and 
requirements for actuator recovery.  Design patterns may be refined to 
address classes of actuators to address domain specific issues. 

Parameters • Error coverage for actuation system 
• Allowable detection latency 
• Fault/error model of each actuator 
• Required data to determine actuator failure 

• Readmission policy for healed actuators 

 



17 

Documentation – Unreliable Actuators 

Source Supporting Data 

 C. Walter, B. LaValley, WW Technologies, industrial experience, Virginia 
Class ship control system 

 Steve Miller, Industrial experience, autopilot actuator. 



18 

4.1.2.5 43BUnintended Interaction/ Interference 

Problem Unintended Interaction/ Interference 

Description Failure or unexpected behavior of a component causes the failure of a 
logically unrelated component. 

To reduce verification costs, architectural designs are often chosen that 
isolate components from other components.  Typically, high-criticality, 
highly verified components are protected from low-criticality, lightly 
verified components. These mechanisms for non-interference allow one 
part of the system to be modified and verified without having to verify the 
other parts. 

Interference can occur in many ways, but they all involve interactions 
through shared resources, such as altering the memory space of another 
task, shifting the time at which a task executes, restricting access to the 
bus, thermal interference through heat conducting materials, or EMF 
interference through unshielded space. 

In many cases, interference occurs simply because all the dependencies of 
a component were never explicitly and comprehensively defined. In these 
cases, interference occurs because the designers of other components 
were unaware of the undocumented constraints on their design. 

Approach Develop design patterns for the specification of non-interference in the 
system architecture.  

Design patterns for specifying non-interference of each desired type 
should be defined and used in specifying a system architecture.  
Refinement of the system design should automatically generate a correct-
by-construction implementation that enforces the specified non-
interference or tools should check that non-interference is maintained 
provided the fault-model of each component is not exceeded. 

At the same time, components in a system must interact if the overall 
system is to do anything useful. Precisely defining these intended 
interactions should be done as part of the specification of the system 
architecture. This defines the contract between a module and the rest of 
the system that can be used in the formal verification of the component 
and in the compositional verification of the system.  

Parameters • Partition Boundary 
• Type of Interference to be Prevented 
• Criticality of Region 
• Fault Model of Each Component 
• System Fault Propagation Model 



19 

Documentation – Unintended Interaction/ Interference 

Source Supporting Data 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense.  

X[2] Models for predicting reliability of hardware exist but the software intensive 
system doesn't have the benefit of realistic reliability models.  

X[2] The lack of software failure data for highly reliable systems has been a 
hindrance.  

X[2] A reliability growth curve for a high use system is needed.  

X[16] 

The introduction of Integrated Modular Avionics (IMA) [1], [2] has allowed 
developers to implement increasingly sophisticated avionics systems by taking 
advantage of the growing processing power and memory available in modern 
integrated circuits. 

X[16] 

In many IMA architectures, each processing resource is driven by its own 
clock. While these clocks may have the same period, they execute 
asynchronously relative to each other with their own offset, drift, and jitter. 
This results in an architecture in which synchronous components execute 
asynchronously relative 

to each other. 

X[3] 

“… the process model community has found that software engineering, 
software development, system engineering, and other activities are integrated, 
have dependencies, and cannot be adequately performed and optimized 
independently of each other …” 

X[8]X X[9]X X[10] Poor understanding of architecture caused by ambiguous / incomplete 
architecture representation 



20 

4.1.2.6 44BResource Contention 

Problem Resource Contention 

Description Incorrect use of shared resources leads to inconsistent global state, 
corrupted resource, missed deadlines, or denial of service. 

Components of cyber-physical systems routinely access shared resources 
such as buses, memory, processors and data bases. Due to the inherently 
distributed, redundant, and concurrent nature of these systems, access to 
these shared resources must be controlled to ensure the resource is not 
corrupted, that users of the resource are not provided incorrect 
information by the resource resulting in inconsistent global state, or that 
access to the resource is denied to other components such that real-time 
deadlines are missed. 

Approach Use of formally specified and verified design patterns for concurrent real-
time access to shared resources. 

Develop a library of verified reusable design patterns that enforce correct 
access to the shared resource (i.e., resource managers). While the specific 
means of accessing a shared resource will vary from resource to resource, 
it is likely that generic patterns can be developed to protect entire classes 
of resources.  

In addition to formally specifying the environmental assumptions that 
must be satisfied for each resource and the guarantees to be provided by 
each resource, there will be invariants on the resource itself that must be 
maintained. Each design pattern should be formally verified to ensure that 
it provides its guarantees if these assumptions are met and that the 
resource invariants are maintained.  

Finally, tools must be developed that take account of the time required to 
access shared resources and ensure that the system’s real-time constraints 
are still met. 

Parameters • Allowed Accesses 

• Assume/Guarantee Contract for each Access 

• Resource Invariants 

 



21 

 Documentation – Resource Contention 

Source Supporting Data 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense.  

X[2] The implementation of a reliable, well tested single software design system is a 
cost effective alternative to costly multiple "independent" program developments. 

X[16] 

In many IMA architectures, each processing resource is driven by its own clock. 
While these clocks may have the same period, they execute asynchronously 
relative to each other with their own offset, drift, and jitter. This results in an 
architecture in which synchronous components execute asynchronously relative 

to each other. 

X[3] 

“… the process model community has found that software engineering, software 
development, system engineering, and other activities are integrated, have 
dependencies, and cannot be adequately performed and optimized independently 
of each other …” 



22 

4.1.2.7 45BPlatform Hardware Dependencies 

Problem Platform Hardware Dependencies 

Description Dependencies on low-level hardware or platform behavior make it 
prohibitively expensive to port systems to new platforms. 

Cyber-physical applications that directly manipulate and access the 
hardware platform are dependent on the availability of those exact 
hardware structures. This makes it prohibitively expensive to port 
applications to different hardware platforms and to exploit continual 
improvements in hardware speed, reliability, and capability. Too often, 
abstractions of the hardware platform are bypassed to meet system 
performance requirements. 

Approach Use of layered virtual interfaces based on formally specified assume/ 
guarantee contracts. Automated generation of correct-by-construction 
implementations for each level of design refinement. 

 By defining standard interfaces that hide the details of the hardware 
structure, new hardware can be introduced without changing the 
application software by adding a small amount of software or firmware 
that implements the interface over the new hardware. This technique can 
be used not just for hardware, but also for layers of software, where each 
layer implements its interface over the services provided by the next 
lower layer. This allows entire layers of standard services to be reused. 

Each interface should be defined in terms of the services it provides and 
should hide as much of the implementation as possible from users of the 
interface. These services should be formally specified using an 
assume/guarantee contract that specifies the assumptions made by the 
service and the guarantees provided by the service. 

Ideally, a correct-by-construction implementation of each layer would be 
automatically generated from the specification of the services it provides 
and the services of lower layers it uses. 

Finally, support for real-time virtual integration should be provided so 
that prediction of system performance and capacity can be performed 
continuously during system development. 

Parameters • Standard Virtual Interfaces for Cyber-Physical Systems 

• Formally Specified Contract for Each Virtual Interface 

• Specification of Performance Overhead 

 



23 

 Documentation – Platform Hardware Dependencies 

Source Supporting Data 

X[16] 

In many IMA architectures, each processing resource is driven by its own clock. 
While these clocks may have the same period, they execute asynchronously 
relative to each other with their own offset, drift, and jitter. This results in an 
architecture in which synchronous components execute asynchronously relative 

to each other. 

X[3] 

“… the process model community has found that software engineering, software 
development, system engineering, and other activities are integrated, have 
dependencies, and cannot be adequately performed and optimized independently 
of each other …” 

X[6] A specialized hardware platform was found to work much better when its 
application was built with a monolithic build.  This had implications for other 
applications on the same platform that had to be reworked in order to be built 
with that application, and this caused extra development and certification effort. 

 



24 

4.1.2.8 46BAllocation to the Target Platform 

Problem Allocation to the Target Platform 

Description Incorrect prediction of required physical resources leads to late changes to 
system architecture and extensive rework. 

In current processes, development of the target platform and the logical 
system typically proceed in parallel. As the logical system is mapped 
down onto the physical platform, tasks are manually allocated and 
scheduled onto specific virtual machines or processing elements by the 
system designer. Communication paths between functions are also 
defined manually. Analytic tools may be used to verify virtual machine 
and network schedules, but most of the system verification is done 
through system testing of the integrated system. 

This makes it extremely difficult to add new tasks unless sufficient 
processing and communication capacity was reserved for future 
expansion. If existing schedules or communication paths need to be 
changed, verification of the entire system may have to be repeated. As a 
result, many systems are deployed with more than half of their hardware 
capacity unused.  

Lack of strong analysis tools also makes it very costly to conduct reliable 
trade studies to find an optimal system configuration. Typically, a 
configuration is selected based on engineering judgment or a few paper-
and-pencil trace studies.   

Approach Use of system design patterns that enable early prediction of system 
performance. 

At each level of design, standard patterns are used to systematically 
collect the relevant processing or communication requirements for that 
level. Analysis tools are used to predict performance and utilization of 
system resources for that level. The design is progressively refined into a 
full implementation, with each refinement taking into account more 
details about the target platform. Unverified analysis tools may be used to 
find optimal system configurations that are verified with highly trusted 
checking tools. 

Specific design patterns and their implementations will depend on the 
specific target platform.  For example, very different design patterns may 
be needed for refinement onto a large multi-core platform than would be 
needed for refinement onto a traditional RTOS-based platform. 

Parameters For each level of refinement: 

• Specification of Services Provided by Level N of System Architecture 

• Specification of Services Provided by Level N+1 

 



25 

 Documentation – Allocation to the Target Platform 

Source Supporting Data 

X[1]X X[12] 

Twp scenarios based on previous generation aircraft systems pointed to a future 
system [aircraft] system containing approximately 60 million SLOC. That level of 
software growth is self-limiting, given that the cost of such a complex system is in 
excess of $10B, likely exceeding a limit of affordability. 

X[1] …and thus an aircraft consists of systems of systems. There may be on the order 
of 13 levels in the overall aircraft system, resulting in thousands of system 
elements at the lowest levels.  

X[2] Over sixty percent of the failures were traced to incorrect requirements.  

X[2] Models for predicting reliability of hardware exist but the software intensive 
system doesn't have the benefit of realistic reliability models.  

X[16] 

In many IMA architectures, each processing resource is driven by its own clock. 
While these clocks may have the same period, they execute asynchronously 
relative to each other with their own offset, drift, and jitter. This results in an 
architecture in which synchronous components execute asynchronously relative 

to each other. 

X[3] 

“… the process model community has found that software engineering, software 
development, system engineering, and other activities are integrated, have 
dependencies, and cannot be adequately performed and optimized independently 
of each other …” 

 



26 

4.1.2.9 47BUntrusted/ Unreliable Components 

Problem Untrusted/Unreliable Components 

Description Use of complex components that provide highly desirable performance 
are prohibitively expensive to verify. 

Highly desirable improvements in system performance or capability can 
often be achieved with sophisticated subsystems that are prohibitively 
expensive to verify due to their size and complexity.  

Approach Use of formally verified simplex design pattern that switches to a simpler 
trusted controller before the system’s acceptable envelope of behavior is 
violated. 

The simplex architectural design pattern allows a system to use a high 
performance but untrusted controller by using run-time monitoring to 
switch to a low performance, trusted controller before the system’s 
acceptable envelope of behavior is violated.  

Use of the simplex pattern requires: 

• An untrusted controller that provides superior performance most of 
the time. 

• A trusted controller that provides acceptable performance all of the 
time. 

• A monitor function that can determine when the acceptable envelope 
of system behavior is about to be violated. 

The simplex pattern provides a formally specified, formally verified 
pattern for transferring control from the untrusted controller to the trusted 
controller before the system’s acceptable envelope of behavior is violated. 

Parameters • Untrusted Control Function 

• Trusted Control Function 

• Monitor Function 

 



27 

 Documentation – Untrusted/Unreliable Components 

Source Supporting Data 

X[2] The need to consider failure of software in the system MTBF calculations has 
arisen, even though software doesn't "fail" in the traditional hardware sense. 

X[2] The lack of software failure data for highly reliable systems has been a 
hindrance.  

X[2] A reliability growth curve for a high use system is needed 

X[16] 

The introduction of Integrated Modular Avionics (IMA) [1], [2] has allowed 
developers to implement increasingly sophisticated avionics systems by taking 
advantage of the growing processing power and memory available in modern 
integrated circuits. 

X[3] 

“… the process model community has found that software engineering, 
software development, system engineering, and other activities are integrated, 
have dependencies, and cannot be adequately performed and optimized 
independently of each other …” 

X[8]X X[9]X X[10] Insufficient validation of new concepts 

X[8]X X[9]X X[10] Pushing too many technology envelopes during a production program 

X[8]X X[9]X X[10] Poor understanding of architecture caused by ambiguous / incomplete 
architecture representation 

 



28 

4.1.2.10 48BRequirements Errors 

Problem Requirements Errors 

Description Missing or incorrect requirements are not discovered until system 
integration resulting in extensive rework. 

Missing or incomplete requirements are well known to be one of the most 
significant cost drivers in the development of cyber-physical systems. 
Unfortunately, the majority of requirements errors are not detected until 
system integration when the cost of fixing the error has increased by two 
orders of magnitude. 

Approach Use executable system models and automated compositional verification 
to enable early identification of requirements errors. 

By constructing system design models with well defined semantics and 
formally defined requirements for the components, developers can 
perform simulations of the overall system. These help developers to 
identify many cases of over-utilization of processing, communication, or 
memory resources and to identify instances in which system safety and 
security requirements are violated.  

More subtle errors can be found using compositional verification. 
Compositional verification takes an architectural model with well defined 
semantics and components with formally defined assume/guarantee 
requirements and proves that the overall system requirements are satisfied 
by the model. Almost always, formal verification of this sort uncovers 
missing assumptions, missing requirements, and incorrect system designs. 

Parameters • System Architectural Model  

• Formal Assume/Guarantee Specification of System Components 

• Formal Assume/Guarantee Specification of System Requirements 

 



29 

Documentation – Requirements Errors 

Source Supporting Data 

X[1] The majority of software defects are introduced prior to actually writing code 
during such a development, specifically in requirements and design, but only a 
fraction of these defects are detected and addressed early. 

X[1] Currently, about half of all software defects are not found until 
hardware/software (physical) integration is completed. 

X[1] Rework cost is dominated by the cost of removing defects generated during the 
requirements phase and the design phase but not detected until later in the 
[system life cycle]. 

X[1]X X[12] 
The nominal cost for removing a defect introduced in pre-coding phases but 
detected in post-coding phases is, for safety-critical systems, often two orders of 
magnitude higher relative to the cost of removing it prior to code development. 

X[1]X X[12] Seventy-nine percent and sixteen percent of the rework cost … is due to defects 
in the requirements and design phases, respectively. 

X[1]X X[12] Rework cost normally is 30%-60% of total development cost, and large systems 
and quality attribute-intensive systems trend toward the higher values. 

X[2] Over sixty percent of the failures were traced to incorrect requirements.  

[8] The common wisdom is to find and fix requirements errors early in the lifecycle 
of a project, but that is easier said than done. 

[8] The cost to fix a software defect varies according to how far along you are in 
the cycle, according to authors Roger S. Pressman and Robert B. Grady. 

[8] 
Recall the statistic that said that the US wastes $30 billion annually in rework 
due to requirements errors. That works out to 300,000 person-years of effort 
every year ($30 billion /$100,000). 

X[15] 

Fred Brooks states the problem succinctly: “The hardest single part of building 
a software system is deciding precisely what to build. No other part of the 
conceptual work is as difficult as establishing the detailed technical 
requirements...No other part of the work so cripples the resulting system if done 
wrong. No other part is as difficult to rectify later.” 

X[15] 

While numerous methodologies for REM have been developed over the years, 
the results of an industry survey, described in reference 1, indicate the best of 
these practices are rarely being used, if at all, and digital system developers 
have many questions on how to effectively collect, document, and organize 
requirements. 



30 

Source Supporting Data 

X[15] 

As illustrated in this Handbook, a good set of requirements consists of much 
more than just a list of shall statements and is not easy to produce. However, 
investing the time and effort at the start of a project to produce good 
requirements was shown to ultimately reduce costs while improving the quality 
of the final product [22-24 and 47]. 

X[4] 

A principal software engineer with extensive experience on development 
programs reviewed a draft of the present document and stated that 
requirements errors are “a biggie.”  In particular, he noted the difficulty (and 
importance) of accurately estimating resource requirements such as processor 
cycles or network bandwidth.  “A recurring theme on most every project,” he 
said, “is, ‘Hey, I’m out of gas.’” 

X[8]X X[9]X X[10] Not enough focus on Key Program Parameter (KPPs) 

X[8]X X[9]X X[10] Incomplete analysis of impacts to requirements & design changes 

X[8]X X[9]X X[10] Inability to prioritize requirements 

 



31 

4.1.2.11 49BUnspecified Dependencies 

Problem Unspecified Dependencies 

Description Missing or incorrect dependencies of components on other components 
are not discovered until system integration. 

The most common form of requirements error is to fail to specify the 
dependencies, or assumptions, a component makes about its environment, 
including other components. Failure to identify and document a components 
assumption has been the cause of several dramatic system failures. In many 
cases, the failure occurred because a subsystem developed by one team did 
not meet the assumptions made by another team.  

Documenting all assumptions is essential for reuse of a component. Without 
this information, the system designer has no way to know if a component can 
be safely reused in a new context. 

Approach Use of formal assume/guarantee contracts and automated compositional 
verification to enable early identification of unspecified dependencies. 

Requirements for all components and subsystems should be specified 
using formal assume/guarantee contracts that formally state the 
assumptions that must be satisfied by the environment and the guarantees 
provided by the component or subsystem.  

Formal verification (proof) of component behavior will identify many 
unstated dependencies since proof of the behavior guaranteed by the 
component will not be possible without the assumptions. Formal 
verification of system behavior will also identify missing or incorrect 
dependencies. 

Parameters • System Architectural Model  

• Formal Assume/Guarantee Specification of System Components 

• Formal Assume/Guarantee Specification of System Requirements 

 



32 

Documentation – Unspecified Dependences 

Source Supporting Data 

X[2] Over sixty percent of the failures were traced to incorrect requirements.  

X[2] The lack of software failure data for highly reliable systems has been a 
hindrance.  

X[2] A reliability growth curve for a high use system is needed.  

X[13] On a typical project, 49% of requirements errors are incorrect facts and 31% 
are omissions – Table 1-1, page 6. 

X[15] 

Identifying the environmental assumptions is also essential for reuse of a 
component. In several cases, dramatic failures have occurred because an 
existing system was reused in a different environment and the developers were 
unaware of the assumptions made by the original developers. Documenting the 
environmental assumptions is a necessary perquisite for component reuse. 

X[16] 

In many IMA architectures, each processing resource is driven by its own 
clock. While these clocks may have the same period, they execute 
asynchronously relative to each other with their own offset, drift, and jitter. 
This results in an architecture in which synchronous components execute 
asynchronously relative 

to each other. 

X[18] 

Airborne software is an increasingly large and important system element. 
However, it is only one element of the aircraft systems. and only one element of 
the aviation software environment. Consequently, it must be considered 
similarly to the other system and software elements, and cannot be considered 
in isolation. 

X[3] 

“… the process model community has found that software engineering, 
software development, system engineering, and other activities are integrated, 
have dependencies, and cannot be adequately performed and optimized 
independently of each other …” 

X[8]X X[9]X X[10] Poor understanding of architecture caused by ambiguous / incomplete 
architecture representation 



33 

4.1.2.12 50B Poorly Defined Interfaces  

Problem Poorly Defined Interfaces 

Description Lack of industry standards for interfaces leads to significant system 
redesign even for small changes. 

When an accepted industry standard does not exist for interfaces, 
interfaces must be defined and agreed upon by all affected parties. 
However, the cost and difficulty of defining robust, well-understood 
interfaces is often under-estimated by project teams. It is usually not 
sufficient to specify just the values and types to be exchanged. Ranges, 
units, precision, accuracy, error status, physical format, and constraints on 
combinations of values should also be defined. Often, protocols 
specifying acceptable sequences of values across interface (e.g., an 
acknowledgement will be sent on message receipt). For real-time systems, 
accepted latencies must be specified. While these issues have often been 
addressed in the definition of industry standards, they are often 
overlooked in the development of proprietary interfaces. The problem is 
exacerbated when components are being developed by separate 
companies.    

Approach Use of standard design patterns for interface definitions to guide 
developers.  

Create design patterns for common classes of interfaces with formally 
verified guarantees of the relationships that will be maintained by the 
interface.  

Parameters • For each value to be exchanged: 

o Type, range, precision, accuracy, and unit 

o Error status of each value 

o Acceptable latency of each value 

o Constraints to be maintained across multiple values 

o Groups of values that must change as an atomic unit 

• Invariants to be maintained across interface 

• Acceptable sequences of interactions across interface 

 



34 

Documentation – Poorly Defined Interfaces 

Source Supporting Data 

X[15] 
Recommended Practice 2.2.1: Define the system boundary early in the 
requirements engineering process by identifying a preliminary set of monitored 
and controlled variables. 

 

X[15] 

Recommended Practice 2.2.7: Completely define all physical interfaces to the 
system, including definitions for all discrete inputs, all messages, all fields in a 
message, and all protocols followed. 

X[15] 
Recommended Practice 2.4.1: Define the type, range, precision, and units 
required for all monitored and controlled variables as part of the system’s 
environmental assumptions.  

X[15] 
Recommended Practice 2.8.7: Define the acceptable latency for each controlled 
variable along with the rationale for its value as part of the detailed system 
requirements. 

X[15] Recommended Practice 2.8.8: Define the acceptable tolerance for each 
numerical controlled variable.  

X[5] 

For a certain type of device, the control interface is “a giant state machine” 
written to the ICD (Interface Control Document) of the device.  The ICD’s that 
are created require us to design an entire state machine to keep the device from 
crashing. 

X[5] 
A large development program has struggled because the development team did 
not understand the interfaces of components, developed by other companies, to 
which their components much connect. 

X[3] 

“… the process model community has found that software engineering, 
software development, system engineering, and other activities are integrated, 
have dependencies, and cannot be adequately performed and optimized 
independently of each other …” 

X[8]X X[9]X X[10] Poor understanding of architecture caused by ambiguous / incomplete 
architecture representation 

 

 



35 

4.2 11BDesign Flow and Methodology 
This section defines a design flow methodology for the rapid development of cyber-physical 
systems based on the application of verified design patterns on verified system component 
models. This design flow models the system at increasing levels of abstraction and embeds 
verification at all stages through automated support for compositional reasoning about system 
correctness, formally verified design patterns, and components with guaranteed properties. 

An overview of the design flow is shown in XFigure 2X.  The overall development process can be 
divided into three phases.   

 
Figure 2 – Design Flow 

In the Specification phase, models of architecture patterns and components are developed and 
verified.  Each model is annotated with its verified properties and the constraints that must be 
satisfied for those properties to hold.  In the System Development phase, architecture patterns are 
instantiated at a given level of abstraction to create a system model.  An iterative process further 
elaborates the design, analyzes its properties, and refines it until sufficient detail for 
implementation is achieved.  At this point, the Foundry phase is entered and the system 
implementation for a given target is generated from the system model and referenced component 
models.   

This project developed technology for the specification and system development phases.  Tools 
developed to support this design flow include 1) an Eclipse plug-in to translate SysML models to 
and from AADL, 2) and Eclipse plug-in to check structural properties of an AADL model, 3) a 
pattern application tool implemented as part of the EDICT tool suite, and 5) an Eclipse plug-in to 
generate system architectural models for which behavioral properties can be formally verified 
using the NuSMV X[30]X or Kind X[35]X model checkers. 
4.2.1 18BSpecification Phase 
In the Specification Phase, architectural patterns and components are developed and verified. 
The Specification Phase for design patterns is shown in more detail in XFigure 3X. 

PATTERN & 
COMP SPEC

LIBRARY

INSTANTIATE 
ARCH PATTERNS 

& CHECK 
CONSTRAINTS

SYSTEM 
MODELING 

ENVIRONMENT

COMPOSITIONAL 
REASONING & 

ANALYSIS

AADL 
SYSTEM 
MODEL

AUTO
GENERATE 

SYSTEM

SYSTEM 
IMPLEMENTATION

ARCH 
PATTERN 
MODELS

COMPONENT 
MODELS

ANNOTATE 
& VERIFY 
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

TASK 1.1 TASK 1.2

TASK 1.3

TASK 1.5 TASK 1.6 TASK 1.4

TASK 1.7



36 

 
Figure 3 – Specification Phase Design Flow and Tools 

A single framework can be used for the specification of design patterns and components since at 
the architectural level a component is just a design pattern with a single element. The 
Specification Phase is broken down into three sub-phases: Assessment, Definition, and Pattern 
Verification.  

4.2.1.1 51BAssessment 
The purpose of the Assessment Phase is to determine whether and how a request for a new 
component or design pattern is to be met. During Assessment, a request for a new component or 
design pattern is evaluated against the library of existing design patterns to determine if any of 
the following solutions are feasible: 

Direct Reuse – An existing component or design pattern meets the request and can be used 
without modification. 

Reuse through Generalization – An existing component or design pattern would meet the 
request if it were generalized. 

Reuse through Variation – A new variant of an existing component or design pattern can be 
created to meet the request. 

Creation of a New Pattern – A new component or design pattern must be created to meet the 
pattern request. 

Normally, the first feasible option in the list above would be chosen. However, there may be 
some cases where choosing between generalization and variation may not always be obvious 
since generalization may increase the coupling between design instances created from a more 
general pattern.  

REUSE
REVIEW

ASSESSMENT

Pattern/Component
Meta Model

PATTERN/
COMPONENT

EDITOR/
CHECKER

PATTERN/
COMPONENT
TRANSLATOR

MODEL
CHECKER

THEOREM
PROVER

Pattern/
Component
Req & Base

Revised
Pattern/

Component

Errors

DEFINITION PATTERN VERIFICATION

PATTERN/COMPONENT SPECIFICATION LIBRARY

Pattern/
Component

Req

Pattern/Component
Formal Semantics

Errors

Errors

REUSE
REVIEW

ASSESSMENT

Pattern/Component
Meta Model

PATTERN/
COMPONENT

EDITOR/
CHECKER

PATTERN/
COMPONENT
TRANSLATOR

MODEL
CHECKER

THEOREM
PROVER

Pattern/
Component
Req & Base

Revised
Pattern/

Component

Errors

DEFINITION PATTERN VERIFICATION

PATTERN/COMPONENT SPECIFICATION LIBRARY

Pattern/
Component

Req

Pattern/Component
Formal Semantics

Errors

Errors



37 

In a full system development effort, assessment is performed to ensure that new components and 
patterns are not created when an existing pattern could be used. Assessment also helps to ensure 
the design pattern library grows in an orderly way. This implies the existence of a change control 
organization that reviews requests to create or add new components and design patterns to the 
library. This is a normal consequence of a product family approach where the conflicting goals 
of the product family and product instances lead to separate organizational structures for the 
product family and each new product. Due to the small size of the component and design pattern 
library in this proof-of-concept, issues of change control are dealt with informally.  

As the size of the component and design pattern library grows, tools to catalog components and 
design patterns and to search for relevant matches may become desirable. Much research has 
been done in this area that may be relevant in full developments. Again, due to the small size of 
the component and design pattern library in this proof of concept, no tools were developed to 
assist in the Assessment Phase. 

The outputs of the assessment phase are the original component/design pattern request, a 
recommendation of how to address the request, and possibly a base component or pattern to be 
generalized or used in creating a new variant.  

4.2.1.2 52BDefinition 
In the Definition Phase, a specification for the new component or design pattern is created. A 
component is a single architectural entity that has no internal structure modeled at the 
architecture level. It may have externally visible features such as input and output ports, as well 
as a separately specified implementation. Associated with each component are a set of 
assumptions and guarantees that characterize the behavior of the component. If the component’s 
assumptions are satisfied by the component’s environment, then it will provide the behavior 
specified in its guarantees. Any implementation of a component that provides the specified 
inputs and outputs and satisfies the component’s guarantees when the environment satisfies the 
components assumptions should be equally acceptable. 

A pattern is a transformation that can be applied to an architectural model to obtain a new model. 
Application of a pattern may transform a model in a variety of ways, such as inserting 
components into the model, replicating portions of the model, adding information (i.e., 
properties) to the model, or creating new connections between components in the model. 
Application of a pattern may also insert assumptions and guarantees about the system’s behavior 
into the model, where the guarantees can be used in proofs about the system’s behavior so long 
as the assumptions can be proven to hold. Often, the assumptions and guarantees associated with 
a pattern are its most important aspects.  

4.2.1.2.1 105BComponent Definition 
The information needed to define a component consists of its type (the name used to reference 
the component definition),  parameters, inputs, outputs, and any internal state variables (such as 
component modes) used in specifying the component’s behavior, assumptions, and guarantees.   

A component’s assumptions define constraints on its inputs and internal state that must be 
satisfied for the component to behave correctly. A component’s guarantees are constraints on the 
internal state and outputs that the component ensures when all its assumptions are satisfied. The 
assumptions and guarantees of a component form the contract that must be satisfied by an 
implementation of the component.  They may be viewed as comprising the requirements for that 



38 

component.  Conversely, a component’s assumptions and guarantees also specify the behavior of 
the component that can be used when reasoning about overall system behavior. These may 
specify timing and reliability requirements as well as functional behavior.  

The specification of a component provides a contract that allows analysis of the system design to 
be decoupled from the details of component implementation. Any implementation of a 
component that provides the specified inputs and outputs and satisfies the components 
guarantees when the environment satisfies the components assumptions should be equally 
acceptable. 

The information that is to be collected and checked to specify a component during the Definition 
Phase is summarized in XTable 2X. 

Table 2 – Information Needed to Define a Component 

Data Description 
Type A name identifying the component definition 
Parameters Name, value, and type of constants used to configure/parameterize the 

component 
Inputs Names and types of component input signals 
Internal State Names and types of internal state values used in formal specification (e.g., 

component modes) 
Outputs Names and types of component output signals 
Assumptions Constraints on inputs and internal state that the component depends on 
Guarantees Constraints on outputs and internal state that the component provides when all 

assumptions are satisfied 
 

4.2.1.2.2 106BPattern Definition 
A pattern is a transformation that can be applied to an architectural model to obtain a new model. 
Application of the pattern can transform the system model in a variety of ways, including: 

• Annotating an architectural component or subsystem with information or properties that are 
used during system analysis or generation.  

• Inserting a component or subsystem a single unit into the system architecture. The 
component or subsystem itself may first need to be instantiated with more fully defined 
components.  

• Weaving a subsystem of components and connections into the system architecture.  

• Replicating a portion of the system and its connections. Patterns of this sort are very common 
in creating fault tolerant systems.   

Patterns are themselves composed from the small fundamental model transformations described 
in XTable 3X. These can be thought of as the primitive operations that a pattern can make use of. 
Each fundamental transformation has its own structural pre-conditions that must be satisfied by a 
model for it to be applied.  Each fundamental transformation may also have options that vary 
how the model is transformed. 



39 

Table 3 – Fundamental Model Transformations 

Name Description 
Insert Component Inserts a component from the library into a model. 
Remove Component Removes a component and all connections to/from that component 

from the model. 
Rename Component Renames a component in a model. 
Replicate Component Replicates a component and its connections in a model. 
Insert Data Specification Inserts a data specification into a model 
Create Feature Creates a new port, bus access, or data access feature on a component 

in a model. 
Replicate Feature Replicates a feature across several components in a model. 
Remove Feature Removes a feature from a model component. 
Create Connection Creates a connection between two features or between a feature and an 

accessible component such as memory, data, or bus. 
Remove Connection Removes a connection from a model. 
Insert Property Set Inserts a new property set from the library in a model. 
Assign Property Adds a property to a model component. 
 

The information needed to define a pattern consists of its type (name used to reference the design 
pattern), its purpose, rationale, parameters, specification of components, assumptions, 
guarantees, and a specification of how the pattern changes the model. This information is 
summarized in XTable 4X. 

Note that component specifications can be important inputs to a pattern. The same information is 
collected for each component participating in a pattern as shown in XTable 2X. However, the 
assumptions and guarantees are used for different purposes than when a component is specified 
in a library. This is because the specification of a component in a library defines the maximal 
behavior guaranteed by the component, while the specification of a component in a pattern 
defines the minimal behavior required of the component. Thus, for a component specification in 
a pattern: 

1. The assumptions promised to the component should be the strongest assumptions that the 
pattern can guarantee based on its assumptions, and  

2. The guarantees required from the component should be the weakest guarantees that the 
pattern needs to ensure the pattern’s guarantees hold. 

This allows the design pattern to be instantiated with the largest number of component instances.  

In a similar fashion, the purpose of the assumptions and guarantees for the pattern itself is to 
provide a contract that allows analysis of the pattern to be decoupled from the analysis of the 
system architecture.  To this end, the assumptions and guarantees for the pattern are separated 
into structural constraints on the system architecture and behavioral constraints over the system 
execution.  



40 

The structural assumptions describe constraints over the system architecture model that must be 
satisfied to apply the pattern. These may specify variables, components, connections, interfaces, 
or attributes that need to be present in the architecture, or relationships between these entities. 
The behavioral assumptions describe constraints over the execution of the system that must be 
satisfied for the application of the pattern to behave correctly in the system architecture. These 
may specify constraints such as the ranges architecture variables, invariant relationships between 
system variables, and temporal constraints specifying the dynamics of the system variables.  

The structural guarantees describe constraints over the system architecture after the design 
pattern is applied. These may specify variables, components, connections, interfaces, or 
attributes that will be present in the architecture. Of particular interest are verification conditions 
that be easily checked to ensure that subsequent modifications to the architecture have not 
invalidated the design pattern. The behavioral guarantees describe constraints over the execution 
of the system that will be enforced by application of the design pattern and that can be used in 
proving overall properties of the system. These may specify such things as invariant relationships 
between system variables and temporal constraints over system variables.  

Patterns can be composed to form more complex patterns. When applying such a sequence of 
patterns to a model, the structural pre-conditions for each pattern must be satisfied by the 
intermediate model produced by the earlier transformations in the sequence.  



41 

Table 4 – Information Needed to Define a Design Pattern 

Data Description 
Type Name of the design pattern 
Purpose An informal description of what application of the pattern does. 
Rationale An informal explanation of how the pattern is to be used and why it is useful. 
Parameters Name, value, and type of constants used to configure/parameterize the design 

pattern 
Components Name and specification of each component to be participating in the design 

pattern, including all information identified in XTable 2X  
Assumptions Constraints that must be satisfied by the system architecture for correct use of 

the pattern. These may include: 
 

Structural constraints necessary to instantiate the pattern such as: 
• architectural variables or interfaces that the pattern references 
• architectural attributes such as security or criticality level 
 

Behavioral constraints necessary for correct pattern behavior such as:   
• range constraints on architecture variables or interfaces 
• invariant relationships between system variables  
• temporal constraints over system variables 

Guarantees Constraints that will be ensured by the system architecture after the pattern has 
been applied providing the behavioral assumptions are satisfied. These may 
include: 
 

Structural constraints over the system architecture such as: 
• components, connections, variables, and interfaces that will exist in the 

system architecture 
• verification conditions that should not be invalidated by modifications to the 

system architecture  
 

Behavioral constraints guaranteed by the pattern (providing all its assumptions 
are satisfied) such as: 
• invariant relationships between system variables  
• temporal constraints over system variables 

Specification Description of how the pattern modifies the architectural model.  This may 
consist of a collection of the fundamental model transformations described 
earlier.   



42 

4.2.1.3 53BPattern Verification 
Formal methods and testing are used to reason about system architectures throughout the design 
flow.   Formal methods allow one to prove certain properties of systems and software using 
mathematical techniques such as theorem proving and model checking.  These techniques are 
critical for establishing that patterns work correctly in the context of any system architecture 
where they are intended to be used, and that system architectures meet their overall system 
requirements.   

Depending on the stage of development, there are different verification activities related to 
patterns that must be performed.  These fall broadly into three categories:  

• Assuring that a design pattern is correct.  

• Assuring that the software architecture establishes the assumptions required to use a 
design pattern.   

• Assuring that a system constructed from design patterns establishes global behavioral 
guarantees. 

The first is a pattern verification activity, while the last two are system verification activities that 
will be described in Section X4.2.2.3X. 

Verification of a pattern consists of showing that the pattern always establishes its guarantees if 
its assumptions about the system architecture are satisfied.   The guarantees codify properties 
established by the pattern such as structure of the resulting architecture, logical synchrony, data 
synchronization, or fault tolerance.  These assumptions define restrictions placed on the system 
architecture for the pattern to work correctly.  For example, in PALS, we require certain timing 
assumptions on thread and communication rates.  The pattern guarantees are defined and proven 
at the time that the pattern is specified and are independent of a specific architecture.  That is, a 
pattern should be “pre-supplied” with a proof that it establishes the guarantee of interest, given 
certain constraints on the architecture for any valid instantiation of the pattern. 

As indicated in XFigure 3X, errors found in the specification of the component or design pattern are 
fed back into the Definition Phase for correction. 

4.2.1.4 54BTool Support for Pattern Definition and Verification 
Patterns are implemented as an extension of the EDICT tool (Section X4.2.2.4X) as needed to 
support the META project. The EDICT tool checks before pattern application that the structural 
assumptions (pre-conditions) of the pattern are satisfied by the system architecture and that the 
structural guarantees of the pattern are satisfied by the system architecture after pattern 
application. The EDICT tool also inserts the assumptions and guarantees of the pattern in the 
system architectural model when the pattern is applied. 

Each pattern is formally verified during its development to prove that its behavioral guarantees 
hold if its behavioral assumptions are satisfied and the structural assumptions and guarantees 
hold. This verification is valid for any model in which the structural assumptions and guarantees 
hold, providing the link between the verification of the pattern specification and its instantiation 
in a specific system model.  

Architectural design patterns can vary greatly as to the information required to specify the model 
transformation performed and the nature of the behaviors they enforce. Therefore, pattern 



43 

verification must be done on an individual basis using different tools and techniques. For 
example, we have used BDD-based model checking tools (NuSMV X[30]X), SMT-based model 
checkers (primarily Kind X[23]X and SAL X[34]X) and theorem provers (primarily PVS X[33]X and 
ACL2 X[25]X). SMT-based tools have the advantage of more automation for systems and 
architectures that involve decidable theories.  Theorem provers, while requiring more manual 
effort, can reason about certain classes of systems, such as non-linear systems, that are not 
analyzable using SMT-based tools.  In either case, an important aspect of using patterns in 
system development is the ability to amortize the verification effort over the many systems in 
which the pattern will eventually be deployed.  
4.2.2 19BSystem Development Phase 
The System Development Phase is the principal phase in which the system design is 
accomplished. Starting at a relatively high level of abstraction, a system architecture is created or 
instantiated from the library to create an initial system model. This model is then refined by 
repeated applications of design patterns and additional manual modeling to create a detailed 
system model from which an implementation can be generated. This is illustrated for one 
iteration in XFigure 4X. 

 
Figure 4 – System Development Phase Design Flow and Tools 

The system model after “n” pattern applications is the initial input in XFigure 4X. During the 
Application phase, a new pattern is chosen from the pattern/component library and applied to 
create system model n+1. In the Modeling phase, this model is loaded into the architectural 
modeling environment and checked using the performance, security, and safety tools available in 
that environment. At the appropriate levels of refinement, requirements for the system model are 
formalized and mechanically verified in the System Verification phase.  

PATTERN
APPLICATOR

SYSTEM
MODELING

ENVIRONMENT

SYSTEM
TRANSLATOR

MODEL
CHECKER

THEOREM
PROVER

PATTERN/COMPONENT SPECIFICATION LIBRARY

SYSTEM 
MODEL n+1

SYSTEM 
MODEL n

System
Meta Model

System
Formal

Semantics

Errors

Errors

APPLICATION SYSTEM VERIFICATIONMODELING

PATTERN
APPLICATOR

SYSTEM
MODELING

ENVIRONMENT

SYSTEM
TRANSLATOR

MODEL
CHECKER

THEOREM
PROVER

PATTERN/COMPONENT SPECIFICATION LIBRARY

SYSTEM 
MODEL n+1

SYSTEM 
MODEL n

System
Meta Model

System
Formal

Semantics

Errors

Errors

APPLICATION SYSTEM VERIFICATIONMODELING



44 

4.2.2.1 55BApplication 
In the Application phase, the system developer selects a pattern to be applied to the existing 
system model. This pattern is then applied to system model n using a Pattern Application tool to 
generate system model n+1.  Additional information, such as parameters or component 
specifications to be used by the pattern, may also need to be collected.  Prior to application of the 
pattern, all pattern structural assumptions are checked to make sure the pattern can be applied to 
the system model. After application, the guarantees provided by the pattern are added to the list 
of known system properties for use during the Modeling and Verification phases. 

As the size of the component and design pattern library grows, it may be helpful to develop tools 
to search for patterns based on different search criteria. This is similar to the issues discussed in 
the Assessment sub-phase of the Specification Phase. More importantly, guidelines may be 
needed to help developers understand how to apply patterns to obtain optimal architectures. For 
example, the order in which patterns are applied will certainly matter, i.e., pattern application 
will not normally be commutative. Due to the small size of the component and design pattern 
library in this proof of concept, no tool support for searching and selecting a pattern is planned.  

The output of the Application phase is a revised model that is closer to being implementable. 

4.2.2.2 56BModeling 
In the Modeling phase, the new model generated by application of a pattern is loaded into the 
architectural modeling environment. This is driven by the System Meta-Model (see XFigure 4X) 
that defines syntactically valid system models.  If necessary, the model can be modified using the 
modeling environment to add capabilities not available in the pattern/component library, to 
change the layout to improve readability, or to add explanatory comments. At this time, all of the 
standard performance, security, and safety checks provided by the modeling environment can be 
used to check the model. Simulation capabilities of the modeling environment may also be used 
to check model behavior. 

4.2.2.3 57BSystem Verification 
In the System Verification Phase, formal verification tools are used to confirm important 
properties of the emerging system. This may include verification of functional behavior, 
performance, safety, or security properties of the system. As mentioned in X4.2.1.3X on pattern 
verification, there are two parts to system verification:  

• Assuring that the software architecture satisfies the structural assumptions required to use 
a design pattern.   

• Assuring that a system constructed from design patterns provides the system behavioral 
guarantees.    

While the structural assumptions for applying a pattern can certainly be checked before the 
pattern is applied to a system architecture, the pattern guarantees may not hold if the if the 
system architecture is further modified by developers after pattern application. For this reason, 
the structural assumptions and guarantees for the pattern are attached to the system model so that 
they can be verified periodically.  The behavioral guarantees and assumptions are also embedded 
in the architecture for similar reasons (Section X4.2.2.7X). 

The determination of architectural suitability is complicated by the fact that patterns can be built 
on top of (or in terms of) other patterns.  For example, a leader-election protocol may have a 



45 

requirement that the nodes involved in the pattern communicate and execute synchronously.  To 
establish logical synchrony, a PALS pattern is used, and this pattern requires certain timing 
assumptions on the threads and communications channels involved in the pattern. 

Once the architecture has been shown to satisfy the assumptions for use of each pattern, global 
behavioral properties of the overall system can be verified. Some system properties will be 
immediately established from guarantees provided by the patterns, such as fault tolerance or 
synchronization, but others will require additional work.  For example, to verify that redundancy 
management logic correctly diagnoses failures would require functional properties to be 
specified and separately proved for the processes involved in the redundancy management as 
well as guarantees established over the system architecture to ensure correct communication 
between the processes.  The communication guarantees can be established by the system 
architecture, but the failure diagnosis depends on the functional behavior of the involved 
components.  

The precise step of refinement in which a property is verified depends on the property and the 
sequence of refinements. Ideally, properties would be verified as early as possible since 
verification will probably require more time on a detailed model produced after several 
refinements than on its more abstract ancestor. On the other hand, it makes no sense to verify a 
property that has not emerged at the current level of refinement (e.g., to prove fault tolerance 
before redundancy has been introduced). Other properties may be easier to prove once certain 
refinements have been made (for example, after logical synchrony has been introduced into the 
model). A goal of this project is to start developing guidelines for what properties of architectural 
models can be formally verified and when they should be verified.  

Of course, one of the primary goals of this approach is to reuse analyses previously performed on 
the design patterns. This supports a layered approach to reasoning that allows us to take 
advantage of proof results established for architectural patterns to allow system-level reasoning 
about functional behavior.  We first check that the assumptions of the design pattern hold.  Then 
we can use the guarantees established by the patterns to simplify reasoning about the system 
behavior.   

4.2.2.3.1 107BDescribing Time 

One of the major issues for architectural verification has to do with the modeling of time.  Many 
approaches for modeling and reasoning about dense real time have been proposed, including 
Timed Automata X[20]XX[27]X, Timed CSP X[32]X, hybrid automata X[24]X and several other notations 
(e.g., X[36]XX[29]X).  In these notations, we can model time as a true real-valued variable and ascribe 
time ranges to computations and other activities within the system.  The benefit of modeling real 
time directly is that it is the most natural and accurate model of system behavior.  Unfortunately, 
reasoning about real time is computationally expensive, and proofs that make essential use of 
real-time are difficult to automate.   

Alternately, we can leave time as an abstract quantity and talk instead about approximations of 
real time.  One approximation is to approximate the real-time values with integers.  Another is to 
describe the relative rates (in terms of a predicate) between threads.  In order to make the 
approximations sound with respect to universal temporal properties, the approximate behaviors 
must simulate the original behaviors, i.e., the abstracted system must have at least as many 
behaviors (in terms of the relative invocations of processes) as the original system.  To do this, 
we introduce non-determinism.  For example, one safe approximation is to assume that each 



46 

thread can run or not run arbitrarily. This will model any possible execution sequence of threads 
from the actual architecture.  Approximate approaches are simpler to automatically analyze, but 
introduce a form of incompleteness in that some properties that are true of the actual architecture 
cannot be verified on the simplified approximate model.  However, as long as the approximate 
model satisfies all required system behaviors, the actual architecture will also satisfy all required 
behaviors. 

Any representation of time in architectural models that makes the analysis tractable introduces 
complexity and possibly incompleteness into the analysis.  When possible, we reason using an 
approach where time has been factored out of interesting portions of the system architecture.  
One way to do this is to assume that threads within the system communicate synchronously.  
That is, for the purposes of analysis, it is assumed that communications between threads is 
instantaneous and that all threads share a global clock.  One of the benefits of the proposed 
design flow is that some of the patterns, such as PALS, allow one to view higher-level 
components of the system as interacting in a logically synchronous way.  Synchronous systems 
are much simpler to analyze in an automated way than either real-time based or abstract-time-
based approaches, because time is simply factored out: the components execute in logical lock-
step, drastically reducing the number of possible system configurations. 

The tools that we are using allow time to be encoded as an integer or real-valued variable to 
allow precise time reasoning, or to be abstracted out of the model if we can assume logical 
synchrony (such as is provided by a time-triggered architecture X[26]X  or the PALS pattern X[31]X, 
X[28]X).  For properties involving real-time, only safety properties X[21]X are considered, i.e., “the 
system is always in a good state”, or equivalently, “some bad thing never happens”.  Restricting 
the properties to safety properties allows real-time properties to be specified in terms of state 
invariants and avoids the need for real-time temporal logics.   

4.2.2.4 58BTool Support for Pattern Application  
Tool support for the application of patterns is provided by the Pattern Transform Editor within 
the EDICT tool suite.  The Pattern Transform Editor has three tabs as shown at the bottom of 
XFigure 5X: 1) the Transform tab provides overall support for the application of patterns to a system 
model, 2) the Instantiation tab allows parameters of a specific pattern to be supplied and 3) the 
Save Copy tab allows the user to save the transformed architecture model. 



47 

 
Figure 5 – Pattern Transform Editor: Transform Tab 

XFigure 5X depicts the editor when the Transform tab is selected. On the left hand side is an ordered 
list of patterns that are to be applied to the architectural model.  There are buttons to Add, Edit 
and Remove patterns from the list.  There are also Transform Control buttons:  Apply to apply the 
next pattern in the list, Reverse to undo the last pattern applied, Reset to go back to the beginning 
with no patterns applied, and Apply All to apply all the unapplied patterns in the list.  The right 
hand side of the tab displays a visualization of the architecture model that is dynamically updated 
after each pattern is applied.  The user can easily view structural changes to the model at any 
point.   

4.2.2.4.1 108BConfiguring a Pattern for Application 

Each of the pattern instances listed on the Transform tab requires pattern specific data before the 
model transformations defined in the pattern can be applied.  When a pattern is selected from the 
list and the Edit button is selected, the Instantiation tab is displayed.  The Instantiation tab 
contains controls specific to the selected pattern with which the user supplies the required 
parameters.  XFigure 6X shows the Instantiation tab for the Replication pattern.    



48 

 
Figure 6 – Pattern Transform Editor: Instantiation Tab 

For most patterns there are several types of parameters that must be supplied. For the Replication 
pattern, there are general parameters including the name of the pattern instance (to distinguish it 
from other instances of the Replication pattern), the architectural components to be replicated, 
and the number of copies to be created.  There are also parameters applied on a per component 
basis (i.e., to a specific component in the transformed model) such as the name of the new 
components, and common parameters that are applied to all components such as whether the 
interfaces for each copy should be duplicated. Once all parameters are set the user can save the 
configuration and return to the Transform tab to apply the pattern. 

4.2.2.4.2 109BVerification of Pattern Pre-Conditions 

When a pattern is instantiated on a system model, structural pre-conditions for the application of 
the pattern are checked by a model verifier.  The verifier ensures that the structural requirements 
for instantiation of the pattern are met before the pattern is applied to the system model.  These 
include checks for the existence of required architectural components, constraints on component 
types, constraints on the connectivity of components, or constraints on component properties. 
These pre-conditions specify the architectural constraints that must be in place for the pattern to 
construct a correct new model.   



49 

The verifiers that are provided for each pattern are integrated with the Graphical User Interface 
(GUI) of the Pattern Transform Editor.  The verifier is used to control the information displayed 
in the GUI and to provide live feedback to the user on the valid choices for instantiation. The 
GUI does this by highlighting missing or incorrect values and by limiting the choices of the user 
to those consistent with the pre-conditions.  XFigure 7X shows an example of the verifier working 
with the GUI during application of the Physically Asynchronous Logically Synchronous (PALS) 
pattern    

 
Figure 7 – Pattern Verifier for Instantiation 

In this example the user has failed to provide and PALS Group Name that identifies the members 
of the PALS group and the period of the PALS synchronization.  These fields are highlighted in 
red and will prevent instantiation of the pattern until valid entries are supplied.  The PALS 
pattern has no architectural pre-conditions, so all of the model components can be selected for 
application of the PALS pattern. In XFigure 7X the FCS subsystem has been selected already and is 
therefore grayed out.  The verifiers are re-run each time the pattern instance is opened or saved 
so that any errors will be caught before the pattern is applied to the architecture.   

4.2.2.4.3 110BVerification of Pattern Post-Conditions 
The Pattern Transform Editor also verifies structural architecture properties after patterns have 
been applied to the system model.   The application of patterns to an architecture results in both 
structural changes (additional components or interfaces) and behavioral changes (new or 
modified behavioral assumptions and guarantees).  The properties associated with a pattern may 
be invalidated if subsequent changes to the system model are made, either due to additional 
pattern applications or changes made by system developers manually. 



50 

In a design flow in which changes to the system model can be made iteratively, either through 
additional pattern applications or through manual editing, it is necessary to verify the pattern 
assumptions and guarantees continuously as a part of the overall system verification process.  
Verifiers for structural post conditions can be built in a similar fashion to those described earlier 
for pre-condition verification.  These post condition verifiers will use the information from the 
pattern instantiation to identify the architecture specific post conditions that should be present for 
each pattern that has been applied to the architecture.   These verifiers can be run on the 
architecture to verify that the expected post conditions for each pattern have not been violated or 
corrupted by the application of subsequent patterns or by manual editing.    

The results of the post-condition verifiers will be posted in a common view for easy access by 
the user.  This view provides customized icons, highlighting and categorization to aid the user in 
identification and prioritization of problems.  XFigure 8X is an example of a model verification view 
from other architecture analysis features that currently reside in the EDICT tools.   

 
Figure 8 – Model Verification View 

The type of checks that are provided by post-condition verifiers need not be limited to the 
checking of architectural structure.  The EDICT tool suite performs many kinds of analyses on 
system models such as dependability, safety, performance and security.  These more advanced 
forms of verification can also be performed on the architecture model after patterns have been 
applied to ensure that aspect specific properties, such as schedulability, are met after the 
application of patterns.  The EDICT tools provide an analyzer management framework that can 
bring together the results of analyzers of many different aspects into a common view.  The 
System Analysis Concerns View provides a single place where the user can go to check on the 
status of all analyses that are performed.  Analysis results are ordered by system aspect and a 
high level status is provided for each analyzer.   



51 

 
Figure 9 – System Analysis Concerns View 

XFigure 9X is an example of the System Analysis Concerns View showing information from 
analyzers for error handling, information assurance and schedulability.  Each of the analyzers 
can be selected to review more details. The user can double click on a concern and the analyzer 
will be run so that analysis details can be viewed directly. 

4.2.2.5 59BTool Support for Importing/Exporting SysML 
To facilitate the use of SysML as well as AADL for creating system models to which patterns 
can be applied, a translator allows system architectural models specified in a subset of SysML 
with the Sparx Enterprise Architect tool to be translated to and from AADL. SysML is an open 
standard published by the Object Management Group (OMG) for the specification of system 
architectures.  

The translator is written in the Java programming language and is packaged as a plug-in for the 
Eclipse development environment, making it available to both the EDICT and OSATE tools.  
Once installed, new menu items are provided in OSATE and EDICT to import a SysML model 
as an AADL model and to export an AADL model as a SysML model.  

The AADL constructs supported by the translator are shown in XTable 5X. Constructs marked with 
an asterisk are not currently supported. 



52 

Table 5 – AADL Constructs Supported by the SysML Translator 

Category Features Parts Parent Notes 
System Port 

Portgroup* 
Subprogram* 
Provides Data Acc 
Requires Data Acc
Provides Bus Acc 
Requires Bus Acc

System
Data 
Process 
Processor 
Memory 
Bus 
Device

System 
Null 

 

Data Subprogram* 
Provides Data Acc

Data System 
Process 
Thread 
Data

Direct Access 
Connections Allowed 

     

Process Port 
Subprogram* 
Provides Data Acc 
Requires Data Acc

Thread 
Data 
Threadgroup 

System  

Thread Port 
Subprogram* 
Provides Data Acc 
Requires Data Acc

Data Process  

Threadgroup* Port 
Subprogram* 
Provides Data Acc 
Requires Data Acc

Thread 
Data 
Threadgroup*

Process  

Subprogram* Port 
Portgroup* 
Requires Data Acc
Parameter 

   

     

Processor Port 
Portgroup* 
Subprogram* 
Requires Bus Acc

Memory System  

Memory Requires Bus Acc Memory System
Processor 
Memory

 

Bus Requires Bus Acc  System Direct Access 
Connection Allowed

Device Port 
Portgroup* 
Subprogram* 
Requires Bus Acc

 System  

* Not currently supported 

To ensure correct translation to AADL, SysML blocks and ports are stereotyped with the desired 
AADL construct. If a SysML block is not stereotyped, it is translated to an AADL system. If a 
SysML port is not stereotyped, it is translated to an AADL port.  



53 

Graphical layout of a model in a SysML diagram is stored in a layout file when it is imported 
into AADL.  When the AADL model is exported back to SysML, this layout information is used 
to reconstruct the layout of the SysML diagrams. 

4.2.2.6 60BTool Support for Structural Verification  
Complex structural assumptions and guarantees are verified using the Lute checker developed as 
part of this project. While Lute is similar to the to the REAL verification system X[22]X, it provides 
several enhancements needed for the META project for specifying and checking complex 
structural properties. 

A Lute specification is made up of Lute theorems, which are computational checks over the 
structure of the model. A typical Lute theorem iterates over a select group of components and 
aggregates information about each before checking a Boolean condition. For example, a Lute 
theorem may iterate over each process and verify that the maximum deadline for all threads in 
the process is less than or equal to the process deadline. The Lute code for this theorem is shown 
in XFigure 10X. 
  

 theorem Process_Deadline_Greater_Or_Equal_Thread_Deadline 

   foreach p in Process_Set do 

     Thread_Deadlines := {Property(t, “Deadline”) for t in Thread_Set | Owner(t) = p}; 

     check Max(Thread_Deadlines) <= Property(p, “Deadline”); 

 end; 

 

Figure 10 – Lute Theorem for Verifying Process Deadlines 
The Lute checker will take the Lute specification and execute it over an AADL system instance. 
In the case of success it will report back the number of conditions which were checked. In the 
case of failure it will report the AADL object for which the theorem failed. Additional 
information can be attached to the Lute theorem in order to provide more detailed error messages 
in the case of failure. 

Since Lute theorems are purely computational, they can be executed without user interaction. 
Thus it is feasible to re-verify the Lute specification every time a structural change is made to the 
model. This enables instant feedback during model development. 

4.2.2.7 61BTool Support for Behavioral Verification  
An important goal of this project is to use guarantees provided by system components and 
architectural patterns to prove behavioral properties of complex system architectures.  We used 
the Property Specification Language (PSL) X[19]X to define these behavioral properties. PSL is a 
temporal logic-based language with additional support for regular expressions and clocks, to 
define system properties.  As an example, the following property defines leader agreement across 
a group of devices (numbered 0…MAX_ELEM).  It states that all non-failed devices agree on 
the leader of the group.   
 



54 

PSLSPEC 
 forall i in {0:MAX_ELEM} : forall j in {0:MAX_ELEM} :  
  G((status[i].device_ok & status[j].device_ok) ->  
  status[i].leader = status[j].leader); 

We developed an Eclipse plug-in that translates AADL models and a subset of the PSL notation 
into the input languages of the NuSMV and KIND model checkers to support system 
verification. The NuSMV model checker can be used for the analysis of synchronous models (or 
of asynchronous systems that implement logical synchrony using PALS) specified using discrete 
(integer) time. The Kind model checker provides support for k-induction and can be used for 
analysis of asynchronous system specified using continuous time providing they do not involve 
non-linear arithmetic or unbounded (tree-like) data.  If non-linear arithmetic is necessary to 
express properties, more sophisticated technology such as a theorem prover would be required.  
4.2.3 20BFoundry Phase 
One of the goals of all of the preceding activities is to enable a “no surprises” build of the system 
during the Foundry phase. The Foundry phase draws upon component models and the fully 
elaborated system model to auto-generate an implementation.  This may be a prototype system to 
support evaluation in a lab or other test environment, or the final system for delivery and 
deployment.  The system model provides sufficient level of detail to generate component 
interface code (“glue code”), along with network or system calls to services provided by the 
underlying platform.  Component models must provide sufficient level of detail to be linked in 
with the interface code.  Component models corresponding to electromechanical systems must 
specify an application interface for the rest of the system.   

While the work performed in the project directly supports the generation of “no surprise” 
implementations, development of tools to support the Foundry phase are outside the project’s 
scope.  



55 

4.3 12BDesign Pattern Models 
This section describes the design patterns that have been developed in the Complexity-Reducing 
Design Patterns for Cyber-Physical Systems project.  Patterns were developed for PALS, 
Replication, Leader Selection, and Fusion (voting or source selection).  For each pattern, a 
description of the pattern’s behavior is provided, as well as how a developer would use the 
pattern in a system design.   Also provided for each pattern are:      

1. Arguments.  The arguments for the pattern are given in the form of parameters that must 
be specified by the user.   

2. Assumptions.  This includes the system context (any requirements on the initial system 
model) for the pattern, and any behavioral constraints on the environment that must hold 
for the pattern guarantees to be valid.   

3. Guarantees.  These are the properties that are enforced by the pattern and which have 
been formally verified to hold given when the pattern assumptions are true.   

4. Instantiation.  A textual description of the algorithm for applying a pattern to a system 
model.   

5. Exemplar AADL models.  These are simple before/after models (graphical and textual) 
that show the effects of pattern application and help to illustrate the pattern design.   

4.3.1 21BPALS 
The purpose of the PALS pattern is to make portions of a distributed asynchronous system 
operate in virtual synchrony.  This allows portions of the system logic to be designed and 
verified as though they will be executed on a synchronous platform, and then deployed in the 
asynchronous system with the same guaranteed behavior.   

To use the pattern, a group of nodes (systems) is selected that are to execute at approximately the 
same time at period T.  The outputs (ports) of these nodes are to be received by other nodes in 
the group such that all nodes will receive the same values at each execution step.  The pattern 
does not add any new data connections to the model, but assumes that the required connections 
already exist.   

4.3.1.1 62BArguments 
1. Set of system blocks to synchronize 

2. PALS synchronization period T 

3. Name of PALS group 

4.3.1.2 63BAssumptions 
The PALS assumptions are conditions that the system design model must satisfy, either when the 
pattern is instantiated or possibly at a later stage of system design.   

1. Bounded Local Clock Error - Each node i has access to an approximation of the true global 
time t via a local clock cj, where the maximum error (called either jitter or skew) of each 
local clock is ε, i.e.,  

 | Ci – t | < ε.     



56 

2. Monotonic Local Clocks - The value of each local clock Ci is monotonically increasing.  Each 
node may adjust its local clock rate, but it may never decrease the value of its local clock. 

3. Bounded Computation Time – The computation of a node’s new local state and outputs 
completes within a specified time.  Typically this is the periodic scheduling deadline for a 
thread αmax.   

4. Bounded Message Delivery – Messages are reliably delivered to their destinations with 
latency μ, where μmin ≤ μ ≤ μmax.  Depending on the system fault assumptions, this may 
require thus use of a fault-tolerant network.   

5. Node fault assumptions – A failed node must not be able to send extra messages (more than 
one) during a PALS period.  This could result in nodes receiving different messages, even 
though each was delivered correctly by the network. 

In addition, there are some constraints relating system parameters that must be satisfied.  These 
should appear in the model as “assumed” properties that must be verified.  Two important 
constraints expressed in terms of AADL properties are: 

1. Causality constraint – Messages cannot be sent too early. 

Min(Output time) ≥ 2ε - μmin 

2. PALS period constraint – Messages cannot be sent too late.   

Max(Output time) ≤ T - μmax - 2ε 

These two constraints can be described and verified using the Lute structural property checker 
that we have developed.   

4.3.1.3 64BGuarantees  
1. The synchronization logic for each node executes with period T at approximately the same 

global time as every other node. 

2. Messages generated during synchronization step i are consumed by their destination nodes in 
synchronization step i+1.  For two nodes A and B where A sends data to B, this may be 
expressed (depending on analysis tool syntax) as  

B.in(i) = A.out(i-1), or next(B.in) = A.out.   

In our model, this is will be expressed by a new AADL property called 
Synchronous_Communication which, when assigned the value “one_step_delay” will be 
used by system verification tools to generate an appropriate verification model.  It may also 
be used to satisfy an assumption for Synchronous_Communication associated with another 
pattern (e.g., Leader Selection). 

3. All nodes that have common external inputs start each synchronization step with identical 
values for those inputs.  This feature is not implemented in the current version of the pattern, 
but can be enforced by requiring that each external input be processed by a single PALS 
node.   

4.3.1.4 65BInstantiation 
Add PALS properties to the specified system blocks and output ports.  These properties will be 
used to enforce the thread and message scheduling constraints in the system implementation.  In 



57 

addition, the PALS Group property will cause PALS middleware subprograms to be inserted in 
the implementation.   

4.3.1.5 66BExemplar AADL models 
XFigure 11X shows a graphical AADL model illustrating the PALS pattern for two system nodes.  
Note that there is no requirement for the nodes to be completely connected.  That is, it is not 
necessary for NodeB.output to be part of the PALS group in this example.   

The textual AADL model follows the figure.  Items to be changed or added during pattern 
instantiation are highlighted.   

 
Figure 11 – AADL graphical model for PALS pattern 

system PALS_Example 
end PALS_Example;  
 
system Node 
  features 
    input: in data port; 
    output: out data port; 
end Node; 
 
system implementation PALS_Example.impl 
  subcomponents 
    NodeA: system Node; 
    NodeB: system Node; 
  connections 
    DataConnection1: data port NodeA.output -> NodeB.input; 
    DataConnection2: data port NodeB.output -> NodeA.input; 
  properties 
    -- 
    -- REQUIREMENTS 
    -- 
    -- PALS Period must be the same for all members of a PALS group.  
    -- The actual period of members of the group must be equal to this  
    -- value. 
    PALS_Properties::PALS_Group_Id => "Group1" applies to NodeA; 
    PALS_Properties::PALS_Group_Id => "Group1" applies to NodeB; 
    PALS_Properties::PALS_Period => 10 Ms applies to NodeA; 
    PALS_Properties::PALS_Period => 10 Ms applies to NodeB; 
    PALS_Properties::PALS_Lute_Property => "theorems.lute" 



58 

    PALS_Properties::PALS_PSL_Property =>  
       "NodeA.input[i] = NodeB.output[i-1]  and   
        NodeB.input[i] = NodeA.output[i-1]"; 
end PALS_Example.impl; 
4.3.2 22BReplication 
The purpose of the Replication pattern is to create identical copies of portions of the system.  
This is typically used to implement fault tolerance by assigning the copies to execute on separate 
hardware platforms with independent failure modes.   

To use the pattern, one or more nodes (systems) are selected and the number of copies to create 
is specified.  Optional arguments for each input and output port on the selected systems 
determine how these ports and their connections are handled in the replication process.  Each 
new system and port created is given a unique name.  When multiple outputs are created they 
may be merged by the addition of a new system block to select, average, or vote the outputs.  
This can be implemented using the Fusion pattern (section X4.3.4X).   

4.3.2.1 67BArguments  
1. Set of system components to replicate 

2. N, the desired number of copies, including the original component(s) 

3. For each new output port in the set of replicas, choose: 

a. replicate the destination of the data connection (default) 

b. add a new system block (see Fusion pattern) to merge the new outputs and connect to the 
destination of the original data connection 

4. For each new input port in the set of replicas, choose:  

a. replicate source of the data connection (default) 

b. fan out the data connection from the source of the original input data connection 

4.3.2.2 68BAssumptions 
Replicated systems will be hosted on platform hardware with independent failure modes.  This 
can be specified through use of the AADL property Not_Collocated.   

4.3.2.3 69BGuarantees 

If hardware failures are independent, and there are less than N failures, then at least one replica 
will be functional at all times.  Guarantees associated with the use of various voting algorithms 
will be addressed separately, as part of the definition of voting design patterns.   

4.3.2.4 70BInstantiation 
Add copies of selected system blocks with unique names.  Add data connections for new input 
and output ports specified in the pattern arguments.  Add output merge system blocks, if 
specified in the pattern arguments.  Behavioral properties that have been defined for the original 
system blocks will be copied in the replicas with renaming as needed.   

4.3.2.5 71BExemplar AADL models 
XFigure 12X shows a graphical AADL model illustrating a sample system before application of the 
Replicate pattern.  XFigure 13X shows the instantiation of the Replicate pattern with N = 2 and the 



59 

default options for both input and output ports.  XFigure 14X shows the instantiation of the 
Replicate pattern with N = 2 and the option to share the input connection source and add a merge 
block to reconcile the new output ports.     

The textual AADL model with the default port options follows the figure.  Items to be changed 
or added during pattern instantiation are highlighted.   

 
Figure 12 – AADL graphical model for Replication pattern (input context) 

 

 
Figure 13 – After application of Replication pattern (replicate inputs and outputs) 

 



60 

 
Figure 14 – After application of Replication pattern (shared inputs and merged outputs) 

system Sys 
  features 
    input: in data port; 
    output: out data port; 
end Sys; 
 
system implementation Sys.impl 
end Sys.impl;  
 
system Replicate_ReplicateInputs_ReplicateOutputs 
  features 
    external_input1: in data port; 
    external_input2: in data port; 
    external_output1: out data port; 
    external_output2: out data port; 
end Replicate_ReplicateInputs_ReplicateOutputs; 
 
system implementation Replicate_ReplicateInputs_ReplicateOutputs.impl 
  subcomponents 
    Sys1: system Sys.impl { 
       META_Properties::Not_Collocated => (reference (Sys2)) 
    }; 
    Sys2: system Sys.impl { 
       META_Properties::Not_Collocated => (reference (Sys1)) 
    }; 
  connections 
    DataConnection1: data port external_input1 -> Sys1.input; 
    DataConnection2: data port external_input2 -> Sys2.input; 
    DataConnection3: data port Sys1.output -> external_output1; 
    DataConnection4: data port Sys2.output -> external_output2; 
end Replicate_ReplicateInputs_ReplicateOutputs.impl; 

4.3.3 23BLeader Selection 
The purpose of the Leader Selection pattern is to coordinate a group of nodes so that a single 
node is agreed upon as the ‘leader’ at any given time. The nodes typically correspond to 
replicated computations hosted on distributed computing resources, and are used as part of a 
fault-tolerance mechanism.  If a replicated node fails, this allows a non-failed node to be selected 
as the one which will interact with the rest of the system.  



61 

To use the pattern, a group of N nodes (systems or processes) is identified that are to select a 
leader from among themselves. The leader selection pattern will insert new leader selection 
threads into each of the systems/processes which are to participate in leader selection. Each 
thread will have a unique identifier (an integer) to determine its priority in selecting a leader.  
Connections will be added so that all leader selection threads are able to communicate with each 
other (N-1 input ports, 1 output port).   In addition, each leader selection thread will have an 
input port from which it determines (from other local systems) if it is failed, and an output port 
which will say if it is the leader. These two ports are initially left unconnected. 

4.3.3.1 72BArguments  
1. Set of N nodes to select a leader from.  In AADL, these must correspond to processes since 

the leader selection thread to be inserted must be contained in a process.  

2. Leader priority (unique integer) for each node.  

4.3.3.2 73BAssumptions 
1. The leader selection nodes must communicate synchronously with a one-step delay. 

2. At least one node is functional (non-failed) at any given time. 

4.3.3.3 74BGuarantees 
1. All non-failed nodes shall agree on who is the leader. 

2. If a node fails, leadership is transferred to a non-failed node in the next step. 

3. If non-failed nodes exist, then in the next step one of them will be the leader. 

4. A non-failed leader node shall remain leader as long as no user request to change leadership 
to a different non-failed node has been made. 

4.3.3.4 75BInstantiation 
Add leader selection threads to each node (process).  Each leader selection thread has N-1 inputs 
ports and one output port to coordinate with the other leader threads.  Add connections from each 
leader output to the other leader inputs.  Add the required assumption and guarantee properties.  
Check uniqueness of leader priorities.  Connections between each leader thread and local 
applications are added manually to provide any state information needed.   

4.3.3.5 76BExemplar AADL models 
XFigure 15X shows a graphical AADL model illustrating a sample system with the leader selection 
pattern applied to two nodes, systems S1 and S2.  S1 and S2 each contain a process with one 
application thread A.  The leader algorithm is inserted as new thread T in each process.  T 
communicates with the other leader thread and is connected to the existing application thread to 
obtain any local state information needed by the leader algorithm.   

The textual AADL model follows the figure.  Items to be changed or added during pattern 
instantiation are highlighted.   



62 

 

 
Figure 15 – Leader Thread T Inserted Into Each Process  

system Top 
end Top; 
 
system Sys 
  features 
    input: in data port; 
    output: out data port; 
end Sys; 
 
process Proc 
  features 
    input: in data port; 
    output: out data port; 
end Proc; 
 
thread Ldr 
  features 
    LSI: in data port; 
    LSO: out data port; 
    APP: in data port; 



63 

    LDR: out data port; 
end Ldr; 
 
thread App 
  features 
    AO: out data port; 
    AI: in data port; 
end App; 
 
thread implementation Ldr.impl 
end Ldr.impl; 
 
thread implementation App.impl 
end App.impl; 
 
process implementation Proc.impl 
  subcomponents 
    T: thread Ldr.impl; 
    A: thread App.impl; 
  connections 
    con1: data port input -> T.LSI; 
    con2: data port T.LSO -> output; 
    con3: data port T.LDR -> A.AI; 
    con4: data port A.AO -> T.APP; 
end Proc.impl; 
 
system implementation Sys.impl 
  subcomponents 
    P: process Proc.impl; 
  connections 
    con1: data port input -> P.input; 
    con2: data port P.output -> output; 
end Sys.impl; 
 
system implementation Top.impl 
  subcomponents 
    S1: system Sys.impl; 
    S2: system Sys.impl; 
  connections 
    con1: data port S2.output -> S1.input; 
    con2: data port S1.output -> S2.input; 
end Top.impl; 



64 

4.3.4 24BFusion/Voting 
The purpose of the Fusion pattern is to insert a component into the architecture that combines 
several component interfaces into a single interface.  The component supplies properties that 
define the validation/selection algorithm that is used and its impact on the fault tolerance or 
performance properties of the interfaces.  The fusion algorithm could provide voting through 
exact or approximate agreement or by mid-value selection.  The output could correspond to one 
of the selected inputs or it could be a computing average.   

To use the pattern, the user will select from a predefined set of fusion algorithms that are 
presented in a list. Each option will describe the properties and allow the user to browse these as 
part of the selection process.  The user will select the type of component to be inserted in the 
model to perform the fusion algorithm.  There are three initial choices: System (for abstract 
system designs), Thread (for software implemented voting), and Device for hardware 
implementations.  Finally, the user will select the insertion point for the voter by first selecting 
an existing architecture component that is the current destination of the interfaces to be voted.  
After component selection the user will be presented with a list of input interfaces that match the 
constraints required for the voter that was selected.  The user can then select the set of interfaces 
that the voter will be applied to.   

4.3.4.1 77BArguments 
1. Set of interfaces which will be the sources of data for the voter and the destination of the 

output computation.   

2. The type for the inserted component (System, Thread, Device)  

3. A set of properties that describe the fusion component to be inserted 

a. Number of interfaces required 

b. Data type congruency required 

4.3.4.2 78BAssumptions 
1. The interfaces must terminate at the same destination component.  The pattern only inserts 

the fusion component and does not impact data flow in the architecture. 

2. The interfaces all carry the same data type.   

4.3.4.3 79BGuarantees 

Verified properties are specific to the type of voting or selection algorithm that is supplied with 
the new component. These are example properties for a three-input voter (properties are 
symmetric for the other inputs).   

1. If all three sensors are valid then the voter output is valid and its value is the middle value of 
the three inputs. 
IN1.Valid & IN2.Valid & IN3.Valid ->  

 OUTPUT.Valid & OUTPUT.Val = Min(Max(IN1.Val, IN2.Val), 
Max(IN1.Val, IN3.Val), Max(IN2.Val, IN3.Val)) 



65 

2. If only two sensors are valid then the voter output is valid and its value is the average of the 
good sensors.  However, if there are only two valid sensors and they are far apart the voter 
should not produce a valid output. 
(IN1.Valid & IN2.Valid & !IN3.Valid) &  

  ABS(IN1.Val - IN2.Val) <= MaxDiff ->  

  OUTPUT.Valid & OUTPUT.Val = (IN1Val + IN2.Val) / 2.0; 

(IN1.Valid & IN2.Valid & !IN3.Valid) &  

  ABS(IN1.Val - IN2.Val) > MaxDiff -> !OUTPUT.Valid; 

3. If only one sensor is valid, then it is used for the voter output.   
IN1.Valid & !IN2.Valid & !IN3.Valid ->  

  OUTPUT.Valid & OUTPUT.Val = IN1.Val 

4.3.4.4 80BInstantiation 
Add the new fusion component.  Remove old connections from source interfaces to destination.  
Replace them with connections that flow through the fusion component.  Add behavioral 
assumption and guarantee properties describing the fusion/voting algorithm chose.   

4.3.4.5 81BExemplar AADL models 
XFigure 16X shows a graphical AADL model illustrating a sample system with the fusion pattern 
applied to three data sources.  In this case, as voting algorithm has been inserted as a new thread.  
The output of the voter provides a single fused output to the input of the application thread A.   

The textual AADL model follows the figure.  Items to be changed or added during pattern 
instantiation are highlighted.   

 
Figure 16 – Voter thread inserted into process by Fusion pattern 

process Fusion_Example 
  features 
    FusionOut: out data port Fusion_Data; 
    FusionIn1: in data port Fusion_Data; 
    FusionIn2: in data port Fusion_Data; 
    FusionIn3: in data port Fusion_Data; 
end Fusion_Example; 



66 

 
thread Voter 
  features 
    IN1: in data port Fusion_Data; 
    IN2: in data port Fusion_Data; 
    IN3: in data port Fusion_Data; 
    OUTPUT: out data port Fusion_Data; 
end Voter; 
 
thread App 
  features 
    AO: out data port Fusion_Data; 
    AI: in data port Fusion_Data; 
end App; 
 
thread implementation App.impl 
end App.impl; 
 
 
data Fusion_Data 
end Fusion_Data; 
 
data Boolean 
end Boolean; 
 
data Real 
end Real; 
 
data implementation Fusion_Data.Impl 
  subcomponents 
    Val: data Real; 
    Valid: data Boolean; 
end Fusion_Data.Impl; 
 
process implementation Fusion_Example.Impl 
  subcomponents 
    V: thread Voter.Impl; 
    A: thread App.Impl; 
   
  connections 
    conn1: data port FusionIn1 -> V.IN1; 
    conn2: data port FusionIn2 -> V.IN2; 
    conn3: data port FusionIn3 -> V.IN3; 
    conn4: data port V.OUTPUT -> A.AI; 
    conn5: data port A.AO -> FusionOut;  
 end Fusion_Example.Impl; 
 
thread implementation Voter.Impl 
end Voter.Impl; 
 

4.3.5 25BMulti-Rate PALS 
The purpose of the multi-rate PALS pattern is to support the virtual synchronization between 
multi-rate distributed computations. It supports the use of both harmonic and non-harmonic 
periods for these computations. The pattern guarantees that the design and verification 
complexities for distributed synchronization in a multi-rate system is still remains simple and is 



67 

equivalent to the corresponding single-rate perfectly synchronized system. 

To use the pattern, a group of n nodes (systems) is selected that are to execute at different 
periods Ti, i = 1…N. In order to guarantee virtual synchronization, the pattern adds a 
synchronization interface, called multi-rate synchronizer, at each node. The synchronizer 
executes at a period equal to Thp = least-common-multiple of (T1,…, TN). The pattern guarantees 
that other nodes in the group receive the outputs of a node at approximately the same global 
time. 

The type of the synchronizer component (system, process, or thread), is determined by the user. 
The pattern assumes it will collocated with the receiver node; i.e., it executes on the same 
processor. Currently, the proposed instantiation of the pattern adds an AADL thread 
subcomponent for the synchronizer in the same process as the synchronization logic of each 
node. It propagates the message using AADL immediate connections. The pattern also defines 
the communication and scheduling characteristics between the synchronizer and the receiving 
computation logic. 

4.3.5.1 82BArguments 
1. A group of n nodes. In AADL, this corresponds to a set of AADL thread elements distributed 

across defined process elements. 

2. Period of each computation, Ti 

3. Name of the multi-rate PALS group. 

4. Set of (output port, input port) pairs used in the multi-rate synchronization. 

4.3.5.2 83BAssumptions 
Assumptions (1-5) of the multi-rate PALS pattern are similar to those of the original PALS 
pattern. The rest are specific to the multi-rate synchronizer component. 

1. Bounded Local Clock Error - Each node j has access to an approximation of the true global 
time t via a local clock cj, where the maximum error (called either jitter or skew) of each 
local clock is ε, i.e.,  

 | Cj – t | < ε.     

2. Monotonic Local Clocks - The value of each local clock Cj is monotonically increasing.  Each 
node may adjust its local clock rate, but it may never decrease the value of its local clock. 

3. Bounded Computation Time – The computation of a node’s new local state and outputs 
completes within a specified time.  Typically this is the periodic scheduling deadline for a 
thread αi

max.   

4. Bounded Message Delivery – Messages are reliably delivered to their destinations with 
latency μ, where μmin ≤ μ ≤ μmax.  Depending on the system fault assumptions, this may 
require thus use of a fault-tolerant network.   

5. Node Fault Assumptions – A failed node must not be able to send extra messages (more than 
one) during a PALS period.  This could result in nodes receiving different messages, even 
though the network delivered each correctly. By default, we assume that the output of a 
failed node is ‘null.’ 



68 

6. Output Assumptions of Multi-Rate Synchronizer – Currently, the pattern assumes that in each 
step, multi-rate synchronizer only propagates the last message it received during its previous 
period. (This assumption can be relaxed so that the synchronizer provides a vector of 
received messages.). Based on the node fault assumption, if the sender fails, the synchronizer 
propagates ‘null’ message. 

7. First Execution of Multi-Rate Synchronizer –The first dispatch time of both multi-rate 
synchronizer and the receiving computation logic are same. 

Similar to the original PALS pattern, the computation logic at each node must also satisfy the 
following constraints relating the system parameters of the associated computation logic i: 

1. Causality constraint – Messages cannot be sent too early. 

Min(Output timei) + Min(Output timesync) ≥ 2ε - μmin 

2. Computation Period constraint – Messages cannot be sent too late.   

Max(Output timei) ≤ Ti - μmax - 2ε 

Output timesync is the output time of multi-rate synchronizer.  

Additionally, the following constraints on the period of the multi-rate synchronizer must be 
verified. 

3. Period of multi-rate synchronizer = LCM(T1, …, Tn) where LCM = Least common multiple. 

4. Priority of multi-rate synchronizer > Priority of the receiving computation logic. 

4.3.5.3 84BGuarantees  
1. Synchronization between multi-rate computations happens only at the hyper-period 

boundary. This hyper-period, denoted by Thp, is determined by the LCM of the computation 
logic.   

a. The source node sends its messages to the multi-rate synchronizers at the receiving 
nodes. The synchronizers execute at a period equal to Tsync = Thp.  

b. In each period, a multi-rate synchronizer receives ni = Tsync/Ti number of inputs from a 
source node with period Ti. 

c. Of the ni messages received during the multi-rate synchronizer period j, the synchronizer 
only propagates the last message and makes it available to the receiving computation 
logic during its period j+1.  

Suppose that A (Period TA) sends messages to B (period TB). Then, there are nA = Tsync/TA 
and nB = Tsync/TB executions of A and B in an interval Tsync. With the multi-rate synchronizer, 
these nodes interact only at every Tsync interval such that at the multi-rate synchronization 
period j,  

 A.in(j.nA+k) = B.out((j.nB -1); k = 0…nA-1 

     The pattern guarantees that the interaction of these nodes is equivalent to a group of perfectly 
synchronized nodes executing at period Tsync. If the corresponding equivalent nodes of A and 
B are A’ and B’, then 

 A’.in(j) = B’.out(j-1) 



69 

2. Similar to the original PALS pattern, external inputs are passed through environment input 
synchronizer. If the external inputs are sent to multiple computations with different periods, 
then the environment input synchronizer operates at the period equal to the LCM of their 
periods. 

4.3.5.4 85BInstantiation 
Add the multi-rate synchronizer component.  Remove old connections from source interfaces to 
destination.  Replace them with connections that flow through the synchronizer component. Add 
AADL properties to components, behavioral assumption and guarantee properties.   

The following properties are added to the multi-rate synchronizer during the instantiation: 

1. Synchronizer type 

a. Corresponding AADL property: PALS_Synchronizer_Type 

b. Value: Multi_Rate_Synchronizer 

c. This property distinguishes the component as a PALS synchronizer for multi-rate 
synchronization from other types of synchronizer, e.g. environment input/output 
synchronizer. 

2. Synchronization Period 

a. Corresponding AADL property: PALS_Period 

b.  Value: LCM of the period of the related groups in the hierarchical system. 

3. Connection timing from synchronizer to receiving computation logic 

a. Corresponding AADL property: Timing (standard AADLv2 property) 

b. Value: Immediate 

c. This property defines the scheduling priority of the synchronizer with respect to the 
PALS synchronization logic at the receiving node based on standard AADL semantics. 

These properties will be used to enforce the thread and message scheduling constraints in the 
system implementation.  In addition, PALS middleware subprograms need to be inserted in the 
implementation to propagate the outputs to the receiving node. 

4.3.5.5 86BExemplar AADL models 
XFigure 17X shows the input graphical AADL model of an example hierarchical control system 
consisting of a supervisory controller system (SCS), rudder control system (RCS) and aileron 
control system (ACS). The supervisor synchronizes the control systems of rudder and aileron 
based on their feedback response. These three systems execute at different periods. XFigure 18X 
shows the graphical model with the process component of the process element inside RCS before 
the multi-rate synchronizer thread is inserted. Similar structure exists for the other systems, SCS 
and ACS. XFigure 19X shows this process component after the multi-rate synchronizer (RCT) is 
inserted. 

A snippet of the textual AADL model follows the figure.  Items to be changed or added due to 
the multi-rate synchronization during pattern instantiation are highlighted.  The textual model 



70 

only includes the definition of one system block (RCS); similar changes are also expected for 
other system blocks. 

 
Figure 17 – AADL graphical model of the system blocks for multi-rate PALS  

 
Figure 18 – Process component before inserting the multi-rate synchronizer 

 
Figure 19 – Process component after inserting the multi-rate synchronizer 

 
system MultiRateExample 
end MultiRateExample; 
 
system implementation MultiRateExample.impl 
  subcomponents 
    SCS: system Supervisory_Control_System.impl; 
    RCS: system Rudder_Control_System.impl; 
    ACS: system Aileron_Control_System.impl; 
  connections 
    SCStoRCS: data port SCS.command1 -> RCS.command; 
    RCStoSCS: data port RCS.response -> SCS.response1; 
    SCStoACS: data port SCS.command2 -> ACS.command; 
    ACStoSCS: data port ACS.response -> SCS.response2;     



71 

end MultiRateExample.impl; 
 
system Rudder_Control_System 
  features 
    response: out data port; 
    command: in data port; 
end Rudder_Control_System; 
 
system implementation Rudder_Control_System.impl 
  subcomponents 
    RCP: process Rudder_Control_Process.impl; 
  connections 
    RCStoRCP: data port command -> RCP.command; 
    RCPtoRCS: data port RCP.response -> response; 
end Rudder_Control_System.impl; 
 
process Rudder_Control_Process 
  features 
    command: in data port; 
    response: out data port; 
end Rudder_Control_Process; 
 
process implementation Rudder_Control_Process.impl 
  subcomponents 
    RST: thread Rudder_Synchronizer_Thread; 
    RCT: thread Rudder_Control_Thread; 
  connections 
    RCPToRST: data port command -> RST.command_in; 
    RSTtoRCT: data port RST.command_out -> RCT.command; 
    RCTtoRCP: data port RCT.response -> response; 
  properties 
    PALS_Properties::Multi_Rate_PALS_Id => "Supervisory_Control"  
    applies to RCT; 
    Period => 20ms applies to RCT; 
    Deadline => 150 Ms applies to RCT; 
    META_Properties::Output_Delay => 5 Ms applies to RCT; 
    
    PALS_Properties::Multi_Rate_PALS_Id => "Supervisory_Control"  
        applies to RST; 
    PALS_Properties::PALS_Synchronizer_Type => Multi_Rate_Synchronizer  
     applies to RST; 
    PALS_Properties::PALS_Period => 100ms applies to RST; 
    Timing_Properties::Timing => Immediate applies to RSTtoRCT; 
end Rudder_Control_Process.impl; 
 
thread Rudder_Control_Thread 
  features 
    response: out data port; 
    command: in data port; 
end Rudder_Control_Thread; 
 
thread Rudder_Synchronizer_Thread 
  features 
    command_in: in data port; 
    command_out: out data port; 
end Rudder_Synchronizer_Thread; 



72 

4.4 13BSystem Architecture Models 
This section describes the architectural models developed in the project. These architectural 
models provide examples that can be used to evaluate the design and verification tools created.   

The architectural models describe a Flight Control System (FCS) for a typical regional jet 
aircraft. Section X4.4.1X provides an overview of this architecture. Section X4.4.2X provides detailed 
SysML and AADL textual specifications of the architecture. Section X4.4.3X describes how this 
architectural model can be generated from simpler “sunny day” architecture through application 
of a sequence of patterns. The SysML and AADL models for each step in this sequence are also 
provided with the changes caused by the pattern application highlighted. Since the architecture of 
a FCS is heavily influenced by the flight modes supported, an appendix providing more 
information about the mode logic of a typical FCS is provided in XAPPENDIX BX. 
4.4.1 26BOverview of the System Architectural Models 
The example architectural model to be used for development and evaluation of the design and 
verification tools is a Flight Control System (FCS) for a typical regional jet aircraft. The FCS 
compares the measured state of the aircraft (position, speed, and attitude) to the desired state and 
generates guidance commands that are displayed as visual guidance cues on the left and right 
Flight Director (FD). The pilot or copilot can manually fly the aircraft to follow these guidance 
cues to achieve the desired reference speed and attitude. The FCS also provides an Autopilot 
(AP) function.  When engaged, the AP generates commands to the actuators of the aircraft’s 
control surfaces to automatically fly the aircraft to the reference attitude.  

4.4.1.1 87BTop Level Logical and Physical Systems 
The top level of the architecture divides the system into a logical architecture implemented 
primarily in software and a physical architecture implemented primarily in hardware. A SysML 
diagram of this structure is shown in XFigure 20X. The AADL textual specification is generated 
from the SysML model is shown in Appendix XA.1 X. 

 
Figure 20 – Top Level Logical and Physical Overview 

The system architecture is divided in this way to mirror the inherent difference in the logical 
architecture of the system functionality and the physical architecture of the platform on which 

ibd [SysML Internal Block] Complete_Av ionics_System_Impl [Complete_Av ionics_System]     

Complete_Avionics_System
Complete_Av ionics_System_Impl

SW : Avionics_System

HW : IMA_Platform



73 

that functionality is implemented. This also allows bindings of logical components to physical 
components to be defined in a single place. These bindings are stored as Tagged Values in the 
SysML model and translated into Connection Bindings in the AADL model. For example, in the 
textual AADL specification it can be seen that the thread implementing the left Flight Guidance 
System (SW.FCS.FGS_L) is bound to processor A (HW.A.PRC) in the IMA platform.   

4.4.1.2 88BAvionics Systems 
A top level SysML diagram of the logical architecture of the Avionics System is shown in XFigure 
21X. This view emphasizes the FCS even though some of the systems with which it interacts, such 
as the FMS, may be much larger.  The AADL textual specification of the Avionics System 
generated from the SysML model is shown in Appendix XA.2 X. 

 
Figure 21 – Avionics System Architecture 

The Control Surface Actuator (CSA) system positions the aircraft control surfaces based on the 
actuator commands generated by the FCS.  

The left and right Primary Flight Displays (PFD) physically host the display of the FD guidance 
cues. A typical PFD is shown in XFigure 22X. 

The FD guidance cues are the shaded wedge, or “V bars” in the center of the artificial horizon 
display. They are displayed directly above the white V bars showing the current attitude of the 
aircraft. In XFigure 22X, the current attitude indicates level flight (0 degrees of both roll and pitch) 
while the FD is indicating about 7.5 degrees of pitch and 0 degrees of roll. Also displayed on the 
PFD are the lateral and vertical mode annunciations of the Flight Guidance System (FGS), the 

ibd [SysML Internal Block] Av ionics_System_Impl [AS]     

Av ionics_System_Impl

ADADS_L : Air_Data_System AD AD ADS_R : Air_Data_SystemAD

AHAHS_L : Atti tude_Heading_System AH AH AHS_R : Attitude_Heading_SystemAH

CMD

CSA : Control_Surface_Actuators

CMD

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L NAV_R

THROT_L THROT_RYOKE_L YOKE_R

FCS : Flight_Control_System

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L NAV_R

THROT_L THROT_RYOKE_L YOKE_R

FMFMS_L : Flight_Management_System FM
FMFMS_R : Flight_Management_SystemFM

NAVNAV_L : Navigation_System NAV NAV NAV_R : Navigation_SystemNAV

FD
PFD_L : Primary_Flight_Display

FD FD

PFD_R : Primary_Flight_Display

FD

THROTTHROT_L : Throttle THROT
THROT THROT_R : ThrottleTHROT

YOKEYOKE_L : Yoke YOKE YOKE YOKE_R : YokeYOKE

NAVR2FCS

FMSR2FCS

AHSR2FCS

ADSR2FCS

FCS2PFDR

NAVL2FCS

FMSL2FCS

AHSL2FCS

YOKER2FCS

THROTR2FCS

YOKEL2FCS

THROTL2FCS

ADSL2FCS

FCS2PFDL

FCS2CSA



74 

AP Engagement Indicator, and the Pilot Flying Indicator. These are described in more detail in 
later sections.  
 

 
Figure 22 – Typical Primary Flight Display 

As shown in XFigure 21X, the FCS accepts input about the aircraft’s current attitude from the left 
and right Attitude Heading Systems (AHS). Information about the aircraft’s airspeed relative to 
the surrounding air mass is provided by the Air Data Systems (ADS). Information about the 
aircraft’s location relative to ground-based navigation sources such as Nondirectional Beacons 
(NB), VHF Omnidirectional Range (VOR) ground stations, and the Localizer (LOC) and 
Glideslope (GS) of Instrument Landing Systems (ILS) are provided by the Navigation (NAV) 
systems. The Flight Management Systems (FMS) provide new target reference settings (desired 
pitch and roll) for different flight modes as well as vertical guidance commands when Vertical 
Navigation (VNAV) mode is selected.   

During manual operation, the pilot directly controls the aircraft through the Yokes and Throttles. 
When the AP function is engaged, the aircraft is controlled by the Flight Control System. The AP 
can be disengaged by the pilot by pressing the Disengage switch on the Throttle. Also while the 
AP Function is engaged, the pilot or copilot can initiate Control Wheel Steering (CWS) by 
pressing the SYNC switch on the yoke. This suspends the AP Function and allows the pilot to 
manually fly the aircraft to a new attitude. When the SYNC switch is released, the AP function is 
resumed using the new aircraft attitude as the reference attitude.  

Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator

Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

10

20

10

20

10

20

10

20

3 6N

E33

1230

3 6N

E33

1230

3 6N

E33

1230

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator



75 

4.4.1.3 89BFlight Control System 

A SysML overview of the internal organization of the FCS is shown in XFigure 23X. The AADL 
textual specification of the FCS is given in Appendix XA.3 X. 

 
Figure 23 – Flight Control System Overview 

To provide the necessary level of reliability and safety, the FCS is implemented as two redundant 
Flight Guidance Systems (FGS) that are required to fail independently (i.e., the probability of 
simultaneous failure must be acceptably improbable). This requirement is recorded by attaching 
a Not_Collocated AADL property to each FGS component in the FCS AADL textual 
specification (Appendix XA.3 X). 

Each FGS uses the inputs provided by the external AHS, ADS, FMS, and NAV systems to 
generate pitch and roll guidance commands.  

Most of the time, the two FGS operate in Dependent mode in which only one FGS is active. The 
other FGS serves as a hot spare that can become active immediately on request by the pilot or in 
case of failure of the active FGS. However, in some critical modes of operation such as during 
approach or take off, both FGS are active and their outputs compared. This mode of operation is 
referred to as Independent mode. 

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]     

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL



76 

The guidance commands computed by the FGS are used by the FD to position the FD guidance 
cues on the PFD. When engaged, the AP uses the same guidance commands to generate the 
actuator commands provided to the CSA system.  

The flight crew interacts with the FCS primarily through the Flight Control Interface (FCI). This 
is often implemented as a single panel located over the glare shield in the cockpit. A typical 
Flight Control Panel (FCP) implementation of the FCI is shown XFigure 24X. 

 
Figure 24 – Typical Flight Control Panel 

The FCP includes switches for turning the Flight Director (FD) on and off, switches for selecting 
the different flight modes of the FGS such as vertical speed (VS), lateral navigation (NAV), 
heading select (HDG), altitude hold (ALT), and approach (APPR), and the Vertical Speed/Pitch 
Wheel. The FCP also often includes controls to engage the AP. A separate AP Disengage switch 
is provided on the FCP in case the Disengage switch on the Throttle should fail. The FCP may 
also provide feedback to the flight crew by lighting lamps on either side of a mode’s button to 
indicate whether that mode is currently selected.  

It should also be noted in XFigure 23X that the AP Disengage switch on the throttle and the SYNC 
switch on the yoke are routed through the FCP. 

4.4.1.4 90BFlight Guidance System 
Each FGS will be implemented in software that will execute on a single processor, so the next 
level of decomposition makes explicit this transition from the system architecture to the software 
architecture by defining a single process FGP within the FGS as shown in XFigure 25X. 

FD VS FLC NAV HDG APPR AP ENG FD

ALT AP DISC

ALT

HDGSPEEDCRS1 CRS2

DOWN

UP

VNAV



77 

 
Figure 25 – Flight Guidance System Overview 

A process is protected address space in which software components (such as threads) can 
execute. Typically, a process is bound to single virtual machine on a hardware processor. The 
FGP process component of XFigure 25X is stereotyped as an AADL process.  

The architecture of the Flight Guidance Process is further broken down into three threads that 
execute within its protected address space as shown in XFigure 26 X. 

ibd [SysML Internal Block] Flight_Guidance_System_Impl [Flight_Guidance_System_Impl]     

AD

NAV

LSI

GC

FCI

LSD

AH

VNAV

Flight_Guidance_System
Flight_Guidance_System_Impl

AD

NAV

LSI

GC

FCI

LSD

AH

VNAV VNAV

AD

AH

NAV

FCI

LSI
LSO

GC

FGP : Flight_Guidance_Process

VNAV

AD

AH

NAV

FCI

LSI
LSO

GCVNAVtoFGP

FCItoFGP

FGPtoGC

FGPtoLSO

NAVtoFGP

ADtoFGP

AHtoFGP

LSItoFGP



78 

 
Figure 26 – Flight Guidance Process Overview 

The Control Laws (CL) take information about the aircraft’s current and desired state and 
compute the pitch and roll guidance commands that are ultimately used by the FD and the AP. 
The lateral control laws provide guidance about the roll axis, while the vertical control laws 
provide guidance about the pitch axis. Only one lateral control law generating a roll guidance 
command and one vertical control law generating a pitch guidance command can be active at any 
time.  Additional control laws can be armed and accumulating state information in preparation 
for becoming active. The pitch and roll guidance commands are provided via the GC port. In 
addition, the CL provides capture condition status to the mode logic via its CC port and receives 
information about which control laws should be armed and active via its MD port.  

The Mode Logic (ML) determines which lateral and vertical control laws are active and armed at 
any given time. It receives information about flight crew requests via its FCI port, the status of 
control law capture conditions via its CC port, and information about whether it is the “active” 

ibd [SysML Internal Block] Flight_Guidance_Process_Impl [Flight_Guidance_Process_Impl]     

VNAV

AD

AH

NAV

FCI

LSI LSO

GC

Flight_Guidance_Process
Flight_Guidance_Process_Impl

VNAV

AD

AH

NAV

FCI

LSI LSO

GC

LSI LSO

LSALSR

LS : Leader_Selection

LSI LSO

LSALSR

LSR LSA

FCI
CC MD

ML : Mode_Logic

LSR LSA

FCI
CC MD

AH

AD

VNAV

NAV

CC MD

GC

CL : Control_Laws
AH

AD

VNAV

NAV

CC MD

GC
CLtoGC

MLtoCLCCtoML

NAVtoCL

VNAVtoCL

ADtoCL

AHtoCL

FCItoML

LStoMLMLtoLS

LStoLSOLSItoLS



79 

side via its LSA port. It provides requests to become the active side via its LSR port and 
information about the current active and armed modes via its MD port.   

The Leader Selection (LS) function determines which FGS is the current “active” side, i.e., the 
current leader. It is a two node version of the more general N node leader selection function. It 
receives requests from ML to elect a new leader via its LSR port, exchanges information with 
other LS nodes via its LSI and LSO ports, and indicates whether it believes it is the current 
leader through its LSA port. To simplify verification of the distributed algorithm for leader 
selection, each LS instance is implemented as Physically Asynchronous/Logically Synchronous 
(PALS) component and assigned a PALS period. This can be seen in the generated AADL 
specification of the entire FGS in Appendix XA.4 X. 

4.4.1.5 91BAutopilot System 
The Autopilot System (APS) takes the Guidance Data generated by each FGS, selects the 
Guidance Data from the active side, and generates the Control Surface Actuator commands 
needed to move the aircraft control surfaces to achieve the desired pitch and roll. In an actual 
aircraft, the APS is implemented using fault-tolerant redundant hardware systems. However, in 
this example specification, it is simplified to single process that will execute on a single 
processor. The top level overview of the APS is shown in XFigure 27X.  

 
Figure 27 – Autopilot System Overview 

Similar to the FGS, the APS has a single process APP that provides a protected address space. 
The internal structure of the APP process is shown in XFigure 28 X. 

ibd [SysML Internal Block] Autopilot_System_Impl [Autopilot_System_Impl]     

CSA

GC_L

GC_R

Autopilot_System
Autopilot_System_Impl

CSA

GC_L

GC_R

CSA

GC_L

GC_R

APP : AutoPilot_Process

CSA

GC_L

GC_R

APP2CSA

GCR2APP

GCL2APP



80 

 
Figure 28 – Autopilot Process Overview 

The SELT Guidance Selector thread selects the Guidance Data from the currently active FGS 
and passes it on to the APT Autopilot thread. The APT generates the Control Surfaces Actuator 
Commands that are passed to the servos on the aircraft’s control surfaces. The AADL 
specification of the entire APS is shown in Appendix XA.5 X. 

4.4.1.6 92BAir Data System 
To support experiments with probabilistic model checking, the Air Data System (ADS) has been 
elaborated to include three Airspeed Sensors as shown in XFigure 29X. 

 
Figure 29 – Air Data System Overview 

These sensors feed into a single Air Data Process (ADP). The internal structure of the ADP 
process is shown in XFigure 30X. 

ibd [SysML Internal Block] Autopilot_Process_Impl [Autopilot_Process_Impl]     

CSA

GC_L

GC_R

AutoPilot_Process
Autopilot_Process_Impl

CSA

GC_L

GC_R

CSAGC

APT : Autopilot_Thread

CSAGC

IN1

IN2

OUTPUT

SELT : Guidance_Selector

IN1

IN2

OUTPUT
SELTtoAPT

GCRtoSELT

GCLtoSELT

APT2CSA

ibd [SysML Internal Block] Air_Data_System_Impl [Air_Data_System_Impl]     

AD

Air_Data_System
Air_Data_System_Impl

ADAD

AS1

AS2

AS3

ADP : Air_Data_Process

AD

AS1

AS2

AS3ASAS1 : Airspeed_Sensor AS

ASAS2 : Airspeed_Sensor AS

ASAS3 : Airspeed_Sensor AS
AS3toADP

AS2toADP

AS1toADP

ADPtoADS



81 

 
Figure 30 – Air Data Process Overview 

The ADP process contains two threads. The ASVT Airspeed Voter thread votes the values of the 
three airspeed sensors and produces a single fault-tolerant airspeed that is fed to the Air Data 
Thread (ADT). The Air Data Thread combines the voted airspeed with data from other sensors 
and produces Air Data that is sent on to the FCS. The AADL specification for the entire ADS is 
shown in Appendix XA.7 X. 

4.4.1.7 93BOther Logical Systems 
The other systems in the Avionics System Architecture of XFigure 21X are unelaborated overviews. 
Systems such as the Attitude Heading System (AHS), Flight Management System (FMS), 
Navigation (NAV), Flight Crew Interface (FCI), and Primary Flight Display (PFD) consist of a 
singe process containing a single thread so that a complete AADL system instance can be 
generated. Other components such as the Yokes (YOKE), Throttles (THROT), and Control 
Surface Actuators (CSA) consist of a single AADL device. For this reason, they are not 
described in detail here, though full AADL textual specifications are provided in Appendix X4.4.2X.  

Note that the structure of the Avionics System Architecture allows them to be elaborated with 
more detail at any time without affecting the other subsystems. 

4.4.1.8 94BIntegrated Modular Avionics 
As described in Section X4.4.1.1X, the logical system architecture described in the preceding 
sections is mapped onto a model of the physical architecture, the Integrated Modular Avionics 
(IMA) platform. An overview of the IMA platform is shown in XFigure 31X. 

 

ibd [SysML Internal Block] Air_Data_Process_Impl [Air_Data_Process_Impl]     

AD

AS1

AS2

AS3

Air_Data_Process
Air_Data_Process_Impl

AD

AS1

AS2

AS3

ADAS ADT : Air_Data_Thread ADAS

IN1

IN2

IN3

OUTPUT

ASVT : Airspeed_Voter

IN1

IN2

IN3

OUTPUT
ASVTtoADT

AS3toASVT

ADTtoADPAS2toASVT

AS1toASVT



82 

 
Figure 31 – IMA Platform Overview 

The IMA platform consists of three Common Computing Modules (CCM) connected by a single 
IMA bus. The CCMs are stereotyped as AADL systems while the IMA bus is stereotyped as an 
AADL bus.  The latency of the bus is set in a tagged value that is translated into an AADL 
property. CCM A and CCM B are fast computing modules while CCM C is a slow computing 
module.  

The internal architecture of a fast CCM is shown in XFigure 32X. It consists of a single 350Mhz 
Power PC processor attached to an End System (ES) on the CCM that provides access to the 
IMA bus. The processor is stereotyped as an AADL processor. The slow CCM has an identical 
structure except that the processor is a 250Mhz Power PC.  

 

ibd [SysML Internal Block] IMA_Platform_Impl [IMA_Platform]     

IMA_Platform
IMA_Platform_Impl

IMA_Bus : IMA_BUS

ES

A : CCM_Fast

ES ES

B : CCM_Fast

ES ES

C : CCM_Slow

ES

BUStoA BUS2CBUStoB



83 

 
Figure 32 – Fast CCM Architecture 

Since the bindings between the logical system architecture and the physical architecture are set in 
the topmost module, the IMA platform can be easily extended and modified without impacting 
the logical system architecture. For example, the single IMA bus could be replaced with a more 
detailed model that includes redundant channels for fault tolerance. More CCMs could be added 
and additional structure added to each CCM to enable analysis of CCM performance.  

The AADL specification for the IMA platform is given in Appendix XA.16X. 
4.4.2 27BAADL Specification of the System Architectural Model 
The textual AADL specification of the system architectural model described in Section X4.4.1X is 
provided in the Appendix.  This includes specifications for: 

XA.1 X XComplete Avionics System (TOP) 
XA.2 X XAvionics System (AS) 
XA.3 X XFlight Control System (FCS) 
XA.4 X XFlight Guidance System (FGS) 
XA.5 X XAutopilot System (APS) 
XA.6 X XFlight Control Interface (FCI) 
XA.7 X XControl Surface Actuators (CSA) 
XA.9 X XAttitude Heading System (AHS) 
XA.10X  XFlight Management System (FMS) 
XA.11X XNavigation System (NAV) 
XA.12X XPrimary Flight Display (PFD) 
XA.13X XThrottles (THROTTLES) 
XA.14X XYokes (YOKES) 
XA.15X XLeader Selection (LDS) 
XA.16X XIMA Platform (IMA) 
XA.17X XMETA Property Set 
XA.18X XPALS Property Set 

ibd [SysML Internal Block] CCM_Fast_Impl [CCM_Fast]     

ES

CCM_Fast
CCM_Fast_Impl

ES

ES

PRC : PowerPC_350Mhz

ES

EStoPRC



84 

4.4.3 28BSystem Design through Pattern Application 
This section illustrates how increasingly complex systems can be constructed through repeated 
application of architectural patterns. XFigure 33X shows an overview of how a sequence of pattern 
applications can be used to transform an initial non-fault-tolerant architecture into a fault-tolerant 
Flight Control System architecture. 

 
Figure 33 – System Design through Pattern Application 

Three levels of the system architecture are shown: the Avionics System, the Flight Control 
System, and the Flight Guidance System. The transformation begins with the simple Initial 
System shown on the left, and concludes with the Final System described in Section X4.4.1X.  

The Initial System captures the functionality of the system under the assumption that nothing 
ever fails. It only has one set of inputs and outputs and has no redundancy in its implementation. 
It describes the system we would build in a perfect world from a perfect set of components. In 
this sense, it describes the essential functionality the customer desires. 

Of course, components do fail and a critical system such as Flight Control must continue to 
function in spite of such failures. To move towards such a system, we first apply the replication 
pattern to the FGS component of the FCS to create a left and a right FGS. This pattern also 
replicates ports as necessary and applies the not_collocated property to each FGS. This 
property will be checked during implementation to make sure the functionality of each FGS is 
hosted in a separate fault-containment region. Note that the scope of the pattern’s application 
terminates at the boundary of the FCS component. This creates inconsistencies in the system 
architecture at the Avionics System level and in the AP system (e.g., ports with no connections) 
that will be reconciled later. 

Once the FGS is replicated, decisions must be made about how that redundancy is to be 
managed. For the current version of the FCS, we decide that it is sufficient for the dependent 
mode of operation discussed in Section X4.4.1.3X to have one FGS be the active FGS have the other 

A
v
io

n
ic

s
S

y
st

e
m

Initial
System

Final
System

Final
System

Pattern Application Pattern Application 

S
y
st

e
m

 H
ie

ra
rc

h
y
 

S
y
st

e
m

 H
ie

ra
rc

h
y
 

ReplicateReplicate Leader SelectionLeader Selection PALSPALS ReplicateReplicate
Active Standby PatternActive Standby Pattern

F
li
g

h
t

C
o
n

tr
o
l

F
li
g

h
t

C
o
n

tr
o
l

F
li
g

h
t

G
u

id
a
n

ce
F
li
g

h
t

G
u

id
a
n

ce



85 

FGS serve as a hot spare. This requires that functionality be added select the current leader, i.e., 
the active FGS, and to ensure that one and only one FGS is the leader. This is done through 
application of the Leader Selection pattern for N nodes to each FGS with N = 2. This pattern 
inserts pre-verified leader selection functionality inside each FGS that determines the current 
leader.  Application-specific changes then need to be included to add functionality for initiating a 
change in leadership, such as when the pilot or copilot requests a transfer of control to the other 
side. 

In this example, we chose a component for the Leader Selection protocol that is correct only if 
all nodes execute synchronously.  To satisfy this component assumption, we next apply the 
PALS synchronization pattern to the newly inserted Leader Selection (LS) nodes in each FGS. 
The pattern attaches the same PALS Group Id and PALS Period properties to each LS node. The 
PALS Period requirement will be verified during implementation to ensure it can actually be 
satisfied by the system implementation. 

Finally, we use the replicate pattern to duplicate data sources in the Avionics System level and 
apply a yet to be specified pattern to the Autopilot System to deal with the extra set of guidance 
commands generated by the new FGS system. 

The first three pattern applications can be grouped into a single Active Standby pattern that 
replicates the FGS, adds leader selection, and establishes logical synchrony. This more closely 
matches the goal of the system architect. It also better satisfies one of our main criteria for what 
constitutes a pattern, the reuse of verification.  At the same time, patterns such as replication are 
fundamental to a variety of fault-tolerance patterns, such as triplex voting, dual-dual, or 
Byzantine fault resilience.  



86 

4.5 14BPattern Verification 
This section describes the verification of the architectural design patterns developed as part of 
the META project.  A key element of these design patterns is that they provide guarantees of 
correct behavior when used in accordance with their specifications.  Their behavior is proven 
through the use of formal methods as part of the pattern development process.  The verification 
effort for the generic pattern is amortized over all subsequent instantiations of the pattern in 
specific system models.  This amounts to reuse of the initial pattern verification.  Analysis of 
system-level behavior can subsequently make use of the proven pattern guarantees without 
having to reprove them.   

Section X4.5.1X provides an overview of architectural design patterns and the verification activities 
associated with their use in system development.  Subsequent sections describe specific design 
patterns and document their formal models, assumptions and guarantees, and proofs of 
correctness.  Verification of the following patterns is documented in this report: 

1. Physically Asynchronous Logically Synchronous (PALS) 

2. Leader Selection 

3. Replication 
4.5.1 29BArchitectural Design Patterns 
An architectural design pattern is a transformation applied to a system model that implements 
some desired functionality in a verifiably correct way.  Each pattern can be thought of as a partial 
function on the space of system models.  We will refer to the transformed system as the 
instantiation of a pattern.   

Our principle objectives in creating architectural design patterns are to  

1. Manage or reduce the overall system complexity, and  

2. Allow the verification effort associated with critical design elements to be reused.   

Both of these objectives contribute to the META goal of accelerating system development.   

An excellent summary of our approach to verification of design patterns is found in X[44]X: 
A useful way to meet engineering challenges [of complex systems] is to amortize the use of 
formal methods not on an individual design, but on a generic family of system designs by means 
of a formal architectural pattern, that is, a generic formal specification of an engineering solution 
to a generic design problem that: (i) is shown to be correct by construction; (ii) comes with strong 
formal guarantees; and (iii) greatly reduces system complexity, making system verification and 
correct system implementation orders of magnitude simpler than if the pattern were not used. 

Our pattern verification activities thus rely on formal methods as the means of providing the 
highest level of assurance, and capturing behavioral guarantees in a form that supports 
automation and verification reuse.   



87 

 
Figure 34 – Verification in Design Flow 

Verification activities enter into our design flow at three distinct points (see XFigure 34X).  

1. Pattern verification at design-time.  A formal model of the pattern is created and analyzed 
to establish guaranteed behavioral properties about any valid instantiation of the pattern 
in a system model.   

2. Pattern instantiation.  A valid pattern instantiation must satisfy some specified constraints 
on the system model and the arguments of the pattern.  These are checked at the time the 
pattern is instantiated.   

3. System verification.  System-level properties are proved by compositional reasoning 
about the guarantees provided by various design patterns that have been applied to the 
system, along with the structure of the system model and properties of components in the 
system model.   

The focus of this document is pattern verification at design-time.  To verify a pattern, we first 
must define correctness.  By correctness, we mean that the pattern always establishes desired 
guarantees given certain assumptions about the system architecture.   The guarantees codify 
properties established by the pattern such as logical synchrony (PALS), data synchronization, 
and fault tolerance; in other words they formally describe the reason that the pattern was created.  
The assumptions define restrictions placed on the system architecture that are necessary for the 
pattern to work correctly.  For example, in the PALS pattern we require certain timing 
assumptions on thread and communication rates.  The pattern guarantees are defined and proven 
at the time that the pattern is specified and are independent of a specific application of the pattern 
on a system model.  That is, a pattern should be supplied with a proof that it establishes the 
guarantees of interest, given constraints on the system for any valid instantiation of the pattern. 

The properties attached to patterns, either as guarantees or as assumptions, can take different 
forms.  For example: 

 They may be behavioral properties that describe the state of the system as it changes over 
time.  Behavioral properties may be used to describe protocols governing component 

PATTERN & 
COMP SPEC

LIBRARY

INSTANTIATE 
ARCH PATTERNS 

& CHECK 
CONSTRAINTS

SYSTEM 
MODELING 

ENVIRONMENT

COMPOSITIONAL 
REASONING & 

ANALYSIS

SYSTEM 
MODEL

AUTO
GENERATE

SYSTEM 
IMPLEMENTATION

ARCH 
PATTERN 
MODELS

COMPONENT 
MODELS

ANNOTATE 
& VERIFY 
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

PATTERN & 
COMP SPEC

LIBRARY

INSTANTIATE 
ARCH PATTERNS 

& CHECK 
CONSTRAINTS

SYSTEM 
MODELING 

ENVIRONMENT

COMPOSITIONAL 
REASONING & 

ANALYSIS

SYSTEM 
MODEL

AUTO
GENERATE

SYSTEM 
IMPLEMENTATION

ARCH 
PATTERN 
MODELS

COMPONENT 
MODELS

ANNOTATE 
& VERIFY 
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

Pattern Instantiation:
Check structural constraints 
Add assumptions/guarantees

Remaining proof 
obligations are 
discharged using 
theorem proving, 
model checking

Pattern Verification:
Define assumptions and 
guarantees of pattern 
upon instantiation 



88 

interactions in the system, or the system response to combinations of triggering events.  
We will use the Property Specification Language (PSL) X[40]X to specify most behavioral 
properties.   

 They may be structural properties of the system model to which the pattern is applied 
(pre-conditions), or of the transformed system model after pattern instantiation (post-
conditions).  Relationships among timing properties in the model or constraints on the 
numbers of various objects in the model are in this category.  The REAL language for 
non-functional requirements X[41]X can be used to describe and check these properties.   

 Some design patterns rely explicitly on resource allocation properties of the system, 
including real-time schedulability, memory allocation, and bandwidth allocation.  There 
are many tools available to support verification of these properties, including the ASIIST 
tool developed by UIUC and Rockwell Collins X[48]X.   

In the following sections, we provide verification results for three patterns:  PALS, Leader 
Selection, and Replication.  In each case, we provide models and analysis results that 
demonstrate how the pattern guarantees have been proven under the specified system 
assumptions.   

At the system level, pattern assumptions and guarantees are used to reason about the composition 
of the patterns to achieve desired system properties.  For example, the Leader Selection pattern 
includes an assumption of synchronous data exchange which is satisfied by the PALS pattern 
guarantees, and an assumption of at least one working node, which is satisfied by the Replication 
pattern.  Future work will focus on compositional reasoning to prove system requirements.   
4.5.2 30BPALS Pattern 
The purpose of the PALS pattern is to make portions of a distributed asynchronous system 
operate in virtual synchrony.  This allows portions of the system logic to be designed and 
verified as though they will be executed on a synchronous platform, and then deployed in the 
asynchronous system with the same guaranteed behavior.  As a result, design and verification 
activities are greatly simplified.   

The PALS pattern was originally developed to address the need for synchronization in Integrated 
Modular Avionics (IMA) systems.  In typical IMA architectures, each processing resource is 
driven by its own clock. While these clocks may have the same period, they execute 
asynchronously relative to each other with their own offset, drift, and jitter. This results in an 
architecture in which synchronous components execute asynchronously relative to each other.  
Such designs are often referred to as Globally Asynchronous/Locally Synchronous (GALS) 
architectures. 

When system functionality is distributed to achieve a high level of reliability, the individual 
components usually still need to agree on some part of the global system state, such as which 
side of the aircraft (pilot or copilot) is the currently active side or which node is the current 
leader in a decision-making algorithm. Developing protocols to achieve such agreement in an 
asynchronous environment can be extremely difficult. Great care must be taken to establish the 
necessary coordination between the distributed components to avoid race and deadlock 
conditions and to implement the correct behavior.  The PALS pattern provides a simplified 
design approach that helps guarantee correct implementation of these coordination algorithms.   



89 

The PALS pattern assumes each node has access to the global time within some small error, but 
does not require tight synchronization of its nodes as in a time-triggered architecture. The 
underlying intuition of the PALS design pattern is quite simple and is illustrated in XFigure 35X.  
Periodic computations performed on the distributed nodes may vary in time by some bounded 
amount.  By enforcing appropriate bounds on when messages can be exchanged between nodes, 
it is possible to guarantee that all nodes will receive a consistent set of messages at each 
execution step.   

 
Figure 35 – PALS design pattern 

4.5.2.1 95BPattern instantiation 
To use the pattern, a group of nodes (systems) is selected that are to execute at approximately the 
same time at period T.  Some outputs (ports) are designated that are to be received by other 
nodes in the group such that all nodes will receive the same values at each execution step.   

The pattern does not add any new data connections to the model, but assumes that the required 
connections already exist.   

4.5.2.1.1 111BPattern arguments:  
1. Set of system blocks to synchronize 

2. PALS synchronization period T 

3. Name of PALS group 

4.5.2.1.2 112BAssumptions 
The PALS assumptions are conditions that the system design model must satisfy, either when the 
pattern is instantiated or possibly at a later stage of system design.   

1. Bounded Local Clock Error - Each node i has access to an approximation of the true global 
time t via a local clock cj, where the maximum error (called either jitter or skew) of each 
local clock is ε, i.e.,  

a. | Ci – t | < ε.     

2. Monotonic Local Clocks - The value of each local clock Ci is monotonically increasing.  Each 
node may adjust its local clock rate, but it may never decrease the value of its local clock. 



90 

3. Bounded Computation Time – The computation of a node’s new local state and outputs 
completes within a specified time.  Typically this is the periodic scheduling deadline for a 
thread αmax.   

4. Bounded Message Delivery – Messages are reliably delivered to their destinations with 
latency μ, where μmin ≤ μ ≤ μmax.  Depending on the system fault assumptions, this may 
require thus use of a fault-tolerant network.   

5. Node fault assumptions – A failed node must not be able to send extra messages during a 
PALS period.  This could result in nodes receiving different messages, even though each was 
delivered correctly by the network. 

In addition, there are some constraints relating system parameters that must be satisfied.  These 
should appear in the model as “assumed” properties that must be verified.  Two important 
constraints expressed in terms of AADL properties are: 

1. Causality constraint – Messages cannot be sent too early. 

Min(Output time) ≥ 2ε - μmin 

2. PALS period constraint – Messages cannot be sent too late.   

Max(Output time) ≤ T - μmax - 2ε 

4.5.2.1.3 113BGuarantees: 
1. The synchronization logic for each node executes with period T at approximately the same 

global time as every other node. 

2. Messages generated during synchronization step i are consumed by their destination nodes in 
synchronization step i+1.  For two nodes A and B where A sends data to B, this may be 
expressed (depending on analysis tool syntax) as  

B.in(i) = A.out(i-1), or next(B.in) = A.out.   

3. In our model, this is expressed by a new AADL property called 
Synchronous_Communication which, when assigned the value “one_step_delay” will be 
used by system verification tools to generate an appropriate verification model.  It may also 
be used to satisfy an assumption for Synchronous_Communication associated with another 
pattern (e.g., Leader Selection). 

4. All nodes that have common external inputs start each synchronization step with identical 
values for those inputs.  (This feature is not implemented in the current version of the 
pattern.)   

4.5.2.2 96BVerification 

XFigure 36X shows a timeline of the computation and communication associated with a PALS 
node.  Logical clock step i is assumed to begin at time ti. For node j, this can be denoted by ↑(Cj 
= i) = ti. Since each local clock may exhibit maximum error ε, computation during this step may 
actually start between true time ti – ε and ti + ε. The local thread being synchronized by use of 
the PALS pattern may run any time during this logical period.  In fact, its start may be delayed 
by the execution of other threads scheduled with the same or higher priority.  A scheduling 
deadline αmax is specified for the thread, so it must be scheduled to complete execution by ti + ε + 
αmax.  



91 

 
Figure 36 – PALS timeline 

An output message to another node may be sent no earlier than H (output hold time) after the 
start of the thread.  Error in the local clock means that the actual sending may occur as early as 
ti + H - ε  (if the thread is scheduled to execute immediately) and as late as the thread’s latest 
scheduled completion at ti + ε + αmax.  Arrival of this message at its destination node then occurs 
between time ti + H - ε  + μmin and ti + αmax + ε + μmax. 

Finally, the start of the next computation step i+1 occurs at time ti+1. Since the PALS clock 
period is T, this occurs between time ti + T – ε and ti +T + ε. 

4.5.2.2.1 114BPALS Constraints 
Two constraints on H and T must be met to satisfy the requirement that messages generated 
during synchronization step i are consumed by their destination nodes in synchronization step 
i+1.  These constraints are described in X[46] 

PALS Causality Constraint – A message created by a node in step i must not be delivered to its 
destination before the end of step i-1 on the destination (see XFigure 37X).  Since the logical period 
in the consuming node for step i may begin as late as ti + ε, this is condition is satisfied if  

ti + H - ε + μmin ≥ ti + ε 

which means that the earliest output time must satisfy 

H ≥ 2ε - μmin. 

In fact, communication latency μ may be very small, so we say 

H ≥ max (2ε - μmin, 0)  

Typically, H = 0 and messages can be sent as soon as they are computed. 

Thread execution

Latency μ

t i t i+1
(      ± ε) (      ± ε)

Output 
message

Received 
message
available

PALS period T

Deadline αmax

Scheduling delay

Min output time H



92 

 
Figure 37 – PALS causality constraint 

PALS Clock Period Constraint – A message created by a node in step i must be delivered to its 
destination before in step i so that it can be consumed in step i+1 (see XFigure 38X).  Since the 
logical period in the consuming node for step i+1 may begin as early as ti + T – ε, this is ensured 
if  

ti + T – ε ≥ ti + αmax + ε + μmax  

or simplifying  

T ≥ αmax + 2ε + μmax  

The deadline for periodic threads is often just the period itself.  If the desired PALS period T is 
given as a requirement, an earlier deadline may be required.  In this case, the thread deadline αmax 
must satisfy 

 αmax ≤ T - μmax - 2ε. 

 
Figure 38 – PALS period constraint 

As can be seen by the derivation of these constraints, PALS provides the optimal performance 
for synchronization of a distributed computation that can be supported the by the 
communications network and the local processors.  

4.5.2.2.2 115BSummary of formal proof 
A formal presentation of the PALS design pattern and a proof of its correct implementation of 
synchronous computation can be found in X[50]X.  The key definitions and arguments are 
summarized in this section.   

Thread execution

μ min

t i 
(       ±ε)

Latest period start on
destination node

Earliest output message

Min output time

Thread execution

Max latency μ max

t i t i+1
(       ±ε) (       ±ε)

Latest output 
message

Deadline αmax

Latest period start

Earliest period start on 
destination node

PALS period T

Latest output time



93 

We first define the global computation model for the distributed system.  Next, we examine the 
properties of global computations driven by perfectly synchronized clocks with period T. We 
then show that these behaviors are logically identical to that of the same system driven by clocks 
with bounded skews and period T under the PALS protocol, in the sense that they have the 
identical state transitions and identical inputs and outputs. 

G1: Local Clocks for Global Computation 

Each state machine Mi engaged in global computation is driven by a local clock Ci with the same 
period T. The global clock time is denoted as t. Clock Ci is said to be at its jth period, denoted as 
Ci = j, if the global time t satisfies the constraint 

↑(Ci = j) ≤ t < ↑(Ci = j + 1) 

where ↑(Ci = j) denotes the time of the rising edge of clock Ci, when it just enters its jth period. 

All the local clocks used for global computation are synchronized with the perfect global clock 
with clock skews of at most ε.  If ε = 0, all clocks are perfectly synchronized. A system driven by 
perfectly synchronized clocks and the same system driven by the perfect global clock have the 
same behaviors. 

Note that is important to ensure that the clock values are not only monotonic but also avoid large 
jumps. When a clock is ahead/behind, it should be corrected by decreasing/increasing its rate of 
progress. A clock value that goes backwards or has large jumps can result in serious errors in the 
computation of physical quantities such as velocity and acceleration. 

Finally, in addition to global computation, a node can also perform local computations. Local 
computations are modeled by different state machines. The clocks used for local computations 
do not need to be synchronized with the clocks for global computation. In practice, it is 
convenient to synchronize a set of local clocks at some rate and then derive all other clock 
values. For example, we may choose to synchronize all the 100 Hz real time clocks and then 
derive all the other clock rates from this 100 Hz clock, including those used for global 
computation. 

G2: Real Time Network 

The network has a transmission delay μ bounded by 0 < μmin ≤ μ ≤ μmax.  This delay may include 
any local queuing delays q on the sending/receiving nodes, as well as any switching delays in the 
network.   

G3: Real Time Machine  

Messages arriving at real time machine Mi during its jth clock period are buffered. At 
↑(Ci = j + 1), Mi reads the messages from the buffer, carries out the computation, transitions to 
the next state, and sends output messages. The task completion time α, including real time 
scheduling, computation, and I/O is bounded by 0 ≤ α ≤ αmax. Since state transitions are driven 
by the clock, we say that a state machine Mi is at its jth state, when its clock is at its jth period. 

To simplify notation, we assume that a (global computation) state machine sends and receives 
messages from and to every machine at each state. When there is no physical message, then it is 
modeled as sending/receiving messages with the “null” value that has no effect on the 
computation. 



94 

A system may interact with the external environment. When the environment sends a message to 
two replicated state machines, the network delays may be different. This can result in one 
machine receiving the data at clock period j, while the other receives it at clock period j + 1, even 
if their clocks are perfectly synchronized. The inconsistent views may lead to the divergence of 
the state machines. To avoid this problem, we need an environment message I/O synchronizer. 

G4: Environment Message I/O Synchronizer  

Let the input synchronizer, MI_sync, be a real time machine as defined by G3. Messages from the 
environment are sent to the input synchronizer. Messages arriving at MI_sync during ↑(CI_sync = j) 
≤ t < ↑(CI_sync = j + 1) are buffered. At ↑(CI_sync = j + 1), the input synchronizer reads buffered 
messages and forwards them to their destinations. When machines need to send messages to the 
external environment, they send them to the output synchronizer. Similarly, the output 
synchronizer, MO_sync, reads messages at the rising edge of its clock tick and forwards them to 
the environment. The output synchronizer allows an external observer to have a synchronous 
view of the distributed states of a global computation. 

We note that a networked computer is typically shared by state machines for both global 
computation and local computation. Local computation state machines can perform their local 
I/O independently of the PALS protocol. For example, a local servo controller reads the states of 
the local physical device, compares them to the setpoint provided by the supervisory controller, 
computes the control commands, and sends them to the device at a rate that is typically higher 
than the PALS clock rate used for supervisory control. 

G5: The Period of Perfectly Synchronized Clocks  

Giving a set of perfectly synchronized clocks used to drive global computation, the clock period 
T should satisfy the constraint T > α max + μmax. 

We now state the properties of a distributed real time system driven by perfectly synchronized 
clocks modeled by G1, G2, G3, G4 and G5. 

Fact 1. Under a set of perfectly synchronized clocks Ci: 1 ≤ i ≤ N, defined by G5, when a 
machine Ms sends a message during period Cs = j, this message will reach all the N receiving 
machines Mr: 1 ≤ r ≤ N, before their next clock ticks at ↑(Cr = j + 1): 1 ≤ r ≤ N. That is, a 
message sent during the jth period of the sender’s local clock will be received when receiving 
machines are still in their jth period. 

 
Figure 39 – A System Using Perfectly Synchronized Clocks 

Proof. As illustrated by XFigure 39X, by G5 any pair of sender Ms and receiver Mr, the distance 
between sender's rising clock edge at period j and any receiver's rising clock edge at next period j 
+ 1 is T. That is, ↑ (Cr = j + 1) - ↑ (Cs = j) = T. Since T > α max + μmax, Fact 1 follows. 



95 

Fact 2. Under a set of perfectly synchronized clocks Ci: 1 ≤ i ≤ N, with their period T defined by 
G5, any message from external environment received by input synchronizer during jth period, 
will reach each of the N receiver machines Mr: 1 ≤ r ≤ N, during the (j + 1)th period. 

Proof. By G4, any message from environment must be sent to the input synchronizer. The 
messages arriving at time ↑ (CI_sync = j) ≤ t < ↑(CI_sync = j + 1) will be buffered at the 
synchronizer MI_sync. By G4, these messages will be forwarded at t = ↑ (CI_sync = j + 1). By Fact 
1, the message will reach all the N receiver machines by ↑ (Cr = j + 2): 1 ≤ r ≤ N. Fact 2 follows. 

We now examine a distributed real-time system where global computations are driven by clocks 
with bounded skews. 

PALS Clocks. All the local clocks used by the PALS protocol for global computation are 
synchronized with the global clock with skews of at most ε. 

 
Figure 40 – Logical Equivalence to Causality Violation 

We now examine the effect of clock skews. In XFigure 40X, M1 is a replica of M2. First, M1 sends a 
message to M2 at time t = ↑(C1 = j) + α + q. At global time t = ↑(C1 = j), M2’s local time is at 
↑(C2 = j) - 2ε. Suppose that the end to end delay from M1 to M2 is very short. That is, α + q + μ < 
2ε. Under this condition, the M1’s message transmitted during clock period j may reach M2 when 
M2 is still at clock period j - 1. If the clocks were perfectly synchronized, this could only happen 
through a violation of causality. Since M1 is a replica of M2, this simulates sending a message to 
one’s own past. Finally, note that M2 also sends a message to M1 at its jth period at t = ↑(C2 = j) 
+ α + q. This message is received by M1 at its jth period. Inconsistent views between replicated 
machines may lead to state divergence. 

 
Figure 41 – Clock C1 leads Clock C2 

To make sure that M1’s message sent during its jth period will arrive at M2 no earlier than ↑(C2 = 
j), we introduce a minimal output hold time H. As we can see in XFigure 41X, if M1 sends its 
message at or after ↑(C1 = j) + H, where H = 2ε - μmin, then the message will arrive at M2 no 



96 

earlier than ↑(C2 = j). So the first rule of the PALS protocol, called the PALS Causality 
Constraint, is to require that machine Mi at its local PALS clock period j can transmit a message 
no earlier than ↑(C1 = j) + H. Since the time lag between any pair of machines is less than or 
equal to 2ε, under the PALS Causality Constraint when a message sent from a machine Ms 
during its jth period cannot reach a receiving machine Mr earlier than ↑(Cr = j). 

G6: PALS Causality Constraint.  

A machine Mi at (PALS) clock period j cannot send a message earlier than ↑(Ci = j) + H, where 
H = 2ε - μmin. 

We now examine the case where machine M2 leads machine M1 by 2ε, as illustrated in Figure 4. 
Since clock C1 now lags clock C2, we need to ensure that a message sent by M1 at jth period will 
reach M2 before ↑(C2 = j + 1). 

 
Figure 42 – Clock C2 leads Clock C1 

As illustrated in XFigure 42X, the latest instant at which M1 can transmit its messages on the 
network is max((↑(C1 = j) + H), (↑(C1 = j) + μmax + qmax)). The maximal network transmission 
delay is μmax. Hence, it is necessary that the clock period satisfy 

T > 2ε + max(μmax + qmax , H) + μmax.  

We now define the PALS clock period constraint.  

G7: PALS Clock Period Constraint.  

PALS clock period T > 2ε + max(μmax + qmax , H) + μmax 

The definitions so far now allow us to define a PALS system. 

PALS Definition. A PALS system consists of state machines, environment input synchronizer, 
environment output synchronizer, and PALS clocks defined by rules G1, G2, G3, G4, G6, and 
G7. 

Fact 3. Under PALS constraints, a message sent during sender’s jth clock period will be received 
by other machines when they are still in their jth clock period.  

Proof. Suppose that Fact 3 is false. There are two possible cases. 

Case 1. Assume that there exists a pair of machines, where M1’s message sent during its clock 
C1’s jth period reaches M2, during M2’s clock C2’s (j - 1)th period. 

Proof of Case 1. As illustrated in XFigure 41X, in order for machine M2 to receive M1’s period j 
message at M2’s clock period j - 1, M2’s clock must lag M1’s clock and the maximal lag is 2ε. 



97 

Due to the PALS Causality Constraint (G6), the earliest possible message arrival time at M2, tarr, 
is  

tarr  = ↑(C1 = j) + H + μmin  

= ↑(C1 = j) + (2ε - μmin) + μmin  

= ↑(C1 = j) + 2ε  

However, M2 lags M1 at most 2ε. It follows that  

(↑(C2 = j) - ↑(C1 = j)) ≤ 2ε  

Substituting, we have ↑(C2 = j) - ↑(C1 = j) ≤ tarr - ↑(C1 = j) 

Hence, ↑(C2 = j) ≤ tarr. This contradicts the Case 1 assumption. 

Case 2. Assume that there exists a pair of machines, where a message from M1 sent during C1’s 
jth period reaches M2 during C2’s (j + 1)th period. 

Proof of Case 2. As illustrated in XFigure 42X, to maximize the chance of machine M2 receiving 
M1’s jth message at M2’s (j+1)th clock period, C1 should lag C2 by the maximum 2ε. The latest 
message arrival time at machine M2, tarr is: 

tarr = ↑(C1 = j) + max(μmax + qmax , H) + μmax  

The starting time of machine M2’s clock period j + 1 is  

↑(C2 = j + 1)  = ↑(C2 = j) + T  

= (↑(C1 = j) - 2ε) + T 

Since T > max(μmax + qmax , H) + μmax + 2ε  

↑(C2 = j + 1)  > (↑(C1 = j) - 2ε) + (2ε + max(μmax + qmax , H) + μmax) 

= ((↑(C1 = j) + max(μmax + qmax , H) + μmax)  

Subtracting, we have ↑(C2 = j+1) - tarr > 0 That is, the message arrives at machine M2 before ↑(C2 
= j + 1). This contradicts the assumption of Case 2. By the proofs of Case 1 and Case 2, Fact 3 
follows. 

Fact 4. Under the PALS protocol, messages from the environment buffered by the Input 
Synchronizer during clock period j will reach all N destination machines at time t, where ↑(Cr = j 
+ 1) ≤ t < ↑(Cr = j + 2): 1 ≤ r ≤ N. 

Proof. Similar to the proof of Fact 3. 

4.5.2.3 97BFormalization and Correctness of PALS 

A complete formal specification of PALS can be found in X[45]X.  In this paper, PALS is specified 
using Real-Time Maude as a formal model transformation that maps a synchronous design, 
together with a set of performance bounds of the underlying infrastructure, to a formal 
distributed real-time system specification that is semantically equivalent to the synchronous 
design. This semantic equivalence is proved, showing that the formal verification of temporal 
logic properties of the distributed system in CTL* can be reduced to their verification on the 
much simpler synchronous design. 



98 

The PALS formalization presented in X[45]X includes the following topics:  

1. A formal model in rewriting logic X[44]X of the PALS transformation, expressed in the Real-
Time Maude formal specification language X[46]X, including precise requirements about the 
allowable synchronous designs to which PALS can be applied and about the real-time bounds 
assumed for the network and clock synchronization infrastructures. 

2. A precise derivation of the PALS period based on the formal model, as well as a proof of its 
optimality, showing that it is shortest possible under the given assumptions about the 
asynchronous implementation, message format, and network and clock synchronization 
infrastructures. 

3. A bisimulation theorem, showing that the original synchronous design and the so-called stable 
states of the corresponding PALS asynchronous design constitute bisimilar systems. 

4. A mathematical justification of a method that reduces the formal verification of temporal logic 
properties in CTL* of an asynchronous PALS design – typically infeasible due to state space 
explosion – to the model checking verification of its much simpler synchronous counterpart. 

5. An avionics case study illustrating the usefulness of the PALS pattern for formal verification 
purposes. 
4.5.3 31BLeader Selection Pattern 
The purpose of the Leader Selection pattern is to coordinate a group of nodes so that a single 
node is agreed upon as the ‘leader’ at any given time. The nodes typically correspond to 
replicated computations hosted on distributed computing resources, and are used as part of a 
fault-tolerance mechanism.  If a replicated node fails, this allows a non-failed node to be selected 
as the one which will interact with the rest of the system.  

4.5.3.1 98BPattern instantiation 
To use the pattern, a group of N nodes (systems or processes) is identified that are to select a 
leader from among themselves. The leader selection pattern will insert new leader selection 
threads into each of the systems/processes which are to participate in leader selection. Each 
thread will have a unique identifier (an integer) to determine its priority in selecting a leader.  
Connections will be added so that all leader selection threads are able to communicate with each 
other (N input ports, 1 output port).   In addition, each leader selection thread will have an input 
port from which it determines (from other local systems) if it is failed, and an output port which 
will say if it is the leader. These two ports are initially left unconnected. 

4.5.3.1.1 116BPattern arguments  
1. Set of nodes to select a leader from 

2. Leader priority for each node 

4.5.3.1.2 117BAssumptions 
1. The leader selection nodes must communicate synchronously with a one-step delay. 

2. At least one node is functional (non-failed) at any given time. 

4.5.3.1.3 118BGuarantees 
1. All non-failed nodes shall agree on who is the leader. 



99 

2. If a node fails, leadership is transferred to a non-failed node in the next step. 

3. If non-failed nodes exist, then in the next step one of them will be the leader. 

4. A non-failed leader node shall remain leader as long as no user request to change leadership 
to a different non-failed node has been made. 

4.5.3.2 99BVerification 
The leader selection pattern selects a leader from a group of systems.  It can be used to support 
automatic failover among a set of redundant computing resources (nodes).  This failover 
capability can part of a fault-tolerant design, provided that the node failures are independent.  
Thus, the leader selection pattern provides a useful building block for constructing fault-tolerant 
architectures, especially if formal guarantees can be provided for the leader selection algorithm. 

4.5.3.2.1 119BIdealized Leader Selection Pattern Requirements 
The main requirements for a leader selection algorithm involve consistency and bounded leader 
transition times.  An idealized leader selection algorithm would have the following properties 
(requirements): 

R1. All non-failed nodes agree on who is the leader 

R2. If a node fails, leadership is immediately transferred to a non-failed node 

R3. If any non-failed nodes exist, then one of them will be the leader. 

There are several additional requirements that can be levied on a leader selection algorithm, 
depending on the desired level of sophistication.  For example: 

R4. A non-failed leader node shall remain leader as long as no user request to change to a 
different non-failed node has been made. 

R5. An external actor shall be able to cause leadership to be transferred to a specific node, as 
long as that node is non-failed. 

4.5.3.2.2 120BImplementable Leader Selection Pattern Requirements 
The idealized requirements, as specified, cannot be met in a realistic system because they require 
delay-free communication between nodes.  Therefore, we must relax R1-R3 to allow for 
communication delays:  

R1. All non-failed nodes shall agree on who is the leader within some maximum time delta D1. 

R2. If a node fails, leadership is transferred to a non-failed node within some maximum time 
delta D2  

R3. If any non-failed nodes exist, one of them will be chosen as the leader within some 
maximum time delta D3. 

These requirements, given appropriate time bounds D1, D2, and D3, provide requirements that 
can be used to specify a leader selection pattern on a real system.   

Creating leader selection algorithms for asynchronous systems is a complex problem that 
presents a significant formal analysis challenge.  Approaches such as X[37]XX[38]X have analyzed 
similar problems but make fairly conservative failure assumptions.  We would like to leverage 
our pattern-based approach to simplify the analysis task and to allow for less conservative failure 



100 

assumptions.   The PALS pattern provides a basis for allowing us to treat the communication 
between the nodes as synchronous, allowing a significant simplification of the problem and the 
complexity of the formal analysis.  Therefore, we assume that the nodes in the leader selection 
problem can communicate synchronously with a single step delay.  With the assumption of 
synchrony the requirements become:  

R1. All non-failed nodes shall agree on who is the leader. 

R2. If a node fails, leadership is transferred to a non-failed node in the next step. 

R3. If non-failed nodes exist, then in the next step one of them will be the leader. 

4.5.3.2.3 121BCreating a Synchronous Implementation in C++ 
The implementation of the leader selection algorithm, assuming synchronous communication, is 
straightforward in C++ and is shown in XFigure 43X.  The C code is generic in the sense that it can 
be generalized to any number of nodes, but it makes several assumptions about the failure model 
and the communications layer between the nodes.   

1. Each node within the leader selection group has a unque ID (stored as IDX in XFigure 43X).  All 
nodes agree on the IDs of the other nodes. 

2. Each node communicates synchronously with all other nodes with a single-step delay.  The 
values of each node’s status are communicated to all other nodes through the status array.  
This array contains the step-delayed status of all other nodes (including the ‘self’ node).   

3. Node failures can only occur in two ways: an internally-detected error (represented by the 
Boolean ‘fail’ variable) or an externally detectable error, such as a hardware failure.  These 
external errors are detected by the other nodes through erroneous data values or by the failure 
to send data during a step.   

4. The initial status values (prior to any messages being received) for all other nodes are set to 
failed (device_ok is FALSE).    

5. In the first step after a failure, the ‘init’ flag will be set to TRUE by the communication 
infrastructure. 

Given these assumptions, the behavior of the node algorithm is defined by five cases labeled by 
(1) through (5) in XFigure 43X.   

 In case (1) the node has declared itself failed. In this case, it notifies the other nodes by 
changing its device_ok variable to false.  Note that the device_ok status can also be set 
indirectly by the communication infrastructure in the absence of a message.   

 In case (2), we are not re-initializing the node and the previous leader has not failed, so the 
current leader is unchanged.   

 Case (3) handles initializing the node (or reinitializing in case of a failure).  The node will 
attempt to use the current leader from a non-failed node, if any.   

 Because of the single-step delay, the reported leader from a non-failed node may have in fact 
failed in the previous step.  In this case, all the non-failed nodes which have already started 
will use case (4) to choose a new leader in the current step, so this node will do likewise.  In 
case (4), we choose a new node by simply choosing the first non-failed node in sequential 
order based on node ID.   



101 

 If we reach case (5), there is no non-failed node in the previous step.  In this case, it is not 
possible to safely choose a new leader because there is insufficient information about the 
system state, so we have to choose ‘no leader.’ 

The behavior of the group can be inferred from the nodes in a straightforward way.  During 
stable operation, no nodes fail, and all nodes execute case (2).  For initialization, the re-entering 
nodes will first try to choose a leader that matches the other nodes, if it is possible (i.e., if the 
‘leader’ node has not failed in the previous step).  Finally, if a failure has occurred in the current 
leader in the preceding step, all nodes choose a new leader simply by picking the first non-failed 
node in the array.   



102 

const int NO_LEADER = -1 ;  
struct status_info { 
 bool device_ok ;  
 int leader ;  
};  
 
class Node { 
 // status of all nodes; assumes a PALS clique 
 status_info *status;  
 int max_elem ;  
  
 // information about this node 
 int IDX ;  
  
 Node(int ID, int MAX, status_info *all_status) { 
  IDX = ID; 
  max_elem = MAX;  
  status = all_status ; 
  status[IDX].device_ok = false; 
  status[IDX].leader = NO_LEADER ;    
 }  
 
 void step(bool init, bool failed) { 
   
  // if internally-detected failure is noticed, notify other nodes 
(1)  if (failed) { 
   status[IDX].device_ok = false; 
      return ;  
  } 
  status[IDX].device_ok = true;  
   
  // if current leader is o.k, we’re done. 
(2)  if (!init && status[IDX].leader != NO_LEADER && 
    status[status[IDX].leader].device_ok) { 
   return;  
  } 
 
  //  if reinitializing, check the leader from the  
  // first o.k. device (they will all be the same).  
  // If this leader is still an o.k. device, then choose it.     
(3)  if (init) { 
   for (int i = 0; i <= max_elem; i++) { 
    if (status[i].device_ok && status[i].leader != NO_LEADER &&  
               i != IDX && 
               status[status[i].leader].device_ok) {    
          status[IDX].leader = status[i].leader ;  
           return ;  
    } 
   } 
  } 
  // choose a new leader, if one is available, because of leader failure 
(4)  for (int i = 0; i <= max_elem; i++) { 
   if (status[i].device_ok) { 
    status[IDX].leader = i ;     
    return ;  
   } 
  } 
  // default; no (safe) leader possible 
(5)  status[IDX].leader = NO_LEADER ;  
 } 
} ; 

Figure 43 – Synchronous Leader Selection algorithm in C++ 



103 

4.5.3.2.4 122BFormalizing Requirements for Leader Selection.  
In our implementation, we desire to satisfy requirements R1-R4.  We specify these requirements 
using the Property Specification Language (PSL) X[40]X.  PSL is an IEEE standard that extends the 
standard temporal logic Linear Temporal Logic (LTL) with several kinds of syntactic sugar to 
make properties much more straightforward to write and understand. 

PSL treats the execution of a program as a sequence of steps.  Each step corresponds to one 
round in which all of the nodes read inputs, compute their next state and output a result.  
Properties in PSL contain temporal operators that describe allowable paths, where a path is a 
sequence of steps.  The only temporal operators used in the properties below are G and X.  The 
‘G’ operator states that the property must be globally true.  The X operator states that the 
property must be true in the next step.   

To capture a Boolean system invariant that should always be true in every execution of the 
system, one often writes properties of the following form:  
 PSLSPEC G(<invariant>) ;  

Another common type of requirements is specifies that in any state where a given precondition is 
true, then in the next state, the postcondition is always true. This is captured by the following 
form: 
 PSLSPEC G(<precondition> → X(<postcondition>)) ;  

The leader selection requirements are formalized as follows.   

R1: All non-failed nodes shall agree on who is the leader.  

This can be specified formally in PSL as  
PSLSPEC 
   forall i in {0:MAX_ELEM} : forall j in {0:MAX_ELEM} :  
      G((status[i].device_ok & status[j].device_ok) ->  
         status[i].leader = status[j].leader); 

Transliterated, this property reads: for all nodes i,j, in all execution steps (G), if both devices are 
non-failed, then the leader of node i is equal to the leader of node j. 

R2:  If a node fails, leadership is transferred to a non-failed node in the next step. 

This can be formalized in PSL as 
PSLSPEC 
   forall i in {0:MAX_ELEM} : forall j in {0:MAX_ELEM} :  
 G(!status[i].device_ok ->  
         X(status[j].device_ok -> status[j].leader != i)) ; 

This property can be read as follows: for all nodes i,j, in all execution steps (G) if a device i has 
failed, then in the next step (X) it shall not be the leader for any non-failed device j. 

R3: If non-failed nodes exist, then in the next step, one of them will be chosen as the leader. 

This can be formalized in PSL as 



104 

PSLSPEC 
   G( (!(forall i in {0:MAX_ELEM} : !status[i].device_ok)) ->  
      X(forall j in {0:MAX_ELEM} : (status[j].device_ok ->  
         status[j].leader != NO_LEADER))); 

This property is slightly more difficult to read, as it involves double negation.  The first 
antecedent:  
 !(forall i in {0:MAX_ELEM} : !status[i].device_ok) 

can be read: not all devices i have been declared failed (!status[i].device_ok), so the property as a 
whole can be read: in all execution steps (G) if not all devices i have been declared failed, then in 
the next step (X), any non-failed process j shall have a leader. 

R4: A non-failed leader node shall remain leader as long as no user request to change to a 
different non-failed node has been made. 

This can be formalized in PSL as 
PSLSPEC 
   forall i in {0:MAX_ELEM} : forall j in {0:MAX_ELEM} : 
      G((status[i].device_ok &     
    status[i].leader != NO_LEADER &     
    status[i].leader = j &  
         status[status[i].leader].device_ok) ->  
            X(status[i].device_ok -> status[i].leader = j)); 

The PSL version of this property is more complex than the English equivalent simply because 
we have to examine each node in the group.  The property can be read: for any node i, it is 
globally (G) the case that if: 

 the node is non-failed: status[i].device_ok 

 the node has a leader:  status[i].leader != NO_LEADER 

 the node’s leader is equal to j: status[i].leader = j  

 the node’s leader is o.k.: status[status[i].leader].device_ok 

then in the next state (X), if the node i is still non-failed, it shall have the same leader. 

Given the C program in XFigure 43X, it is possible to create an equivalent model in a model-based 
development notation such as Simulink X[39]X or a formal analysis tool (such as NuSMV X[43]X) and 
prove that requirements R1-R4 are met for an architecture consisting of N nodes.   

In the next section, we re-implement the node program in NuSMV and use it to check that a 
synchronous architecture consisting of N nodes for N = 2..10 meets the requirements of the 
leader selection pattern. 

4.5.3.2.5 123BModeling and Checking Requirements in NuSMV 
We are interested in formally establishing the properties that we formalized in the previous 
section.  While model checking approaches that directly check programming languages have 
advanced significantly over the last decade X[42]X it is more straightforward to reason about 
models of program behavior, even if those models are functionally equivalent to the program.  



105 

For our analysis, we re-implement the C program from XFigure 43X in NuSMV and use it to 
demonstrate that the architecture that we have created is sound.   

The description of a node in NuSMV (called a device) is shown in XFigure 44 X.  NuSMV doesn’t 
have a notion of looping, so the algorithm becomes somewhat more cumbersome to write, and 
less general.  We have to enumerate every element of the array separately, and of course we have 
to fix the number of elements in the clique.  In XFigure 44X we are creating a node for a group of 
four nodes.   

NuSMV does not have a particularly rich type system so we create two arrays to represent the 
‘status’ array from XFigure 43X, one each for device_ok and leader.  There is no way to ‘halt’ 
execution of a NuSMV process in the sense of a hardware failure, so instead we allow the 
device_ok variable to be non-deterministically assigned.  Other than these changes, the cases 
within the NuSMV code matche the structure of the code in the C program. 



106 

MODULE CONSTS 
DEFINE 
 NO_LEADER := -1 ;  
 

MODULE device(ARRAY_MAX, IDX, device_ok, leader) 
VAR Constants: CONSTS 
DEFINE 
   NO_LEADER := -1 ;  
   other_leader :=  
 case 
    device_ok[0] & IDX != 0 : leader[0] ;  
    device_ok[1] & IDX != 1 : leader[1] ;  
    device_ok[2] & IDX != 2 : leader[2] ;  
    device_ok[3] & IDX != 3 : leader[3] ;  
    TRUE : Constants.NO_LEADER ; 
 esac ; 
  

   other_leader_ok :=  
 other_leader = NO_LEADER ? FALSE : device_ok[other_leader] ;  
   

ASSIGN 
  -- device_ok[IDX] is allowed to float; it can be true or false. 
 

   init(leader[IDX]) := Constants.NO_LEADER;  
   next(leader[IDX]) :=  
      case  
    -- device failed 
    !next(device_ok[IDX]) : Constants.NO_LEADER ;   
   

    -- not re-initializing and previous leader still o.k. 
    device_ok[leader[IDX]] & leader[IDX] != Constants.NO_LEADER :  
            leader[IDX] ;   
   

    -- initializing...need to sync up with rest of 'good' clique, as  
    -- long as 'leader' node is still o.k. 
    next(device_ok[IDX]) & !device_ok[IDX] & other_leader_ok :  
            other_leader ;  
 

    -- choose first 'good' leader. 
    device_ok[0] : 0 ;  
    device_ok[1] : 1 ;  
    device_ok[2] : 2 ;  
    device_ok[3] : 3 ;  
 

    -- no leader available 
    TRUE : Constants.NO_LEADER ;  
      esac; 

Figure 44 – NuSMV implementation of Node (called device) 

In order to tie the nodes together and check the properties, we create a main program as shown in 
XFigure 45X.  We assume that the nodes communicate with one another via a one-step delay.  For 
the purposes of analysis, it is sufficient to connect all of the nodes together through shared arrays 
(device_ok and leader in XFigure 45X).  In NuSMV, one expresses the property ‘inside’ the module 
that is to be checked, so we add the PSL properties directly into the model.   

 



107 

MODULE main 
 
DEFINE 
 ARRAY_MAX := 3 ;   
 
VAR 
 Constants : CONSTS ;  
 device_ok : array 0..ARRAY_MAX of boolean;  
 leader : array 0..ARRAY_MAX of Constants.NO_LEADER .. ARRAY_MAX ;  
 device0 : device(ARRAY_MAX, 0, device_ok, leader); 
 device1 : device(ARRAY_MAX, 1, device_ok, leader); 
 device2 : device(ARRAY_MAX, 2, device_ok, leader); 
 device3 : device(ARRAY_MAX, 3, device_ok, leader); 
 
-- Note: use of named constants for quantifiers not yet supported   
-- in NuSMV for PSL properties  
 
-- devices agree on a leader 
PSLSPEC 
   forall i in {0:3} : forall j in {0:3} :  
   G((device_ok[i] & device_ok[j]) -> leader[i] = leader[j]);  
 
-- if a node was leader and has not failed, it is still leader.   
PSLSPEC 
 forall i in {0:3} : forall j in {0:3} : 
  G((device_ok[i] &  
               leader[i] != NO_LEADER &    
               leader[i] = j   
     device_ok[leader[i]]) ->  
     X(device_ok[i] -> leader[i] = j)); 
   
-- there exists a non-failed node in the previous step,  
-- and node ‘j’ not failed, then the leader should not be -1. 
PSLSPEC 
 G( (!(forall i in {0:3} : !device_ok[i])) ->  
  X(forall j in {0:3} : (device_ok[j] -> leader[j] != -1))); 
 
-- If a node is declared failed, it 
-- shall not be leader in the next step. 
PSLSPEC 
 forall i in {0:3} : forall j in {0:3} :  
  G(!device_ok[j] -> X(leader[i] != j)) ; 

Figure 45 – Main NuSMV Module 
We can now check the requirements of the NuSMV model.  The time required to check the 
properties grows geometrically with the number of nodes in the group; however it is still possible 
to check systems with less than ten nodes in a reasonably short amount of time.  XTable 6X shows 
the time required to perform the analysis.  The analysis was performed with the following 
command line:  
 nusmv –dynamic leader-elect-new-k.smv  

where k is the size of the group to be analyzed.  The analysis was performed on a Core 2 duo 
laptop running at 3.06 GHz with 4GB RAM using NuSMV 2.5.2 and Windows 7. 



108 

Table 6 – Analysis times to check requirements R1–R4 on group of N nodes 

Number of Nodes Analysis Time 

2 0.12s 

3 0.12s 

4 0.34s 

5 0.63s 

6 2.76s 

7 20.29s 

8 2m 39s 

9 6m 9s 

10 > 3 hours 

 

Our implementation of leader selection is quite straightforward, and allows fairly strong 
correctness guarantees to be proved quickly.  The reason that we are able to use a straightforward 
algorithm is due to the assumption of synchrony that is provided by the PALS pattern.  This 
demonstrates the power of creating complex system architectures using relatively simple pieces 
through the composition of formally verifiable patterns.   
4.5.4 32BReplication Pattern 
The purpose of the Replication pattern is to create identical copies of portions of the system.  
This is typically used to implement fault tolerance by assigning the copies to execute on separate 
hardware platforms with independent failure modes.   

4.5.4.1 100BPattern Instantiation 
To use the pattern, one or more nodes (systems) are selected and the number of copies to create 
is specified.  Optional arguments determine how ports and their connections are handled in the 
replication process.  Each new system and port created is given a unique name.  When multiple 
outputs are created they may be merged by the addition of a new system block to select, average, 
or vote the outputs.  This is accomplished using the Fusion pattern.   

4.5.4.1.1 124BPattern arguments 

1. Set of system components to replicate 

2. N, the desired number of copies, including the original component(s) 

3. For each new output port in the set of replicas, choose: 

a. replicate the destination of the data connection (default) 

b. add a new system block (Select, Vote, or Average) to merge the new outputs and connect 
to the destination of the original data connection 

4. For each new input port in the set of replicas, choose:  

a. replicate source of the data connection (default) 

b. fan out the data connection from the source of the original input data connection 



109 

4.5.4.1.2 125BAssumptions 
Replicated systems will be hosted on platform hardware with independent failure modes.  This 
can be specified through use of the AADL property Not_Collocated.   

4.5.4.1.3 126BGuarantees 
If hardware failures are independent, and there are less than N failures, then at least one replica 
will be functional at all times.  Guarantees associated with the use of various voting algorithms 
will be addressed separately, as part of the definition of voting design patterns.   

4.5.4.2 101BVerification 

When the replicas are bound to hardware, the Not_Collocated property can be checked 
easily by examination of the model structure.   The guaranteed behavior for the replication 
pattern follows directly.   
4.5.5 33BMulti-Rate PALS Pattern 
The multi-rate PALS pattern is designed to support the synchronization pattern between multi-
rate distributed computations in hierarchical control systems. The pattern guarantees that the 
design and verification complexities for distributed synchronization in the coordination of multi-
rate systems remains tractable and is equivalent to the corresponding single-rate synchronous 
system.  

The period of the corresponding synchronous computations is fixed and equal to the hyper-
period, which is the least common multiple (LCM) of the periods of the multi-rate computations. 
This is based on the fact that the hyper-period is perfectly divisible by the periods; thus 
synchronized state transitions always occur at the hyper-period boundary of the equivalent 
synchronous system. Other intermediate state transitions of the multi-rate systems between two 
consecutive hyper-period boundaries can be easily abstracted in the synchronous system. We 
also note that any other synchronization period that is not equal to an integer multiple of the 
hyper-period either creates more complex system in terms of verification or is infeasible to 
produce equivalent fixed periodic synchronous executions. 

4.5.5.1 102BBasic Concept of the Multi-Rate PALS Pattern 
The underlying intuition of the multi-rate PALS design pattern is illustrated in XFigure 46X. A 
group of multi-rate systems (XFigure 46Xa) is equivalent a single-rate synchronous system ( XFigure 
46Xb). The pattern abstracts away the intermediate node and event interleavings in the multi-rate 
asynchronous system so that a mapping with the synchronous system can be achieved. In each 
synchronization interval Tsync, which is equal to the LCM of the periods, there are ni = Tsync/Ti 
executions of Nodei (period= Ti) in the multi-rate system. In the synchronous design, these ni 
executions are sequentially executed. This could be achieved by invoking the thread function in a 
loop ni times in the synchronous design.  Based on the assumptions on Ti and output hold time in 
the asynchronous system, the pattern guarantees that the destination node receives ni outputs 
from Nodei in each synchronization interval Tsync. The multi-rate synchronizer at each node in 
the asynchronous system (inserted by the pattern) then deterministically chooses the output to be 
delivered to the computation node. In the currently proposed design, it chooses the last of the ni 
outputs, which is also the output of the combined execution in the equivalent synchronous 
system. Based on this equivalence, the synchronous design greatly simplifies design and 
verification of these multi-rate systems. 



110 

 

a. Asynchronous multi-rate system 

 

b. Synchronous abstraction 

Figure 46 – Multi-rate PALS design pattern 

4.5.5.2 103BPattern instantiation 
To use the pattern, a group of n nodes (systems) is selected that are to execute at different 
periods Ti, i = 1…N. In order to guarantee virtual synchronization, the pattern adds a 
synchronization interface, called the multi-rate synchronizer, at each node. The synchronizer 
executes at a period equal to T = LCM(T1, …, Tn). The pattern guarantees that other nodes in the 
group receive the outputs of a node at approximately the same global time. 

The type of the inserted synchronizer component (system, process, or thread) is determined by 
the user. The pattern assumes it will be collocated with the receiver node, i.e. it executes on the 
same processor. If it is an AADL thread component, the pattern then adds an AADL thread 
subcomponent for the synchronizer in the same process as the synchronization logic, i.e. the 
PALS computation thread, of each node. It propagates the message through an AADL immediate 
connection. The pattern also defines the communication and scheduling characteristics between 
the synchronizer and the receiving computation logic. 



111 

4.5.5.2.1 127BArguments 
1. A group of n nodes. In AADL, this corresponds to a set of AADL thread elements distributed 

across defined process elements. 

2. Period of each computation, Ti 

3. Name of the multi-rate PALS group. 

4. Set of (output port, input port) pairs used in the multi-rate synchronization. 

4.5.5.2.2 128BAssumptions 
Assumptions (1-5) of the multi-rate PALS pattern are similar to those of the original PALS 
pattern. The rest are specific to the multi-rate synchronizer component. 

1. Bounded Local Clock Error - Each node j has access to an approximation of the true global 
time t via a local clock cj, where the maximum error (called either jitter or skew) of each 
local clock is ε, i.e.,  

 | Cj – t | < ε.     

2. Monotonic Local Clocks - The value of each local clock Cj is monotonically increasing.  Each 
node may adjust its local clock rate, but it may never decrease the value of its local clock. 

3. Bounded Computation Time – The computation of a node’s new local state and outputs 
completes within a specified time.  Typically this is the periodic scheduling deadline for a 
thread αi

max.   

4. Bounded Message Delivery – Messages are reliably delivered to their destinations with 
latency μ, where μmin ≤ μ ≤ μmax.  Depending on the system fault assumptions, this may 
require thus use of a fault-tolerant network.   

5. Node Fault Assumptions – A failed node must not be able to send extra messages (more than 
one) during a PALS period.  This could result in nodes receiving different messages, even 
though the network delivered each correctly. By default, we assume that the output of a 
failed node is ‘null.’ 

6. Collocated Multi-Rate Synchronizer – We assume that multi-rate synchronizer is executed on 
the same processor as the synchronized computation logic so that they have identical 
hardware failure characteristics. 

7. Output Assumptions of Multi-Rate Synchronizer – Currently the pattern assumes that in each 
step, multi-rate synchronizer only propagates the last message it received during its previous 
period. (This assumption can be relaxed so that the synchronizer provides a vector of 
received messages.). Based on the node fault assumption, if the sender fails, the synchronizer 
propagates a ‘null’ message. 

8. First Execution of Multi-Rate Synchronizer –The first dispatch time of both multi-rate 
synchronizer and the receiving computation logic are same. 

Similar to the original PALS pattern, the computation logic at each node must also satisfy the 
following constraints relating the system parameters of the associated computation logic i: 

1. Causality constraint – Messages cannot be sent too early. 

Min(Output timei) + Min(Output timesync) ≥ 2ε - μmin 



112 

2. Computation period constraint – Messages cannot be sent too late.   

Max(Output timei) ≤ Ti - μmax - 2ε 

Additionally, the following constraints on the period of the multi-rate synchronizer must be 
verified. 

3. Period of multi-rate synchronizer = LCM(T1, …, Tn); LCM = Least common multiple. 

4. Priority of multi-rate synchronizer > Priority of the receiving computation logic. 

4.5.5.2.3 129BGuarantees  
1. Synchronization between multi-rate computations happens only at the hyper-period 

boundary. This hyper-period, denoted by Thp, is equal to the LCM (Least common multiple) 
of the computation logics.   

a. The source node sends its messages to the multi-rate synchronizers at the receiving 
nodes. The synchronizers execute at a period equal to Tsync = Thp.  

b. In each period, a multi-rate synchronizer receives ni = Tsync/Ti number of inputs from 
a source node with period Ti. 

c. Of the ni messages received during the multi-rate synchronizer period j, the 
synchronizer only propagates the last message and makes it available to the receiving 
computation logic during its period j+1.  

Suppose that A (Period TA) sends messages to B (period TB). Then, there are nA = Tsync/TA 
and nB = Tsync/TB executions of A and B in an interval Tsync. With the multi-rate synchronizer, 
these nodes interact only at every Tsync interval such that at the multi-rate synchronization 
period j,  

A.in(j.nA+k) = B.out((j.nB -1); k = 0…nA-1 

The pattern guarantees that the interaction of these nodes is equivalent to a group of perfectly 
synchronized nodes executing at period Tsync. If the corresponding equivalent nodes of A and 
B are A’ and B’, then 

A’.in(j) = B’.out(j-1) 

2. Similar to the original PALS pattern, external inputs are passed through environment input 
synchronizer. If the external inputs are sent to multiple computations with different periods, 
then the environment input synchronizer operates at the period equal to the LCM of their 
periods. 

4.5.5.3 104BVerification 

XFigure 47X shows a timeline of the computation and communication associated with a node.  
Logical synchronization step j is assumed to begin at time tj,0. Dispatch of jth execution of Nodei 
multi-rate synchronizer and j.ni th executions of Nodei computation logic coincide at this time. 
These can be denoted by ↑(Ci,sync = j) = tj,0 and ↑(Ci = j.ni) = tj,0 respectively. Since each local 
clock may exhibit maximum error ε, computation during these executions may actually dispatch 
between the true time [j.Thp – ε, j.Thp + ε). The other ni-1 executions of the computation logic 
subsequently dispatch at ↑(Ci = j.ni+k) = tj,k; k=1..ni-1. In true time, these executions occur 
between [j.Thp+ k.Ti – ε, j.Thp+ k.Ti + ε). 



113 

 
Figure 47 – Multi-rate PALS timeline 

The deadline of the computation logic is given by αi
max; thus it must be scheduled to complete its 

execution by tj,k + αi
max; for k=0.. ni-1.  

Additionally, the output message is delivered at least after an interval of H = Output timesync + 
Output timei. Output of this thread is propagated to the multi-rate synchronizer at the receiving 
side after a latency of μ. A message generated by the execution at tj,k is expected to arrive at least 
after tj,k + H + μ.  

4.5.5.3.1 130BMulti-Rate PALS Timing Constraints 
Similar to the PALS pattern, the multi-rate PALS pattern assumes two timing restrictions on the 
clock period (Ti) and output time (H) of the computation logic at each node. These constraints 
must be met to satisfy the requirement that messages generated during the logical 
synchronization step j are consumed by their destination nodes in synchronization step j+1. 

Multi-rate PALS Causality Constraint – The first message generated in a synchronization 
interval by the execution at tj,0 is expected to arrive at least after tj,0 + H + μ. In true time, this can 
happen as early as j.Thp + H + μ - ε in true time. Given the minimum latency, μmin, the earliest 
message arrival time in a synchronization step j is  j.Thp + H + μmin - ε.  

At the receiving node, the multi-rate synchronizer can be dispatched as late as j.Thp + ε during the 
synchronization step j. Thus, in order to guarantee that this message is not received before this 
time, 

j.Thp + H + μmin - ε ≥ j.Thp + ε 

which means that the earliest output time must satisfy 



114 

Equation 1: H ≥ 2ε - μmin  

The only difference to the PALS pattern is that in case of multi-rate PALS pattern, H comprises 
of the output time of both multi-rate synchronizer and the computation logic.  

Multi-rate Computation Period Constraint – The ni
th execution, i.e. the last execution, of a node 

Nodei in the synchronization step j occurs at tj,ni-1  or in true time between j.Thp+ (ni-1).Ti  ± ε.  

The logical period in the consuming node for step j+1 may begin as early as (j+1).Thp – ε = 
(j+1).ni.Ti – ε   

The restriction on period (Ti) and deadline (αi
max) depends on the requirement that the output of 

last execution also has to arrive before the synchronization step j+1 of the consuming node. The 
latest output arrival time is given by j.Thp+ (ni-1).Ti  + ε + αi

max+ μmax. Therefore,  

j.Thp+ (ni-1).Ti  + ε + αi
max+ μmax ≥ (j+1).Thp – ε 

Since Thp = ni.Ti , this simplifies into  

Equation 2: Ti ≥ 2ε + αi
max+ μmax  or,  

αi
max ≤ Ti  - 2ε - μmax 

4.5.5.3.2 131BSummary of Formal Proof 
The proof of the pattern’s synchronization guarantee is divided into following parts: 

1. We prove that based on the constraints on the periods and output timing assumptions of each 
computation, the periodic computation logic at each node sends a fixed number of identical 
outputs in each synchronization interval that are to be consumed in the next synchronization 
step (Lemma 1). 

2. Next, we prove that the equivalence between the multi-rate asynchronous system and the 
corresponding synchronous system. (Theorem 1). This proof is done in two steps: First we 
prove that a multi-rate asynchronous system is equivalent to a single rate PALS system 
(Lemma 2). Then, based on the properties of the PALS pattern, the multi-rate asynchronous 
system is equivalent to a single-rate synchronous system.  

We use a state machine model to define both multi-rate asynchronous system (along with multi-
rate synchronizers) and synchronous system and prove the logical equivalence between multi-
rate asynchronous system and the corresponding synchronous system 

Definition 1 (State machine model of a multi-rate system): The multi-rate system consists of 
N distributed state machines M1,…,MN. The state transitions of these machines are periodically 
driven by the local clock at a period Ti for i=1…N. At each node i, there is a multi-rate 
synchronizer Mi,sync driven the same local clock but at a period Tsync = Thp. The timing bounds on 
clock skew, deadline, and period are based on the pattern assumption. 

The state transition function of Mi is defined by the functions,  

next-statei: input × state  state, and  

next-outputi: input × state  output.  

Similarly, the next-state and next-output functions of the multi-rate synchronizer Mi,sync are given 
by  



115 

next-statei,sync: input × state  state, and  

next-outputi,sync: input × state  output 

Additionally, the system consists of an environment input synchronizer Min_syn, and an 
environment output synchronizer, Mout_syn to synchronize the interaction with external 
environment at period Thp. Note that the environment input/output synchronizers also satisfy the 
same timing constraints of Equation 1 and Equation 2. 

Definition 2 (State machine model of a synchronous system): The synchronous system 
consists of N distributed state machines M’1,…,M’N. The state transitions of these machines are 
periodically driven by the perfectly synchronized local clock at a period Thp. The state transition 
function is defined by the functions, 

next-statei’: input × state  state, and  

next-outputi’: input × state  output. 

Additionally, the system consists of an environment input synchronizer Min_syn, and an 
environment output synchronizer, Mout_syn to synchronize the interaction with external 
environment at period Thp. 

In our proposed design, for each node i, the relations between next-statei, next-statei’, next-
outputi, and next-outputi’ are as follows: 

next-statei’(in, s) = next-statei (in, s’), and  

next-outputi’(in, s) = next-outputi (in, s’)  

where s’ = next-statei (in, …, next-statei (in, s)) with next-statei function being applied ni-1 times 
(ni=Thp/Ti).  

Lemma 1: In the multi-rate asynchronous system, when a state machine Ms sends its messages 
to multi-rate synchronizers Mr,sync of receiving state machine Mr, these synchronization interfaces 
receive exactly ns = Thp/Ts messages in each synchronization step j if the multi-rate timing 
constraints αi

max ≤ Ti  - 2ε - μmax (Equation 2) and output time, H ≥ 2ε - μmin are satisfied. 

Proof: There are ns executions of Ms in each synchronization step j. There are two possible 
cases: ns=1 and ns>1. Note that the case of ns=1 is similar to the PALS pattern. Thus, it is 
trivially proven from the timing constraints.  

We prove for the case of ns>1.  

Based on the assumption H ≥ 2ε - μmin , the 1st output of the Ms at each synchronization step j 
arrives after the latest dispatch of the receiving synchronizer Mr,sync at synchronization step j.  
Similarly, the restriction on the deadline of the computation logics enforces that the ns

th output is 
received before the state transition of Mr,sync at tj+1,0. The lemma immediate follows since the 
outputs of the remaining (ni-2) executions are also in FIFO order between the 1st and ni

th outputs.  

Fact: Since the receiving multi-rate synchronizers receive the same set of outputs at 
synchronization step and the logic of the synchronizers are same at the receiving nodes, the 
receiving computation logic reads identical inputs in the multi-rate systems during a 
synchronization step.  



116 

Design of Multi-Rate Synchronizer 
Multi-rate synchronizer can have different logic based on the user requirement or selection 
criteria. One possible design for the multi-rate synchronizer is based on selecting the last 
received input, i.e. ns

th output from Ms in each step. By Lemma 1, the multi-rate synchronizer, 
Mr,sync, of the receiving state machine Mr, receives a fixed number of ns = Thp/Ts inputs from the 
sending state machine Ms. Since only the last received input is propagated, the next-output of 
Mr,sync in synchronization step j is given by  

next-outputr,sync((ins
1, ins

2, …, ins
ns), s) = ins

ns; where (ins
1, ins

2, …, ins
ns) are the received 

input in synchronization step j-1.  

For this design of multi-rate synchronizer, it has a single state and remains unchanged during its 
execution. 

Definition 3 (Synchronous composition of multi-rate synchronizer, Mi,sync and Mi): 
Mi and Mi,sync are collocated and driven by the same physical clock. Since there is a fixed 
execution order of these state machines in a synchronization step, the state transition of Mi,sync 
and ni state transitions of Mi can be composed as a single state transition of an equivalent state 
machine Mc

i which executes at a period of Thp using the same clock. The next-state and next-
output function of Mc

i are given as follows: 

• next-statec
i((ins

1, ins
2, …, ins

ns), s) = next-statei(ins
ns, s’),  

where s’ = next-statei (ins
ns, …, next-statei (ins

ns, s))  with next-statei being applied ni-1 times. 
(ins

1, ins
2, …, ins

ns) is the vector of input received from the sending state machine Ms. From this 
vector, only the last element ins

ns is used in the state transition.  

• next-outputc
i((ins

1, ins
2, …, ins

ns), s) = (outi
1, outi

2, …, outi
ni) 

where outi
1, outi

2, …, outi
ni are intermediate outputs produced during the execution of Mc

i and are 
equal to the outputs of ni executions of Mi. 

Here, the deadline of Mc
i is given by the deadline of the ni

th execution of Mi, which is equal to 
(ni-1).Ti + αi

max. Output time is given by the sum of the output time of Mi and Mi,sync. Similar to 
the multi-rate system, the state machines’ local clock skews and communication delays are 
bounded by ε and μmax respectively.  

Lemma 2: A multi-rate asynchronous system defined in Definition 1 is equivalent to a single 
rate PALS system of PALS period equal to Thp which consist of n state machines Mc

i, an 
environment input synchronizer, Min_syn, and an environment output synchronizer, Mout_syn. In 
this case, Mc

i  is the synchronous composition of Mi,sync and Mi as defined in Definition 3. Min_syn 
and Mout_syn, are the same environment input, output synchronizers used in the multi-rate system. 

Proof: It is sufficient to prove that the system consisting of Mc
i, Min_syn and Mout_syn (i=1…N) 

satisfies the constraints of a PALS system.  

In these state machines, the minimum output time trivially satisfies the PALS causality constraint 
based on the assumption given in Equation 1. 

Similarly, the deadlines of these state machines also satisfy the PALS period constraint. The 
deadline of Mc

i is given by (ni-1).Ti + αi
max. Since αi

max ≤ Ti  - 2ε - μmax,  

Deadline of Mc
i = (ni-1).Ti + αi

max ≤ ni.Ti  - 2ε - μmax ≤ Thp - 2ε - μmax 



117 

Similarly, environment input/output synchronizers also satisfy these constraints and given 
identical environment inputs are received during a synchronization step, the multi-rate system is 
equivalent to the single-rate PALS system. ☐ 

Theorem 1: A multi-rate asynchronous system defined in Definition 1 is equivalent to a single 
rate perfectly synchronized system consisting of N state machines Mc

1,…, Mc
N, an environment 

input synchronizer, Min_syn and an environment output synchronizer Mout_syn where each state 
machine is driven by perfectly synchronized clocks at a period of Thp. 

Proof: The proof this theorem immediately follows from Lemma 2 and the guarantee provided 
by the PALS pattern. The theorem completes the proof that the multi-rate PALS pattern 
guarantees the virtual synchrony. ☐ 

For the verification purpose, we can further simplify the synchronous design in which instead of 
propagating the vector of ouputs in each synchronization step, each state machine sends only the 
output of last element of the vector to the receiving state machines. Thus we can reduce the 
synchronous system into the synchronous sytem defined in Definion 2, such that  

• next-state’
i(ins

ns, s) = next-statei(ins
ns, s’), and 

• next-output’
i(ins

ns, s) = next-outputi(ins
ns, s’),  

where s’ = next-statei (ins
ns, …, next-statei (ins

ns, s))  with next-statei being applied ni-1 times. 

 



118 

4.6 15BSystem Verification  
This section describes the compositional verification of system level properties.  Our idea is to 
partition the formal analysis of a complex system architecture into a series of verification tasks 
that correspond to the decomposition of the architecture.  By partitioning the verification effort 
into proofs about each subsystem within the architecture, the analysis will scale to handle large 
system designs.  Additionally, the approach naturally supports an architecture-based notion of 
requirements refinement: the properties of subcomponents necessary to prove a system-level 
property in effect define the requirements for those subcomponents.  We call the tool that we 
have created for managing these proof obligations AGREE: Assume Guarantee Reasoning 
Environment. 

There were two goals in creating this verification approach.  The first goal was to reuse the 
verification already performed on the components and design patterns.  The idea is that much of 
the complexity of the system architecture is contained in the proofs of the design patterns; if 
these facts must be re-proved on each system architectural instance, the approach will not be able 
to scale to real systems.  Additionally, we have developed sophisticated tools for analyzing 
component-level models, and we want to be able to bring these component-level results to bear 
on the system architectural analysis.   

The second goal was to enable distributed development by establishing the formal requirements 
of subcomponents that are used to assemble a system architecture.  If we are able to establish a 
system property of interest using the contracts of its subcomponents, then we in fact have a 
means for performing virtual integration of components.  We can use the contracts of each of the 
subcomponents as a specification for a subcontractor and have a great deal of confidence that if 
the subcontractor meets the specification, the integrated system will work properly.  

Our approach is based on compositional assume-guarantee reasoning X[53]X.  That is, for each 
component within the architecture, we define a set of assumptions that the component expects to 
always be true of the external environment and a set of guarantees that the component will 
always satisfy.  In other words, the guarantees are the component functional requirements, and 
the assumptions define the context in which we can use the component.  Together, the 
assumptions and guarantees for a component form a contract for that component.  If a 
component is composite (that is, defined by other subcomponents), then we use the assumptions 
and guarantees of the subcomponents, as well as facts known about the architecture by the 
instantiation of patterns, to prove that the component satisfies its guarantees.  To specify 
contracts we use the PSL notation X[19]X, an IEEE standard that is widely used in hardware 
verification.  Our initial framework assumes that components communicate synchronously with a 
single-step delay between each component. 

 
4.6.1 34BAn Example: Transient Response 
In this section we describe our compositional verification approach using the avionics system 
example model.   



119 

 

 
Figure 48 – Final FCS System Architecture 

One of the typical requirements levied on a flight control system has to do with transients in the 
actuator commands.  For passenger comfort and safety, a limit is placed on the forces that would 
be experienced by the passengers during normal operation.  For example, the automation should 
not command a sharp change in the pitch of the aircraft, even in the presence of component 
failures.  

In our system architecture, this property becomes a constraint on the control surface actuator 
(CSA) output of the system.  We would like the commanded pitch to be bounded both in terms 
of the both the actuator angle and its rate of change.  In our notation, we can write these 
properties as follows:  
transient_response_1 : assert  
  true -> abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ; 
transient_response_2 : assert  
  true -> abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))   
     < CSA_MAX_PITCH_DELTA_STEP ; 

The “true ->” portion of each property states the property is initially true.  The remainder of 
the first property states that the absolute value of the commanded pitch (CSA_Pitch_Delta) is 
less than some constant (CSA_MAX_PITCH_DELTA).  The second property is similar, but 
states that the difference between the current pitch and the previously commanded pitch is less 
than some constant (CSA_MAX_PITCH_DELTA_STEP).   

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]     

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL



120 

We will use these properties to demonstrate the capabilities of our assume guarantee framework. 
In order to prove these properties, we will have to define assumptions about the environment in 
which the system operates and use facts that we have previously proven about our architectural 
patterns.      
4.6.2 35BContract Syntax 
The syntax for contracts is derived from the Property Specification Language (PSL), specialized 
for use with the Lustre language X[52]X.  PSL defines a family of languages each based on some 
host notation, such as Verilog, SystemVerilog, RTL, and VHDL.  In the PSL documentation, 
these are called “flavors” of the language.  The flavors define a syntax for local definitions such 
as constants and variables and the set of basic expressions that can be manipulated in temporal 
expressions.  We have created a Lustre “flavor” for PSL since it is the input language of the Kind 
model checking tool, and it has a convenient syntax for creating local definitions.   

The contract for the Flight Control System is shown in XFigure 49 X.  The syntax for contracts is 
somewhat rich, and allows for local definitions of functions, variables, and constants (1) to 
simplify writing properties.  Properties (2) are reusable fragments of temporal logic, similar to 
macros.  It is possible to parameterize properties (analogous to Boolean functions), though we do 
not do so in this example.  The component assumptions (3) describe constraints that are expected 
to hold on the external environment and assertions (4) describe the guarantees that will be 
provided by the component.   

In this contract we have defined some constants to specify the limits on pitch transients both for 
inputs and outputs.  Then we define a set of properties that we will use to specify the system 
assumptions.   



121 

fun abs(x: real) : real = if (x > 0) then x else -x ;  (1) 

const ADS_MAX_PITCH_DELTA: real = 3.0 ;  

const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ; 

const CSA_MAX_PITCH_DELTA: real = 5.0 ;  

const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ;  

 

property AD_L_Pitch_Step_Delta_Valid =  (2) 

  true ->  
    abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) <  
    ADS_MAX_PITCH_DELTA ; 

property AD_R_Pitch_Step_Delta_Valid = 

  true ->  
    abs(AD_R.pitch.val - prev(AD_R.pitch.val, 0.0)) <  
    ADS_MAX_PITCH_DELTA ;  

property Pitch_lr_ok =  

  abs(AD_L.pitch.val - AD_R.pitch.val) < FCS_MAX_PITCH_SIDE_DELTA ;  

property some_fgs_active =  

  (FD_L.mds.active or FD_R.mds.active) ; 

 

active_assumption: assume some_fgs_active ; (3) 

     

transient_assumption : 

  assume AD_L_Pitch_Step_Delta_Valid and 

         AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ;  (4)    

transient_response_1 :  

  assert true -> abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ; 

transient_response_2 :  

  assert true ->  
      abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) <   
      CSA_MAX_PITCH_DELTA_STEP ; 

Figure 49 – Contract for Flight Control System 
In the FCS architecture in XFigure 48X, the current of the aircraft pitch is sensed using the air data 
system.  The air data system is replicated, so there are inputs for the left and right air data system 
(AD_L and AD_R).  The assumptions for the FCS describe constraints on the sensed pitch 
values, both in terms of their rate of change (AD_L_Pitch_Step_Delta_Valid and 
AD_R_Pitch_Step_Delta_Valid) and also the discrepancy between the left and right AD values 
(Pitch_lr_ok).   Finally, we make an assumption about simultaneous failures: the assumption 
some_fgs_active states that it is not the case that both sides have failed simultaneously.  The 
guarantees of the contract have already been discussed. 

A fragment of the grammar for AGREE is shown in XFigure 50 X.  The grammar is formatted in 
EBNF form and is parsable by the ANTLR tool.  The grammar supports the entire LTL temporal 
logic fragment of PSLF

1
F.  

                                                 
1 If an invariant-based model checker is used, liveness operators (F, U) will be interpreted optimistically over finite 
paths [51].   



122 

spec_stmt 

 : (ID ':')? 'assume' expr ';'  

 | (ID ':')? 'assert' expr ';'  

 | 'property' ID '=' expr ';'   

 | 'const' ID ':' type '=' expr ';'  

 | 'eq' ID ':' type '=' expr ';' 

 | 'parameter' ID ':' type ';' 

 | 'fun' ID '(' arg (',' arg)* ')' ':' type '=' expr ';' 

 ;  

facts : pattern_instance*; 

pattern_instance : 'pattern_instance' ID ':' spec_stmt* 

   'end' 'pattern_instance' ID ';' ;  

arg : ID ':' type ;  

expr : arrow_expr ;   

arrow_expr : a=implies_expr ('->' arrow_expr)? ; 

implies_expr : equiv_expr ('=>' b=implies_expr)? ; 

equiv_expr : bin_temporal_op ('<=>' b=bin_temporal_op)? ;  

bin_temporal_op : ( 'U' uny_temporal_op | 'V' uny_temporal_op )* ; 

 

uny_temporal_op  

 : ( 'X' uny_temporal_op 

   | 'G' uny_temporal_op  

   | 'F' uny_temporal_op  

   | 'always' uny_temporal_op  

   | 'never' uny_temporal_op  

   ) 

 | if_then_else_expr ;   

if_then_else_expr  

  : 'if' if_then_else_expr 'then' if_then_else_expr 'else' if_then_else_expr 

  | or_bool_op ;     

or_bool_op : and_bool_op ('or' and_bool_op )* ;  

and_bool_op : not_bool_op ('and' not_bool_op )* ; 

not_bool_op  

  : 'not' not_bool_op; 

  | relational_op;  

relational_op : ... 

Figure 50 – AGREE PSL Fragment 
4.6.3 36BFacts 
For architectural patterns, we want to automatically import and instantiate the verification results 
that were previously proven about the pattern.  In AGREE, we introduce the verification results 
as facts, that is, guarantees about the system that we do not have to prove again.  An example of 
facts for the Leader Select pattern specialized for the FCS system architecture is shown in XFigure 
51 X.  The generic properties that were proven in Section X4.2.1.3X for Leader Select are, at the time 
of pattern application, instantiated over the architectural components in the model that the pattern 
affects.  More specifically, the properties proved were quantified over a “generic” set of 
components.  The generic set is instantiated to match the architectural elements and the 
quantifiers are expanded out of the formulas.   



123 

 
pattern_instance Leader_Select_1 : 

        

  -- sync single-step delay between elements 

  assume single_step_delay_comm(FGS_L, FGS_R);  

  assume single_step_delay_comm(FGS_R, FGS_L);  

        

 -- All non-failed nodes agree on who is the leader 

 leader_agreement:  

    assert (FGS_L.LSO.Valid and FGS_R.LSO.Valid) =>  
      FGS_L.LSO.Leader = FGS_R.LSO.Leader; 

    

 -- If a node fails, leadership is transferred to a non-failed node 

 leader_transfer_1:  

   assert (prev(not(FGS_L.LSO.Valid), false) =>  

    (FGS_R.LSO.Valid =>  
      FGS_R.LSO.Leader != Get_Property(FGS_L, Leader_Select_ID))); 

    

 leader_transfer_2:  

   assert prev(not(FGS_R.LSO.Valid), false) =>  

     (FGS_L.LSO.Valid =>  
        FGS_L.LSO.Leader != Get_Property(FGS_R, Leader_Select_ID)); 

    

  -- If any non-failed nodes exist, one of them will be the leader 

  leader_existence:  

   assert (prev(FGS_L.LSO.Valid or FGS_R.LSO.Valid, false)) => 

     (( FGS_L.LSO.Valid => (FGS_L.LSO.Leader >= 1 and FGS_L.LSO.Leader <= 2)) and 
      ( FGS_R.LSO.Valid => (FGS_R.LSO.Leader >= 1 and FGS_R.LSO.Leader <= 2))); 

         

  -- If the leader does not fail, it shall remain the leader.   

  leader_persistence_1: assert 

    (prev(FGS_L.LSO.Valid and  
     FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID), false)) => 

       (FGS_L.LSO.Valid =>  
          FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID)); 

     

  leader_persistence_2: assert 

   (prev(FGS_R.LSO.Valid and  
    FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID), false)) => 

      (FGS_R.LSO.Valid =>  
         FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID));        

end pattern_instance Leader_Select_1 ; 

Figure 51 – Facts for Leader Select implemented in FCS 
Note that facts are “conditional”: it is possible for a pattern to have assumptions about the 
environment in which it is instantiated.  These assumptions must be discharged (like any other 
assumptions) for the guarantees that the pattern provides to hold.  In the case of the FCS, for the 
algorithm to work properly we need an assumption that the components involved in Leader 
Selection communicate synchronously.  This is expressed by:  



124 

  -- sync single-step delay between elements 
  assume single_step_delay_comm(FGS_L, FGS_R);  
  assume single_step_delay_comm(FGS_R, FGS_L);  
 

In this example, this assumption can be discharged through our use of the PALS pattern, but this 
is not yet integrated into the AGREE tool.  The goal is to build what we call an evidence graph 
that describes all remaining assumptions that have not been discharged by proof.  This would 
allow patterns to discharge assumptions of other patterns, and display to the user a ledger that 
describes any outstanding proof obligations.   
4.6.4 37BThe Proof Process 
The proof system uses induction over time to ensure that conclusions derived from analysis of a 
component soundly follow from system assumptions, guarantees provided by sub-components, 
and pattern guarantees (facts).   The justification of the reasoning process is similar to the one 
provided by McMillan X[53]X.    

The AGREE tool examines the data dependencies associated with system components and builds 
a series of proof obligations based on these dependencies.  For example, in the FCS architecture, 
the dependencies are shown in XFigure 52X. In this case, the system inputs feed the flight guidance 
systems, which feed the autopilot, which ultimately feeds the CSA output. 

 
Figure 52 – Architecture Data Dependencies 

 

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]     

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL



125 

Based on the data dependencies, we establish a series of proof obligations.  The dependencies 
discovered provide an ordering principle by which we can construct the proof obligations.  
Intuitively, any component “later” in the order can use guarantees from “earlier” components 
within the order and also the system assumptions.  In our example, this means that five proof 
obligations are created: 

 The FCS system assumptions ⇒ the FGS_L component assumptions 

 The FCS system assumptions ⇒ the FGS_R component assumptions 

 The FCS system assumptions ⇒ the FCI component assumptions 

 The FCS system assumptions and the FGS_L and FGS_R component guarantees ⇒ the 
AP component assumptions 

 The FCS system assumptions, the FGS_L and FGS_R component guarantees and AP 
component guarantees ⇒ the FCS system guarantees. 

The formal system justifies the soundness of the approach.  Note that the FGS_L and FGS_R 
systems communicate back and forth.  In our example, it was not necessary to account for these 
circular communications within the proof.  However, many times it is necessary to reason about 
circular communications, which if handled naïvely can lead to unsoundness in the proof system.  
In these cases, the apparent circularity in reasoning can be broken by using induction over time.  
That is, if we have two circular components {A, B} and we use the guarantees provided by B in 
the current time step to prove the assumptions of A, then we can only use the guarantees of A in 
the previous time step to establish the assumptions of B.  To support this style of reasoning, the 
tool allows the user to specify how to break the cycle between components to support inductive 
reasoning. 

To prove the system guarantee, the component guarantees, taken together, must be sufficiently 
strong to establish it.  This means for the FCS example, we must allocate functionality to the 
flight guidance systems and the autopilot.  The contracts for these components are shown in 
XFigure 53X and XFigure 54X. 



126 

  parameter Leader_Select_ID : int ; 

 
  property this_side_in_control = 

   GC.mds.active; 

 
  property active_implies_valid = 

    this_side_in_control => LSO.Valid ; 

 
  property leader_implies_active = 

    (LSO.Leader = Leader_Select_ID) => GC.mds.active ; 

 

  const GC_MAX_PITCH_DELTA_STEP: real = 1.0 ; 

  const GC_MAX_PITCH_DELTA: real = 5.0 ; 

 
  property gc_ok =(true ->  
    (abs(GC.cmds.pitch_delta - prev(GC.cmds.pitch_delta, 0.0)) <  
     GC_MAX_PITCH_DELTA_STEP)) and 

    (abs(GC.cmds.pitch_delta) < GC_MAX_PITCH_DELTA); 

 

  assert active_implies_valid ; 

  assert leader_implies_active ; 

  assert LSO.Valid = AD.pitch.valid ; 

 

  this_side_control_correct: assert 

    this_side_in_control => gc_ok ; 

 

  assert this_side_in_control => AD.Pitch.Val = GC.cmds.pitch_delta ; 

Figure 53 – FGS contract 
const CSA_MAX_PITCH_DELTA: real = 5.0 ;  

const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ;  

 

eq leader_pitch_delta : real =  

   if (GC_L.mds.active) then GC_L.cmds.Pitch_Delta 

   else if (GC_R.mds.active) then GC_R.cmds.Pitch_Delta 

   else (prev(leader_pitch_delta, 0.0)) ; 

   

-- assertion just defines CSA pitch delta in terms of the leader pitch delta. 
assert (leader_pitch_delta > 0.0 => (CSA.CSA_Pitch_Delta > 0.0 and  
        CSA.CSA_Pitch_Delta <= leader_pitch_delta)) and 
       (leader_pitch_delta <= 0.0 => (CSA.CSA_Pitch_Delta <= 0.0 and  
        CSA.CSA_Pitch_Delta >= leader_pitch_delta)) ;   

Figure 54 – AP Contract 
4.6.5 38BThe AGREE Tool 
The AGREE tool is implemented as a plug-in in the Eclipse environment.  It uses the property 
set PSL_Properties to add support for compositional reasoning to AADL models using custom 
AADL properties.  The PSL_Properties property set is defined as follows:  

 



127 

property set PSL_Properties is 
  Contract: aadlstring applies to (system, process, thread); 
  Facts: aadlstring applies to (system, process, thread); 
end PSL_Properties; 

 

That is, it supports contracts and facts on systems, processes, and threads specified as AADL 
strings.  Verification of AADL models is performed through the translation of the AADL 
structure and subcomponent assumptions and guarantees into a form suitable for model 
checking.  Currently the KIND model checker is supported, but it would be straightforward to 
add support for additional model checkers and theorem provers.  

In our initial implementation, subcomponents are assumed to operate synchronously with a one-
step communication delay between connected subcomponents. This makes the analysis tractable 
and creates a sound approximation of the behavior of the system.  Any error found during 
verification corresponds to an error in the actual system. The approximation is complete in the 
case of synchronous systems (e.g. systems using the PALS pattern), and incomplete in the 
general case. Incompleteness means that the absence of verification errors does not ensure that 
the system is correct.  

To execute the AGREE tool, we open the AAXL file of a system which we would like to verify, 
select the system implementation, and choose “Verify with Kind,” as shown in XFigure 55X.  This 
will cause the plug in to examine the data dependencies of the model, construct proof 
obligations, and submit them to the Kind model checker.  The results are shown in XFigure 56X. 

 



128 

 
Figure 55 – AGREE Plug-In 

 
Figure 56 – Verification Results 

Note that the final proof failed: the system-level guarantee was not provable using the facts from 
leader selection and the component level guarantees.  This is something that needs to be fixed, so 
we can click on the link to see a counterexample, which is a test case that demonstrates a case in 



129 

which the component guarantees were satisfied but the system property was not satisfied.  The 
counterexample to this property is shown in XFigure 57X. 

 
Figure 57 – Counterexample 

If we examine the counterexample, what we see is that the left and right sides have a “ping-
pong” failure where the left side is valid for one step, then the right side, then the left side, etc.  
Although the leader select algorithm is working as intended, when the autopilot is unsure of 
which side is the leader, it holds its previous value until it is able to establish one side as the 
leader.  In this case, it does not “trust” either side until it has been active for two consecutive 
steps.  In this case, because there was a significant delay since the last “trusted” value, there is a 
large output transient that is generated. 

We decide that this “ping-pong” failure is not a reasonable operating environment for the system, 
and add additional assumptions to the model that state that if a component is becomes valid, then 
it will stay valid for at least two steps.  After adding the assumption, we prove the property, as 
shown in XFigure 58X.     

 



130 

 
Figure 58 – Final Proof Result 

 



131 

5.0 1BCONCLUSIONS 
The impact of this project is illustrated in XFigure 59X.  The traditional development process is 
often pictured as a ‘V’ with design steps proceeding down the left side and verification or testing 
steps proceeding up the right side.  Verification failure at any step leads to rework to identify and 
correct the error, with the consequence of failure growing larger the later in the process it occurs.     

  
Figure 59 – Impact of correct-by-construction development process 

The work described here provides improvements on both sides of the ‘V’.  First and most 
important, the use of verified system design patterns that integrate components having verified 
properties yields system models at each level of refinement that are correct by construction.  
These patterns and component models are drawn from a library that specifies, in addition to their 
functionality, the properties that they guarantee and the constraints under which they may be 
used.  Note that this is not so much about software or model reuse, as it is about verification 
reuse.  As a result of this correct-by-construction process, the resulting implementation can be 
expected to operate as specified.  A confirmatory system-level test should be run prior to 
delivery, but no errors should be found and the entire right side of the ‘V’ should be greatly 
reduced.   

The left side of the ‘V’ is improved as well.  The use of a standard collection of domain-relevant 
models along with automated software tools for handling composition and analysis speeds the 
design process.  Complexity-reducing design patterns result in designs that are simpler to 
manage and understand.  The resulting process is a “half-V” or “backslash” development 
process.   

PATTERN
& COMP.
LIBRARY

REWORK

REWORK

REWORK

TRADITIONAL DEVELOPMENT PROCESS
DESIGN BUILD TEST REDESIGN

CORRECT-BY-CONSTRUCTION PROCESS
SUPPORTS ACCELERATED SCHEDULE

DESIGN 

VERIFIC
ATIO

N 

REQUIREMENTS

IMPLEMENTATION

DESIG
N W

ITH VERIFICATIO
N 

DELIVERY



132 

6.0 2BREFERENCES 

Design Problems 
[1] AFE #58 Summary Final Report, System Architecture Virtual Integration (SAVI) 

Program, Aerospace Vehicles Systems Institute, SAVI-58-00-001, October 8, 2009. 

[2] Allan, N. S., “A Practical Reliability Evaluation of Embedded Avionic Software,” 
Proceedings of the 1987 IEEE Southern Tier Technical Conference, pp. 238-243, April 29, 
1987. HUhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=716399UH. 

[3] Boehm, Barry,  Ricardo Valerdi, Jo Ann Lane and A. Winsor Brown., “COCOMO Suite 
Methodology and Evolution,” Cross Talk, The Journal of Defense Software Engineering, 
April, 2005, p.20-25. 

[4] Bradford, R., Interview with Principal Software Engineer, Rockwell Collins Commercial 
Systems, October 25, 2010. 

[5] Bradford, R., Teleconference with Rockwell Collins Enterprise Architects, October 25, 
2010. 

[6] Bradford, R., Interview with Senior Systems Engineer, Rockwell Collins Commercial 
Systems, October 26, 2010. 

[7] Burchell, Bill, “Untangling No Fault Found,” Aviation Week & Space Technology, 
February 9, 2007. 
HUhttp://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207
cvr.xml UH. 

[8] Burns, Stephanie, Chris Hansen, and Steve Maher, “Clean Sheet Designs Root Cause 
Analysis,”  Rockwell Collins Inc. Presentation, December 18, 2009 

[9] Burns, Stephanie, Chris Hansen., and Steve Maher, “Common Themes for Clean Sheet 
Designs,” Rockwell Collins Inc. Presentation. 

[10] Burns, Stephanie, Chris Hansen., and Steve Maher, “Analysis of Complex System 
Development Efforts,” Rockwell Collins Inc. Presentation. 

[11] Dabney, J. B. and K. Costello, “Return on Investment for Software IV&V,” Third Annual 
NASA project Management Conference, March 2006. 

[12] Helton, S. B., J. Hansson, and D.A. Redman, “SAVI ROI Analysis,” produced under the 
System Architecture Virtual Integration (SAVI) Proof-Of-Concept Program AFE #58, 
proprietary document of the Aerospace Vehicles Systems Institute, SAVI-58-03-004, 
August 24, 2009. 

[13] Hooks, I. and K. Farry, “Customer Centered Products: Creating Successful Products 
Through Smart Requirements Management,” AMACOM American Management 
Association, New York, New York, 2001. 

[14] King, T. and J. Marasco, “What is the Cost of a Requirements Error?” 
HUhttp://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetailUH. 

[15] Lempia, David L. and Steven P. Miller. Requirements Engineering Management 
Handbook, FAA Contractor Report AR-08-32, June 2009. 



133 

[16] Miller, Steven P., Darren D. Cofer, Lui Sha, Jose Meseguer, and Abdullah Al-Nayeem, 
“Implementing Logical Synchrony in Integrated Modular Avionics,” 28th Digital Avionics 
Systems Conference (DASC 2009), Orlando, Florida, Oct 25-29, 2009. 

[17] The Economic Impacts of Inadequate Infrastructure for Software Testing, NIST Planning 
Report 02-3, May 2002. 

[18] Potocki De Montalk, J.P., “Computer Software in Civil Aircraft,” Sixth Annual 
Conference on Computer Assurance (COMPASS ’91), Gaithersburg, MD, June 24-27, 
1991. 

Design Flow 
[19] IEEE Std 1850-2005, IEEE Standard for Property Specification Language (PSL). 

[20] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 
126:183–235, 1994. 

[21] E. Clarke, O. Grumberg, and P. Peled, Model Checking, The MIT Press, Cambridge, 
Massachusetts, 2001. 

[22] O. Gilles, J. Hugues, Expressing and Enforcing User-Defined Constraints of AADL 
Models, Engineering of Complex Computer Systems (ICECCS), pp.337-342, March 22-26, 
2010.  

[23] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs with SMT-
based techniques. In Proceedings of the 8th International Conference on Formal Methods 
in Computer-Aided Design (FMCAD'08), Portland, Oregon. IEEE, 2008. 

[24] T. Henzinger, The Theory of Hybrid Automata, Verification of Digital and Hybrid Systems 
(M.K. Inan, R.P. Kurshan, eds.), NATO ASI Series F: Computer and Systems Sciences, 
Vol. 170, Springer-Verlag, 2000, pp. 265-292. 

[25] M. Kaufmann, P. Manolios, and J.S. Moore, HUComputer-Aided Reasoning: An ApproachUH, 
Kluwer Academic Publishers, June, 2000. (ISBN 0-7923-7744-3). 

[26] H. Kopetz.  The Time-Triggered Architecture, Proceedings of the IEEE, 91(1), January, 
2003. 

[27] N. A. Lynch and F. W. Vaandrager. Action Transducers and Timed Automata. Formal 
Aspects of Computing, 8(5):499–538, 1996. 

[28] S. Miller, D. Cofer, L. Sha, A. Al-nayeem, Implementing Logical Synchrony in Integrated 
Modular Avionics, Proceedings of the 28th Digital Avionics Systems Conference, 2009. 

[29] X. Nicollin and J. Sifakis. The Algebra of Timed Processes, ATP: Theory and Application. 
Information and Computation, 114(1):131–178, 1994. 

[30] IRST, HUhttp://nusmv.irst.itc.it/UH The NuSMV Model Checker, IRST, Trento Italy. 

[31] L. Sha, A. Al-nayeem, M. Sun, J. Meseguer, P. Ãlveczky and W.M.Y. Nam and P. Feiler, 
PALS: Physically Asynchronous Logically Synchronous Systems, University of Illinois 
Urbana Champaign Technical Report, 2009 (HUhttp://hdl.handle.net/2142/11897UH). 

[32] S. Schneider. Concurrent and Real-time Systems. John Wiley and Sons, 2000. 



134 

[33] SRI International, HUhttp://pvs.csl.sri.comUH , The PVS Specification and Verification System, 
SRI International.   

[34] SRI, SAL Home Page, HUhttp://www.csl.sri.com/projects/sal/UH. 

[35] University of Iowa, KIND Home Page, HUhttp://clc.cs.uiowa.edu/Kind/UH. 

[36] W. Yi, CCS + Time = An Interleaving Model for Real Time Systems. In 18th International 
Colloquium on Automata, Languages and Programming (ICALP), volume 510 of Lecture 
Notes in Computer Science, pages 217–228. Springer, 1991. 

Pattern Verification 
[37] G. Brown and L. Pike, HU"Easy" parameterized verification of cross clock domain protocolsUH. 

In Designing Correct Circuits (DCC'06) (Participants' Proceedings), 2006.  

[38] G. Brown and L. Pike. HUEasy parameterized verification of biphase and 8N1 protocolsUH. In 
12th International Conference on Tools and Algorithms for the Construction and Analysis 
of Algorithms (TACAS'06), volume 3920 of LNCS, pages 58--72, 2006. Springer. 

[39] J. Dabney and T. Harmon, Mastering Simulink, Pearson Prentice Hall: Upper Saddle River, 
NJ, 2004. 

[40] C. Eisner and D. Fisman, A Practical Introduction to PSL.  Springer Verlag, 2006. 

[41] O. Gilles and J. Hugues. Validating requirements at model-level. Proceedings of the 4th 
workshop on Model-Oriented Engineering (IDM'08), June 2008. 

[42] K. Havelund and T. Pressburger, Model Checking JAVA Programs using Java Pathfinder, 
International Journal on Software Tools for Technology Transfer (STTT), Springer Verlag, 
2000. 

[43] IRST: HUhttp://nusmv.irst.itc.it/UH The NuSMV Model Checker, IRST, Trento Italy 

[44] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical 
Computer Science 96 (1992) 73-155. 

[45] J. Meseguer and P. C. Ölveczky. 2010. Formalization and correctness of the PALS 
architectural pattern for distributed real-time systems.  In Proceedings of the 12th 
international conference on Formal engineering methods and software engineering 
(ICFEM'10), Jin Song Dong and Huibiao Zhu (Eds.). Springer-Verlag, Berlin, Heidelberg,  
303-320. (HUwww.ideals.illinois.edu/handle/2142/17089UH) 

[46] P.C. Ölveczky, J. Meseguer, Semantics and pragmatics of Real-Time Maude, Higher-
Order and Symbolic Computation 20 (2007) 161-196. 

[47] S. Miller et. al, Implementing Logical Synchrony in Integrated Modular Avionics, Digital 
Avionics System Conference (DASC), December 2009, IEEE Press. 

[48] Min-Young Nam;   Pellizzoni, R.;   Lui Sha;   Bradford, R.M., ASIIST: Application 
Specific I/O Integration Support Tool for Real-Time Bus Architecture Designs, 2009 14th 
IEEE International Conference on Engineering of Complex Computer Systems, June 2009. 

[49] SRI International: HUhttp://sal.csl.sri.com UH The Symbolic Analysis Laboratory, SRI 
International 



135 

[50] L. Sha, A. Abdullah, M. Sun, J. Meseguer, P. Olveczky, PALS: Physically Asynchronous 
Logically Synchronous Systems, May, 2009 (HUwww.ideals.illinois.edu/handle/2142/11897UH). 

Pattern Verification 
[51] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campenhout.  

Reasoning with Temporal Logic on Truncated Paths, in Proceedings of Computer Aided 
Verification (CAV) 2003, pp. 27-39, 2003. 

[52] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.  The Synchronous Dataflow 
Programming Language Lustre.  In Proceedings of the IEEE, Volume 79, #9, pp. 1305-20, 
September 1991. 

[53] K. McMillan.  Circular Compositional Reasoning about Liveness, Technical Report 1999-
02, Cadence Berkeley Labs, Berkeley, CA 94709, 1999.  



136 

APPENDIX A  AADL MODELS OF AVIONICS SYSTEM 
A.1 Complete Avionics System (TOP) 
package TOP 
public 
 
  with AS; 
  with IMA; 
   
  system Complete_Avionics_System 
  end Complete_Avionics_System; 
   
  system implementation Complete_Avionics_System.      
     Complete_Avionics_System_Impl 
    subcomponents 
      SW: system AS::Avionics_System.Avionics_System_Impl; 
      HW: system IMA::IMA_Platform.IMA_Platform_Impl; 
     
    properties 
      Actual_Connection_Binding =>  
  (reference (HW.IMA_Bus)) applies to SW.FCS.FGSRtoFGSL; 
      Actual_Connection_Binding =>  
  (reference (HW.IMA_Bus)) applies to SW.FCS.FGSLtoFGSR; 
      Actual_Processor_Binding =>  
  (reference (HW.B.PRC)) applies to SW.FCS.FGS_R; 
      Actual_Processor_Binding =>  
  (reference (HW.A.PRC)) applies to SW.FCS.FGS_L; 
 
  end Complete_Avionics_System.Complete_Avionics_System_Impl; 
   
end TOP; 
 
A.2 Avionics System (AS) 
package AS 
public 
  with CSA, YOKE, THROTTLE, FCS, PFD, ADS, AHS, FMS, NAV; 
   
  system Avionics_System 
  end Avionics_System; 
   
  system implementation Avionics_System.Avionics_System_Impl 
    subcomponents 
      CSA: device CSA::Control_Surface_Actuators; 
      YOKE_R: device YOKE::Yoke; 
      THROT_L: device THROTTLE::Throttle; 
      YOKE_L: device YOKE::Yoke; 
      THROT_R: device THROTTLE::Throttle; 
      FCS: system  
  FCS::Flight_Control_System.Flight_Control_System_Impl; 
      PFD_L: system  
  PFD::Primary_Flight_Display.Primary_Flight_Display_Impl; 
      ADS_L: system  
  ADS::Air_Data_System.Air_Data_System_Impl; 
      AHS_L: system  



137 

  AHS::Attitude_Heading_System.Attitude_Heading_System_Impl; 
      FMS_L: system           
 FMS::Flight_Management_System.Flight_Management_System_Impl; 
      NAV_L: system  
  NAV::Navigation_System.Navigation_System_Impl; 
      PFD_R: system           
 PFD::Primary_Flight_Display.Primary_Flight_Display_Impl; 
      ADS_R: system  
  ADS::Air_Data_System.Air_Data_System_Impl; 
      AHS_R: system           
 AHS::Attitude_Heading_System.Attitude_Heading_System_Impl; 
      FMS_R: system           
 FMS::Flight_Management_System.Flight_Management_System_Impl; 
      NAV_R: system  
  NAV::Navigation_System.Navigation_System_Impl; 
    connections 
      FCS2PFDL: port FCS.FD_L -> PFD_L.FD; 
      AHSL2FCS: port AHS_L.AH -> FCS.AH_L; 
      ADSL2FCS: port ADS_L.AD -> FCS.AD_L; 
      FMSL2FCS: port FMS_L.FM -> FCS.FM_L; 
      NAVL2FCS: port NAV_L.NAV -> FCS.NAV_L; 
      THROTL2FCS: port THROT_L.THROT -> FCS.THROT_L; 
      YOKEL2FCS: port YOKE_L.YOKE -> FCS.YOKE_L; 
      FCS2PFDR: port FCS.FD_R -> PFD_R.FD; 
      ADSR2FCS: port ADS_R.AD -> FCS.AD_R; 
      AHSR2FCS: port AHS_R.AH -> FCS.AH_R; 
      FMSR2FCS: port FMS_R.FM -> FCS.FM_R; 
      NAVR2FCS: port NAV_R.NAV -> FCS.NAV_R; 
      THROTR2FCS: port THROT_R.THROT -> FCS.THROT_R; 
      YOKER2FCS: port YOKE_R.YOKE -> FCS.YOKE_R; 
      FCS2CSA: port FCS.CSA -> CSA.CMD; 
  end Avionics_System.Avionics_System_Impl; 
end AS; 
 

A.3 Flight Control System (FCS) 
package FCS 
public 
 
  with FGS, ADS, AHS, FMS, NAV, THROTTLE, YOKE, APS, FCI, META_Properties; 
   
  system Flight_Control_System 
    features 
      FD_L: out data port FGS::Guidance_Data; 
      AD_L: in data port ADS::Air_Data; 
      FD_R: out data port FGS::Guidance_Data; 
      AD_R: in data port ADS::Air_Data; 
      AH_L: in data port AHS::Attitude_Heading_Data; 
      AH_R: in data port AHS::Attitude_Heading_Data; 
      FM_L: in data port FMS::Flight_Management_Data; 
      FM_R: in data port FMS::Flight_Management_Data; 
      NAV_L: in data port NAV::Navigation_Data; 
      NAV_R: in data port NAV::Navigation_Data; 
      THROT_L: in data port THROTTLE::Throttle_Data; 
      THROT_R: in data port THROTTLE::Throttle_Data; 
      YOKE_L: in data port YOKE::Yoke_Data; 
      YOKE_R: in data port YOKE::Yoke_Data; 



138 

      CSA: out data port APS::Control_Surface_Actuator_Data; 
     
  end Flight_Control_System; 
   
  system implementation Flight_Control_System.Flight_Control_System_Impl 
    subcomponents 
      AP: system APS::Autopilot_System.Autopilot_System_Impl; 
      FCI: system FCI::Flight_Crew_Interface.Flight_Crew_Interface_Impl; 
      FGS_L: system           
 FGS::Flight_Guidance_System.Flight_Guidance_System_Impl; 
      FGS_R: system           
 FGS::Flight_Guidance_System.Flight_Guidance_System_Impl; 
     
    connections 
      FGSLtoAP: port FGS_L.GC -> AP.GC_L; 
      FGSRtoAP: port FGS_R.GC -> AP.GC_R; 
      AP2CSA: port AP.CSA -> CSA; 
      THROTR2FCI: port THROT_R -> FCI.THROT_R; 
      YOKEL2FCI: port YOKE_L -> FCI.YOKE_L; 
      YOKER2FCI: port YOKE_R -> FCI.YOKE_R; 
      FCItoFGSL: port FCI.FCI -> FGS_L.FCI; 
      FCItoFGSR: port FCI.FCI -> FGS_R.FCI; 
      THROTL2FCI: port THROT_L -> FCI.THROT_L; 
      ADLtoFGSL: port AD_L -> FGS_L.AD; 
      AHLtoFGSL: port AH_L -> FGS_L.AH; 
      FMLtoFGSL: port FM_L -> FGS_L.VNAV; 
      NAVLtoFGSL: port NAV_L -> FGS_L.NAV; 
      FGSRtoFGSL: port FGS_R.LSD -> FGS_L.LSI; 
      FGSLtoFDL: port FGS_L.GC -> FD_L; 
      FGSLtoFGSR: port FGS_L.LSD -> FGS_R.LSI ; 
      AHRtoFGSR: port AH_R -> FGS_R.AH; 
      FMRtoFGSR: port FM_R -> FGS_R.VNAV; 
      NAVRtoFGSR: port NAV_R -> FGS_R.NAV; 
      FGSRtoFDR: port FGS_R.GC -> FD_R; 
      ADRtoFGSR: port AD_R -> FGS_R.AD; 
 
    properties 
      Latency => 5 ms .. 8 ms applies to FGSLtoFGSR; 
      Latency => 5 ms .. 8 ms applies to FGSRtoFGSL; 
      META_Properties::Not_Collocated =>  
  (reference (FGS_L)) applies to FGS_R; 
      META_Properties::Not_Collocated =>  
  (reference (FGS_R)) applies to FGS_L; 
 
  end Flight_Control_System.Flight_Control_System_Impl; 
   
end FCS; 
 
A.4 Flight Guidance System (FGS) 
package FGS 
public 
 
  with FMS, ADS, AHS, NAV, FCI, LDS, TYPES, IMA; 
  with META_Properties, PALS_Properties; 
   



139 

  data Capture_Conditions 
  end Capture_Conditions; 
   
  data Flight_Modes 
  end Flight_Modes; 
   
  data Guidance_Commands 
  end Guidance_Commands; 
   
  data Guidance_Data 
  end Guidance_Data; 
   
  data Lateral_Modes 
  end Lateral_Modes; 
   
  data Vertical_Modes 
  end Vertical_Modes; 
   
  process Flight_Guidance_Process 
    features 
      VNAV: in data port FMS::Flight_Management_Data; 
      AD: in data port ADS::Air_Data; 
      AH: in data port AHS::Attitude_Heading_Data; 
      NAV: in data port NAV::Navigation_Data; 
      FCI: in data port FCI::Flight_Crew_Interface_Data; 
      LSI: in data port LDS::Leader_Selection_Data; 
      LSO: out data port LDS::Leader_Selection_Data; 
      GC: out data port Guidance_Data;  
  end Flight_Guidance_Process; 
   
  system Flight_Guidance_System 
    features 
      FCI: in data port FCI::Flight_Crew_Interface_Data; 
      AD: in data port ADS::Air_Data; 
      AH: in data port AHS::Attitude_Heading_Data; 
      VNAV: in data port FMS::Flight_Management_Data; 
      NAV: in data port NAV::Navigation_Data; 
      GC: out data port Guidance_Data; 
      LSD: out data port LDS::Leader_Selection_Data; 
      LSI: in data port LDS::Leader_Selection_Data; 
  end Flight_Guidance_System; 
   
thread Control_Laws 
    features 
      AH: in data port AHS::Attitude_Heading_Data; 
      AD: in data port ADS::Air_Data; 
      VNAV: in data port FMS::Flight_Management_Data; 
      NAV: in data port NAV::Navigation_Data; 
      CC: out data port Capture_Conditions; 
      MD: in data port Flight_Modes; 
      GC: out data port Guidance_Data;  
  end Control_Laws; 
   
  thread Mode_Logic 
    features 
      LSR: out data port LDS::Leader_Selection_Rank; 
      LSA: in data port LDS::Leader_Selection_Active; 



140 

      FCI: in data port FCI::Flight_Crew_Interface_Data; 
      CC: in data port Capture_Conditions; 
      MD: out data port Flight_Modes; 
  end Mode_Logic; 
   
  data implementation Flight_Modes.Flight_Modes_Impl 
    subcomponents 
      active: data TYPES::Boolean; 
      lat: data Lateral_Modes.Lateral_Modes_Impl; 
      ver: data Vertical_Modes.Vertical_Modes_Impl;  
  end Flight_Modes.Flight_Modes_Impl; 
   
  data implementation Guidance_Commands.Guidance_Commands_Impl 
  end Guidance_Commands.Guidance_Commands_Impl; 
   
  data implementation Guidance_Data.Guidance_Data_Impl 
    subcomponents 
      mds: data Flight_Modes.Flight_Modes_Impl; 
      cmds: data Guidance_Commands.Guidance_Commands_Impl; 
  end Guidance_Data.Guidance_Data_Impl; 
   
  data implementation Lateral_Modes.Lateral_Modes_Impl 
    subcomponents 
      ROLL_active: data TYPES::Boolean; 
      HDG_active: data TYPES::Boolean;   
  end Lateral_Modes.Lateral_Modes_Impl; 
   
  data implementation Vertical_Modes.Vertical_Modes_Impl 
  end Vertical_Modes.Vertical_Modes_Impl; 
     
process implementation  Flight_Guidance_Process.Flight_Guidance_Process_Impl 
    subcomponents 
      LS: thread LDS::Leader_Selection.Leader_Selection_Impl  
  { Deadline => 20 ms in binding (IMA::PowerPC_350Mhz); 
           Deadline => 30 ms in binding (IMA::PowerPC_250Mhz); 
           META_Properties::Output_Delay => 10 ms  
   in binding (IMA::PowerPC_250Mhz); 
           META_Properties::Output_Delay => 7 ms  
   in binding (IMA::PowerPC_350Mhz); 
           PALS_Properties::PALS_Id => "Leader_Selection"; 
           PALS_Properties::PALS_Period => 40 ms; 
           Period => 40 ms; 
       }; 
      ML: thread Mode_Logic.Mode_Logic_Impl; 
      CL: thread Control_Laws.Control_Laws_Impl; 
     
    connections 
      LSItoLS: port LSI -> LS.LSI; 
      LStoLSO: port LS.LSO -> LSO; 
      LStoML: port LS.LSA -> ML.LSA; 
      MLtoLS: port ML.LSR -> LS.LSR; 
      FCItoML: port FCI -> ML.FCI; 
      CCtoML: port CL.CC -> ML.CC; 
      MLtoCL: port ML.MD -> CL.MD; 
      AHtoCL: port AH -> CL.AH; 
      ADtoCL: port AD -> CL.AD; 
      VNAVtoCL: port VNAV -> CL.VNAV; 



141 

      NAVtoCL: port NAV -> CL.NAV; 
      CLtoGC: port CL.GC -> GC; 
  end Flight_Guidance_Process.Flight_Guidance_Process_Impl; 
   
  system implementation Flight_Guidance_System.Flight_Guidance_System_Impl 
    subcomponents 
      FGP: process Flight_Guidance_Process.Flight_Guidance_Process_Impl; 
 
    connections 
      VNAVtoFGP: port VNAV -> FGP.VNAV; 
      ADtoFGP: port AD -> FGP.AD; 
      AHtoFGP: port AH -> FGP.AH; 
      NAVtoFGP: port NAV -> FGP.NAV; 
      FCItoFGP: port FCI -> FGP.FCI; 
      LSItoFGP: port LSI -> FGP.LSI; 
      FGPtoLSO: port FGP.LSO -> LSD; 
      FGPtoGC: port FGP.GC -> GC; 
  end Flight_Guidance_System.Flight_Guidance_System_Impl; 
   
  thread implementation Control_Laws.Control_Laws_Impl 
  end Control_Laws.Control_Laws_Impl; 
   
  thread implementation Mode_Logic.Mode_Logic_Impl 
  end Mode_Logic.Mode_Logic_Impl; 
   
end FGS; 
 

A.5 Autopilot System (APS) 
package APS 
public 
 
  with FGS; 
   
  data Control_Surface_Actuator_Data 
  end Control_Surface_Actuator_Data; 
   
  process AutoPilot_Process 
    features 
      CSA: out data port Control_Surface_Actuator_Data; 
      GC_L: in data port FGS::Guidance_Data; 
      GC_R: in data port FGS::Guidance_Data; 
     
  end AutoPilot_Process; 
   
  system Autopilot_System 
    features 
      GC_L: in data port FGS::Guidance_Data; 
      GC_R: in data port FGS::Guidance_Data; 
      CSA: out data port Control_Surface_Actuator_Data; 
     
  end Autopilot_System; 
   
  thread Autopilot_Thread 
    features 
      CSA: out data port Control_Surface_Actuator_Data; 
      GC: in data port FGS::Guidance_Data; 



142 

     
  end Autopilot_Thread; 
   
  thread Guidance_Selector 
    features 
      IN1: in data port FGS::Guidance_Data; 
      IN2: in data port FGS::Guidance_Data; 
      OUTPUT: out data port FGS::Guidance_Data; 
     
  end Guidance_Selector; 
   
  process implementation AutoPilot_Process.Autopilot_Process_Impl 
    subcomponents 
      SELT: thread Guidance_Selector.Guidance_Selector_Impl; 
      APT: thread Autopilot_Thread.Autopilot_Thread_Impl; 
     
    connections 
      GCLtoSELT: port GC_L -> SELT.IN1; 
      GCRtoSELT: port GC_R -> SELT.IN2; 
      SELTtoAPT: port SELT.OUTPUT -> APT.GC; 
      APT2CSA: port APT.CSA -> CSA; 
  end AutoPilot_Process.Autopilot_Process_Impl; 
     
  system implementation Autopilot_System.Autopilot_System_Impl 
    subcomponents 
      APP: process AutoPilot_Process.Autopilot_Process_Impl; 
     
    connections 
      APP2CSA: port APP.CSA -> CSA; 
      GCL2APP: port GC_L -> APP.GC_L; 
      GCR2APP: port GC_R -> APP.GC_R; 
  end Autopilot_System.Autopilot_System_Impl; 
   
  thread implementation Autopilot_Thread.Autopilot_Thread_Impl 
  end Autopilot_Thread.Autopilot_Thread_Impl; 
   
  thread implementation Guidance_Selector.Guidance_Selector_Impl 
  end Guidance_Selector.Guidance_Selector_Impl; 
   
end APS; 
 

A.6 Flight Control Interface (FCI) 
package FCI 
public 
 
  with THROTTLE; 
  with YOKE; 
   
  data Flight_Crew_Interface_Data 
  end Flight_Crew_Interface_Data; 
   
  process Flight_Crew_Interface_Process 
    features 
      THROT_L: in data port THROTTLE::Throttle_Data; 
      THROT_R: in data port THROTTLE::Throttle_Data; 
      YOKE_L: in data port YOKE::Yoke_Data; 



143 

      YOKE_R: in data port YOKE::Yoke_Data; 
      FCI: out data port Flight_Crew_Interface_Data; 
  end Flight_Crew_Interface_Process; 
   
  system Flight_Crew_Interface 
    features 
      THROT_L: in data port THROTTLE::Throttle_Data; 
      THROT_R: in data port THROTTLE::Throttle_Data; 
      YOKE_L: in data port YOKE::Yoke_Data; 
      YOKE_R: in data port YOKE::Yoke_Data; 
      FCI: out data port Flight_Crew_Interface_Data; 
  end Flight_Crew_Interface; 
   
  thread Flight_Crew_Interface_Thread 
    features 
      YOKE_L: in data port YOKE::Yoke_Data; 
      YOKE_R: in data port YOKE::Yoke_Data; 
      THROT_L: in data port THROTTLE::Throttle_Data; 
      THROT_R: in data port THROTTLE::Throttle_Data; 
      FCI: out data port Flight_Crew_Interface_Data; 
  end Flight_Crew_Interface_Thread; 
   
  process implementation 
 Flight_Crew_Interface_Process.Flight_Crew_Interface_Process_Impl 
    subcomponents 
      FCIT: thread          
 Flight_Crew_Interface_Thread.Flight_Control_Interface_Thread_Impl; 
     
    connections 
      YOKEL2FCIT: port YOKE_L -> FCIT.YOKE_L; 
      YOKER2FCIT: port YOKE_R -> FCIT.YOKE_R; 
      THROTL2FCIT: port THROT_L -> FCIT.THROT_L; 
      THROTR2FCIT: port THROT_R -> FCIT.THROT_R; 
      FCIT2FCI: port FCIT.FCI -> FCI; 
  end Flight_Crew_Interface_Process.Flight_Crew_Interface_Process_Impl; 
 
  system implementation Flight_Crew_Interface.Flight_Crew_Interface_Impl 
    subcomponents 
      FCIP: process 
 Flight_Crew_Interface_Process.Flight_Crew_Interface_Process_Impl; 
     
    connections 
      THROTL2FCIP: port THROT_L -> FCIP.THROT_L; 
      THROTR2FCIP: port THROT_R -> FCIP.THROT_R; 
      YOKEL2FCIP: port YOKE_L -> FCIP.YOKE_L; 
      YOKER2FCIP: port YOKE_R -> FCIP.YOKE_R; 
      FCIP2FCI: port FCIP.FCI -> FCI; 
  end Flight_Crew_Interface.Flight_Crew_Interface_Impl; 
   
  thread implementation 
 Flight_Crew_Interface_Thread.Flight_Control_Interface_Thread_Impl 
  end Flight_Crew_Interface_Thread.Flight_Control_Interface_Thread_Impl; 
   
end FCI; 
 



144 

A.7 Control Surface Actuators (CSA) 
package CSA 
public 
 
  with APS; 
   
  device Control_Surface_Actuators 
    features 
      CMD: in data port APS::Control_Surface_Actuator_Data; 
     
  end Control_Surface_Actuators; 
   
end CSA; 
 

A.8 Air Data System (ADS) 
package ADS 
public 
 
  with TYPES; 
   
  data Air_Data 
  end Air_Data; 
   
  data Airspeed 
  end Airspeed; 
   
  device Airspeed_Sensor 
    features 
      AS: out data port Airspeed; 
  end Airspeed_Sensor; 
   
  process Air_Data_Process 
    features 
      AD: out data port Air_Data; 
      AS2: in data port Airspeed; 
      AS3: in data port Airspeed; 
      AS1: in data port Airspeed; 
  end Air_Data_Process; 
   
  system Air_Data_System 
    features 
      AD: out data port Air_Data;  
  end Air_Data_System; 
   
  thread Air_Data_Thread 
    features 
      AD: out data port Air_Data; 
      AS: in data port Airspeed; 
  end Air_Data_Thread; 
   
  thread Airspeed_Voter 
    features 
      IN1: in data port Airspeed; 
      IN2: in data port Airspeed; 
      IN3: in data port Airspeed; 



145 

      OUTPUT: out data port Airspeed; 
  end Airspeed_Voter; 
   
  data implementation Air_Data.Air_Data_Impl 
    subcomponents 
      AirSpeed: data Airspeed.Airspeed_Impl; 
  end Air_Data.Air_Data_Impl; 
   
  data implementation Airspeed.Airspeed_Impl 
    subcomponents 
      Val: data TYPES::Real; 
      Valid: data TYPES::Boolean; 
  end Airspeed.Airspeed_Impl; 
   
  process implementation Air_Data_Process.Air_Data_Process_Impl 
    subcomponents 
      ADT: thread Air_Data_Thread.Air_Data_Thread_Impl; 
      ASVT: thread Airspeed_Voter.Airspeed_Voter_Impl; 
     
    connections 
      ADTtoADP: port ADT.AD -> AD; 
      ASVTtoADT: port ASVT.OUTPUT -> ADT.AS; 
      AS1toASVT: port AS1 -> ASVT.IN1; 
      AS2toASVT: port AS2 -> ASVT.IN2; 
      AS3toASVT: port AS3 -> ASVT.IN3; 
  end Air_Data_Process.Air_Data_Process_Impl; 
   
  system implementation Air_Data_System.Air_Data_System_Impl 
    subcomponents 
      AS1: device Airspeed_Sensor; 
      AS2: device Airspeed_Sensor; 
      AS3: device Airspeed_Sensor; 
      ADP: process Air_Data_Process.Air_Data_Process_Impl; 
     
    connections 
      ADPtoADS: port ADP.AD -> AD; 
      AS3toADP: port AS3.AS -> ADP.AS1; 
      AS2toADP: port AS2.AS -> ADP.AS2; 
      AS1toADP: port AS1.AS -> ADP.AS3; 
  end Air_Data_System.Air_Data_System_Impl; 
   
  thread implementation Air_Data_Thread.Air_Data_Thread_Impl 
  end Air_Data_Thread.Air_Data_Thread_Impl; 
   
  thread implementation Airspeed_Voter.Airspeed_Voter_Impl 
  end Airspeed_Voter.Airspeed_Voter_Impl; 
   
end ADS; 
 
A.9 Attitude Heading System (AHS) 
package AHS 
public 
 
  data Attitude_Heading_Data 
  end Attitude_Heading_Data; 



146 

   
  process Attitude_Heading_Process 
    features 
      AH: out data port Attitude_Heading_Data; 
  end Attitude_Heading_Process; 
   
  system Attitude_Heading_System 
    features 
      AH: out data port Attitude_Heading_Data;  
  end Attitude_Heading_System; 
   
  thread Attitude_Heading_Thread 
    features 
      AH: out data port Attitude_Heading_Data; 
  end Attitude_Heading_Thread; 
   
  process implementation 
 Attitude_Heading_Process.Atttude_Heading_Process_Impl 
    subcomponents 
      AHT: thread Attitude_Heading_Thread.Attitude_Heading_Thread_Impl; 
     
    connections 
      AHTtoAHP: port AHT.AH -> AH; 
  end Attitude_Heading_Process.Atttude_Heading_Process_Impl; 
   
  system implementation 
 Attitude_Heading_System.Attitude_Heading_System_Impl 
    subcomponents 
      AHP: process Attitude_Heading_Process.Atttude_Heading_Process_Impl; 
     
    connections 
      AHPtoAHS: port AHP.AH -> AH; 
  end Attitude_Heading_System.Attitude_Heading_System_Impl; 
   
  thread implementation 
 Attitude_Heading_Thread.Attitude_Heading_Thread_Impl 
  end Attitude_Heading_Thread.Attitude_Heading_Thread_Impl; 
   
end AHS; 
 

A.10 Flight Management System (FMS) 
package FMS 
public 
 
  data Flight_Management_Data 
  end Flight_Management_Data; 
   
  process Flight_Management_Process 
    features 
      FM: out data port Flight_Management_Data; 
  end Flight_Management_Process; 
   
  system Flight_Management_System 
    features 
      FM: out data port Flight_Management_Data; 
  end Flight_Management_System; 



147 

   
  thread Flight_Management_Thread 
    features 
      FlowPort: out data port Flight_Management_Data; 
  end Flight_Management_Thread; 
   
  process implementation 
 Flight_Management_Process.Flight_Management_Process_Impl 
    subcomponents 
      FMT: thread Flight_Management_Thread.Flight_Mangement_Thread_Impl; 
     
    connections 
      FMT2FM: port FMT.FlowPort -> FM; 
  end Flight_Management_Process.Flight_Management_Process_Impl; 
   
  system implementation 
 Flight_Management_System.Flight_Management_System_Impl 
    subcomponents 
      FMP: process           
 Flight_Management_Process.Flight_Management_Process_Impl; 
     
    connections 
      FMP2FM: port FMP.FM -> FM; 
  end Flight_Management_System.Flight_Management_System_Impl; 
   
  thread implementation 
 Flight_Management_Thread.Flight_Mangement_Thread_Impl 
  end Flight_Management_Thread.Flight_Mangement_Thread_Impl; 
   
end FMS; 
 

A.11 Navigation System (NAV) 
package NAV 
public 
 
  data Navigation_Data 
  end Navigation_Data; 
   
  process Navigation_Process 
    features 
      NAV: out data port Navigation_Data; 
  end Navigation_Process; 
   
  system Navigation_System 
    features 
      NAV: out data port Navigation_Data;  
  end Navigation_System; 
   
  thread Navigation_Thread 
    features 
      NAV: out data port Navigation_Data;  
  end Navigation_Thread; 
   
  process implementation Navigation_Process.Navigation_Process_Impl 
    subcomponents 
      NAVT: thread Navigation_Thread.Navigation_Thread_Impl; 



148 

     
    connections 
      NAVTtoNAVP: port NAVT.NAV -> NAV; 
  end Navigation_Process.Navigation_Process_Impl; 
   
  system implementation Navigation_System.Navigation_System_Impl 
    subcomponents 
      NAVP: process Navigation_Process.Navigation_Process_Impl; 
     
    connections 
      NAVPtoNAV: port NAVP.NAV -> NAV; 
  end Navigation_System.Navigation_System_Impl; 
   
  thread implementation Navigation_Thread.Navigation_Thread_Impl 
  end Navigation_Thread.Navigation_Thread_Impl; 
   
end NAV; 
 

A.12 Primary Flight Display (PFD) 
package PFD 
public 
 
  with FGS; 
   
  process Primary_Flight_Display_Process 
    features 
      FD: in data port FGS::Guidance_Data; 
  end Primary_Flight_Display_Process; 
   
  system Primary_Flight_Display 
    features 
      FD: in data port FGS::Guidance_Data; 
  end Primary_Flight_Display; 
   
  thread Primary_Flight_Display_Thread 
    features 
      FD: in data port FGS::Guidance_Data; 
  end Primary_Flight_Display_Thread; 
   
  process implementation 
 Primary_Flight_Display_Process.Primary_Flight_Display_Process_Impl 
    subcomponents 
      PFDT: thread 
    Primary_Flight_Display_Thread.Primary_Flight_Display_Thread_Impl; 
     
    connections 
      FD2PFDT: port FD -> PFDT.FD; 
  end Primary_Flight_Display_Process.Primary_Flight_Display_Process_Impl; 
   
  system implementation Primary_Flight_Display.Primary_Flight_Display_Impl 
    subcomponents 
      PFDP: process          
 Primary_Flight_Display_Process.Primary_Flight_Display_Process_Impl; 
     
    connections 
      FD2PFDP: port FD -> PFDP.FD; 



149 

  end Primary_Flight_Display.Primary_Flight_Display_Impl; 
   
  thread implementation 
 Primary_Flight_Display_Thread.Primary_Flight_Display_Thread_Impl 
  end Primary_Flight_Display_Thread.Primary_Flight_Display_Thread_Impl; 
   
end PFD; 
 

A.13 Throttles (THROTTLES) 
package THROTTLE 
public 
 
  data Throttle_Data 
  end Throttle_Data; 
   
  device Throttle 
    features 
      THROT: out data port Throttle_Data; 
     
  end Throttle; 
   
end THROTTLE; 
 

A.14 Yokes (YOKES) 
package YOKE 
public 
 
  data Yoke_Data 
  end Yoke_Data; 
   
  device Yoke 
    features 
      YOKE: out data port Yoke_Data; 
     
  end Yoke; 
   
end YOKE; 
 

A.15 Leader Selection (LDS) 
package LDS 
public 
 
  data Leader_Selection_Active 
  end Leader_Selection_Active; 
   
  data Leader_Selection_Data 
  end Leader_Selection_Data; 
   
  data Leader_Selection_Rank 
  end Leader_Selection_Rank; 
   
  thread Leader_Selection 
    features 



150 

      LSI: in data port Leader_Selection_Data; 
      LSO: out data port Leader_Selection_Data; 
      LSA: out data port Leader_Selection_Active; 
      LSR: in data port Leader_Selection_Rank; 
  end Leader_Selection; 
   
  thread implementation Leader_Selection.Leader_Selection_Impl 
  end Leader_Selection.Leader_Selection_Impl; 
   
end LDS; 
 

A.16 IMA Platform (IMA) 
package IMA 
public 
 
  bus IMA_BUS 
    properties 
      Latency => 5 ms .. 8 ms; 
  end IMA_BUS; 
   
  data IMA_Data 
  end IMA_Data; 
   
  processor PowerPC_250Mhz 
    features 
      ES: requires bus access; 
    properties 
      Clock_Jitter => 10 us; 
  end PowerPC_250Mhz; 
   
  processor PowerPC_350Mhz 
    features 
      ES: requires bus access; 
    properties 
      Clock_Jitter => 10 us; 
  end PowerPC_350Mhz; 
   
  system CCM_Fast 
    features 
      ES: requires bus access; 
  end CCM_Fast; 
   
  system CCM_Slow 
    features 
      ES: requires bus access;  
  end CCM_Slow; 
   
  system IMA_Platform 
  end IMA_Platform; 
   
  bus implementation IMA_BUS.IMA_BUS_Impl 
  end IMA_BUS.IMA_BUS_Impl; 
   
  processor implementation PowerPC_250Mhz.PowerPC_250Mhz_Impl 
  end PowerPC_250Mhz.PowerPC_250Mhz_Impl; 
   



151 

  processor implementation PowerPC_350Mhz.PowerPC_350Mhz_Impl 
  end PowerPC_350Mhz.PowerPC_350Mhz_Impl; 
 
  system implementation CCM_Fast.CCM_Fast_Impl 
    subcomponents 
      PRC: processor PowerPC_350Mhz.PowerPC_350Mhz_Impl; 
     
    connections 
      EStoPRC: access ES -> PRC.ES; 
  end CCM_Fast.CCM_Fast_Impl; 
   
  system implementation CCM_Slow.CCM_Slow_Impl 
    subcomponents 
      PRC: processor PowerPC_250Mhz.PowerPC_250Mhz_Impl; 
     
    connections 
      EStoPRC: access ES -> PRC.ES; 
  end CCM_Slow.CCM_Slow_Impl; 
   
  system implementation IMA_Platform.IMA_Platform_Impl 
    subcomponents 
      IMA_Bus: bus IMA_BUS.IMA_BUS_Impl; 
      A: system CCM_Fast.CCM_Fast_Impl; 
      B: system CCM_Fast.CCM_Fast_Impl; 
      C: system CCM_Slow.CCM_Slow_Impl; 
     
    connections 
      BUStoA: access IMA_Bus -> A.ES; 
      BUStoB: access IMA_Bus -> B.ES; 
      BUS2C: access IMA_Bus -> C.ES; 
  end IMA_Platform.IMA_Platform_Impl; 
   
end IMA; 
 

A.17 META Property Set 
property set META_Properties is 
  Not_Collocated: list of reference (system) applies to (system); 
  Output_Delay: inherit Time applies to (system, process, thread); 
 
end META_Properties; 
 

A.18 PALS Property Set 
property set PALS_Properties is 
  PALS_Id     : inherit aadlstring applies to (system, process, thread); 
  PALS_Period : inherit Time       applies to (system, process, thread); 
   
end PALS_Properties; 
 

 

 

 



152 

APPENDIX B Mode Logic Overview 
The Mode Logic (ML) is a component of the Flight Guidance System (FGS) described in 
Section X4.4.1.4X. As such, it is not described in detail in the FCS system architecture. However, 
since so many aspects of the FCS depend on the mode logic, this appendix has been included to 
provide more information about it. 

The mode logic determines which lateral and vertical control laws are active and armed. The 
lateral modes control the behavior of the aircraft about the longitudinal, or roll, axis, while the 
vertical modes control the behavior of the aircraft about the pitch axis. For example, the Heading 
Hold (HDG) mode holds the aircraft to a selected heading while the Vertical Speed (VS) mode 
which holds the aircraft to selected vertical speed. 

A mode is said to be selected if it has been manually requested by the flight crew or if it has been 
automatically requested by a subsystem such as the FMS. The simplest modes have only two 
states, cleared and selected, as shown in XFigure 60X. Such a mode becomes active immediately 
upon selection with its associated flight control law providing guidance commands to the flight 
director and, if engaged, the autopilot. When cleared, a mode’s associated flight control law is 
non-operational, i.e., it does not generate any outputs. 

 
Figure 60 – A Simple Mode 

Some modes can be armed to become active when a criterion is met, such as the acquisition of a 
navigation source or proximity to a target reference such as a desired altitude. Such modes have 
three states as shown in XFigure 61X. The two states armed and active are sub-states of the selected 
state, i.e., when the mode is armed or active, it is also said to be selected. While in the armed 
state, the mode’s flight control law is not generating guidance commands for the flight director 
or the autopilot, but it may be accepting inputs, accumulating state information, and helping to 
determine if the criterion for becoming active is met. Once the criterion is met, the mode 
transitions to the active state and its flight control law begins generating guidance for the flight 
director and autopilot. Note that the only way to exit the active state is to deselect the mode, i.e., 
it is not usually possible to revert directly from the active state to the armed state. 

 

CLEARED SELECTED 



153 

 
Figure 61 – An Arming Mode 

Some modes also distinguish between capturing and tracking of the target reference or 
navigation source. Such a mode is shown in XFigure 62X. Once in the active state, such a mode’s 
flight control law first captures the target by maneuvering the aircraft to align it with the 
navigation source or reference. Once correctly aligned, the mode transitions to the tracking state 
in which it holds the aircraft on the target. Both the capture and track states are sub-states of the 
active state and the mode’s flight control law is active in both states, i.e., generating guidance 
commands for the flight director and autopilot. Note that the only way to exit the active (capture 
or track) state is to deselect the mode, i.e., it is not possible to revert directly from the track state 
to the capture state or from the active state to the armed state. 

 
Figure 62 – A Capture/Track Mode 

The mode logic consists of all the available modes and the rules for transitioning between them. 
Typical lateral modes include Roll Hold, Heading Hold, Navigation, Lateral Approach, and 
Lateral Go Around. Typical vertical modes include Pitch, Vertical Speed, Altitude Hold, Altitude 
Select, Vertical Approach, and Vertical Go Around. 

In order to provide effective guidance of the aircraft, these modes are tightly synchronized so 
that only a small portion of their total state space is actually reachable. For example, to ensure 
that meaningful guidance is provided to the flight director and autopilot, only one lateral and one 
vertical mode can be active at any time. For the same reason, if the autopilot is engaged or the 
flight director is turned on, at least one lateral and one vertical mode must be active. Other 
constraints enforce sequencing of modes that are dictated by the characteristics of the aircraft and 
the airspace. For example, vertical approach mode is not usually allowed to become active until 
lateral approach mode has become active to ensure that the aircraft is horizontally centered on 
the localizer before tracking the glideslope. These constraints are clearly important to safe flight 
and can become quite complex.   

CLEARED 

SELECTED 

ARMED 

ACTIVE 

CAPTURE TRACK 

CLEARED 

SELECTED

ARMED ACTIVE 



154 

3BLIST OF ACRONYMS 
AADL Architecture Analysis and Design Language 

ACL2 A Computational Logic for Applicative Common LISP (theorem proving environment) 

ADS Air Data System 

AHS Attitude and Heading System 

AP Autopilot 

ATA Air Transportation Association 

BDD Binary Decision Diagram 

CCM Common Computing Module 

CL Control Logic 

CSA Control Surface Actuator 

CSP Communicating Sequential Processes 

CTL Computation Tree Logic 

EDICT System dependability tool suite developed by WWTG 

FCI Flight Control Interface 

FCS Flight Control System 

FD Flight Director 

FGS Flight Guidance System 

FMS Flight Management System 

GUI Graphical User Interface 

IMA Integrated Modular Avionics 

KIND K-Induction (model checker developed by University of Iowa) 

LCM Least Common Multiple 

ML Mode Logic 

MTBF Mean Time Between Failures 

NFF No Fault Found 

NuSMV Symbolic model checker developed by IRST, Carnegie Mellon, and University of 
Trento 

OSATE Open Source Architectural Tool Environment 

PALS Physically Asynchronous Logically Synchronous 

PFD Primary Flight Display 

PSL Property Specification Language 

PVS Prototype Verification System (theorem prover developed by SRI International) 



155 

REM Requirements Engineering Management 

RTOS Real Time Operating System 

SMT Satisfiability Modulo Theories 

SysML System Modeling Language 

 

 

 


