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1.0 SUMMARY 

The complexity of modern defense systems is growing constantly. New technologies 
create opportunities for higher levels of integration.  Modern systems such as air and ground 
vehicles contain a larger number of components that interact with each other in non-linear and 
often unpredictable ways. Unintended interactions lead to unexpected behaviors and 
consequences, some of which have proven to be catastrophic. A key technical challenge in 
developing such complex systems is to ensure that catastrophic subsystem and component 
interactions are well understood and contained prior to full-scale development. 

To address these challenges, The Defense Advanced Research Projects Agency 
(DARPA) is investing in novel methods for design and verification of complex systems. The 
META program (META not an acronym but is typically spelled using all capital letters by 
DARPA) is specifically aimed at compressing the product development and deployment timeline 
of complex defense systems through model-based design and manufacturing. Using the META 
design paradigm, different component model libraries can be used to instantiate, analyze, and 
verify a system design independent of its physical manifestation.  The goal is to establish a 
“correct-by-construction” design prior to detailed design and prototyping. 

Under the META program, a team led by the PARC (Palo Alto Research Center) team is 
developing a model-based system-engineering framework that enables architectural analysis of 
complex systems during the conceptual design phase. Using this framework, design teams can 
systematically explore architectural design decisions during the early stage of system 
development prior to the selection of specific components. The analysis performed at this earliest 
stage of design facilitates the development of more robust and reliable system architectures. This 
report provides a summary of the work conducted by the PARC team during the course of the 
one-year project. 

  

 

 
1

Approved for Public Release, Distribution Unlimited. 
The views expressed are those of the author and do not reflect the official policy or position of the 

Department of Defense or the U.S. Government.  



 

2.0 INTRODUCTION 

The complexity of modern defense systems is growing constantly. New technologies 
create opportunities for higher levels of integration.  Modern systems such as air and ground 
vehicles contain a larger number of components that interact with each other in non-linear and 
often unpredictable ways. Unintended interactions lead to unexpected behaviors and 
consequences, some of which have proven to be catastrophic. A key technical challenge in 
developing such complex systems is to ensure that catastrophic subsystem and component 
interactions are well understood and contained prior to full-scale development. 

To address these challenges, DARPA is investing in novel methods for design and 
verification of complex systems. The META program is specifically aimed at compressing the 
product development and deployment timeline of complex defense systems through model-based 
design and manufacturing. Using the META design paradigm, different component model 
libraries can be used to instantiate, analyze, and verify a system design independent of its 
physical manifestation.  The goal is to establish a “correct-by-construction” design prior to 
detailed design and prototyping. 

For mission-critical design applications, a key consideration is the ability of the designed 
system to meet specified requirements. Ideally, designers aim to converge on an architecture 
with a high probability of meeting design requirements as early as possible during the design 
phase. Availability of high-fidelity models, simulation frameworks, and other analytical tools 
greatly simplifies this process.  Arguably, design automation is well advanced in certain other 
fields such as integrated circuit (IC) design.  Whether concepts and methods from IC design 
could be adapted to the design of electromechanical systems is a subject of much debate in the 
design community [1, 2].  A recent approach named Platform-Based Design aims to increase the 
level of automation in the design of complex electromechanical systems by introducing multiple 
levels of abstraction [2].  Nevertheless, design complexity remains a significant challenge in the 
design of electromechanical systems, often resulting in substantial delays and cost overruns in 
the design of military and aerospace systems. 

Under the META program, a team led by PARC is developing a model-based system-
engineering framework that enables architectural analysis of complex systems during the 
conceptual design phase. Using this framework, design teams can systematically explore 
architectural design decisions during the early stage of system development prior to the selection 
of specific components. The analysis performed at this earliest stage of design facilitates the 
development of more robust and reliable system architectures. This report provides a summary of 
the work conducted by the PARC team during the course of the one-year project. 

One quantitative goal of the META program is to compress the system design, 
development, test, and evaluation (DDTE) cycle by a factor of 5x or more.  The PARC-led 
META-II project supports this goal by: 1) identifying design defects early in the design process 
using design-stage models and abstractions; and 2) reducing the time and effort required for 

 

 
2

Approved for Public Release, Distribution Unlimited. 
The views expressed are those of the author and do not reflect the official policy or position of the 

Department of Defense or the U.S. Government.  



 

system verification through hardware-in-the-loop testing using co-verification of hardware and 
software at the design stage. Design-stage analyses help identify system-level and component 
interaction problems early in the DDTE cycle and thus prevent costly redesigns during later 
design or deployment phases.  

 

2.1 Impact Statement 

We believe that a systematic approach that identifies design defects, uncertainty, and 
unforeseen fault propagation effects during the early design process will compress DDTE 
schedules significantly.   Desired improvements of >5x are within reach if the methods 
developed under the META program are widely adopted in the defense community. Much of the 
complexity and cost of verification is mandated through complex policies such DO-254, DO-
178B, and NASA’s NPR 8705.2B (Human Rating Requirements).  We envision that a successful 
conclusion to these programs would yield revolutionary new methods, tools, and processes that 
will help refine the rigid procedural requirements that impose substantial delays and cost 
overruns on every major aerospace program today.   

During this project, a stated goal of the PARC team has been to generate and verify 
robust conceptual designs in an automated fashion in far less time than the manual system 
engineering approach.  The impact of this achievement will be early elimination of design flaws, 
reduced need for hardware-in-the-loop testing, and compressed design cycle times.  
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 The META-II Tool Chain and Design Workflow 

Design of complex systems for mission-critical applications is driven by the ability of the 
system to meet specified requirements. Typically, the performance of the system with respect to 
requirements is verified using costly and time-consuming tests of prototype hardware under 
realistic operational scenarios. Failure to verify performance requirements at this stage 
necessitates additional design/prototyping/test cycles and often results in cost and schedule 
overruns. 

The PARC META effort is guided by three key insights about the traditional design 
process: 

1. Traditional system design activities explore a very limited range of the overall 
design space, often informed by what has worked well in the past and what did 
not. 

2. In traditional system design, detailed analysis of functional failures and fault 
propagation is performed late during the design process, long after the design 
team has – figuratively speaking – painted themselves into a corner. 

3. There is ample information about component and system behavior and function 
available during the conceptual design process to initiate system verification. 

Based on these key insights, the PARC-led team is developing an integrated design flow 
and verification tool chain. The PARC tool chain uses a component model library, design rules 
for the target domain, and system requirements as input. Using these inputs, the PARC tool chain 
automates the generation, evaluation, and verification of conceptual system models in a seven-
step process: 

1. A large number of candidate functional designs are generated using 
configurational requirements for the target system, a component model library, 
design rules, and a generative grammar. The design synthesis step ensures that the 
design space is adequately explored and no novel architectural solutions are left 
on the table early on in the process. 

2. Candidate designs are evaluated with respect to robustness to known fault modes 
using a functional simulation. This step is the functional equivalent of a Failure 
Modes and Effects Analysis (FMEA) and it ensures that only the most robust 
designs are promoted to the final step. 

3. Next, we use a set of system-level metrics (developed by other META performer 
teams) to select the strongest candidate designs. Applicable metrics include 
adaptability, complexity, and flexibility. 
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verification process may be applied to functions embodied in software as well as 
hardware. 

5. A performance verification process utilizes detailed models of component 
behavior in order to compute the probability of correctness (PoC) of each 
candidate design with respect to a set of performance requirements. 

6. A traditional reliability analysis is performed on the most promising candidate 
designs. 

7. Information obtained from functional verification, performance verification, 
FMEA, and reliability analysis tasks are composed into a Probabilistic Certificate 
of Correctness (PCC) for the candidate designs. 

 

 

Figure 1 illustrates the overall process and the major elements of the automated tool chain 
for model-based system engineering. 

 

 

Figure 1. The Model-Based System-Engineering Process Flow 
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3.2 Component Library 

A key ingredient of an automated tool chain for model-based system engineering is a 
component model library that is used to generate candidate designs for the target system. The 
component model library is question consists of functional and behavioral models, interfaces, 
and ranges of input, output, and state variables for representative components for the electrical 
power system (EPS) domain (of any other domain of interest). We chose the Modelica language 
to develop the component libraries for the META tool chain1. The EPS library provides 
Modelica models for the behavior and function of EPS components such as batteries, actuators, 
electrical switches, etc. For each component, the nominal behavior was modeled and augmented 
with the relevant failure modes. The nominal and the fault mode behavior of the EPS Library 
components were validated by comparing the simulated behavior of test models with 
measurements and sensor data from the Advanced Diagnostics and Prognostics Testbed 
(ADAPT) at NASA Ames Research Center. 

For several components, we created models with different levels of accuracy. For 
example, the inverter component models range from very simple models that describe only the 
AC/DC power balance equation to models containing complicated electrical schematics 
including semiconductor components from the standard Modelica library for electrical systems. 
The reason for creating models of the same component with different levels of detail is to 
compare the performance of our tool chain during early stages of conceptual analysis versus later 
stages when component selection is almost final and more details are available regarding 
component performance and interactions. A recent article describes the EPS component model 
library in greater detail [3]. 

 

3.3 Design Space Exploration 

The first step in the automated tool chain is to explore the space of feasible conceptual 
designs. As mentioned earlier, traditional system design activities explore a very limited range of 
the overall design space. Successful past designs often provide templates on which new designs 
are based. Consequently, many innovative yet unorthodox design alternatives often go 
unexplored. As an illustration, consider the variety and diversity of flying machine designs 
introduced during the first couple of decades of aviation. Over time, two templates (fixed wing 
with horizontal and vertical stabilizers, and rotary wing with a tail rotor) gained momentum and 
suppressed the exploration of alternatives for most new aircraft design projects. On occasion, we 
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1 Modelica Association. (2011). Modelica and the Modelica Association.  Available at 

https://http://www.modelica.org/. 
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see examples of innovative design appear in certain high-performance aircraft (e.g., canards, 
pusher props). A design space exploration process allows designers to explore the vast space of 
potential designs that meet configurational requirements for the system in a systematic fashion. 

Recently, engineering design researchers have discovered that graph grammars provide a 
flexible yet ideally structured approach to the creation of complex engineering systems [4]. This 
interpretation of the design process makes graph grammars very suitable for computationally 
modeling the open-ended nature of conceptual design, where designers explore various ideas, 
decisions, and modifications to previous de- signs to arrive at feasible solutions. 

In our approach, we use a graph-grammar-based design space exploration technique 
[3,4]. This generative technique takes user specified EPS loads as input and satisfies system-
level configuration requirements to generate feasible EPS candidate architectures. For instance, 
if there were configurational requirements to provide reliable power to certain electrical loads, 
our approach would generate many feasible designs with alternative configurations for power 
generation (redundant and dissimilar sources), distribution (e.g., redundant buses), and 
switching. 

A component model library serves as the backbone of our design space exploration 
approach [3]. Using the models in the model library as building blocks, this generative graph 
grammar based technique configures “correct by construction” EPS architectures that can be 
further studied by means of a simulation-based analysis. The graph-grammar-based 
configuration approach uses graphs as a representation scheme. This approach captures the 
transitions or the production rules for creating a solution, as opposed to storing the solutions 
themselves. The initial specification is represented as a simple graph in which the desired inputs 
and outputs are cast as arcs and nodes of the to-be-designed artifact. The evolution of a design 
from its inception to its final configuration can be viewed as a progression of graph 
transformations that lead to the final configuration. 

Generating feasible EPS architectures using graph-grammar-based configuration is a two-
step process. In the first step, we provide an EPS system design grammar to encode design rules 
for constructing EPS architectures. The rules are established prior to the design process. We have 
found that a 14-rule graph grammar is sufficient to generate feasible EPS architectures from 
multiple EPS requirements [3]. As an example, a prototypical EPS design requirement is to 
provide a battery relay for each battery circuit in order for the flight crew to isolate the battery 
from the rest of the EPS in case of a malfunction. Corresponding design rules govern the 
mapping of functional requirements to components, or the physical compatibility between EPS 
components. For instance, a design rule for the EPS domain would insert a battery relay for each 
circuit where a battery is present. Specifically, the design grammar encodes how specific system 
requirements can be embodied by selecting components from a full spectrum of 
electromechanical components represented in the component library. 
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In the second step, the graph transformation systems, or graph grammars, is invoked 
algebraically. Algebraic graph transformation methods rigorously define mathematical 
operations such as addition and intersection of graphs. A typical graph grammar rule is 
comprised of a left-hand side and a right-hand side (Figure 2). The LHS contains the 
preconditions that trigger the rule. Once the rule is triggered, the RHS describes the resulting 
graph transformation. By simply executing different combinations of grammar rules, a variety of 
feasible EPS architectures can easily be generated. Using rules to support component redundancy 
in the architectures, we are able to generate thousands of correct models using multiple starting 
seeds in a matter of minutes. Figure 3 illustrates a candidate design generated using a single seed 
and a graph grammar of 14 EPS-related rules. 

  

Figure 2. An Example Graph Grammar Rule for an EPS  

  

Figure 3. A Design Concept Generated for the EPS Domain 
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3.4 Functional Failure Analysis 

Functional Failure Analysis (FFA) is a recent approach for coupling failure analysis with 
product design during the conceptual stage [5]. The FFA approach is based on the notion that a 
failure happens when a functional element in the system does not perform its intended task. For 
each function that is subject to failure, a functional criticality is defined depending on the role of 
functionality in accomplishing designed tasks. A simulation-based failure analysis tool is then 
used to analyze functional failures and reason about their impact on overall system functionality. 
Using this framework, design teams can systematically explore risks and vulnerabilities during 
the early (functional design) stage of system development prior to the selection of specific 
components. In essence, FFA provides early insight into the robustness of a design against 
known fault modes, much like the FMEA process that is often performed at the end of the design 
cycle. 

Using FFA, a multitude of failure scenarios can be quickly analyzed to determine the 
effects of architectural design decisions on overall system functionality. In the META tool chain, 
each candidate generated during the first step is further analyzed using FFA. The tool chain 
automatically generates single, multiple, and cascading fault scenarios and measures the impact 
of each fault on overall system function. Figure 4 illustrates the result of a single simulation run 
over a candidate EPS design. Once the entire suite of functional loss scenarios is simulated, the 
tool chain generates an overall score for the candidate design. This score is correlated with the 
robustness of the candidate design with respect to known failure modes. 

 

      Figure 4. Results of an FFA Fault Propagation Simulation on an EPS Design 
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3.5 Functional Verification 

The next step in the META tool chain is the functional verification of selected candidate 
designs. We interpret functional verification as a probabilistic evaluation of a composite 
functional model of the system against functional requirements imposed on the system. In order 
to accomplish functional verification, the first step is to compose a functional model of the 
candidate system by retrieving functional models for each component from the component model 
library and connecting those model fragments following the topology prescribed in the candidate 
design. Next, we use a probabilistic model checker called PRISMATIC to perform functional 
verification on these models. PRISMATIC is based on PRISM, an open source tool for formal 
modeling and analysis of systems that exhibit random or probabilistic behavior [6]. PRISMATIC 
supports a wide range of probabilistic models including discrete-time and continuous-time 
Markov chains, Markov decision processes, probabilistic automata, probabilistic timed automata, 
plus extensions of these models with costs and rewards. Models are described using a simple, 
state-based language. PRISMATIC provides support for automated analysis of a wide range of 
quantitative properties of these models, including: 

• Internal model consistency (e.g., only one failure mode is active for any component at any 
time); 

• Fault probability analysis (e.g., what is the probability that some fault occurs up to time T, or 
steady state); 

• Time bounded functional assessment (e.g., what is the probability that some component is 
functioning normally at, before, or up to time T); 

• Limited-fault analysis (e.g., if exactly X component(s) fail(s) by time T (or steady state, 
“long run”), what is the effect on other failure modes or functions?). 
 

3.6 Performance Verification 

Another important aspect of certification is the verification of a system (or a system 
design) with respect to performance requirements. In later stages of development, such 
performance verification is often performed through hardware-in-the-loop testing. During the 
early (conceptual) design stage, performance verification has to be accomplished using models 
of system behavior. However, two types of uncertainty confound the use of models for 
verification. Epistemic uncertainty comes from model fidelity and inaccuracy, and aleatory 
uncertainty is contributed by inherent limitations in estimating relevant system parameters and 
environmental variables. Thus, model-based performance verification has to take uncertainty into 
account. To address these needs, we employ uncertainty propagation (UP) methods used in 
reliability-based design [7] to quantify the PoC of a given system design. 

Common UP methods can be classified in five broad categories: 
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• Local expansion-based methods like the Taylor series method or perturbation method; 
• Most probable point-based methods such as the first-order reliability method and second-

order reliability methods; 
• Functional expansion-based methods, such as the Neumann expansion and the polynomial 

chaos expansion; 
• Numerical integration-based methods, where the statistical moments are first calculated by 

direct numerical integration, and then the probability density or the tail region probability is 
approximated using an empirical distribution system based on the calculated moments. 

A detailed description of these methods and their application in PoC computation is 
beyond the scope of this paper. Further details of our approach to UP may be found in a recent 
publication by our team [8]. Most importantly, none of these methods is clearly superior to 
others. Depending on the type of models available (qualitative, quantitative, or hybrid), function 
types (linear, quadratic, highly non-linear), input distributions (parametric or non-parametric), 
and input/output distribution types (normal, uniform, beta, or exponential), we have devised an 
algorithm to choose the most suitable UP method from a library of six different methods. 

The first step in the performance verification process is to compute the PoC of the model 
(or a model fragment) with respect to a single performance requirement. For instance, we 
computed the PoC for an EPS subsystem containing a battery, an AC inverter, and three loads 
consisting of an electrical motor, a pump, and a light. The left hand graphic on Figure 5 
illustrates the result of PoC computation for this system with respect to a requirement that states 
that the motor speed shall remain between 900 and 1000 RPM during nominal operation. The 
right hand side of the same figure illustrates the result of a second PoC computation for the same 
system with respect to a different requirement that requires the pump voltage to remain between 
117 and 125 VAC. In this example, the PoC with respect to the first requirement is computed as 
0.881 whereas the PoC for the second requirement is 0.899. The solid red areas indicate the total 
probability mass associated with meeting each requirement. 
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Figure 5. PoC Computation for an EPS Model with Respect to Two Different Requirements 

 

The second step in the performance verification process is to compute the joint 
probability of meeting multiple requirements. Note that the joint probability cannot be obtained 
by simply multiplying the two marginal probabilities. Instead, we need to compute the 
covariance matrix for the marginal probabilities. 

 (1) 

For the same example above, the covariance matrix calculation yields a joint probability 
of 0.838 for meeting both requirements at the same time (note that this PoC is higher than the 
simple multiplication of the two individual PoCs, which would have yielded 0.792). 
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As a final caution regarding the joint probability computation, we cannot use the 
covariance matrix computation if the marginal distributions are different. In that case, we use the 
Gaussian Copula function to approximate a true multivariate distribution. Using the Copula 
function, we can join different types of distributions (normal and beta, etc.). 

 (2) 

3.7 PoC and PCC Computation 

We define correctness as a measurement of how well the system design meets or exceeds 
its requirements. Due to uncertainty arising from design abstractions as well as system 
interactions with the environment and its users, correctness is specified as a probability 
distribution over multiple dimensions. These dimensions include the design hierarchy (i.e., 
subsystems and components), environment, use conditions, functions, functional failures, and 
adherence to design rules. 

We define the Probabilistic Certificate of Correctness (PCC) as a data structure that 
documents the correctness of a particular system design with respect to each class of pertinent 
system requirements. At the system level, the PCC is represented as a multidimensional 
probability density function where each dimension represents a distinct system requirement. The 
PCC is further organized in a hierarchy that provides PCCs at subsystem and component levels. 
Given a particular use case (represented as scalar values of performance metrics mentioned in the 
requirements), the PCC provides a probability of correctness for the design under those use 
conditions. This approach allows the design and development process to focus on areas of low 
probability of correctness for further refinement and elaboration. 

The PoC is represented as a probability distribution (or probability density function) 
reflecting the probability that the given design meets a performance requirement or a set of 
related requirements. It is possible to combine the PoCs into a unified PCC. Since the behavior 
of models is an approximation of actual system performance, the PCC process takes this 
uncertainty into account and provides information on the resulting uncertainty as well as what 
components contribute to the uncertainty. The resulting PCC serves as the formal record of 
performance verification record for the candidate design. Most importantly, unlike traditional 
design flow, this performance verification is achieved using only (virtual) models of the system. 

Our tool chain and framework is the basis for specifying system requirements, supporting 
design space exploration, and analyzing the performance associated with promising architectural 
design alternatives. To support a model-based design paradigm, the framework allows the 
designers to combine models from different domains into integrated system level models, and 
allow models of components and sub-systems to evolve throughout the design process. At the 
end, component models are composed into a system that achieves the intended functionality 
given specified requirements such as reliability, risk, and performance. 
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3.8 Reliability Analysis 

The final analytical operation in the tool chain is a traditional reliability analysis. Our 
method is based on identification of criticality and sensitivity of system components, and a 
simulation model that incorporates probability and failure rates of individual components such 
that system-level reliability measures can be computed. Computed reliability measures include 
expected system lifetime, component criticality and sensitivity values, and weighted or 
maximum failure probability [9]. Future work may involve integration of computed criticality 
data with the FFA method in order to generate the equivalent of a Failure Modes, Effects, and 
Criticality Analysis (FMECA) during the conceptual design phase. 

3.9 System Integration 

The Meta-II software tool chain is a heterogeneous set of software systems developed in 
five programming and modeling languages by four organizations across the United States. It 
includes significant legacy code bases and newly developed reasoning and integration code. 
PARC has leveraged its location within Silicon Valley to apply state-of-the industry software 
engineering practices to ensure successful software development and integration.  

The PARC team followed a best-practice agile software development process. 
Development was planned in short two-week iterations that emphasize the frequent delivery of 
working software that demonstrates progress allowing us to assess if the project is moving in the 
right scientific direction.  

The team coordinated its work through the JIRA issue-tracking system available to all 
members through a Web based interface, which provides visibility on task state and is especially 
effective at identifying dependencies between team members.  

Software source was controlled via a subversion repository and change notifications are 
emailed immediately to team members. This practice ensures the team is kept up to date and also 
creates peer pressure to write clean code, as it is visible to all.  

PARC has taken a test-driven approach to new software development by providing unit 
tests and monitoring our cost test coverage levels.  On each code check-in, the entire system is 
built and run together with unit and integration tests using a Hudson continuous build server.  

PARC has used industry standard tools, techniques, and design patterns in this project. 
META-II is built using the ANT build system. Tests are written using the JUnit and Mockito 
frameworks. Code coverage is monitored using the Clover test coverage tool. Logging is 
controlled through JLog.  
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The software engineers at PARC and MCT participate in weekly code review meetings 
with all the engineers in the Embedded Reasoning Area of PARC team. This group with broad 
research and industry experience ensures that the team keep up to date on industry practice and 
provides a forum for peer-reviewing software architecture and design issues.  
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4.0 RESULTS AND DISCUSSIONS 

The PARC team has used two case studies to design, develop, and test the META-II tool 
chain and to demonstrate the features of the proposed verification process.  These are the 
ADAPT EPS testbed at NASA Ames and the Ramp System of an Infantry Fighting Vehicle 
(IFV). The two systems have been modeled with the help of the Modelica language.  Because 
Modelica is a system modeling language as opposed to a programming language, Matlab is used 
to code the various UP methods. Matlab calls the black box OpenModelica model using the 
OpenModelica-Matlab-Interface tool2, requiring only that the input and output variables be 
known from the Modelica model, but not the functional relationships coded in Modelica.  

The following subsections describe in details the two study systems, the associated 
models and the experiments performed on the models. 

4.1 ADAPT Electrical Power System Example 

4.1.1 Domain Description 

ADAPT, pictured in Figure 6, consists of a controlled and monitored environment where faults 
are injected into the system in a controlled manner and the performance of the test article is 
carefully monitored. The hardware of the testbed represents an EPS for a hypothetical space 
exploration vehicle. 
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2 Schaad, C., 2009. OpenModelica Matlab functions. 

http://openmodelica.ida.liu.se:8080/cb/proj/doc.do?doc_id=1085. 
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Figure 6. The Advanced Diagnostics and Prognostics Testbed (Courtesy of NASA Ames 
Research Center) 

 

 

The ADAPT system consists of three major modules: a power generation unit, a power storage 
unit and a power distribution unit. The interconnections among the different units are depicted in 
Figure 7.  

 

 

 

Figure 7. The ADAPT Testbed Structure (Picture Reproduced from [10]) 
 

 
17

Approved for Public Release, Distribution Unlimited. 
The views expressed are those of the author and do not reflect the official policy or position of the 

Department of Defense or the U.S. Government.  



 

The Power Generation unit can charge the batteries located in the Power Storage Unit 
with the help of two battery chargers and a photovoltaic unit (solar panel). The power generation 
unit is divided into six subsystems: the solar panel unit, the battery charger panel, the protection 
and enable panel and three battery-charge selection panels. The power storage unit contains three 
battery packs and several relays that control the connections between the load bank and the 
batteries. Circuit breakers protect the power distribution unit from dangerously high currents 
coming from the batteries. The Power Storage unit is divided into two major subsystems: the 
battery cabinet and the battery-load selection panel. The Power Distribution unit consists of two 
identical load banks. Each load bank is connected to the Power Storage unit and powers two DC 
loads and six AC loads. 

A complete description of the ADAPT system can be found in [11]. The testbed is 
controlled by a number of relays and monitored by a large set of sensors. Consequently, it is 
possible to detect an injected fault and recover from it if the correct action is taken. To facilitate 
the execution of the experiments performed with the testbed, three operating roles have been 
defined [10]: user, antagonist and observer. The user simulates an actual crewmember or pilot 
who operates and maintains the EPS with the help of a vehicle health management application. 
The antagonist injects faults into the system, either manually by physically acting on the system, 
or remotely by spoofing sensor values through a computer connected to the system. The 
malicious actions of the antagonist are not known to the user who is responsible of choosing a 
suitable recovery action. The observer logs all data in the experiment and monitors how the user 
responds to the faults injected by the antagonist and therefore measures the effectiveness of the 
test article. The observer also acts as a safety officer of the experiment and can issue an 
emergency stop. 

4.1.2 Models 

The Automated Model Generator developed in the framework of the projects translates a 
feasible EPS architecture generated by the concept generator into a corresponding model 
expressed in the Modelica Language.   

Modelica is a language for hierarchical object oriented physical modeling, which is 
developed through an international effort. The language unifies and generalizes previous object-
oriented modeling languages and is intended to become a de facto standard for modeling and 
simulation of dynamical systems. The language has been designed to allow tools to generate 
efficient simulation code automatically with the main objective to facilitate exchange of models, 
model libraries and simulation specifications. It allows defining simulation models modularly 
and hierarchically and combining various formalisms expressible in the more general Modelica 
formalism. The multidomain capability of Modelica gives the user the possibility to combine 
electrical, mechanical, hydraulic, thermodynamic etc, model components within the same 
application model. Modelica is primarily a modeling language, sometimes called hardware 
description language, that allows the user to specify mathematical models of complex physical 
systems, e.g. for the purpose of computer simulation of dynamic systems where behavior evolves 
as a function of time. Modelica is also an object-oriented equation based programming language, 
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oriented towards computational applications with high complexity requiring high performance. 
The four most important features of Modelica, relevant for out project, are: 

• Modelica is primarily based on equations instead of assignment statements. This permits 
acausal modeling that gives better reuse of classes since equations do not specify a certain 
data flow direction. Thus a Modelica class can adapt to more than one data flow context. This 
feature of the Modelica language was extremely useful in defining complex component 
failure mode behavior of the EPS components that gave us to possibility for enhanced FFA 
and PCC analysis.  

• Modelica has multi-domain modeling capability, meaning that model components 
corresponding to physical objects from several different domains such as e.g. electrical, 
mechanical, thermodynamic, hydraulic, biological and control applications can be described 
and connected. The EPS consist of components from the electrical and mechanical domain. 

• Modelica is an object-oriented language with a general class concept that unifies classes, 
generics — known as templates in C++, and general subtyping into a single language 
construct. This facilitates reuse of components and evolution of models. 

• Modelica has a strong software component model, with constructs for creating and 
connecting components. Thus the language is ideally suited as an architectural description 
language for complex physical systems, and to some extent for software systems. 

Modelica defines a standard mapping of hierarchical package structures onto file systems 
or other storage mechanisms such as databases, which provides the user with a simple and 
unambiguous way of locating a package. The Modelica library path mechanism makes it possible 
to make multiple packages and package hierarchies simultaneously available for lookup. All 
these mechanisms give the user a considerable flexibility and power in structuring a package. 
Modelica defines a method for locating a package by providing a standard mapping of package 
names to storage places, typically file or directory locations in a file system. The Modelica 
format gave us the possibility to easily store the model components in component library 
repositories that can be easily accessed and retrieved for automatically building feasible EPS 
architectures. Figure 8 shows the structure of the EPS Modelica performance library and Figure 
9 shows the graphical representation of the EPS library model components.  
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Figure 8. The EPS Modelica Performance Components Library Structure 

 

 

Figure 9. Modelica EPS Components 

 

 

Given an input XML concept file representing the Automated Model Generator is able to 
build following models: 
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• Modelica EPS Performance models for simulation purposes, performance analysis 
uncertainty propagation and PCC Computation.  

• Modelica EPS Reliability models for performing reliability analysis computations as 
described in Section 3.9. 

• Modelica EPS Functional models for performing Functional Failure Analysis as described in 
Section 3.5. 

Figure 10 illustrates the types of models generated by the Automatic Model Generator. 

 

 

Figure 10: Type of Modelica models generated by the Automated Model Generator  

 

Figures 11 and 12 depict two feasible EPS architectures automatically generated from the 
concept generator. 
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Figure 11. Automatically generated Modelica performance with redundant power 
sources. 

 

Figure 12. Automatically generated Modelica performance model with one power source 
and multiple loads. 

 

4.1.3 Findings 

For this case study, uncertainty is assumed in two system parameters: 1) inverter output 
voltage and 2) fan motor resistance. For the three design phases, concept generation, detailed 
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design and verification, the same Modelica model is used; however the representation of 
uncertainty is varied as follows: 

Phase 1:  In this phase, both parameter uncertainties are assumed normally distributed: 
Inverter output voltage ~N( 120.0, 4.0)  and fan motor resistance ~N( 131.8, 2.2) . The use of the 
normal approximation of uncertainty represents early design, in which general tolerances for a 
given component type would be known, but not the actual performance distribution. 

Phase 2:  In this case, the inverter output, which is specified by the manufacturer to have 
output of 120VAC +  3% / −10%, is modeled using a four parameter beta distribution, Beta( 4.0, 
1.9, 108.0, 123.6) , to provide a distribution with + 3% /− 10% range and mode of 120. The fan 
resistance is modeled as a uniform distribution, U( 125.2, 138.4) . This case more accurately 
represents actual engineering uncertainty in the parameters, which would be known in the 
detailed design phase. 

Phase 3:  In this case, the inverter output and fan resistance have the same distributions as 
Phase 2; however, a full MCS is conducted to verify the PoC computations of Phase 2. 

These uncertainties are propagated through the ADAPT Modelica system model using 
the six methods described in Section 3.8. For each phase, all six uncertainty methods are utilized 
for illustrative purposes to compare accuracy. A single requirement is considered in the 
simulation: “fan speed to be greater than or equal to 780 RPM”. The results of the study are 
shown in Table 1 for Phase 1 (recommended Phase 1 methods in bold) and Table 2 for Phases 2 
& 3 (recommended Phase 2 & 3 methods in bold). 

 

Table 1. Results for the ADAPT EPS: 
Design Phase 1. 

Table 2. Results for the ADAPT EPS: 
Design Phase 2 and 3. 
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The tables include the first four moments (mean, std dev, skewness, and kurtosis), the 
distribution of the output, the PoC, and the number of function calls for comparison. In the case 
of the UDR and FFNI methods, a 3-node approximation is used for both Cases 1 & 2. For the 
Phase 1 PCE, a second order (i.e., p =  2) polynomial approximation with 3-node quadrature for 
estimating the moments is used. For the Phase 2 & 3 PCE, a fourth order (i.e., p =  4) 
approximation with 5-node quadrature is required to accurately estimate the moments due to the 
non-normality of the input and output distribution. For Phase 2 & 3, the inputs are non-normal 
and the Rosenblatt transformation is used for the MPP and PCE requiring normal inputs. For the 
TS method, the mean and standard deviation of the two input distributions is used directly; 
however, the output is assumed to be normal. For the UDR and FFNI methods, quadrature 
methods are available to provide nodes and weights for the beta and uniform distributions 
directly without transformation to normal space. The MCS method can also handle non-normal 
inputs directly without transformation. 

The output distribution resulting from the MCS for Phase 1 is shown in Figure 13. This 
output distribution is approximately normal as seen by the shape of the distribution and the fact 
that the skewness ≈0 and kurtosis ≈3. Despite the fact that the output is close to normal, the 
Pearson distribution system fits alternative distributions to the output based on the deviations of 
the skewness and kurtosis from the normal distribution as shown in Table 2. All methods provide 
good approximations of the PoC (using the MCS as the baseline) for Phase 1. This is because the 
inputs are normal and the system model is not highly non-linear. The assumption that inputs are 
normal and the model is not highly non-linear is appropriate for the concept design phase when 
models are of low fidelity and uncertainty distributions are approximated. The output distribution 
for Phase 2 & 3 resulting from the MCS is shown in Figure 14. As seen by the skewness and 
kurtosis in Table 2 and the shape of the output distribution, this output deviates considerably 
from a normal distribution, exhibiting significant skewness and lower kurtosis than the normal 
distribution. As shown in the table, there are greater differences in the PoC estimates in Phase 2 
and 3 than in Phase 1. One reason for the deviation is that methods which assume the output is 
normal, i.e., TS and MPP, do not account for the skewness and kurtosis of the the actual output 
distribution. The TS method also suffers from the fact that only the first two moments of the 
input distribution are considered, and the distribution of inverter voltage is significantly skewed. 
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Figure 13. Phase 1 Output Distribution from 
MCS. 

Figure 14. Phase 2/3 Output Distribution from 
MCS. 

 

4.2 IFV Ramp Example 

4.2.1 Domain Description 
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To demonstrate the features of the proposed verification process and the scalability of the 
methodology and the tools proposed by the META II project, a Ramp System of an Infantry 
Fighting Vehicle (IFV) has been modeled. A power-operated ramp at the rear of the vehicle is 
used for fast exit and entry of troops and the ramp is also fitted with a door (Figure 15 illustrates 
the rear ramp of a Bradley Fighting Vehicle). 

 

 

Figure 15. A BAE Bradley Fighting Vehicle (Courtesy of BAE Systems) 
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Several structural, performance and safety requirements have been preliminary imposed on the 
design and functionality of the rear ramp system.  Table 3 below illustrates some of the 
performance requirements for the rear ramp system. 

Table 3. Performance Requirements for the Rear Ramp System 

 

Performance Requirements
1.     The ramp shall accommodate a static weight of 320 kg when in fully open position.
2.     The ramp shall accommodate a static weight of 320 kg when in partially open position with no more than 1 cm of play in either direction.
3.     The ramp shall operate while the CFV is inclined upslope at an angle of 60% (27 degrees).
4.     The ramp shall operate while the CFV is inclined downslope at an angle of 60% (27 degrees).
5.     The ramp shall operate while the CFV is on a level surface.
6.     With the engine running, the ramp shall operate from the fully closed position to the fully open position in 10 seconds or less.
7.     With the engine running, the ramp shall operate from the fully closed position to the fully open position in 10 seconds or less.

 

4.2.2 Models 

A hierarchical Modelica model (see Figure 16) of the Ramp System has been built.  This 
model consists of an electrical power subsystem (Figure 17), a control subsystem (Figure 18), a 
mechanical subsystem (Figure 19), and a crew subsystem (Figure 20). 

 

 

Figure 16. The Modelica Model of a Rear Ramp System 
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Figure17. The Electrical Power Subsystem 

 

Figure 18. The Control Subsystem  

 

 

 

 
27

Approved for Public Release, Distribution Unlimited. 
The views expressed are those of the author and do not reflect the official policy or position of the 

Department of Defense or the U.S. Government.  



 

 

Figure 19. The Mechanical Subsystem 

 

 

                                       Figure 20. The Crew Subsystem 

 

4.2.3 Findings 

Uncertainty was induced in 15 components as shown in Table 4. The tolerance limits 
were used to model uncertainty in the inputs using 4 parameter beta distributions. The 
uncertainty in the components creates uncertainty in meeting the system requirements. 
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  Table 4. Model Stochastic Inputs 

 

Stochastic Inputs Uncertainty
EPS Subsystem

1 Fan.rNom 141ohms +/‐5%
2  Pump.R 1ohm +/‐5%
3  Battery.v 24V +/‐7%
4  Inverter1.outputvoltage 120V +4% ‐10%
Combat Crew Subsystem

5 Soldier01.duration 2 +/‐10%
6 Soldier02.duration 1.5 +/‐10%
7 Soldier03.duration 3 +/‐10%
8 Soldier04.duration 2 +/‐10%
9 Soldier05.duration 1 +/‐10%

10 Soldier01.height 1000 +/‐20%
11 Soldier02.height 1000 +/‐20%
12 Soldier03.height 1000 +/‐20%
13 Soldier04.height 1000 +/‐20%
14 Soldier05.height 1000 +/‐20%

Gravity load Subsystem
15 vehicle_angle.k 0 +/‐ 0.54

 

As shown in Table 5, nine representative system outputs corresponding to system 
requirements were monitored, and the probability of meeting each of these requirements was 
computed (note that some requirements are listed as meeting the requirement with Pr=1.0 when 
in actuality the probability approaches but never actually reaches 1.0). In addition to computing 
the probability of meeting each of the nine requirements, the joint probability of meeting all the 
requirements is also computed, which is Pr=0.7229. This joint probability is enabled by 
computation of the variance-covariance matrix for the set of requirements. 
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Table 5. Probability of Correctness for the Requirements 

 

Requirement PoC
Fan Flow Rate 0.8603
Input Voltage 0.9798
Light Temperature 1.0000
Speed Deviation 0.9970
Door Angle with Load 0.8614
Controller torque (internal) 1.0000
Gravity torque (internal) 1.0000
Solder torque (internal) 1.0000
Opening Time @ ‐60Deg 1.0000
Joint PoC 0.7229

 

 

An example an output distribution is shown in Figure 21, which is the distribution of the 
deviation of the actual ramp speed from the reference signal. As seen in this distribution, the 
requirement is that the speed deviation be less than 0.015 and due to the variation in speed 
caused by component uncertainties, there is some area in the upper tail region which is beyond 
the requirement limit, resulting in a probability of meeting the requirement of 0.997.  
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Figure 21. Example of Speed Deviation Requirement 
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requirements. To understand which components are driving uncertainties in meeting 
requirements, a hierarchical sensitivity analysis (SA) is conducted as shown in Figure 22.  At the 
system level, the SA shows that the Combat Vehicle Crew accounts for most of the variation in 
the Ramp Speed (70.06%) and the Ramp Angle (89.49%). Next the Combat Vehicle Crew 
subsystem is analyzed to determine the drivers of variation in this subsystem. The results show 
that most of the variation is caused by the solder step height 2 (48.11%) and solder step height 3 
(44.66%). This indicates to the designer than more focus must be placed on the solder step 
heights in the design to reduce variation in the system outputs to increase the probability of 
meeting requirements. 

 

 

EPS System Combat 
Vehicle Crew

Ramp 
Mechanics

PI Controller

Subsystem 1:1 Subsystem 1:2

Subsystem 2:1

Gravitational 
Load

Subsystem 1:3

EPS Crew Gravity 
Ramp Speed 2.77% 70.06% 4.84%
Ramp Angle 0.62% 89.49% 0.11%

Duration 1 Duration 2 Duration 3 Step Height 1 Step Height 2 Step Height 3
Solder Torque 0.10% 0.33% 0.20% 0.58% 48.11% 44.66%

 

Figure 22. Hierarchical Sensitivity Analysis 
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5.0 CONCLUSIONS 

In this project, we have developed a framework and tool chain for model-based system 
engineering and design that integrates architectural synthesis and analysis of complex systems 
during the conceptual design phase.  The incorporation of automated design space exploration 
methods with detailed functional and behavioral models enables architectural trade studies 
before costly design decisions are made. In future efforts, we plan to fully integrate and automate 
the architectural synthesis and analysis approaches described in this report.  We are also planning 
to improve the coverage of requirements that are addressable using our approach and to measure 
the performance of our tools in comparison to human teams performing design tasks of similar 
complexity. 
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LIST OF ACRONYMS AND ABBREVIATIONS 

 

ACRONYM DESCRIPTION 

ADAPT Advanced Diagnostics and Prognostics Testbed 

DARPA Defense Advanced Research Projects Agency 

DDTE Design, development, test, and evaluation 

EPS Electrical Power System 

FFA Functional Failure Analysis  

FMEA Failure Modes and Effects Analysis 

FMECA Failure Modes, Effects, and Criticality Analysis 

IC Integrated circuit  

PARC Palo Alto Research Center 

PCC Probabilistic Certificate of Correctness 

PoC Probability of Correctness 

SA Sensitivity Analysis  

UP Uncertainty Propagation 

 


	List of Figures
	List of Tables
	1.0 SUMMARY
	2.0 INTRODUCTION
	2.1 Impact Statement

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 The META-II Tool Chain and Design Workflow
	3.2 Component Library
	3.3 Design Space Exploration
	3.4 Functional Failure Analysis
	3.5 Functional Verification
	3.6 Performance Verification
	3.7 PoC and PCC Computation
	3.8 Reliability Analysis
	3.9 System Integration

	4.0 RESULTS AND DISCUSSIONS
	4.1 ADAPT Electrical Power System Example
	4.1.1 Domain Description
	4.1.2 Models
	4.1.3 Findings

	4.2 IFV Ramp Example
	4.2.1 Domain Description
	4.2.2 Models
	4.2.3 Findings


	5.0 CONCLUSIONS
	6.0 REFERENCES
	APPENDIX A: PROJECT TEAM 
	LIST OF ACRONYMS AND ABBREVIATIONS

