Defense Advanced Research Projects AgencyTagged Content List


Showing 11 results for Adaptability RSS
Biological warfare agents pose more than a hypothetical threat to U.S. military servicemembers. Troops operate in hostile areas where they could come under attack from adversaries wielding bio-agents like anthrax and toxins. The first step in reacting to any such attack is knowing that it occurred. Quickly and accurately identifying the presence of airborne antigens can be difficult given their complexity, the presence of numerous similar microorganisms in the environment, and the fact that even minute quantities of a threat agent can cause infection.[i]
Phased radio frequency (RF) arrays use numerous small antennas to steer RF beams without mechanical movement (think radar without a spinning dish). These electronics are invaluable for critical DoD applications such as radar, communications and electronic warfare. Their lack of moving parts reduces maintenance requirements and their advanced electromagnetic capabilities, such as the ability to look in multiple directions at once, are extremely useful in the field. These benefits, though, come with a high price tag. Current phased arrays are extremely expensive and can take many years to engineer and build.
DARPA-funded researchers recently demonstrated the world’s smallest vacuum pumps. This breakthrough technology may create new national security applications for electronics and sensors that require a vacuum: highly sensitive gas analyzers that can detect chemical or biological attack, extremely accurate laser-cooled chip-scale atomic clocks and microscale vacuum tubes.
In today’s rapidly evolving mission environments, warfighters need new vehicles, weapons and other systems fielded quickly. Current design and development approaches, however, are unable to deliver those systems in a timely manner. To help overcome these challenges, DARPA’s Adaptive Vehicle Make (AVM) portfolio of programs is working to develop revolutionary approaches for the design, testing and manufacturing of complex defense systems, with the goal of shortening development timelines by five times or more. Thanks to strong early test results and a new opportunity to transition the technology, DARPA has decided to speed its current AVM successes to the defense industrial base in 2014—years earlier than originally planned.
Helicopters are incredibly maneuverable in the air, but during landing and takeoff their traditional skid- and wheel-based landing gear requires stable, flat surfaces—surfaces that are often unavailable in helicopter-needy environs such as forward operating areas, ships at sea and natural-disaster zones. Having the ability to land on and take off from angled, irregular and moving surfaces would greatly expand the effectiveness of helicopters across many military and national security missions.