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SYSTEMS AND HARDWARE INTEGRATION
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NANOSTRUCTURE ENGINEERING - ENABLING
TECHNOLOGIES

t 3 3
i 3 :
: - 3

- . a: - 5 i .

-7
0
-2 X (nm) 1868nm
7 J 7 - mm

Quantum Dashes Y (nm) 0 T 38KV XZ2Z0806.080608
@ 1.67 mm Quantum Dot 150-nm pitch, 50-nm CD
Modeling lithography

Upper Clad Layer

In ,;Ga ;sAs Waveguide

70.00 nm

Si0, Si
GaN(0002)

(] ) (i) e

In ,sGa ;5As Waveguide

AlGaAsSb Buffer/Clad

a0 = aIn.25Ga.75As

B Si(111)
Ol‘ientation GaAs Substrate 3?1‘11501;10)
Patterned AlGaAs Metamorphic . .
BLIffEIP Nanopatterned Epitaxy Nanoheteroepitaxy

Approved for Public Release, Distribution Unlimited



High Capacity
Optoelectronic
Interconnects

UNIVERSITY OF NEW MEXICO
STANFORD UNIVERSITY

UNIVERSITY OF ILLINOIS

UNIVERSITY OF TEXAS - AUSTIN
UNIVERSITY OF SOUTHERN CALIFORNIA

in JUUUL JUUUL out
E(w.) I E(w o)
s _,_|_ LO s
CW: E(w,)

Spectral Inverter
I Out
nA— “m‘“

I
S N N
CW : E(w, o)

Time Gated Mixer

in  JIANANIN M out

E(w ot 0g)

E(w,) |

i

Approved for Public Release, Dgglgh)m )Unlimited

STANFORD

OPTICAL FREQUENCY MIXERS FOR SIGNAL
PROCESSING

Wavelength Converter

€vices are very versatile

> > 100 GHz modulation
bandwidth

> 50 dB dynamic range
> 60 nm tuning bandwidth
Transparent to data format
Negligible additive noise

~ 3.5 dB fiber-fiber insertion
loss
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DYNAMIC PERFORMANCE AT 160 GB/S

« Power penalty is very small
« Eye diagrams at receiver are very clean

* Theoretical speed > 1 THz (much faster than those possible with
devices using carrier dynamics, such as SOAs)
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SINGLE AND MULTIPLE CHANNEI.
HEADER RECOGNITION (HR)
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Commercial Interest and Future Work

STANFORD

« Several companies currently exploring commercial implementation
of OF mixers

- Same family of mixer devices useful for a variety of applications
(wavelength conversion, spectral inversion, dispersion
compensation, gated mixing, optical signal processing, etc.)

« Develop MgO:LN for improved device stability (photorefractive
resistance)

« Implement multi-channel wavelength converters with buried
waveguide configuration for high efficiency

- Fabricate advanced integrated structures for higher functionality
(balanced mixing, multiplexing, WDM broadcasting, all-optical
switching)
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OPTICAL INTERCONNECTS USING m&»@ﬂfﬂiﬁ“ wmm

= Successful applications of flip-chip
GaAs modulator bonding to CMOS

= Demonstration of optical link in both
WDM and short pulse modes.

= First measurement of the latency of an
optical interconnect Tx/Rx pair.

= Novel single-ended receiver design
operating at 1.6 Gb/s.

= Experiment showing removal of signal

Si CMOS skew and jitter.

Flip-chip bonding enables post-processing
integration of circuitry (Si CMOS) and
optoelectronic devices (GaAs modulators and
photodiodes)

m Mature CMOS process + optimized optoelectronics.
m Dense 2D arrays bonded in parallel with high yield.

m Lower noise and higher speeds due to reduced total
capacitance.

______gumvd

4
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A 1.6 GB/S, ImW CMOS OPTICAL RECEIVER WITH
FLIR-CHIP BONDED OPRPTICAL DEVICES

m Traditional designs use a
Transimpedance Amp.
m  Requires high gain-bandwidth,
which means high power, exotic vdd
technology -—— Light V. (n+1)
= New Low-Power Design "4 f, - h D,

= Integrates photo current into the ZS
parasitic input capacitor

= Samples the voltage of the input in f
node at two consecutive bit times 2 L I

= Compares these two values with 1 T
the following clocked Sense Amp

= Adjusts input bias voltage, AC I [ow-Pas I
couples the input with a simple DC Filter
feedback loop Double-Sampler

Vin(n)

N

Offset
m  Lower Power, Smaller Area,
Comparable Bandwidth and Clocked Comparators
Sensitivity with Offset Compensation
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mm Thin-film VCSEL
(Vertical cavity surface

emitting laser) / Waveguide Coupler
Polymer Waveguide

Interlayer Dielectric

| ]
.
emm Si Photodetector

Electrical Interconnects

Polymer Waveguide Electrical interconnect Layers

To receiving IC

Section of Electrical/Optical Interconnects on a multilayer Board
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INTEGRATION ON PWB
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- MSM PD Clading m Thermal Via

PWB - Adhesive Layer Copper trace
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SUMMARY

1. Demonstration of Channel waveguide formation with micro-mirror

2. Integration of MSM detector array with waveguide array

I

3. Study of thinning process of commercial VCSELs

4. Point to point interconnect demonstration

Reference junction temperature (q;.) = 44.4 °C ( block Cu heat sink @ 25°C)

250pum thick Cu heat sink can not be used because of difficulty to form (not
standard PWB process).

30 um thick electroplated Cu heat sink is preferable because it is standard
process for through hole plating.

Thermal resistance should be less than 1080 K/W to operate up to 85 °C
environment.

Maximum thickness of VCSEL to satisfy thermal budget is 150um for 30um
thick electroplated Cu heat sink.

Very thin VCSEL shows good performance, however process is difficult and
expensive.
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SELECTIVE AREA EPITAXY FOR INTEGRATED
LASER/MODULATOR MODULES

Selective-area epitaxy (SAE) tunable narrow
linewidth laser/electro-absorption modulator

Approach
MQW DBR\ DBR MQW EA

« Selective-area MOCVD growth of Loser  Crefings Modulator
engineered bandgap structures using a Alg.60Ga0.40As:p i Q 0.4 um
patterned oxide mask

. . Alg 60Gag 40As:n I l 1 um
* DBR diode laser master oscillator,
slightly blue-shifted electroabsorption |
modulators, heavily blue-shifted GaAs substrate |

(@)

(transparent) splitter and router
waveguides ML . /XM
. SiOp \ | i
* Extension to quantum dots for \ '
performance and wavelength SiOz ,
considerations I ] =
150 um

(b)
SAE oxide mask pattern
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Dual-Wavelength Ridge Waveguide DBR Lasers witih
Tunable Mode Separation

BackDBR /_

spacer

R

two separate surface-etched
DBR sections

Gain Section
':Ilaser}

common gain section

Relatively low coupling coefficient k, in the front grating reduces the
added cavity loss for the back grating mode

Biasing the front DBR section results in tunable mode pair separations
(DI) as small as 0.3 nm and as large as 6.9 nm
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Spectra as a function of front DBR
grating tuning current (I
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Wavelength-Agile Sources: Concept & Results

WDM Source: Principle of

Channel Spacing AA Channels on  Qperation

. @ ITUGrd o Tntracavity multi-A grid

filter provides precise feedback

Tunable
Filter ' e e at ITU-WDM channels
) ! ) \ A e Intracavity tunable filter
a4 > selects individual wavelength
}\’tunable 7\'1 }\"2 77 7\'N g

channels

Choices of Multiwavelength Glass Waveguide Grid Filters (MWGFs)

e Series of WBGs (FBGs) / Sampled WBGs (FBGs)
e Waveguide (Fiber) Fabry-Perot Filters
e All-Waveguide “Sagnac Loop” Filter

Approved for Public Release, Distribution Unlimited
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FIBER WDM SOURCES & FUTURE PLC IMPLEMENTATIONS

Fiber Laser Designs Results Future PLC Designs
M xldi 20 ,
1) MWGF = FBG { A
String | 4, E 980 nm
T
5 20 \‘ Sampled WBG
Circulator §
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andpass 0% ope i
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[a—1} 1547.13 1553.13 1559.13
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FP Filter — = 10 980 nm Drop-In
3-Port o \ Etalon
Circulator T -20 - "““““‘
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Optical —
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3) MWGF = Sagnac Loop Filter F——A 5 Tigh Bir;r;ringence
usion .

980 nm H.l-Bl -5 4 Fiber Fusion
Pump Fiber & A5 AR ARRRARR ARG 8 3 dB Splice
N g’ 251 . Coupler Polarization

2 -35 1 j Controller
$ 2L =
O .55 ,
3 dB Coupler Optical -65 bbbty 980 nm Fiber
P Isolator -75 \ ﬁ" \ Pigtail
e, 1549.72 1553.72 1557.72 " : .
Output N Tunable Filter Wavelength (nm) Tunable Grating Gain Medium
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VCSEL SIMULATION GOALS

* Develop self-consistent 3D electrical-thermal-optical simulator
suitable for VCSEL design and analysis

* Explore complex physics of ETO interactions in cw-operating
VCSELs and 2D VCSEL arrays

» Apply the new tools to design novel VCSEL structures
and to improve performance of existing devices

* Develop reduced equivalent circuit versions for multi-level
simulation
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PACKAGE-LEVEL SIMULATION OF VCSEL ARRAYS

Results of 3D electro-thermo-mechanical simulation
- Deformation and VCSEL displacement

1.62322e—00 1P

le—-008

—1.6224%=—-008

Max. displacement of 4 VCSELs: 0.032 um - for 36 VCSELs: 0.3 um ! Q

M. Osinski SN € 00
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GalnNAs, a Long Wavelength, Low Voltage
Material for Optical Interconnects

STANFORD

2.5 B I I i i
AlAs
2 InxAIHAs
AlGa As
X 1-x
1.5
& GaAs/.\
(@]
2 980nm
@ wa As \
1 | X 1-x
\ \ 1300nm
AN 1550nm
05
- Galn NAs
x 1xy 1y
grown on GaAs InN As1 InAs
X =X
0 1 1 1 1 1 I 1 1 L1 I 1 1 1 1 I 1 1 1 1 I 1 1 I

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

Lattice Constant
e Scaled CMOS compatible (< 1V)
®Si substrate transparent
e Applicable to modulators, VCSELs and detectors m
e Compatible with telecommunications wavelengths

Approved for Public Release, Distribution Unlimited



i i UNIVERSITY OF NEW MEXICO

High Capaclt_y STANFORD UNIVERSITY

Optoslectronic eSS O N

| Interconnects UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD

GalaNAs VCSEL Room Temperature CW Operation

Output Power vs Current Spectra (5um x 5um)
0.1 T T T T ‘ T T T T T T \..‘.‘ T T T T T T T T 16 -40 L T T T T ‘ T T T T ‘ T T T T ‘ T T T T
i s 1 I 3.5mA
~ RTCW et ] i
, RV , ]
0.08 - > | 80 3 mA .
i e - 12 5 :
3 s el Sum x Sym - g - >40 dB |
£ I ” Ith = 1.32 mA_| 10 560 - ]
= 0.06 0.045TWA | o |
e i vih=103v . & 2
o — > L
9_,:; [ .:.o' : % @-70 j _
0.04 -if 8
g -6 g5 £ 1.3 mA
S ; ] = |
; ] 2-80
002 I 3.6um x 3.6um ] 4 -
I 12 90
0 — T 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ] 0 N
0 1 2 3 4 5 1195 1200 1205 1210 1215
Current (mA) Wavelength (nm)

m 5um aperture: 1.3 mA threshold; 3.6um: < 1 mA
=  CW operation in spite of very high voltage drop (~9V) in top mirror
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Advantages of GalNAs Barriers

Ga(g]VI:l/As GaIan[:l/As
. Decreased carrier 1 5
confinement
. Emission at longer
wavelengths At AL

GaAs Barrier GaNAs Barrier

« Decreased Nitrogen out-diffusion during
anneal = lower emission blueshift

« Strain compensation possible

« GaAsN - tensile
« GalInNAs - compressive _J. S. Harris__
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Ridige-Waveguide Laser Diode Results

Optical Spectrum 3 _50
_60 ‘40
S 2 30 S
I=1.21,, < 30 2
-65 - % 120
I 2 1 3
70 - > 103
0 - . - . : . 0
0 100 200 300 400
=75 Current (mA)
80 » Gag 65INg.32Np.025AS0.0975 With
Ga,é\so__ge-,SNo_035 barriers
-85 \ \ \ « Emission spectrum at
1305 1310 1315 1320 1-315!~lm
Wavelength(nm) « Without AR/HR coating
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GalnNAs(Sl)/GalNAs(Sb) PL Data

PL Comparison

09 - > 1.3um Highest PL intensity
0.8 -
307, _|45% In, Sb flux 7.2E-8
30 Peak at 1.482um (0.65)
@05
£ 04 46% In, Sb flux 1.4E-7

303 —"| Peak at 1.584um (0.14
o / um ( )
0.1 N 449 In, Sb flux 4.6E-8
: | ‘ ‘ -

1200 1300 1400 1500 1600 7o | Peak at 1.458um (0.043)

Wavelength(nm)
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GalmNAsSh/GaNAsShRIdge Waveguide Lases

80
{ W=5um: L=800um
70 - Ith=170mA
1 Jth=4.3KA/cm2
604 RT(25C) I=1.21,
(w=20um, L=800um, 25C)
1 Pulsed (1us, 1%) ; . - . - .
g 50 651
E
o 40— —~ -70
2 =
& )
30 4 >
‘»
C
g
10 S
_85 s 1 s 1 s 1 il
1455 1460 1465 1470 1475
0 T T T f T T T T T T T ] Wavelength (nm)
0 100 200 300 400 500

Current(mA)

« Gag s¢lng 44NAS(Sb) quantum wells with

GaNAs(Sb) barriers | J.S. Harris |
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GalnNAs HIGHLIGHTS

e Demonstrated first cw, room temperature GalnNAs VCSEL
at 1.22um

e Developed novel GaNAs barrier, GaInNAs quantum well
structure for > 1.3um lasers

e Developed optimum annealing process to achieve emission
in 1.3-1. 4,um with low threshold currents (1.5 and
2.1KA/cm?)

e Fabricated high efficiency (0.67W/A), 1.4um ridge-
waveguide lasers

e High output powers exceeding 320mW
e Device operation up to 90°C
e PL extended to 1.6um by addition of Sb GalnNAs(Sb)
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OMC- World Leaders in QD Devices

= Lowest threshold current for any

semiconductor laser diode - 10 A £
cm-2 : 10006 DH Alferov -
= DQ efficiency >90% E ' A b QW Dupuis :
] .5 ‘ :
First quantum dot laser at 1.3 pm £ ok~ _ b ob Kirstaedte:
First quantum dot VCSEL - A ‘ :
: ., S DH Dupuis *QW Tsanlg
First measurement of linewidth 100 « ' OD Ledentsoy
enhancement factor O § Somy :
= QD lasers have less chirp during = i QW Chand \%D ut ]
modulation, will have less noise, be less < 1 B UNM
sensitive to feedback and resistant to _;:.ﬂ ?0 A em?
filamentation = B
= Demonstration of 200+ nm tuning 1960 1970 198"Y 1990 2000 2010
m 1.5to 1.3 um in a single device? car
. . =Dk M N =N
First mode-locked device <m B ¥ = EE<< - ILLINOIS

Dots-in-a-well rapidly copied
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Where is MJG g@mg with QDs?

m Commercialization

= Zia Laser, $6M funding 1 June 2001
= Quantum dash lasers operating at 1.5 to 1.7 um

on InP

m 1.3 um VCSELs investigated
m Long wavelength on GaAs

m Modulators and amplifiers
m MOCVD dots show potential
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9100-80 -60-40-20 0 20 40 60 80 100

Delay (ps)

— Modal gain fitting
® Measured modal gain
O Measured modal loss

Modeling and experiment suggest capture g
occurs in QDs in less than 10 ps at room 5
temperature: x
T

Differential quantum efficiency high N
©

. £

16 ps, 7.4 GHz mode-locked pulses obtained S

at 1.3 um

Multi-level rate 15
equation model r r —_ i

for DWELL ~y prsd T 10

I
asers QW - N, S sl
rc, re ” -E

N s of

QD \ 0 Extensive O) 0
experimental data ® 5l

Fys Lo Topoo Fspro Fspa helps define large -8
number of = _10
-'W--'; P, parameters

F100 Foro T (NI P, 15

o T Ty P, 0
—|p

K. Malloy
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20 40 60 80 100 120 140
Current Density (A cm?)

Tec Te Tw Tspo | Tco Teo (Te).
0.008 |2.227 [4.279 | 0.6 |0.246 [1.385 | 11.4135




TAILORING THE PHONON B@’IJ'TIIL_EME@K

The dot size and shape determines the separation of states
- and therefore if resonant phonon de-excitation occurs
m Extremely difficult to establish long-lifetime excited states in a solid
= Dot engineering may permit this

m Pathway to efficient detectors and quantum computing devices
K. Malloy

Ground State
Excited State 0.25] 300f
~ X ~
> . 1 > ] Excited stat
g 0°20: Excited state g yeffed state
> - 1 =20
aﬁ 0.15} Ground state —
2 onol | o
Z(om Z am) = 0.10 m é 101 Ground state
- 00505 40 15 20 25 30 P
/ Dh ht(nm) 5 6 7 8 9 10 1R 1B K
nm el
Yam) b T’X( ) Q . QD Pyramid Height

E,=184 meV E,=284 meV

m*=0.07 m, AE=300 meV 14x14x7 nm pyramids Height a better growth parameter to control

than base of quantum dot
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INFLUENCE OF DOPING ON QI_D LASER

MODULATION RESPONSE:
QUASI-EQUILIBRIUM MODEL

undoped n - doped p - doped

A quasi-equilibrium model of
QD lasers shows that their

\ / \
\ /
H characteristics can be significantly
improved through modulation doping
Eeo — \6/7 ® to build excess hole carriers into the

active region. The improvement

o 9%4eV . :
*" is possible due to the close energy

5 spacings of the discrete hole levels.
,& /@\T AE,
D. Deppe
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CALCULATED MODAL GAIN VS. INJECTE
ELECTRONS (HOLES) PER QD

N
o

RN
o

o

Modal Gain (cm-1)

d‘—_—-‘
- -
-
-
’f
-

300 K

—— undoped
— — - p-doped (Na =10 per QD)
— - n-doped (Nd =10 per QD)

2 4 6 8
Injected electrons(holes) per QD

10
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A quasi-equilibrium model shows
that p-type modulation doping can
significantly increase the optical
gain as compared to an undoped or
n-type active region. The increase
due to the built-in holes is caused

by the thermal distribution of carriers
and the close energy spacing of the
discrete hole levels.
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CALCULATED DIFFERENTIAL GAIN AND
IMPACT ON
MODULATION RESPONSE

RN
N

I I T a
= b - 30 ! ! ! !
) R —— Undoped - undoped
- — - N _ - N q) —
et e e o — -~ p-doped (Na =10 per QD)
86 8 I &D?Oped( Bt o 20 r — - n-doped (Nd = 10 per QD)
T 0 . N
=2 N o
(- 8 6 B s~ m
%'E‘ 5 10 .
=S 47 | N 300K
by B J=10xJ
£ 2 ] E O -
Igl -.——_‘-—-———_—_ﬁ________ B | N |
200 250 300 350 400 = 0 2 N ° | 10
Frequency (GHz)

Temperature (K)
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CALCULATED THRESHOLD CURRENT
DENSITY VS.
CAVITY LENGTH FOR DIFFERENT DOPINGS

100 ¢
- n-doped — — 300 K Calculations show that p-type

& i ;rjd dooppeed - - - modulation doping should give

g a lower threshold current density and
< smaller dependence of threshold on
e cavity length than n-type or undoped
=l 10 L active regions.

5 - | | |

01 03 05
1/(cavity length) (mm'1)
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FILIJNDAMENIT Al ILJJMIJTJS 11'@ OPTICAL
LITHOGRAPHY

= Limit is on the pitch, NOT on the CD.

m For NA — 1, limiting pitch is A/2. Set by highest
spatial frequency beat between optical waves.

= Immersion reduces limiting pitch to A/2n. (n ~ 1.5).

m  Nonlinearities in exposure and pattern transfer increase
spatial frequencies on wafer.

m Can use this to interpolate to get additional density,
I. e. to beat the limiting pitch.

m Conclusion: THERE IS NO FUNDAMENTAL LIMIT
TO LITHOGRAPHY, THERE ARE ONLY PROCESS,
IMPLEMENTATION AND COST LIMITS.

S. R. ]. Brueck
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FUNDAMENTAL LIMITS OF @lPﬁlJ@S EXTEND
WELL BEIL@W 3\

= Optical resolution,
linear-systems limits
of are on period:

« [~A/2
~200 nm/(2) ~
100 nm]

- Immersion improves
result by refractive

CD =40 nm;
Pitch = 108 nm

A= 213 nm; 6~ 80°
(NA ~ 0.986)

index:
= [~A2n ~
200nm/(2X1.5) ~ L e
65nm CD = 40 nm; Pitch = 108 nm; DI H,O
S. R. J. Brueck A=213nm n=1.5,6=41° (NA = 0.66)
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USE NONLINEAR PROCEIIES TO IRIEIDILIICE
LINEWIDTHS WELL BELOW PITCH/2

m Use process nonlinearities to extend CD =30 nm, Pitch =360 nm
to smaller CDs (photoresist expose A =364 nm
and develop, etch, sacrificial layers).

m Produces harmonics of fun-damental
period of optical exposure.

m  Accepted practice in industry at limits
of resolution - microprocessors

(sparse) have smaller features than
DRAM (dense).

Oxygen plasma thinning of
developed photoresist lines.

Si dots on SiO, by RIE
CD ~ 20 nm; Pitch =360 nm,
A =364 nm; 0 = 30°.
&
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HOW LOW CAN OPTICS GO?

m For Dense (equal line:space patterns). CD Pitch

= Frequency space limit is A/4 50nm 100 nm
= Immersion provides another

factor of ~ 1.5 33nm 66 nm
= Spatial period division provides

another factor of 2 17nm 34 nm

m No fundamental limit on linewidth.
m Optical lithography offers:

= Scalability to large numbers of nanostructures
(34 nm pitch corresponds to density of ~ 10!'! cm2 comparable to
self-assembled quantum dot densities).

= Proven manufacturing capability.
= [nexpensive platform for nanostructure research.
= Proven overla cadpabilities for multiple levels.
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' APPLICATIONS OF INTEREEROMETRIC
LITHOGRAPHY

= DFB/DBR lasers (first-order pitch ~A/2n~ 200 nm)
m 2D Photonic crystals

m New laser structures
m Emission control/enhancement for LEDs

= Nanoscale epitaxial growth

m Heteroepitaxial growth with large lattice mismatch (GaAs/Si and
GaN/Si)

m Position and size control of quantum dots (InAs/GaAs)

m Large-area artifacts for precise positioning (2D gratings
over 12” wafers for transverse interferometers).

= [nexpensive, scalable, manufacturable route to
nanoscale (<20 nm).
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NANOSCALE GROWTH OFFERS NEW
POSSIBILITIES

Nanoheteroepitaxy for Nanoscale Growth for
l.arge l.attlce Mismatches Manufactured Quantum Dots
EEEEt Nanoscale

seeds offer
potential for
strain relief.

GaN on Si
(22% lattice
mismatch!)
Combining Self assembly
lithography on planar
GaAs on Si and self surface gives
(4.2% lattice assembly gives random array
Sl = mismatch) 1D lines of of quantum
‘ & ’1”*. y 1500 0| quantum dots dots
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NANOHETEROERITAXY IS A NEW AIPPJJR@A@HJ 1O
LATTICE MISMATCHED MATERIALS GROWTH

m NHE is a new heteroepitaxial approach
= Growth initiated on nanoscale seeds

m 3-D stress relief mechanisms utilized to reduce strain
energy and inhibit formation of defects

= How is NHE different from other heteroepitaxial
approaches?

= Differentiating feature is growth on dense periodic
array of nanoscale structures

m Nanofabrication is enabling technology for NHE

Approved for Public Release, Distribution Unlimited
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4

NHE theory [1] combines 3D stress relief and substrate compliance.
Stress and strain decay exponentially on both sides of heterointerface.

off S. D. Hersee
S. R. ]. Brueck

: >h
Strain energy saturates ‘e @
[1] “Nanoheteroepitaxy: A New Approach to the Heteroepitaxy of Mismatched
Semiconductor Materials”, D. Zubia, S.D. Hersee, J. Appl. Phys., 85 (1999) 6492 - 6496
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GaN ON PATTERNED SOI'
NANOHETEROEPITAXY

7O 00 nm‘

S10, Sl
GaN(0002)

—

A siain

GaN(01-10)
Si(-111)

Approved for Public Release, Distribution Unlimited

Strain field in epilayer indicates decaying
strain

Defects in silicon and GaN indicate strain
partitioning

Alignment of 6GaN[0002] and Si[111] SOT
acting as epitaxial template.
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NANOHETEROEPITAXY (NHE)

Concept: Mismatched materials technologies can be combined on nanoscale
patterned substrates

E =
I_ ;_ %

CRZ2.:888 Z3mm

i .

e E

nanoscale patterning allows large strain relief through 3D deformation
of nanoscale nucleii. 3D deformation is not available to larger nuclei.

S. D. Hersee
S. R. ]. Brueck
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STRAIN IN NHE GaN ON 3

1000 Unstrained
(bulk) value
Raman GaN/Hex part
Intensity 100 coalesced.
(arbitrary GaN/Square fully
units)
coalesced.
GaN/Hex fully —
10 coalesced.
GaN/planar
1 i)

510 520 530 540 550 560 570 580
Raman Shift (cm-1)

Tensile strain in fully coalesced regions -0.51 GPa (cracking)
Tensile strain in partially coalesced regions -0.09 GPa (no cracking)
(Raman measurements confirmed by shift of room temperature PL peak)

Application is integration of Il1I-V = = —=—
and Si technologies - adding

InP | GaAs |
extra performance and Silicon wafer

functionality to silicon.
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NANOHETEROEPITAXY SUMMARY

= NHE is a new paradigm for heteroepitaxy that predicts reduced strain
energy, due to 3D relaxation and strain partitioning.

m  Coherent epitaxial islands of arbitrary thickness can be grown on
materials systems with lattice mismatch up to 4.5% provided the
island diameter is sufficiently small (~ 20 - 50 nm).

m  Experimental results show a dramatic improvement in the quality of
the GaN grown on nanostructured (111) SOI compared to planar
growth.

m PL data showed a 25x brighter band-edge emission from GaN grown
on the nanostructured sample compared to planar samples.

= NHE should be widely applicable to many materials systems.

m Future work will concentrate on achieving macro-scale, defect-free
coalescence.
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