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Origins of
M iniaturization

Techniques
Prior to the advent of electronics,
most miniaturization was of
mechanisms, and was serially
executed (e.g., watchmaker).

With the dawn of computation, the
push to reduce the bulk of
computing elements (tubes/relays)
and interconnects led in part to the
development of modern integrated
circuits.
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Early History - Electronics

Cat hair, amber, lightning,
phlogiston, ether.

1906 Lee De Forest invents the
“audion” (triode).

1943 Paul Eisler invents
printed circuit boards.

1945 Eniac computer becomes
operational.

1947 John Bardeen and
Walter Brattain invent the
point-contact transistor.

1949 William Shockley
proposes junction transistor.
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Recent History - Electronics

1958 Jack Kilby (TI) invents
the integrated circuit.

1962 Steven Holstein and
Frederick Heiman (RCA)
demonstrate the MOS
integrated circuit.

1965 PDP-8 computer
introduced - first to use IC’s.

1971 Marcian (“Ted”) Hoff
develops Intel 4004 - the first
IC microprocessor.
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MICRO-
LITHOGRAPHY
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Samaun Relative Pressure Sensor - 1969
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Roylance - M icromachined Accelerometer - 1974
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Terry - Integrated Gas
Chromatography System - 1975
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ANALOG DEVICES ADXL-50

Images courtesy Dr. R. Payne, Analog Devices, Inc.
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Miniaturized POC Diagnostic
Sensor Chips

Calibrant Pouch

Sample Holding Chamber

Sample Entry Port

Flow Channel

Courtesy Dr. Anca Varlan , I-Stat.
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SOFT LITHOGRAPHY

Courtesy Prof . G. Whitesides.  Reference:   Kim,  E. ,  Xia ,  Y. ,  and Whites ides ,  G.  M. ,  “Polymer  Microstructures  Formed by  Mould ing  in

Capil laries ,”  Nature,  vo l.  376,  1995,  p p .  581 -  584.



G. Kovacs ,  Stanford Univers i ty
Courtesy Prof . G. Whitesides.  Reference:   Abbott ,  N.  L,  Folkers ,  J.  P. ,  and Whites ides ,  G.  M. ,  “Manipulat ion of  the  Wettabil i ty  o f

Surfaces  on  the  0 .1  -  1  Micrometer  Scale  Through Micromachin ing  and Molecular  Sel f -Assembly ,”  Science ,  vo l .  257,  1992,  p p .  1380 -  1382.

SURFACE MODIFICATION
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Source:  Bowling Green University Center for Algal

Microscopy and Image Digitization

http://www.bgsu.edu /departments/biology/algae/index.html
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ACTUATOR AND ENERGY SCALING

Actuation schemes generally do not
scale well.

Thermal actuation generally used
(high power).

Current alternatives have
significant drawbacks.

Courtesy Dr. Mark Zdeblick, Redwood Microsystems, Inc.

• Power source scaling is even worse.

• Many portable or implantable
systems are dominated by battery
volume/mass.

• Need more efficient actuators and
better power sources.
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MICROTUBULES & KINESIN

Movies  courtesy  Pro f.  H.  C.  Hel ler ,

Stanford Univers i ty .

Source:   Purves, Or ians, Hel ler ,  and

Sadava ,  “Life:   The Science of  Biology,”

Sinauer Assoc ia tes /W.H.  Freeman & Co. ,

New York ,  1999 .

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.
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THERMAL TRANSPORT SCALING

• Thermal transport (and
isolation) achievable with
microstructures far
exceeds what can be
done with larger-scale
devices.

• Radically improved heat
exchangers.

• Unprecedented thermal
isolation.

• Potential for localized
chemical reactions +
stable operation of
reactions not feasible at
macro-scale.

" 200 µm

Klaassen, E. H., Reay, R. J., Storment, C. W., and Kovacs, G. T. A.,
“Micromachined Thermally Isolated Circuits,” Sensors and Actuators
A, vol. 58, no. 1, Jan. 1997, pp. 43 - 50.
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MASS TRANSPORT SCALING

• Fluid flows at the micro-scale are almost certainly
laminar.

• Separations are enhanced by surface-area-to-volume
ratio increases as channels are scaled down.

• As described by Manz, for an ideal (single molecule)
sensor, the volume containing a molecule is given by,

(C = concentration, N A  = Avogadro’s  number)

• Affinity  techniques are often needed.

• Amplification techniques may also be applicable if they
have sufficient signal-to-noise ratio (key metric!).

Vsm =
1

C N A
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“LAB-ON-A-CHIP”

1 m
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       10-18        10-15        10-12       10-9         10-6         10-3        1L

milli-liter:
(1 cm) 3

micro-liter:
(1 mm) 3

nano-liter:
(100 µ m)3

pico-liter:
(10 µ m)3

Less than
one molecule
per sample

DNA
Probe

Assays

COPIES

6x1020/mL

6x1017/mL

6x1014/mL

6x1011/mL

6x108/mL

6x105/mL

600/mL

6/mL

PERFECT
DETECTION &
STATISTICAL
CONFIDENCE

SAMPLE  VOLUME

Clinical Chem

Immuno Assays

DETECTION
LIMITS OF

MICROFLUIDIC
ASSAYS

Courtesy Dr. Kurt Petersen, Cepheid, Inc.
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FLOWS AT LOW REYNOLDS NUMBER

QuickTime™ and a
Component Video decompressor
are needed to see this picture.

100 µm 50 µm

Q = 10 µl/min
v = 67 mm/s
R e = 4.4

Two parallel streams of dyed water showing mixing by diffusion only.
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“Micro” Breakthroughs in the
Next 50 Years?

• Integrated circuits will reach billion transistor levels.

• Lithography will take us down to tens of nanometer
features.

• Quantum devices or other “alternate” computation
schemes will emerge.

• Sensor fusion approaches will be invented that work
across size domains.

• High-performance biosensors will emerge that allow
the target biological signals to be monitored rather
than inferred.
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“Micro” Breakthroughs in the Next 50
Years? - Cont’d .

• Nanotechnology will actually become a technology instead of a
science fair.

• Techniques will emerge for seamless integration of various
technologies, materials, etc., into systems.

• Multi-mode integrated systems (e.g., fluidic, thermal,
electronic, etc.) will emerge in some applications.

• Miniaturized implants will be commonplace for treating
disorders, predicting/preventing disease, and potentially for
enhancing human capabilities.
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WHAT HAPPENED TO GOALS?

• What about the “grand” projects like
predictive protein design, curing cancer,
curing cardiovascular disease, or even
curing aging?

• The last grand-scale national science
push worked  because it had a clear goal,
was adequately funded, and because it
was led by applied scientists (engineers,
doctors, physicists).  Genome project?

• If government agencies want to push the
frontiers at a basic science level, the
cultures of the scientists must be
considered (modified?).
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Do not confuse the
complexity of the

system under study
with the complexity of
the project to study it.
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CROSSING DISCIPLINARY
BOUNDARIES

• Interdisciplinary centers - with clear goals.

• Interdisciplinary education!

• Interdisciplinary design and modeling
tools (software and hardware).
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Technology push
or need pull?
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Does adding
funding add

breakthroughs?
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CONCLUSIONS

• The thoughtful application of miniaturization
technologies will have broad impact when applied to the
bio:info domains.  Examples: diagnostic, pharmaceutical
discovery, therapeutic, and basic science instrumentation.

• Clear understanding of scaling laws and system-level
issues across disciplines is vital for successful
miniaturization.

• Interdisciplinary teams are critical, but interdisciplinary
people are even better.


