Creating and Preventing Strategic Surprise
Our Work Banner
Robotics Challenge

DARPA Aims to Accelerate Memory Function for Skill Learning

RAM
A new DARPA program aims to investigate the role of neural “replay” in the formation and recall of memory, with the goal of helping individuals better remember specific episodic events and learned skills. The 24-month fundamental research program, Restoring Active Memory Replay or RAM Replay, is designed to develop novel and rigorous computational methods to help investigators determine not only which brain components matter in memory formation and recall but also how much they matter. To ensure real-world relevance, those assessments will be validated through performance on DoD-relevant tasks instead of conventional computer-based behavioral paradigms commonly used to assess memory in laboratory settings. New knowledge and paradigms for memory assessment and formation could translate into improved rehabilitation and recovery for injured warfighters challenged by impaired memory.  Article 
RAM
Exacto 144

EXACTO Guided Bullet Demonstrates Repeatable Performance against Moving Targets

Exacto 

DARPA’s Extreme Accuracy Tasked Ordnance (EXACTO) program, which developed a self-steering bullet to increase hit rates for difficult, long-distance shots, completed in February its most successful round of live-fire tests to date. An experienced shooter using the technology demonstration system repeatedly hit moving and evading targets. Additionally, a novice shooter using the system for the first time hit a moving target. Article

N-Zero 144

N-ZERO Envisions “Asleep-yet-Aware” Electronics that Could Revolutionize Remote Wireless Sen

DARPA’s new Near Zero Power RF and Sensor Operations (N-ZERO) program aims to develop wireless, event-driven sensing capabilities that would allow physical, electromagnetic and other sensors to remain dormant—effectively asleep yet aware—until an event of interest awakens them.  N-ZERO’s persistent sensing capability could increase mission life, reduce battery size and reduce the maintenance costs of unattended wireless sensors. This image illustrates how N-ZERO-equipped sensors could cut reliance on active power in various environments including critical infrastructure protection, threat detection in an urban area, forest fire detection and perimeter monitoring. The image highlights critical infrastructure in particular to show that these wireless sensors could help identify cracks and prevent further serious damage or danger. The wireless sensors could then gather the specific data and trigger a separate processor to analyze the data and take appropriate action. 

State-of-the-art military sensors today rely on “active electronics” to detect vibration, light, sound or other signals. That means they constantly consume power, with much of that power and time spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months when operating from state-of-the-art batteries, and has slowed the development of new sensor technologies and capabilities. Moreover, the chronic need to redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger. Article 

Brass 144

DARPA Seeks to Create Software Systems That Could Last 100 Years

Artist’s concept of software system components dynamically adapting to resource changes within an operational IT ecosystem. 

As modern software systems continue inexorably to increase in complexity and capability, users have become accustomed to periodic cycles of updating and upgrading to avoid obsolescence—if at some cost in terms of frustration. In the case of the U.S. military, having access to well-functioning software systems and underlying content is critical to national security, but updates are no less problematic than among civilian users and often demand considerable time and expense. That is why today DARPA announced it will launch an ambitious four-year research project to investigate the fundamental computational and algorithmic requirements necessary for software systems and data to remain robust and functional in excess of 100 years. Article

The PCAS system includes two main components, PCAS-Air and PCAS-Ground, which connect aircraft with troops on the ground for shared situational awareness, communications, fire coordination, mapping and synchronized views of the battlefield. Shown clockwise from upper left: 1) Marine uses PCAS-Ground tablet to call for a strike and pinpoint coordinates; 2) modified MV-22 aircraft is dispatched; 3) aircraft crew calls up data on PCAS-Air tablet; 4) target is engaged. In this test, the entire process from initiation to impact took just over four minutes.

Marine Corps Leadership “Very Pleased” with 1st Successful Demonstration of DARPA’s Persistent Close Air Support (PCAS) System

Marine Corps Leadership Very Pleased with 1st Successful Demonstration of DARPA’s Persistent Close Air Support (PCAS) System 

Close air support (CAS)—delivery of airborne munitions to support ground forces—is difficult and dangerous because it requires intricate coordination between combat aircrews and dismounted ground forces (for example, joint terminal attack controllers, or JTACs). DARPA’s Persistent Close Air Support (PCAS) program focuses on technologies to enable sharing of real-time situational awareness and weapons systems data through approaches designed to work with almost any aircraft. PCAS envisions more precise, prompt and easy air-ground coordination for CAS and other missions under stressful operational conditions and seeks to minimize the risk of friendly fire and collateral damage by enabling the use of smaller munitions to hit smaller, multiple or moving targets. This capability is critically important in urban environments. Article

April Fools 144

New DARPA Programs Simultaneously Test Limits of Technology, Credulity

New DARPA Programs Simultaneously Test Limits of Technology, Credulity 

Less than one week after releasing Breakthrough Technologies for National Security (http://go.usa.gov/3rut4), DARPA’s latest summary of the Agency’s mission, accomplishments and funding priorities for extending its legacy of technological disruption, the Agency today announced four major new programs—evidence of DARPA’s commitment to pursuing high-risk/high-reward research and making the impossible possible. Article

Share this page: