
Hierarchical Identify Verify Exploit (HIVE)
Program

Trung Tran
DARPA/MTO

Proposers Day Brief
DARPA-BAA-16-52

Distribution A. Approved for public release: distribution unlimited.

2

HIVE will create a graph analytics processor that achieves 1000x
improvement in processing efficiency

• This will enable relationships between events to be discovered as they
unfold in the field rather than relying on forensic analysis in data centers

• This will enable data scientists to make associations previously thought
impractical due to the amount of processing required

HIVE – What are we trying to do?

Distribution A. Approved for public release: distribution unlimited.

3

There is an increasing need to understand relationships

Social Media AnalysisCyber Security Infrastructure Monitoring

Who influences me to buy a
product?

• Who has access to my social
media pages and what are they
saying to me?

• Since only a few people have
direct influence on me – graph is
sparse.

Can I spot failures before
they become critical?

• How do I avoid cascading
failures and what are the
system dependencies?

• Only a small number of critical
dependencies – graph is
sparse.

Which cyber events are
probes on the network?

• Who are they probing and
who have they infected in the
network?

• Only a small number of
events are probes – graph is
sparse.

Graph analytics is beginning to be applied to a broad set of problems

Distribution A. Approved for public release: distribution unlimited.

4

Graph analytics today requires large data centers

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

CPU

GPU

Graph Size (Millions of vertices)

GT
EP

S*
/W

Estimated performance of a single HIVE processor*
The HIVE program
will develop a single
processor capable of
efficiently performing
community detection
on a graph of up to a
billion vertices in real
time.

Current single chip
CPU/GPU hardware
cannot efficiently
process large graphs
in real time. To
overcome processor
limitations, large data
centers are required.

HIVE aims to enable scalable, real-time graph analytics at the network edge

10
00

X

* GTEPS = Giga Traversed Edges Per Second

Distribution A. Approved for public release: distribution unlimited.

5

HIVE – Today’s hardware is focused on dense data

Dense Sparse

Intel CPU
• Sequential processing
• Sequential memory access
• Slow (20GB/s) to memory
• Limited scalability (16GB/s)
• Optimized for Statistics

Nvidia GPU
• Parallel processing
• Sequential memory access
• Faster (288GB/s) to memory
• Limited scalability (20GB/s)
• Used for CNNs

Google TPU
• Parallel processing
• Sequential memory access
• Slow (20GB/s) to memory
• Limited scalability (16GB/s)
• Optimized for DNNs

Sequential access is
good for dense data
Sparse data requires

random access

Lower level primitives
(5x5 Matrix)

• 25 Scalar operations
• 5 Vector operations
• 1 Matrix operation

HIVE
• Parallel processing
• Parallel memory access
• Fastest (TB/s) to memory
• Higher scalability (TB/s)
• Optimized for GraphsSource: Intel Source: Nvidia Source: Google

Distribution A. Approved for public release: distribution unlimited.

https://www.bing.com/images/search?q=intel+processor&view=detailv2&&id=54DB135009598EA3243EF2F79452C8F8A8FB025A&selectedIndex=2&ccid=2X7Os4YH&simid=608028805907680807&thid=OIP.Md97eceb3860784fc48926172fa1e53e9o0
https://www.bing.com/images/search?q=intel+processor&view=detailv2&&id=54DB135009598EA3243EF2F79452C8F8A8FB025A&selectedIndex=2&ccid=2X7Os4YH&simid=608028805907680807&thid=OIP.Md97eceb3860784fc48926172fa1e53e9o0

6

Current GPU/CPU/TPU solutions have poor random access rate

0.1

1

10

100

1000

10000

1990 1995 2000 2005 2010 2015 2020

Flops/s GB/s Accesses/s Processor Gflops/s  Memory Sequential GB/s  Memory Random Accesses/s

Today’s graph-processing problems are not
limited by flops or bandwidth, but are driven
by “random accesses rate” from memory:

• GFlops/s per socket growing rapidly with
multi-core & GPU

• Somewhat smaller increase in sequential
bandwidth from memory

• Significantly slower increase in random
access rate from memory

CPU/GPU/TPU
sequential access is
excellent (dense
math)

Random access is
poor (sparse
math)

* EMU Technologies Design Review. March 2016

Distribution A. Approved for public release: distribution unlimited.

7

HIVE is focused on sparse data

Dense Sparse

Intel CPU
• Sequential processing
• Sequential memory access
• Slow (20GB/s) to memory
• Limited scalability (16GB/s)
• Optimized for Statistics

Nvidia GPU
• Parallel processing
• Sequential memory access
• Faster (288GB/s) to memory
• Limited scalability (20GB/s)
• Used for CNNs

Google TPU
• Parallel processing
• Sequential memory access
• Slow (20GB/s) to memory
• Limited scalability (16GB/s)
• Optimized for DNNs

Graph ProcessorHIVE
• Parallel processing
• Parallel memory access
• Fastest (TB/s) to memory
• Higher scalability (TB/s)
• Optimized for Graphs

New
Approach

Create a new hardware
architecture optimized
for sparse graphical
models and decision

trees

Parallel memory access
enables random access

Matrix data format/operations
enables more efficient processing

Graph Primitives
SpRef/SpAsgn,
SpGEMM,
SPEWiseX, Scale,
Reduce, and Apply

Distribution A. Approved for public release: distribution unlimited.

https://www.bing.com/images/search?q=intel+processor&view=detailv2&&id=54DB135009598EA3243EF2F79452C8F8A8FB025A&selectedIndex=2&ccid=2X7Os4YH&simid=608028805907680807&thid=OIP.Md97eceb3860784fc48926172fa1e53e9o0
https://www.bing.com/images/search?q=intel+processor&view=detailv2&&id=54DB135009598EA3243EF2F79452C8F8A8FB025A&selectedIndex=2&ccid=2X7Os4YH&simid=608028805907680807&thid=OIP.Md97eceb3860784fc48926172fa1e53e9o0

8

HIVE – Why do we think it will be successful?

Data
mapping

Graph analytics
tool packages

Graph
primitives

System on chip
design flows

New memory
architectures

SpRef/SpAsgn,
SpGEMM,
SPEWiseX,
Scale, Reduce,
and Apply

Distribution A. Approved for public release: distribution unlimited.

9

HIVE – Technical challenges

Graph
Software

What should be
accelerated?

Graph
Accelerator

How should it be
accelerated?

Define graph
primitives

Create data
format model

Define data
flow model

Define linear
algebra building
blocks which can
be accelerated

Map graph matrix
into subarrays

which can allow
for easy memory

mapping

Define data
movement from

processor to
memory and

between
processors

Develop hardware
accelerators for

each
building block

Create memory
controller which
optimizes data

movement based
on mapping

Develop bus
architectures

to avoid
congestion in

data movement

Accelerators Memory Scaling

Distribution A. Approved for public release: distribution unlimited.

10

HIVE – Program structure

Challenge
problem

areas

Evaluation
framework

TA3:
Evaluator

TA 1:
Graph analytics accelerator
(ref: TPU, GPU)
• Runs at <20W
• Enable reduced data

movement/processor idle time
to <50%

• Allow for 95% memory BW
efficiency at 100% random
access (R/W)

TA 2:
Graph analytics toolkits
(ref: Tensorflow, CUDA)
• Enable real-time streaming

graph analytics
• Designed for hardware

acceleration
• Generally applicable across

a series of graph problems

100X
improvement

• Targeting graph applications
• Dense and sparse data
• Built for scaling
• Intended for embedded

Distribution A. Approved for public release: distribution unlimited.

11

HIVE – Program plan

Concept
Phase 1

Initial prototypes
Phase 2

Chip fabrication
Phase 3

FY17 FY18 FY19 FY20 FY21

Deliverables:
• PCB prototype of chip
• Functional testing on real world problems

Deliverables:
• Actual chip
• Functional testing on real world problems

Deliverables:
• Prelim design
• Simulation

(4) TA1 (2) TA1

(2) TA3

(2) TA1

(4) TA2 (2) TA2 (2) TA2

Distribution A. Approved for public release: distribution unlimited.

Phase 1 Phase 2 Phase 3

TA1

12

HIVE – Dependency table

GFE
Static graph
• Problem
• Data
• Results
Dynamic graph
• Problem
• Data
• Results

Program Start

TA2

TA3

TA1

TA3

TA1

Beta Tools

Primitives
Models

Final Tools
TA1
TA3

Benchmarks

* Note: Government independent testing may be done on TA3 results

TA2

TA1 TA2

TA3

Architecture
Simulator

Emulator
TA2
TA3

Chip

TA2
TA1
TA2

TA1
TA2

Results* Results*

Distribution A. Approved for public release: distribution unlimited.

www.darpa.mil

13Distribution A. Approved for public release: distribution unlimited.

	Hierarchical Identify Verify Exploit (HIVE) Program
	HIVE – What are we trying to do?
	There is an increasing need to understand relationships
	Graph analytics today requires large data centers
	HIVE – Today’s hardware is focused on dense data
	Current GPU/CPU/TPU solutions have poor random access rate
	HIVE is focused on sparse data
	HIVE – Why do we think it will be successful?
	HIVE – Technical challenges
	HIVE – Program structure
	HIVE – Program plan
	HIVE – Dependency table
	Slide Number 13

