
RAFTIMATE Installation Guide 

System Requirements 
RAFTIMATE requires a Windows computer with Microsoft Excel and MathWorks 
MATLAB installed.  RAFTIMATE has primarily been tested on Windows XP 
Professional SP2 and MATLAB r2006a.  Other versions should work, but have not been 
tested. 

Copying and Unzipping Files 
Using WinZip or compatible program, first unzip the program function library 
(“RAFTIMATE Version 1.5.zip”) to a location that can be read, but not necessarily 
edited by the users who need to run the program.  Windows file servers are a good 
option. 
 
Next, unzip the Excel HUL file (“F6_MasterComponentsList_r14.zip”) to a location that 
can be accessed and edited by the user during run time.  This file contains the satellite 
module component information. 
 
Finally, unzip the example input-output directory file (“Demo.zip”) to the location where 
the program will be run.  This location is where input decks can be edited and program 
output deposited. 

RAFTIMATE Execution Guide 
RAFTIMATE comes with two modes of execution, the high-fidelity Monte Carlo mode 
and the lower fidelity Rapid Screening mode.  Monte Carlo mode combines time-
dependent launcher reliability with individual component modeling, multiple 
development delay models and survivability modeling to generate a large number of 
cluster time histories.  These time histories are then analyzed to generate present benefit – 
present cost scatter plots and benefit monetized to generate net present value histograms. 
 
The Rapid Screening version takes the same input deck, but makes several simplifying 
assumptions to speed up the execution time to assess a cluster.  First, all the probability 
distributions in the model are assessed at a specified confidence level.  This eliminates 
the multiple trials required for a full probabilistic assessment.  Second, the perturbations 
are reduced to only launch vehicle reliability, module reliability and the payload 
development TRL effect.  Launch vehicle reliability is assumed to be constant and the 
distribution of number of launches is modeled as a Poisson process.  Module reliability is 
calculated by rolling up the component reliabilities for each individual module.  
Unfortunately, this time saving measure eliminates the ability of the program to model 
component sharing.  The payload TRL effect is analyzed using probability theory to 
directly calculate the module delay distribution from its constituent payload distributions.  
These changes allow a full cluster analysis to take place in 1/20th of a second on an Intel 
CoreDuo Windows XP machine, down from roughly 40 minutes for the Monte Carlo. 



Monte Carlo RAFTIMATE 

RAFTIMATE HUL’s 
RAFTIMATE uses hardware lists created in Microsoft Excel with a very specific format.  
This formatting includes each component type present in a particular module along with 
information in columns about: 
 

• Redundancy – quantity present and quantity required for module operation or 
sharing operation 

• Mass 
• Power 
• Shareability – ability to both share and backup this component with an identical 

component on another module 
• Cost model category – CER type to use for costing 
• Local sharing criticality – list of WBS items on this module that rely on this 

component for sharing 
• Global sharing criticality – list of WBS items in the cluster that rely on this 

component for sharing 
 
An example WBS is shown in Figure 1.  While it is possible to generate these HUL’s 
manually, it is a labor intensive task. 
 

 
Figure 1 - Example Excel Input Module HUL 

HUL Generator 
The HUL generator uses a master component list present on the tab “Master Component 
List”.  This database has several satellite bus choices along with the components present 
on those buses.  In addition, at the bottom of the page, component information for various 
payloads has been saved.  This information is used by a HUL generator macro that can be 
accessed on the “Input Deck” tab of the example HUL Excel file.  This input deck is 
shown in Figure 2. 



 
Figure 2 - HUL Generator Input Deck 

 
To operate the generator, first fill in the inputs in cells B2-B4 indicating the tab 
containing the component database, the HUL set to use and the desired name of the 
output HUL tab.  Inputs B6-B13 set weight multipliers for the components in each 
subsystem.  This is a crude way to scale up the bus hardware and should be used 
sparingly.  In cells B16-B20 are the propellant inputs and summary outputs.  The HUL 
requires a delta-V consumption rate and a design propellant life to calculate the 
propellant and propellant tank sizes.  Finally, cells A23 and below is the list of payloads 
from the component database that are to be included in the HUL. 
 
Once all the HUL’s for a particular cluster have been created, the input decks for 
RAFTIMATE need to be created based on these HUL’s. 

RAFTIMATE Input Deck 
The RAFTIMATE input deck is written in the form of a MATLAB function that calls 
functions that reside in the tool. 
 
Payload Menu 
The payload menu consists of a list of declarations of payload objects.  Payload objects 
can be any name, as long as the obj.type corresponds to one of the following types: 
 

• Transmitter 



• ReallySimpleTransmitter 
• SimpleEO 
• ReallySimpleEO 
• GenericPL1 … GenericPL8 
• Processor 

 
Each object type has a distinct set of input requirements.  These requirements can be 
inferred from the function “satellite_menu.m”.  An example set of inputs is shown in 
Figure 3. 
 

 
Figure 3 - Example Payload Inputs 

 
Module Menu 
The module menu populates a cell structure in the model called “sat_menu”.  Each cell is 
a module that can be included in the cluster.  Each module needs a name that corresponds 
to a HUL tab in the Excel HUL input file, a list of payload assignment objects from the 
payload menu, the quantity of each type of payload, the TRL of each payload and a flag 
the determines whether the module costs need to be accounted for in the analysis. 
 
The second input block contains the nominal propellant life, the module production 
learning factor, the module baseline development time, the development time standard 
deviation and a flag that determines whether or not the Excel HUL file is used for input.  
The Excel HUL file is required for Monte Carlo analysis.  An example set of modules is 
shown in Figure 4. 
 



 
Figure 4 - Example Module Inputs 

 
Launch Menu 
The launch menu consists of “packages” cells that are attached to the object launch menu.  
Packages only need to be defined if more launchers than one rank one launcher per 
defined module is required, as these launchers are automatically created later in the code.  
Each launch package definition has a: 
 

• Name 
• LV_rank – this is the cost rank of the launch to select.  For example, a rank 2 

package will select the second cheapest launcher in the table that can perform the 
requested mission. 

• Sats cells – these cells contain satellite objects from the satellite menu for the 
satellites in the launch package. 

• Sat_qty cells – number of each satellite type 
 
There are a few top level inputs in the launch menu as well.  The “learning” field contains 
the launcher production learning factor.  The “forceEmplacement” field tells the model 
whether to precisely follow the prescribed launch packages (=1) or to launch the modules 
in the fastest order possible (=0). 
 



Once the launch package requests have been defined, the location(s) for the launch menu 
need(s) to be defined.  RAFTIMATE accepts multiple orbit requests using the most 
stressing orbit location as the basis for launcher selection.  To enter a location, create a 
cell vector called “clusters” attached to the “launch_menu” object.  Each cell in the 
vector is a separate launch location.  Each location needs to have the following fields: 
 

• Orbittype – This is set to either ‘LEO’ or ‘GEO’ and changes the location of the 
launch table lookup.  ‘GEO’ is assumed to be direct injection into geostationary 
orbit.  ‘LEO’ launch capacities are only valid to about 1000km altitude and up to 
a polar inclination. 

• Alt – This is the altitude in km of the orbit location 
• Inc – This is the inclination in degrees of the orbit location 

 
An example launch menu is shown in Figure 5. 
 

 
Figure 5 - Example Launch Menu Inputs 

 
Cluster Definition 



The definition of a cluster begins with the selection of an orbit location from the launch 
menu.  This is done as shown in Figure 6.  Next, the elements of the cluster need to be 
selected.  This is done by requesting quantities of launch packages in the “package_qty’ 
field of cluster.  The beginning elements of the vector correspond in order of the launch 
packages defined by the user for the launch menu.  The second part of the vector 
corresponds to the modules as launched individually.  Because this is always needed for 
replenishment, single manifested packages are created automatically regardless of user 
input.  An example is shown in Figure 6.  
 

 
Figure 6 - Cluster Definition Inputs 

 
 
The next block of inputs corresponds to econometric assumptions:   
 

• “launch_CL” and “replenishment_CL” refer to confidence level analyses on the 
launch and module reliabilities respectively.  For complex clusters, these analyses 
can take a long time to calculate, so it is recommended that unless this output is 
going to be used, the confidence levels be set to 1%.  This will not affect the 
Monte Carlo simulation in any way.   



• Next is the simulation analysis period “eval_period”.  This is the window of time 
over which the simulation should assess the cluster in months.   

• “discount_rate” is the discount rate to be used to calculate present benefit and 
present costs. 

• “emplacementOnly” is a flag that tells RAFTIMATE whether or not to 
reconstitute the cluster in the event of module failures.   

• “MTBC” is the mean time between collisions in days and defines the frequency of 
the random survivability events in RAFTIMATE.   

• “SepAngle” is the separation angle in degrees of any sparse aperture modules and 
is only used in “StereoEO” payload performance calculations. 

• “BasicOpsDK” is the Ops cost of operating the first module in the cluster in 
thousands of 2008 dollars. 

• “PerModOpsDK” is the Ops cost of operating subsequent modules that are added 
to the cluster. 

• “clustertype” is used to define which tab in the Excel HUL to look at to get the 
list of cluster critical shareable components.  This list defines which components 
can be shared across the cluster and only need to exist a specified number of 
times.  A component that is needed a specified number of times per module 
should not be included on the cluster critical list. 

 
Cluster Perturbation Switches 
Perturbations can be turned on, off or overridden using the list of switches in this section.  
This is useful for identifying perturbation drivers of system response.  The “onoff” 
switches activate and deactivate the perturbations while the “direct” switches tell the code 
to call a user-defined helper function in place of the existing perturbation.  The names of 
the user-defined helper functions are as follows: 
 

• Dev - direct_satellite_availability.m 
• DevDelay - direct_module_dev_disruption.m 
• ReqChange - direct_cluster_req_change_disruption.m 
• collision - direct_collision.m 
• Components - direct_compfail.m 
• Launch_failure - direct_launchsuccess.m 

 
It is recommended that these user defined functions reside in the run input-output 
directory rather than the main code library.  The ability to override perturbations was 
included primarily for vignette analysis and is an advanced RAFTIMATE feature.  Use 
this feature only if you are very familiar with the code. 
 
Cluster Scoring Inputs 
To obtain the cluster benefit score, the final set of inputs are needed.  Multiple scores can 
be calculate using different “obj” cells.  Each “obj” cell corresponds to a different scoring 
criteria.  The fields for an obj cell are: 
 

• Weighting – this is a vector of the weightings given to each of the scoring criteria. 



• Thresholds – these are the values that are to be used as a floor for scores.  Criteria 
below the threshold will count as zero. 

• Goals  - the criteria goals are scored in most schemes at a value of 1.  Whether or 
not this is the ceiling for the scoring criteria is determined by the “single_limit” 
variable.  

• single_limit – This is the maximum score that can be attained by any one criteria.  
A value of 1 corresponds to the criterion goal. 

• Type – this determines the type of scoring to be used.  Valid fields are ‘minterm’, 
‘product’ and ‘sum’.  ‘minterm’ uses the minimum score from the two fields to 
determine the score of the cluster.  ‘product’ multiplies the scores together while 
‘sum’ adds the scores together. 

• Val_loc – This is a cell vector containing string names for the fields in the cluster 
object to be used as the criteria.  Any numerical field in the cluster object can be 
used as a criteria. 

RAFTIMATE Monte Carlo Control Script 
The file for controlling the Monte Carlo simulation is “simulate_cluster.m” that should 
reside in the input-output directory.  This function is typically called from the 
“runtrade.m” script, also in the input-output directory. 
 

 
Figure 7 - Example Monte Carlo Control Script 

 
The number of Monte Carlo trials is controlled by the “for” loop in simulate_cluster.m as 
seen in Figure 7.  A random time history is generated by calling simlife.m and sending it 
a cluster object, a launch menu object and a flag to determine the level of text output 



desired.  If the flag is set to 0, then only the run number and run time will be displayed at 
each trial.  If the flag is set to 1, then a description of each event that occurs during the 
trial will be scrolled across the screen. 
 
Once the timeline has been generated, the next code block discounts the cost and benefits.  
Cost is discounted as discrete cash flows corresponding to each event.  Benefit is 
integrated continuously and is assumed to be constant between events.  

RAFTIMATE Trade Study File 
The master trade study script to execute RAFTIMATE is typically like the example 
“runtrade.m” provided in the example inputs.  This script can be modified to change 
variables in “generate_simple_cluster.m” to facilitate automated trade analysis. 
 
Path Inputs 
RAFTIMATE requires the path to both the Excel HUL file and function library in order 
to execute.  The function library needs to be added to the MATLAB path while the excel 
path is stored in the “moduledata” variable that is sent to “generate_simple_cluster.m”.  
Also, the name of the launcher table to be used is stored in the variable “launchtable”.  
This table should be present in the input-output directory as shown in the example files.  
If there is no table present in the input-output directory, then the default value of 
“launcher_table” will use the copy present in the function library. 
 
Calling draw_football.m script 
Once the trade script has run the Monte Carlo, the “draw_football.m” script can be run to 
copy the present benefit and present cost data into Excel as well as fit a multivariate 
normal distribution to the 2-D data.  Once the distribution has been fit, the script outputs 
1, 2 and 3-sigma outlines for ease of display. 

RAFTIMATE Monetization 
Monetizing the Reference Case 
To monetize a reference case using the Boeing comparison algorithm developed for F6, 
simply execute the script “monetizer.m” after the Monte Carlo and “draw_football.m” 
has been executed.  This will edit the “football.xls” and add the exchange rate and the net 
present value for each Monte Carlo trial, along with a histogram plot of net present value. 
 
Monetizing Comparison Cases 
To monetize a case using the exchange rate from another run, execute the script 
“monetizer_compare.m”.  This script will bring up a user prompt for the location of a set 
of reference data that contains exchange rate information generated by “monetizer.m”.  
Once this case has been located, the script will update the “football.xls” file with the 
exchange rate and net present value information. 


	RAFTIMATE Installation Guide
	System Requirements
	Copying and Unzipping Files

	RAFTIMATE Execution Guide
	Monte Carlo RAFTIMATE
	RAFTIMATE HUL’s
	HUL Generator
	RAFTIMATE Input Deck
	RAFTIMATE Monte Carlo Control Script
	RAFTIMATE Trade Study File
	RAFTIMATE Monetization



