
1

VET: Vetting Commodity IT Software and Firmware

Tim Fraser

Program Manager
Information Innovation Office (I2O)

DARPA

12 December 2012

Approved for Public Release, Distribution Unlimited

2

DoD, USG, Defense Industrial Base, US Commercial Industry relies on much
commodity IT equipment. How can we use these devices with confidence?

1965
Apollo Guidance Computer

• Custom hardware and software
• USG has a complete spec
• Programmed and assembled in US

2012
Thin Client from U.S. Supplier*

• Commodity hardware and software
• USG has no spec; is a small customer
• Programmed and assembled overseas

From Hall, Journey to the Moon, AIAA 1996

24KB software

BIOS
524K LOC

VGABIOS
3K LOC

MPEG
DECODER
28K LOC

4GB DISK

Software

Trusting Untrustworthy Commodity IT Equipment

International

Non-US

* Image of a WYSE (DELL) VX0 Thin Client mainboard. LOC estimates based on counts for latest coreboot as of 2012-10-03, libmpeg2-0.5.1, and VGABIOS 0.7a.
Specific software and hardware examples are for illustration only and are not meant to imply product vulnerabilities.

Approved for Public Release, Distribution Unlimited

Non-US

Presenter
Presentation Notes
AGC3 had about 24KB of ROM. (Hall book pg. 73)
Hall book’s chapter on software seems to indicate coding happened at MIT. Pic captions suggest Draper labs might have been involved, too.
Pic captions suggest ROM was fabricated by Raytheon in Sudbury.

BIOS 131K from Bochs emulator 2.4.5 BIOS-bochs-latest
VGABIOS 36K from same place, VGABIOS-lgpl-latest-cirrus
MPEG DECODER 192K from libmpeg2-4 intalled size Debian Squeeze

BIOS 524KLOC by counting ;{} in *.[ch] of coreboot source www.coreboot.org (formerly LinuxBIOS) downloaded 2012-10-03. Ignore all mainboards except for wyse.
MPEG DECODER 28KLOC by grepping ;{} in libmpeg2-0.5.1
VGABIOS 3KLOC by grepping ;{} in LGPL VGABIOS 0.7a http://www.nongnu.org/vgabios/

3

Hidden Malice and Accidental Bugs: Equally Dangerous

$ sync_agent ztex1609523
id
uid=0(root) gid=0(root)

DoD needs an effective and efficient way of gaining measurable confidence that
the COTS IT equipment it procures does not contain hidden malice.

A. Get execution on the

device.
B. Escalate privilege without

proper authorization.
C. Modify software in Flash

RAM.

A + B + C = our adversary
can remotely reprogram the
device.

BP
FLASH

AP
FLASH

PH
O

N
Y

C

A

B

-parseFloat(“NAN(ffffe00572c60)”)
Packetstormsecurity.org

Pastebin.com

Approved for Public Release, Distribution Unlimited

CVE-2010-1807

CVE-2012-2949

Specific software and hardware examples are for illustration only and are not meant to imply product vulnerabilities.

Presenter
Presentation Notes
Use-after-free is CVE-2010-1807
ZTE backdoor is CVE-2012-2949

4

Current State of Practice and Research

Widely Deployed

Starts with a spec or
“Golden Master.”

Research Efforts

DODI 8500.2 and STIGS
DODI 8500.2

Android 2.2 STIG

TRUST
(DARPA/MTO)
Compares custom IC’s against desired
masks.

Shows
presence,

not absence.

Approved for Public Release, Distribution Unlimited

Presenter
Presentation Notes

5

VET Program Vision

Goal: Fully-automated checks for broad classes of malicious features and
dangerous flaws in software and firmware.

Not based on signatures; can detect attacks we have never seen before.

Major technical challenges

1. How do I define Bad?

2. How do I confirm the absence
of Bad?

3. How do I check devices at
scale?

12345/12345
 tests passed.

15,342/15,342
 tests passed.

OK!

Mobile phone Thin client Printer

Approved for Public Release, Distribution Unlimited

Specific software and hardware examples are for illustration only and are not meant to imply product vulnerabilities.

6

Challenge #1: Defining Bad

Open question: How well can we cover the general structure of attacks our
adversaries will try?

Problem: Start with some sample devices, and end with a prioritized list of
(1) components to examine, and (2) problems to rule out.

Manual Threat
Modeling
• Sometimes

applied in the
commercial
software
industry.

• Tedious, but
can produce a
list of
components
and problems.

Automated Attack Graph
Generation

An approach analogous
to Scheherezade in DSO’s
SSIM program:
1. Consider reports of

actual scenarios.
2. Some events are

ordered, some not.
3. Recombine events to

make new scenarios
for training. Respect
orderings so scenarios
are plausible.

[SHE2004]

Some potential approaches:

[LI2012]

Approved for Public Release, Distribution Unlimited

[SHE2004] O Sheyner, J Wing, “Tools for Generating Attack Graphs,” in Formal methods for components and objects, LNCS vol 3188, Springer, 2004.
[LI2012] Li and others, “Toward Autonomous Crowd-Powered Creation of Interactive Narratives.” 5th AAAI Workshop on Intelligent Narrative Technologies, 2012.

Presenter
Presentation Notes
[SHE2004] O Sheyner, J Wing - Formal methods for components and objects, 2004 - Springer

1000

10000

100000

1000000

10000000

SeL4
uKernel

WYSE
MPEG

Airbus
A380

WYSE
BIOS

Linux
2.6.17

7

Challenge #2: Confirming Absence

Problem: Begin with a list of components and problems to rule out, and
end by demonstrating the absence of those problems.

Open question: Can we develop specialized analysis techniques to demonstrate
the properties we need to cover all of our predicted attacks?

• Static program analysis can
demonstrate the absence of broad
classes of problems.

• But to scale, we must specialize.

(3) [DIL2008] specialization of SATURN
• Scaled to 6M LOC Linux kernel.
• Focused on simple properties:

• Analyzed subprograms and
summarized only the results
pertinent to those properties.

• Very similar to a property we’d like:

Every pointer dereference is
preceded by a non-NULL definition.

Every privilege escalation is
preceded by an authorization
check.

LO
C

(lo
g

sc
al

e)

9K 28K 400K 524K 6M

(1) [KLE2009] limit of formal verification
(2) [COU2005] ASTREE, specialized

(1) (2) (3)

Approved for Public Release, Distribution Unlimited

[KLE2009] Klein et. al., “seL4: Formal Verification of an OS Kernel,” in the 22nd ACM SIGOPS Symposium on Operating System Principles, 2009.
[COU2005] Cousot and others, “The ASTREE Analyser,” Proceedings of the European Symposium on Programming (ESOP'05), LNCS volume 3444, 2005.
[DIL2008] Dilig and others, “Sound, Complete, and Scalable Path-Sensitive Analysis,” Programming Language Design and Implementation, 2008. (*) See slide 2.

(*) (*)

Presenter
Presentation Notes
[KLE09] Klein et. al., “seL4: Formal Verification of an OS Kernel,” in the 22nd ACM SIGOPS Symposium on Operating System Principles, 2009.

[COU05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival. The ASTREE Analyser. In M. Sagiv, editor, Proc. of the European Symposium on Programming (ESOP'05), volume 3444 of Lecture Notes in Computer Science, pages 21{30, April 2{10 2005.

8

Challenge #3: Checking All Devices

Approach: Either re-run lab tests, or confirm that the device in hand is the same
make/model/configuration as the sample vetted in the lab.

Obstacle: Running diagnostics on the device to be vetted is risky: the
adversary may have rigged it to lie to us.

Problem: Once earlier steps have vetted specific make/model/configurations in
the lab, enable non-specialists to vet every individual new device in DoD.

Open question: How reliably can we detect problems on devices that our
adversary has prepared to deceive us?

Today: Many assumptions
limit practical application:
• Harvard architectures only
• No data cache
• Single-core CPUs only
• No overclocking

Where we need to be:
Working on real devices.

1. Know precise timing details of
hardware.

2. Fill RAM. Perform non-linear
computation across entire RAM.

3. Device either computes truthfully
or takes too long faking up a
convincing lie.

X OK

One approach: Software-Based Attestation

Healthy Malicious

Approved for Public Release, Distribution Unlimited

9

Program Structure

Tech Area #1:
Defining Malice

Tech Area #2:
Confirming the
Absence of Malice

Tech Area #3:
Vetting in the Field

Tech Area #4:
Adversarial Challenge

Tech Area #5:
Experimentation
Lead

Tech Area #6:
Integrator

Tech Area #7:
Alternate Approaches

PHASE 1 (BASE) PHASE 2 (OPT) PHASE 3 (OPT)

12 24 36 48 Months:

Engagements: ^ ^ ^ ^ ^ ^ ^

Approved for Public Release, Distribution Unlimited

www.darpa.mil

10 Approved for Public Release, Distribution Unlimited

	VET: Vetting Commodity IT Software and Firmware
	Trusting Untrustworthy Commodity IT Equipment
	Hidden Malice and Accidental Bugs: Equally Dangerous
	Current State of Practice and Research
	VET Program Vision
	Challenge #1: Defining Bad
	Challenge #2: Confirming Absence
	Challenge #3: Checking All Devices
	Program Structure
	Slide Number 10

