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1. Summary 
ARRoW (Adaptive Reflexive Robust Workflow) is a software infrastructure, which facilitates 
the design of complex cyber-physical systems by supporting computational exploration of 
alternative designs with continuous test and verification using: 


 Multiple models at various level of abstraction 


 Integrated heterogeneous specialized reasoners 


 Libraries of components, design patterns, and workflows 


Developed for DARPA’s META program intended to accelerate the development process of 
Combat Vehicle Systems by a factor of 5, ARRoW includes models, reasoners, and libraries for 
the design of Infantry Fighting Vehicles (IFVs). However, the infrastructure is readily 
extensible to other design problems by providing content appropriate for the specific cyber-
physical system being addressed. The ARRoW infrastructure facilitates more aggressive use of 
computation, reducing the workload on engineers while allowing for mixed initiative 
exploration for good solutions. Where existing model based engineering approaches are often 
constrained by the use of isolated computational models, ARRoW allows these isolated models 
to be joined, greatly enhancing their value. 


ARRoW supports distributed collaboration, allowing not only the use of geographically 
distributed information and computational resources, but also collaboration among engineers, 
extensible to a crowd-based development paradigm. This allows for the verification of early 
design concepts to accelerate the design process while providing for early detection of problems 
where they can be addressed at reduced cost. This same capability could provide for improved 
interactions between customers and performers, illuminating design tradeoffs, allowing 
customers to more clearly understand their options, and avoiding many of the problems 
currently associated with communication through requirements. In providing mechanisms to 
automate routine tasks currently performed by engineers, ARRoW facilitates the utilization of 
engineering resources where they are most valuable, promotes faster completion of design 
tasks, and has the potential to promote the democratization of design. 


The following sections summarize our approach and results. The remainder of this summary 
covers task objectives, technical challenges, general methodology, technical results, important 
findings and conclusions, and implications for future research. An introduction to the main 
body of the report is followed by sections on: 


 Methods, Assumptions, and Procedures 


 Results and Discussion 


 Conclusions, and 


 Recommendations. 


Accompanying this report is a series of appendices that provide greater technical detail: 


1. ARRoW System Engineering and Architecture 
2. Tool Design 
3. Modeling Language 
4. Library Requirements 
5. System Demonstration 
6. Advanced Reasoning and Applications of ARRoW Technology 
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7. Metrics Developed by Team Member BBN 
8. Spatial Design Exploration (BBN) 
9. RMPL (MIT) 
10. Verification (MIT) 
11. Programmatics 


1.1 Task Objectives 


The Phase 1b task objectives were: 


1. Develop a detailed design for ARRoW’s integrated system design, verification and 
validation toolset.  


2. Develop syntax for the modeling language and requirements for the structure and 
content of the model library, which is accessed by the ARRoW toolset.  


3. Implement the ARRoW software toolset. 
4. Demonstrate ARRoW's suitability for synthesizing a notional vehicle and providing 


traceability from the development process to the program objectives regarding 
schedule. 


These objectives all serve the overall program goal of achieving a 5-fold reduction in the time 
to design complex cyber-physical systems. 


1.2 Technical Challenges 


Designing and producing today’s complex aerospace and defense vehicle systems requires 
engineering a labyrinth of complex systems, each with numerous states, many subsystems, and 
thousands of unique components, resulting in a multitude of subsystem interactions, myriad 
lines of software code, and large numbers of requirements and metrics at tension with one 
another. This problem is challenging, not only due to the number of components that make up 
an infantry fighting vehicle, but in the number of different aspects to the performance of a given 
design that must be analyzed in order to assess design options in order to ultimately execute an 
efficient development process to create a successful, producible, and militarily relevant weapon 
system. 


Thus, the primary technical challenge that must be met to achieve the goals of the META 
program is to jointly utilize that diversity of problem aspects, modeling formalisms, tools, and 
specialized reasoners that are involved in the design process and avail this system to an 
extended community of system developers. The existing state of the practice of model based 
engineering (MBE) is to use high fidelity and high value models and tools when they are 
available, and to rely on highly skilled engineering personnel manage the design process using 
these tools. This can result in islands of computational modeling connected by human-mediated 
process. These high–fidelity, specialized reasoners (for example tools that compute design 
details) and solvers (tools that compute behavior from properties expressed as a model) are 
critical to achieving high quality and successful designs, especially when the use of physical 
prototyping and testing must be limited. Replacing the high value specialized tools with 
homogeneous modeling environments would greatly reduce the quality and even more 
significantly increase the development and production risk of the designs produced. 
Consequently, improving upon existing practice requires relieving engineers of routine tasks, 
using computational evaluations of alternatives to enhance human design expertise, and 
facilitating communication where the need for joint decisions slows existing processes. This 
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means in particular that automation must bridge across model-based computational islands by 
enabling joint use of heterogeneous computational resources. 


1.3 General Methodology 


Phase 1b of the META project was focused on implementing the notional ARROW 
Architecture that emerged from Phase 1a via a spiral development process. We proceeded by 
implementing key software components, and testing and demonstrating the utility of the 
overall system concept. We demonstrated our results at the bi-monthly PI meetings starting in 
January and reviewed them with the DARPA program management team.  


Specifically, at the January PI meeting we presented our concept of the ARRoW System for 
initial review; at the March PI meeting we presented the ARRoW Concept of Operations on 
the design of a Ramp for an IFV. At the May PI meeting we presented an end to end version of 
the ARRoW System that instantiated all key technologies used to implement the ARRoW 
architecture including key underlying technologies of the ARRoW Architecture - and 
demonstrated the ARRoW System on the design and verification of key use-cases of an IFV 
Ramp. At the July PI meeting we presented the entire ARRoW Toolset, reviewed the Tool 
Design, Modeling Language and Library requirements, and demonstrated the use of the 
ARRoW toolset in designing an IFV ramp. Finally, in September we presented a full version of 
the ARRoW and demonstrated its use in developing a concept for an entire IFV. 


In summary, in seeking a design for ARRoW, we assessed the state of engineering and 
development practice, along with our extensive experience base, for combat vehicles to derive 
requirements for primary ARRoW functionality.  We then implemented theoretically inspired 
concepts founded on these proven practices. These implementations were then iteratively 
tested on a series of challenge problems drawn from the design of infantry fighting vehicles. 
The resulting approach combines advanced concepts from computer science with insights and 
experience of the systems and domain expert engineering community. 


1.4 Technical Results 


In order to reduce development times for complex cyber-physical systems by a factor of 5, 
ARRoW encodes the expertise and methods of professional systems engineers and domain 
experts and provides a capability to: 


a. Support multiple, asynchronous workflows 
b. Enable continuous design evaluation 
c. And provide for integrated data using a heterogeneity of tools.  


Our approach is built upon a software infrastructure using a collection of repositories and 
services such that the overall system is extensible, evolvable, and can be applied to a wide range 
of design problems by populating the libraries appropriately. ARRoW can be deployed across a 
distributed computing environment (including publicly accessible services supported by cloud 
computing), allowing multiple independent designers to invoke design and verification tools 
and make choices that lead to correct by construction designs ready for manufacture. As 
illustrated in Figure 1, the major components in this tool chain are listed below. 


 Robust, holistic Model-Based Systems Engineering environment—Capture 


requirements analysis, categorization, and decomposition through Use and Test cases to 


establish complete traceability across engineering domains. Facilitate integration of 
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automated requirements decomposition, test case generation, and architecture and 


topology design mechanisms.  


 Transactional Master Model— Contains a version tree of designs, including an 


evolving root or baseline design, alternative designs being explored, models of design 


performance at multiple abstraction levels or domains of performance, and an audit trail 


of design changes leading to the current state.  


 Design Exploration Tools—Components that algorithmically search across design 


space. Some contain interfaces for human designers allowing them to efficiently and 


effectively explore design alternatives. 


 Verification Tools—Readily extensible verification approaches, including both general 


and customized methods, are used to assess design choices. These are invoked where 


appropriate, using Test Cases and resources in the master model to calculate metrics 


and probability of correctness of design options. 


 Patterns and Workflow Archetypes—Multiple collections of established system 


engineering knowledge in the form of design and analysis patterns or workflows. In 


order to be applicable to a wide range of tools, models, levels of abstraction, and 


designs, these patterns and workflows are expressed as archetypes – networks of 


constraints and requirements that must be satisfied for an instance of a pattern or 


workflow to be useful. 


 Component Model Library (CML)—Repository of versioned artifacts including 


functional design and specific component models; design and validation environment 


models; design patterns, and analytic archetypes organized and implemented so as to 


facilitate the design process. The CML can contain the product of previous design 


efforts using ARRoW to design systems, sub-systems, or components, as well as 


archetypes captured from experience with past design efforts. 


 Metrics Library—An extensible, continuously maintained collection of metrics deployed 


in a dynamic, tightly integrated framework. Attributes associated with metrics facilitate 


the automated matching of metrics to test cases. 


 Interconnection Infrastructure—Repository of relationships among all of the tools, 


models, and design elements active in the system at any point in time. This repository is 


expressed in ARRoW Model Interconnection Language (AMIL). 
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Figure 1.  Elements of the ARRoW Tool Chain 


 


1.5 Important Findings and Conclusions 


There are a number of elements of existing systems engineering and development practice that 
can potentially have significant impact on the cost and schedule for combat vehicle 
development.  Much of the current processes and mechanisms lack automation, requiring a 
high level of touch labor.  Still other areas are currently only effectively managed by a 
relatively small handful of experts, much of whose knowledge is not recorded and is passed on 
only through personal interaction.  Because great expertise of this type is developed over time 
and extensive experience, the holders of such knowledge tend to develop processes and employ 
specialized tools, which can make the introduction of new tools, systems, or processes a difficult 
and costly endeavor for development organizations.  One of the tenets of the META program 
is that development processes can be successful without relying so heavily on these small 
pockets of deep knowledge by leveraging much larger bodies of broader knowledge through 
crowd sourcing, open source tools, and extensive use of model-based engineering and model re-
use. 


Finally, it is known that a primary cause for extended system development time is the result of 
weak and often conflicting source requirements.  This, especially when combined with weak 
conceptualization analysis, results in system development with a high risk of late-discovery 
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issues, where they cause the most significant cost and schedule impact.  Proactive and 
intelligent requirements analysis and negotiation, combined with system conceptualization 
capable of extended design look-ahead mitigates risk to ensure successful system development 
and provide acceleration. 


Technologies developed for the ARRoW system provide an infrastructure facilitating 
computational exploration of designs with continuous test and verification using multiple 
models, multiple specialized reasoners, libraries of components, design patterns, and workflows. 
A foundational element of ARRoW, AMIL provides an executable graphical database that 
supports relationship maintenance among diverse models, designs, reasoners, patterns, and 
workflows, allowing either local or distributed execution of computations. The innovation of 
archetypes, allowing design patterns and workflows to be applied across a broad range of 
designs and stages in the design process, provides an improved means of capturing and 
automating engineering practice in order to join previously isolated MBE islands and support 
much more robust early requirements and concept analysis. 


This infrastructure facilitates more aggressive use of computation, while reducing the workload 
on experts, allowing for mixed initiative exploration for good solutions. It provides an 
extensible basis for automation, allowing new models and tools to be incrementally introduced, 
and existing tools to be replaced as better alternatives emerge. The resulting infrastructure 
provides the means to achieve the acceleration in the design of complex systems. And by both 
enabling distributed design and automating where possible existing systems engineering 
knowledge, ARRoW provides an opportunity to democratize design, allowing a wider range of 
individuals contribute their creative insights. 


1.6 Significant Hardware Development 


None. 


1.7 Special Comments 


None. 


1.8 Implications for Further Research 


Complex system design problems have general features across broad ranges of engineering 
domains, from integrated circuits to complex cyber-mechanical systems. These general features 
include: 


 The centrality of key abstractions results in a stack of abstraction layers across which 


the design process must operate.  


 Design exploration is conducted using models of relatively high abstraction.  


 Design verification is conducted using high fidelity models, often specialized for aspects 


of the design problem. 


 Design refinement requires the ability to add details to an abstract design consistent 


with abstract properties. 


 The use of multiple specialized tools is driven by the need to address multiple aspects of 
design challenges. 
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ARRoW has pioneered an approach and a suite of tools that address these general properties of 
complex systems design; the tools have been demonstrated on a series of challenges drawn 
from the design of IFVs. However, these tools have not yet been used to support an actual 
design process with users who can provide feedback on needed improvements. Similarly, the 
system architecture is library centric, allowing for use across a wide range of design challenges. 
At this point there has not been an application outside of IFV design that would allow 
assessing the level of challenge in applying ARRoW to alternate design domains. Opportunity 
to assess ARRoW in the context of live design problems with users not associated with its 
development and for novel design domains would provide improved understanding of ARRoW 
utility and identify areas for further development.  


Additionally, some aspects of the ARRoW tool set have been shown to be feasible, but require 
further development to be readily applicable across a wide range of problems. Notable in this 
regard is the innovation of the analytic archetype where further technology is needed to allow a 
broad range of archetypes to be automatically instantiated into workflows appropriate and 
applicable to specific design states, and available tools, reasoners, and models. In particular, 
automated integration of very high fidelity models is possible, but presents increasing levels of 
substantive and software integration challenge. As the modeling tools become increasingly 
specialized, the volume and format eccentricity of data increases significantly. Replacing labor 
of skilled engineers is achievable with AMIL and Archetypes, but will require extension of 
currently implemented software methods. 


2. Introduction 


The goal of the META program was to reduce the development cycle time for complex cyber-
physical systems (particularly aerospace and defense systems such as aircraft, rotorcraft, and 
ground vehicles) by a factor of 5 over current cycle times. In order to achieve the >5x metric, a 
new model-based methodology—Adaptive, Reflective, Robust Workflow (ARRoW)—was 
implemented based on a novel concurrent design, testing, and validation workflow.  


The approach we have taken in developing ARRoW features an architecture designed to allow 
for flexible interoperation of heterogeneous tools. This data driven infrastructure provides for 
flexible configuration of the systems as needed for specific purposes. In particular, alternate 
libraries can allow for International Traffic in Arms Regulations (ITAR) controlled, 
proprietary, or open versions of the development system. Further, novel models and tools can 
be incrementally incorporated, and application to new design domains can be accomplished by 
introducing alternative libraries. 


This architecture is built for extensibility by allowing manipulation and enhancement of 
collections of: 


 Component Models 


 Design Patterns 


 Analytic Workflows 


 Metrics 


 Specialized Design Tools 


 Verification Tools 
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These libraries and archetypes not only capture system design patterns and architectures, but 
also capture industry experience and expertise, facilitating both greater automation in service 
of a 5x reduction in development times, and potentially the democratization of design.  


In the remainder of this document, we analyze the characteristics of the IFV design problem, 
describe each of the elements of the ARRoW system, and discuss the infrastructure that 
supports their use. 


3. Methods, Assumptions, and Procedures 


3.1 Achieving Program Goals 


An analysis of industry performance in developing complex cyber-physical systems suggests 
that there are three main ways that advanced technology could provide speed-ups: 


 The early conceptual stages of the design process require a significant amount of 
communications between customers and engineers, and between engineers with 
different backgrounds and disciplines. Conceptual design work can involve significant 
face-to-face meetings and is often characterized by multiple false starts and roll-backs 
until a concept satisfactory to all interests is finally discovered. 


 Problems at a systemic level (emerging ―from the seams‖ between subsystems or 
engineering/analytic domains) are often not detected until late in the design and 
development process, when addressing them is most costly in both dollars and schedule 
impact. 


 Many different computational tools are needed to address all aspects of the design 
problem. Significant skilled labor is invested in migrating results between these tools. 
The manual execution of these analytic workflows slows the latter stages of design. 


The approach taken in creating ARRoW explicitly addresses all three of these opportunities by 
providing the following: 


 Explicit support for models and design elements across a range of levels of abstraction.  
Combined with direct support for design refinement, this allows ARRoW to utilize 
abstract functional models and design patterns to support conceptual design. (See in 
particular the description of the ECTo tool, Section 4.2.5 below.) Conceptual designs 
provide a scaffolding (i.e. derived constraints such as space and weight claims by sub-
system) that allow designers to move to increasingly detailed design work without 
leaving ARRoW. 


 Support for continuous testing from abstract through detailed design. Continuous 
testing provides for detection of problems and their correction much earlier than would 
otherwise be true. This includes the analysis of requirements, conceptual design at high 
abstraction levels, as well as integrating the data of the high fidelity multi-domain 
design environment. 


 Capture of the workflow patterns that connect design tools to produce system level 
tests, diagnosis, and analysis. ARRoW supports workflow capture that can automate 
routine tasks that otherwise slow design progress and distract expert resources from 
higher valued tasks. Analytic workflows are abstracted to produce analytic archetypes that 
can be compiled to create an instance appropriate for a given stage of the design process. 
This allows the resulting system level tests to be consistently available throughout the 
design process. 
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Additionally, the ARRoW infrastructure organically supports geographically distributed 
design. By facilitating interoperation between the many aspects of the design environment, 
these mechanisms allow elements of the system to be located anywhere accessible via the 
internet (see description of AMIL, Section 4.3.1 below). Thus, computational resources, models, 
data, tools, designers and analysts can all interoperate from distributed locations, providing 
significant potential efficiencies. 


3.2 Simulation’s Role in IFV Analysis 


Many different models addressing multiple domains of physics and varying levels of abstraction 
are needed in the designing Infantry Fighting Vehicles (IFVs). High fidelity simulation models 
capture multiphysics effects that can be missed in more abstract representations and are critical 
to mitigating development risk and ensuring a design will achieve its requirements. But very 
high fidelity models can have extreme computational requirements (i.e. multiple supercomputer 
days per case) which together with the high dimensionality of their input and parameter spaces 
prohibit their use for design exploration or stochastic estimation of the implications of 
uncertainties. Models at varying levels of abstraction must be used jointly: abstract models 
achieve the benefits of rapid design exploration and stochastic verification while high fidelity 
simulations provide the ability to check for abstraction leakage (problems arising due to effects 
not seen at abstract levels of representation) and effects due to the interaction of multiple 
domains of physics. High fidelity simulations at specific design points are used to check for 
constraint violations and to recalibrate abstract models. 


Verification requires the use of high-fidelity, specialty analysis tools. High fidelity models are 
especially crucial in a paradigm of reduced physical testing. These high-fidelity analyses verify 
that the design produced is sound and, at the same time, verify that the abstractions in higher 
levels are correct and accurate. However, in order to produce a balanced design and to capture 
as much domain and abstraction leakage as possible, system-level co-analysis and co-simulation 
is necessary, as well. This is critical to support a ―continuous validation‖ development 
paradigm. Multiphysics/multi-domain system-level analysis and simulation is simplest, most 
readily achievable, maintainable and executable (for continuous validation) at higher levels of 
abstraction. It becomes computationally expensive and has diminishing returns at lower levels 
of abstraction (higher fidelity). 
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Figure 2.  Tool&Model Abstraction Levels, Integration, and Verification Relationships 


Figure 2 illustrates the relationships across abstraction levels and the flows of information 
during analysis. Design refinement descends to increasing levels of detail, while the results of 
detailed simulation flow back up to abstract levels. Even though designs are refined to 
increasing detail allowing higher fidelity analysis, abstract models remain useful throughout 
the design process. 


The nature of simulation based design work, and the utility of specific tools, varies significantly 
at different levels of abstraction: 


 Relatively abstract multiphysics co-analysis/co-simulation occurs in integrated, 
homogeneous environments like Matlab, Modelica, Amesim, etc. In the ARRoW 
system, AMIL provides the system, context, and test case data, and a very simple 
internal analytic archetype provides the ―wiring‖ connecting models of this type. 
Multiphysics tool integration is accomplished within the native environment. 


METAFR014
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 At moderately greater levels of detail, higher fidelity models are required. They can be 
supported by comprehensive modeling environments, but must be augmented with 
domain specific and extended capability tools. Supporting the integration of data, tool, 
and workflow is more complicated here, but readily attainable through development of 
archetypes and AMIL mapping capabilities.   


 Automated integration of very high fidelity models is possible, but presents increasing 
levels of substantive and software integration challenge.  As the modeling tools become 
increasingly specialized, the volume and format eccentricity of data increases 
significantly.  Replacing labor of skilled engineers is still achievable with AMIL and 
Archetypes, but requires extension of currently implemented software methods. 


Abstract models represent a layer of fidelity that supports system conceptualization and early 
design refinement. Due to their low to moderate level of fidelity, these models can be 
represented in a homogeneous language (such as Modelica), and yet cover a significant breadth 
of design space and domains. As a result of the common, model-based language deployment, the 
models are readily integrated and contracts can be monitored to lend automation to their 
integration. When the design progresses past the applicability of these abstract models, 
requiring domain-specific technologies, methodologies, and high-fidelity required to support 
detailed design and analysis, the abstract models are retained and maintained to support 
ongoing system level trades and analyses where the long runtimes of the deep models prove 
prohibitive. Additionally, these models are retained to support high-level interfaces to and data 
manipulation from the higher fidelity analysis tools. 


The validation of design alternatives also requires models and tools across a range of 
abstraction levels: 


 Static System Operational Analysis employs primarily requirements data and abstract 
sizing models to answer questions like ―how many rounds must this system carry to win 
this battle‖ and ―a system with these general capabilities has this probability of mission 
success in this type of scenario‖. This type of analysis generally presents no need for 
high fidelity modeling. 


 Dynamic System Operational Analysis employs some low fidelity models, but mostly 
moderate levels of abstraction and domain specialty models. Customized high-fidelity 
models are required for design-challenged and/or high-risk areas. This environment 
requires explicit Computer-Aided Design (CAD)-defined system design, prototype or 
tactical control and software systems, and a time-managed runtime environment. 


- One of the most crucial applications of these environments is to support and validate 
warfighter-centric design. Capturing and designing for humans to operate and 
survive within the system is one of the most challenging but critical design aspects 
of an IFV.  


Addressing the full range of multiphysics problems via a small set of models or tools is not 
possible in part because the phenomena of interest span a wide range of spatial and temporal 
scales (including frequency ranges) which generally prohibits using a single numerical solver. 
Regardless of representational approaches, accurate simulation across a thorough range of 
scales is computationally intractable. When multiple physics with diverse ranges of dynamics 
are simulated in a single model, abstraction must be used, even in high fidelity models. The 
extent of abstraction necessary to combine all domains and physics required for the 
development of an IFV into a single or a small number of solvers is directly in conflict with the 
level of verification and validation (correct by construction) required to develop these systems 
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with a minimum of physical prototyping and testing. Thus, for different problems, different 
abstractions are useful and necessary, implying the need for multiple models, tools, and solvers. 
Similarly, for co-simulation, different adapters between models of computation are appropriate 
for different uses. Regardless, no universal modeling framework capable of solving all aspects 
of IFV design can be expected soon.  


3.2.1 Illustrative Example 


To provide an example of the use of high fidelity simulation, Figure 3 diagrams the levels of 
analysis for mission rated mobility and obstacle crossing. For this problem, powerplant and 
drivetrain performance is tightly coupled with mission rated speed for traversing terrains and 
the crossing of discrete obstacles. The coupling identifies the power-limited speed crossing 
relatively smooth terrains and discovers the balance between power-limits and driver-limits for 
moderate to severe terrains. Simulations capturing the coupling between these domains can 
suffice to determine power-limited and driver-limited speeds. By extending those multiphysics 
integrations to include the structural domain, further goals and requirements can be evaluated. 
This is achieved by the coupling of the mobility loads to the structural models.  


A domain oriented view of this coupling for mobility dynamic analysis is illustrated in Figure 
3. Within the dynamic analysis domain, two general levels of fidelity tools are illustrated. The 
NATO Reference Mobility Model (NRMM) provides a relatively abstract representation of 
mobility as a function of terrain and vehicle design. It provides support for concept exploration 
and trade studies, without requiring detailed 3-D geometry. Given this lower fidelity tool’s 
level of abstraction, load extraction for structural performance is not possible. Consequently, a 
higher fidelity tool is necessary, and that higher fidelity tool facilitates the coupling to other 
domains. These various levels of abstraction complement each other in the design process. 
Preliminary design choices made based on NRMM are embodied as moderately detailed design, 
facilitating higher resolution modeling, whose results both provide a higher fidelity check of 
performance and a basis for adjusting NRMM to incorporate the detailed modeling results. As 
design refinement proceeds, increasingly detailed structural models provide a basis for high 
fidelity simulation, while the more abstract model provides a context for other analyses, further 
trade studies, probabilistic verification against uncertainties, and other services. 
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Figure 3.  Structural Dynamics Supports Mobility Analysis 


3.2.2 Enabling Infrastructure 


Current practice solves IFV design problems by using multiple models and multiple modeling 
tools. Skilled engineers perform chains of analysis, moving data between these formalisms. 
Thus, a useful approach for solving the pervasive and multivariate multiphysics problems that 
arise in an IFV design is to capture and systematize the expert engineering knowledge of how 
to perform chains of analysis like those described above. The captured engineering patterns and 
workflows inform and constrain data transport and computation, enabling intelligently focused 
(and thereby computationally tractable) multiphysics calculations. There are multiple ways of 
viewing the innovations in such an approach, but one that we find illuminating is that this 
approach tractably computes multiphysics by dynamically and intelligently introducing the 
necessary abstractions for a given multiphysics analysis. We in effect augment co-simulation 
with co-analysis, providing a flexible means for capturing important coupled effects. That is, we 
solve the multiphysics problem by capturing work and data flows between heterogeneous 
specialty tools. Each of these tools captures specific domains and phenomena for multiphysics 
coupled simulation. The resulting combination of tools is used to address the systemic 
requirements constraining IFV design. 


ARRoW provides the means to optimize the employment of these powerful specialized tools to 
realize significant acceleration of the development process. Data is centrally contained within 
the Master Model and distributed between tools based on relationships described as an AMIL 
graph. Complex and cooperative engineering analysis processes are captured in Analytic 
Archetypes. These archetypes facilitate the automated distribution of data, work, and tool flow 
to minimize engineer labor, accelerate design processes, and eliminate wasted or duplicated 
effort. This support for analysis tool application takes an objective, forms initial conditions, 
applies boundary conditions, and executes an analytic process in order to assess a design in 
terms of one or more metrics. System operational assessment takes processes and relaxes some 
of the unnecessarily (or unnaturally) rigid boundary conditions to form tests closer to the 
anticipated use. 
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Combining these various techniques provides the means for probabilistic verification. 
Stochastic methods applied to models at suitable levels of abstraction can produce probabilistic 
estimates of constraint violation where more efficient formal verification techniques cannot be 
applied. As detailed designs are created, increasingly higher fidelity models can be used to 
assess the accuracy of, and as necessary, recalibrate more abstract models. Specification of the 
appropriate analytic workflows is captured in Analytic Archetypes, which provide a basis for 
automating data transport and co-simulation. 


ARRoW provides the software architecture that enables these concepts. Software development 
principles that have guided the development of the architecture and the prototype 
implementation of ARRoW include: 


 A totally data-driven approach, with no logic specific to the IFV design example 
contained in any of the tools 
o This requires that data repositories be crafted to ARRoW-specific internal structure, 


and access methods that facilitate use by ARRoW 


 Concealing implementation details within tool boundaries, exposing only the minimal 
information necessary at the interfaces 


 Definitions of tools and services that provide for distributed and parallel design and 
testing processes, especially ones that facilitate parallel work among geographically 
distributed designers. 


The following section provides detailed descriptions of all the components of ARRoW. Further 
depth and representative examples can be found in the appendices accompanying this report. 


4. Results and Discussion 


This section describes the various components of ARRoW in terms of both their design and 
how they operate together to support the design of complex systems. Table 1 lists the major 
components, together with the function they provide, their underlying technology, and the 
dates of the Principal Investigator meetings where they were demonstrated. 


Table 1.  The Components of ARRoW 


Tool 
Component Function Provided Underlying Technology 


Demos 
(2011) 


ARRoW 
Integrated 
Development 
Environment 
(AIDE) Interface 
and Dashboard 


Designer’s graphical interface, 
providing means to make design 
choices, invoke design and 
verification tools, and visualize 
properties of design alternatives. 


Eclipse/SpringHTML, Maven, 
Subversion, Tomcat, Java 


Jan, Mar, 
May, Jul, 
Sep 


Metrics Library An extensible set of metrics than 
can be incorporated in test sets, 
displayed in AIDE, be the subject 
of constraints on acceptable 
designs, or targets design 
exploration tools can attempt to 
optimize.  


AMIL (also see metrics 
documentation) 


Jan, Mar, 
May, Jul, 
Sep 
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Tool 
Component Function Provided Underlying Technology 


Demos 
(2011) 


CAD 
(Pro/Engineer 
plug-in) 


Provide interface and access 
between ARRoW tools and 
Pro/Engineer 


Pro/Engineer API, C++ Mar, May 


AMIL Heterogeneous model and tool 
interconnect 


Neo4j, Java/Prolog/C++ API, 
persistence and caching control. Has 
associated AMIL graph viewer. 


May, Jul 


Galileo Test 
&Verification 
Tools 


Collection of specialized design 
and verification tools.  
Responsible for computing 
Probabilistic Certificate of 
Correctness and other 
Diagnostics. 


Monte Carlo and Importance 
Sampling, Context Models, PDF’s 
and Ratio distributions, Reach-set 
Analysis (MIT), K-means clustering, 
Expert systems  


May, Jul 


ESKER Look-ahead and Design Space 
Exploration, Adaptability via set-
based concurrent engineering, 
Levels of Abstraction, Language 


Expert system state expansion and 
search, Rule-based design structure 
matrix, AMIL-aware, variable fidelity 
modeling, partial decomposition, 
subjective/qualitative rankings 


May, Jul 


Envisioner Qualitative Simulation. Can be 
used either for design exploration 
or to efficiently calculate 
Probabilistic Certificates of 
Correctness (PCCs) 


Lisp May  


SysML 
(MagicDraw 
plug-in) 


Requirements capture. MagicDraw API, AMIL-
interconnected 


May, Jul 


CML/Master 
Model 


Repository of design patterns and 
component models. Provides for 
Design refinement and 
Component Reuse 


Ontology-based search, 
Maven/Artifactory delivery 
mechanism 


Jul, Sep 


ECTo Vehicle-level concepting and 
prototyping 


C++ object hierarchy of generic 
domain models 


Jul, Sep 


Metrics 
Infrastructure 
and Dashboard 


Integrated metrics analysis and 
calculation services, role and 
interest-configurable graphical 
user interface 


AMIL-integrated service architecture 
using Java Standard Object Notation 
(JSON text metric definition files) 


Jul, Sep 


Generative 
Archetype 
Reasoning 
(GEAR) 


Synthesis, Component Reuse, 
Domain-specific reasoners for 
design exploration and analysis. 


Semantic Web technologies such as 
OWL, Description Logic and 
Declarative Logic Programming, 
Lisp, SPARQL, Protégé 


Sep 
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Tool 
Component Function Provided Underlying Technology 


Demos 
(2011) 


Cloud 
Deployment 


Provide mechanisms to support 
wide distribution and crowd 
participation. 


Amazon Cloud deployment 
mechanisms 


Sep 


 


In Section 4.1, we present a notional flow through the ARRoW architecture, describing how 
the various components and tools interoperate to support design processes. Section 4.2 goes 
through this tool chain a step at a time, providing greater detail. Section 4.3 covers aspects of 
foundation components of ARRoW that are potentially active throughout the workflow. 
Finally, Section 4.4 describes notional demo systems that were used to test and motivate 
ARRoW design and development.  


An overview diagram of the ARRoW tool chain is provided in Figure 4. In this depiction we 
have emphasized the progression that begins with requirements and ends with a design sent to 
be manufactured at the iFab. Such a depiction by its nature does not reveal the iterative aspect 
of developments, with many cycles of design exploration and verification. In order to make the 
diagram interpretable we have also chosen to minimize the number of crossing lines by 
representing two software entities at multiple locations. Metrics are computed and the CML is 
accessed at multiple places in the workflow, and these components are represented at a number 
of locations in the diagram, where in fact there is a single metrics library and a single CML that 
supports this. However, the fundamental aspects of our tool chain are readily evident in the 
figure – an open and readily extensible infrastructure that supports asynchronous and parallel 
processes, distribution of functionality, and integration of heterogeneous tools and reasoners 
throughout the development chain. 
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Figure 4.  ARRoW Tool Chain – From Requirements to Manufacture 


4.1 ARRoW Tool Chain/Workflow Overview 


The ARRoW tool chain is founded upon the notion of heterogeneous tool and technology 
integration and lightweight, unobtrusive data integration mechanisms. This approach enables 
the employment of fast and automated abstract design methodologies, but retains the capability 
to access high-fidelity domain-specific tools and capabilities where needed and appropriate for 
the development of a complex weapons platform like a combat vehicle.  


Coordination of the workflows and data constructs are captured and fed through entities 
known as Archetypes served out of a CML, which not only enable development-accelerating, 
model and pattern-based design efficiencies and automation, but also facilitate participation by 
novice designers in local domains. Metrics are generated and captured throughout the system, 
facilitating asynchronous ―continuous verification and validation‖ to support ongoing design 
decisions, and to provide for computation of deep high-level system development metrics like 
Probability of Correctness (PoC) of specific requirements. (Associated with PoCs are 
documentation for a given probability value or PCC). Finally, the tool chain is ideally suited to 
the integration of, and augmentation by, advanced reasoning systems to provide further system 
development acceleration. In particular, several mechanisms have been implemented under the 
META program, including Knowledge-Based Reasoners, to facilitate more efficient and 
intelligent design space exploration, and standardized ontologies throughout the system to 
optimize data and logic access and flow.  


This approach offers significant acceleration through all phases of the development process, 
including the Requirements phase, which contains the most significant potential for 
acceleration since robust, well understood requirements enable focused and efficient 


METAFR015
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development activities, while mitigating program-breaking risks and lengthy redesign 
activities. 


A language for expression of relationships among design elements (AMIL) provides a 
foundation on which distributed tools interact to facilitate the ARRoW vision. This provides 
for a loose (and hence flexible and readily extensible) coupling among ARRoW tools and 
models, allowing a broad range of workflows to be supported. AMIL links connect the 
components models, facilitating model execution for test and verification, enabling design space 
exploration.  


Multiple verification tools and methods can be used simultaneously for aspects of the design 
problem for which they are suitable. The combination of test cases and design elements 
contained within the master model determine which verification methods are appropriate to 
test any particular constraint or design goal. This includes model checking and rigorous model 
composition methods where they exist and are appropriate. By mapping from test cases to 
suitable verification methods, various metrics can be produced, including estimates of the 
probability of correctness. The set of verification tools is easily extensible. At a given time, 
multiple tools can simultaneously be running test cases against multiple designs, and a given 
verification tool could also potentially be running multiple test cases in parallel, using the 
elastic compute bandwidth of the cloud.  


Specific verifiers may be appropriate for only certain tests. For example, qualitative simulation 
may be possible only if there is a relevant model in Qualitative Modeling Language (QML). 
Some verification methods may only be appropriate for conceptual exploration stages, others 
may be customized to particular technical tests (e.g. setting up and running a computational 
fluid dynamics model). Specific tests will be applied though appropriate verification tools, using 
tool associated attributes that describe their range of utility.  


4.2 Stages in an ARRoW Facilitated Design Process 


ARRoW has the flexibility to support a wide range of workflows. For example, it could be used 
to analyze the impacts of alternative requirements, or to support modification of an existing 
design. However, for descriptive purposes, it is useful to go through the canonical process that 
begins with requirements, goes through multiple iterations of design exploration, verification 
and refinement, leading eventually to a complete design ready for manufacture. In this section, 
we describe the steps in this process in greater detail. 


• Requirements Ingestion 
• Initial Decomposition 
• Initial Test Case Generation 
• Initial Requirements Reasoning 
• System Conceptualization 
• System Composition 
• Mixed Initiative Design Exploration 
• System Detail Engineering Design 
• System Operational Assessment 


4.2.1 Requirements Ingestion 


The workflow begins with a set of raw requirements for the System of Interest (SoI), which are 
generally provided by the SoI customer.  These requirements are then ingested into the 
ARRoW Integrated Development Environment (AIDE), where they are captured in a SysML 
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tool-readable format.  Specifically, when we refer to the ―ingestion‖ of requirements into 
ARRoW, we mean the process of: 


 Importing the raw source requirements from specification documents or other media 
into the ARRoW IDE Master Model (MM), and 


 Capturing the text of each requirement into a unique SysML ―requirement‖ model 
element if the source requirement is not already in that format. 


4.2.2 Initial Decomposition 


After requirements are ingested, they must be processed (―digested‖) to be usable in the 
ARRoW environment.   This process begins by searching the CML for comparable 
Requirement Archetypes.  Requirements Archetypes are abstractions of typical requirements 
constructed for the purpose of reusability.  Examples of Requirements Archetypes can be found 
in the ―ARRoW System Engineering and Architecture‖ appendix (Appendix 7.1) under the 
section labeled ―Requirements and Requirement Archetypes‖, and in the table labeled ―Sample 
Requirement Archetype Text‖ in that same appendix.  A possible mechanism for this search 
process might be to scan the raw requirements for known keywords, and then using the 
keyword ―hits‖, to search the CML for Requirements Archetypes containing those keywords. 


Requirements Archetypes in the CML are associated with both Requirement Archetype Sets 
(RASs) and Design Archetypes.  Requirements Archetype Sets are logical groupings of 
Requirements Archetypes.  These sets can be related to MIL-STDs, for example ―full up‖ 
System Performance Specifications, system functions, or common design constraints such as 
allowable material types, transportability requirements, best practice design standards, product 
structures,  etc.  Design Archetypes include reference architectures and/or specific design 
components.  They are abstractions of integrated designs or components constructed for 
reusability in new systems.  Just as decomposed requirements are typically allocated to lower 
level product structure elements in finished systems, decomposed Requirement Archetypes are 
pre-allocated to Design Archetypes in the CML. 


The AIDE helps the developer to select which Requirement Archetype Sets are most 
appropriate for the raw requirements imposed on the system.  Once the Requirement 
Archetype Sets are imported (copied into) the Master Model, the raw system-level 
requirements are allocated to system-level Requirement Archetypes to establish traceability 
from the ARRoW derived Requirement Archetypes to the requirements provided by the 
customer.  This allocation process could be aided by ARRoW based on keyword associations.  
Gap analyses are then performed between the raw requirements and the Requirement 
Archetype Sets to determine if raw requirements are missing or overly constraining.  Note that 
in the event that the raw requirements are originally derived from existing Requirement 
Archetype Sets in the CML, this process can be quite straight-forward.1  This process 
establishes the system-level requirements baseline for the SoI. 


Once the requirements baseline is established, the AIDE will assist the developer to select an 
initial design baseline.  Since Requirement Archetypes are allocated to Design Archetypes in 
the CML, the aforementioned discovery of Requirement Archetypes in the CML that 


                                                 


 


1 The AIDE is open to integration of mechanisms that in-process natural language requirements, but 
that technology was not sufficiently mature to leverage for this phase of the META program. 
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correspond to customer requirements can be used as a basis to present candidate design 
solutions to the developer. The developer, in concert with AIDE design mechanisms, then 
selects and imports the Design Archetypes initially deemed most appropriate for the SoI.  
When these Design Archetypes are imported, lower level decomposed Requirement 
Archetypes, pre-allocated to corresponding Design Archetypes and parent Requirement 
Archetypes, are automatically imported.  Design Archetypes are then refined within the Master 
Model to create specific instances of a design.  This refinement process might involve, for 
example, manipulation of Design Archetypes with design tools or assignment of constant 
values to design parameters.  Completion of the Design Archetype import and refinement 
process establishes the initial design baseline. 


This initial decomposition process provides a significant acceleration of the design process by 
automating many of the conventionally tedious and manual processes employed for 
requirements decomposition. This is accomplished by leveraging a fully populated CML to 
facilitate automated requirements decomposition and to establish an initial design baseline.  It 
additionally provides the structure to facilitate test case generation, and reasoning over the 
requirements to reduce the Design Space Exploration required in later phases of the 
development process. 


4.2.3 Initial Test Case Generation 


A Test Case is an executable that configures and orchestrates the testing of, and stimulates the 
inputs of a design component for, the purpose of verifying one or more requirements levied 
against that component or a product structure parent of that component.  Each Requirement 
Archetype that is allocated to a Design Archetype in the CML has a corresponding Test Case 
Archetype.  When the Design Archetype is imported into the AIDE Master Model, the 
appropriate Test Case Archetype is also imported automatically. 


Test Case Archetypes might be composed of pseudo-code, parameterized functions/services 
expressed in a general purpose language, Modelica or other solvers, Simulink® or other 
simulator blocks, SysML parametric diagrams, or any form of expression that can provide a 
template for the logic of a Test Case.  Test Cases are created by refining Test Case Archetypes 
consistent with the design choices made when design components are refined from Design 
Archetypes. Test Case Archetypes are abstracted such that the form of their abstraction clearly 
corresponds to the form of the Design Archetype abstraction. 


4.2.4 Initial Requirements Reasoning 


Once requirements have been transformed into interpretable form, designers can begin the 
process of conceptual design exploration. Alternatively, automated reasoners could also be 
employed at this point to perform further decomposition of requirements and initial Design 
Space Exploration (DSE). Relatively simple processing of the requirements can drastically 
reduce the potential design space that must later be assessed at lower levels of abstraction with 
slower-running, higher fidelity tools. Examples of this reasoning include: 


 If a vehicle’s specified top speed exceeds X, it must be a wheeled vehicle (exceeds known 
limitations of tracked mobility systems). 


 If a vehicle is required to ―swim‖ in this marine environment, it must have an aquatic 
propulsion system. 







META ARRoW Phase 1b Final Report—13 October 2011 


 


© BAE Systems 2011. All rights reserved. 21  Refer to cover page for Distribution Statement. 


 If a vehicle must protect X #crew and Y #squad, at this level of protection, and be able 
to traverse this terrain, then it will likely weigh in excess of Z and therefore require 
tracks. 


Through this simple logical processing of the requirements, the range of feasible vehicle 
Design Archetypes (e.g. ―wheeled combat vehicle‖, ―tracked amphibious combat vehicle‖, etc.) 
can be significantly reduced (or even singularly identified), before any significant and time-
consuming human analysis is required. The same mechanisms could also (if, for example, one 
were to treat the above examples as a set), identify non-viable and/or high-risk requirements 
for immediate customer feedback. Further, information produced by this process can 
significantly prune the space of possible system components to be explored in subsequent 
phases of the development process. Information such as this is instantiated in the Master Model 
for the system being developed and passed via the AMIL to the data management system for 
continued development. 


In the course of the ARRoW project various design space exploration tools have been 
developed. Approaches tested include use of the parametric capabilities of the SysML tools and 
the Knowledge-Based Reasoning framework employed in our Expert-System Knowledgebase 
Evaluation Reasoner (ESKER) design space reasoning tool.  


4.2.5 System Conceptualization 


While automated tools can narrow the range of choice, systems engineers and others experts 
will typically wish to be involved in resolving tradeoffs among alternative conceptual design 
options. ARRoW provides a graphical tool supporting this exploration, the Early Concepting 
Tool (ECTo). ECTo is a major component of the AIDE. As illustrated in Figure 5, ECTo 
provides a graphical user interface for system composition and exploration, including 
mechanisms to browse the CML for design archetypes and components, automatic updating of 
design by choices from the CML, tracking of high level metrics (in particular cost, weight, and 
spatial dimension impacts of design choices), and an interactive 3-dimensional representation of 
the system.  ECTo is fully integrated with AMIL, and is capable of either functioning as a 
downloadable ―App‖, working exclusively from a local database and local executables, or as a 
user interface to AIDE, communicating all data and executable functionality via AMIL.  
Archetypes established during requirements reasoning are communicated, also via AMIL, 
directly into ECTo, ready for immediate manipulation.  Additionally, changes made in other 
tools (for example a change to a requirement) will be reflected seamlessly in ECTo displays.  
Design choices made in ECTo will be retained in the Master Model where they will be 
available to other ARRoW tools (for example the Metrics dashboard, described later). 


Once one or more conceptual designs are identified, further refinement of the system can 
proceed, with multiple, different groups of engineers potentially working in parallel. The 
conceptual design choices made at this stage provide a scaffolding (derived constraints) that 
guide later design steps. Should abstract level decisions need to be reconsidered due to more 
detailed design analysis, this conflict can be automatically detected, minimizing the potential 
disruption. 
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Figure 5.  ECTo 


4.2.6 System Composition 


Beginning with a down selected number of System Archetypes chosen during conceptual 
design, ARRoW allows a user to rapidly compose the system to begin exploration of more 
refined concepts. ECTo automatically performs vehicle sizing estimates based on data from the 
requirements and derived Archetypes, including the System Archetype(s), numbers of crew and 
squad, levels of required protection, lethality subsystems, and propulsion system. Metrics for 
vehicle size and weight are continuously monitored and maintained. From this baseline, the 
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designer can rapidly explore system configuration options and begin the design space 
exploration activities to refine the design. Overall system configuration information is sent to 
the architecture engineering system, and the two environments work in parallel to rapidly 
establish system architectures and component/subsystem topologies. 


Within the Design Archetypes are associated high-level abstract models of major subsystems, 
enabling the designer to begin the process of identifying rough notions of required subsystem 
capabilities. For example, a ―tracked combat vehicle‖ Design Archetype will contain abstract 
models of track propulsion system efficiencies, context models, and engine sizing models. This 
will allow the designer to determine notions of subsystem and component requirements to aid 
in the reasoning over and selection of components. In other words, the designer will have the 
capability at this point to determine that a vehicle of this approximate size and configuration is 
required to meet the system requirements, and with this type of propulsion system over this 
terrain, will require engines of this power range to achieve the required on- and off-road 
mobility requirements. Note that archetypes and the associated reasoning systems are not 
proscriptive, and don’t restrict any creativity by the designers. In addition to designing 
facilitated by the set of archetypes in the CML, new ones are freely created, and the set of 
archetypes can be extended at any time.  


This abstract conceptual development will narrow the design space, essentially establishing 
requirements (or requirement ranges) of subsystem or component performance to support 
component search and selection.  Elements of the CML will have associated meta-data 
attributes (related to attributes of design elements in the master model), allowing the discovery 
of candidate members of the CML for a possible design revision to be achieved through search. 
The CML is structured through attributes and relationships, not directories and hierarchical 
typologies. This allows our CML structure to be distributable and dynamic, not monolithic and 
stagnant. The organizing principles develop according to use, which can take direct advantage 
of the benefits of crowd-sourcing. Candidate design archetypes or components, deemed feasible 
given the current state of the design, can be identified using search and discovery (implemented 
with map-reduce algorithm, for example). In general, the link and relationship-centric design of 
ARRoW (akin to the architecture of the semantic web) allows both the CML and the Master 
Model to be segmented and geographically distributed. Consequently, it is possible to make 
component models available for incorporation into designs and to test these designs without 
making the models themselves public. 


4.2.7 Mixed Initiative Design Exploration 


Once a conceptual design has been selected, more refined design details can be addressed. The 
scaffolding provided by a design at a given level of abstraction allows parallel design activities 
to be pursued on subsystems. Previous design choices impose constraints on future design 
choices, and this information is readily stored as relationship information in the AMIL graph 
that represents the design. For instance, pre and post conditions on a given design element can 
be interpreted as assume-guarantee contracts. By this means, ARRoW facilitates the early 
pruning of design choices based on such constraints, as well as early detection of constraint 
violation through either static (emergent violation of contracts) or dynamic (constraints 
violated in a simulation based verification test) means. 


These parallel activities can be driven by human designers or algorithmic search algorithms. 
Architectural optimization leverages the system requirements and previously down selected 
system Design and Requirements Archetypes, along with information about design options 
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stored in the CML, to perform its design exploration and refinement process. Algorithmic 
design exploration will extract component models, or subsystem archetypes (with associated 
contract patterns) from the CML, filtered by constraints in the current design or design criteria 
set by either human or algorithmic means. Alternative feasible design choices can be assembled 
(either by users or automated tools) into candidate architecture refinements that satisfy the 
constraints, and then tested against computational models and metrics drawn from the metrics 
library. Various algorithms can be used to iteratively test feasible options seeking designs that 
optimize multiple objectives. Collaboration with human designers can often best be achieved by 
search tools that produce trade sets rather than single recommendations.  Consistent with 
ARRoW’s overall approach, multiple such reasoning mechanisms can be supported and utilized 
when appropriate. 


Finally, ARRoW is designed to be easily extensible, and new design space exploration 
algorithms or user design tools can readily be incorporated. Algorithms and user interfaces 
facilitating specific aspects of the design problem are likely to be of use, and the same 
infrastructure that supports identifying feasible components for a stage of design can also 
identify the appropriate tool, reasoner, or solver for a stage of the design process. One 
reasoning design exploration tool that was created during the development of ARRoW was the 
ESKER. ESKER is an example of a tool that can incorporate design rules to ―break ties‖, 
automating decisions between multiple components that satisfy all requirements but differ in 
forecasted multi-attribute performance. Such tools can introduce reasoning based on designer 
intent, such as qualitative preferences for faster vehicles, or lighter vehicles, or systems that can 
be fielded quickly, or with minimum lifecycle cost. 


Facile interoperation between user interfaces, design elements, heterogeneous models and 
design tools, design space exploration algorithms, the component model library and the metrics 
library is made possible by the web of connections provided by AMIL. Known relationships and 
connections are explicitly represented. In particular, access to solvers is provided via AMIL 
connections to both ECTo and higher fidelity engineering analysis tools. This concept is 
illustrated in Figure 6, with identified commercial and alternate lightweight free or open 
source tools that could usefully support ARRoW-based design work. 
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Figure 6.  Tool Flexibility in Early Design Phases 


4.2.8 System Detail Engineering Design 


Ultimately, the conceptual design produced by the largely automated conceptualization tools 
will need to be refined, analyzed and verified using higher-powered tools: 


1. To complete design of any sub-systems that are developed specifically for the this (new) 
system (e.g. the chassis/hull, component interface and integration mechanism, system 
level software, etc.), 


2. To ensure that potential abstraction leakages that have survived early analysis are 
discovered and mitigated, and 


3. To prepare the system for production and ultimate fielding. 


This phase of the tool chain consists of the conventional ―heavyweight‖ engineering design and 
analysis tools, as they provide what more abstract representations cannot—the necessary 
domain richness, diversity, depth, and accuracy necessary to ensure that a producible, 
functional, survivable, and operationally meaningful and compliant system is generated. Error! 
Reference source not found.Figure 7 provides an overview of a representative set of these 
tools, identifying both commercial and lighter-weight free or open source alternative in many 
of the domains. 
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Figure 7.  “Heavyweight” Analysis Tools with Potential “Lightweight” Alternatives 


Engineering analysis tools consist of a large number of domain-specific, high-fidelity analysis 
tools required to ensure that the design is producible, safe, sound, and effective. These include 
structural, dynamic, fluids, and thermal computational fluid dynamics and finite elements 
analysis codes; Human Factors analysis tools; and tools for the planning and prediction of 
manufacturing and production, reliability, logistics, lethality, survivability, etc. 


Use of these ―best-in-breed‖ tools identified in Error! Reference source not found.Figure 7 is 
critical to the development of realizable and effective complex combat systems. However, the 
tool chain provides a means to optimize the employment of these powerful tools to achieve 
significant acceleration of the development process. Data is centrally contained within the 
Master Model and distributed between tools via AMIL, and the multitude of complex and 
cooperative engineering analysis processes are captured in Analytic Archetypes. Essentially, 
Analytic Archetypes function as recorded ―macros‖ of the deep engineering and analytic 
processes. Once recorded, they facilitate the automated distribution of data, work, and tool flow 
to accelerate the processes and eliminate wasted or duplicated effort. 


4.2.9 System Operational Assessment 


System Operational Assessment tools provide context model environments to support system-
level performance assessment and metric production to ensure that the developing system 
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meets its system-level operational requirements. These tools support the notion of continuous 
system validation, ensuring that the integrated system will meet its objectives, mitigating risks 
associated with abstraction leakage and design/engineering ―stovepipe‖ issues. 


4.2.9.1 Static 


Static System Operational Assessment consists of tools designed to operate on abstract system 
representations, beginning with requirements. These tools are generally stochastic analysis 
environments and support reasoning systems that are employed to decompose and refine 
system, subsystem, and component requirements; support early abstract system 
conceptualization analysis; and system concept refinement (e.g., functional architecture 
development and component down select and configuration). 


4.2.9.2 Dynamic 


Dynamic System Operational Assessment consists of tools designed to operate on explicit 
system concepts, or those that consist of integrated fully defined components, functioning 
according to operational use and test cases, driven by software and potentially simulated or real 
human operators. The OneSAF war-gaming environment is an example of this type of 
environment. These environments are time-based, and again support continuous system 
validation as the developing system transitions from a concept to a mature system design. 
These environments also support system-level human-cyber-mechanical trades and 
optimization, and provide the development environment for the system being developed 
Concept of Operations (CONOPS), and operational and training procedures. 


4.3 ARRoW Foundation Infrastructure 


There a several components of ARRoW that are used throughout its operation, and have not 
been addressed in depth in the previous walkthrough of the design process.  This section 
describes each in turn: 


 AMIL 


 The Component Model Library 


 Verification Methods 


 Metrics 


4.3.1 AMIL – ARRoW Model Interconnection Language 


The purpose of AMIL is to automate in a rigorous fashion the joint use of tools, solvers, and 
reasoners that are specialized for different parts of the design challenge and have very different, 
possibly incompatible, syntax and semantics. AMIL is based on the same philosophy as the 
Web in that the key concept is links between information that is not replicated. Links provide 
information about relationships between models as well as computational dependencies and 
only need to be established where they are needed. 


AMIL links capture the relationships between design elements and can be annotated as needed 
to capture salient information. In particular, where formal assumptions and guarantees are 
available for component models this information can be carried in the AMIL graph, and the 
operations of ARRoW can be guided and constrained by this knowledge. In similar fashion, 
ARRoW can accommodate a range of formalized approaches to representing component 
semantics. 
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The use of AMIL links to represent both design detail and system engineering knowledge 
provides a number of important benefits. As these links can cross platforms and domain 
boundaries, this approach allows the master model of the system under development to be 
distributed, so long as those pieces it is composed of each support the services that allow 
ARRoW to traverse the design graph. AMIL describes the data that is communicated between 
the models, which can also be annotated with information about the security that needs to be 
imposed on each link. Thus, some component models contained in the master model could 
reside on Windows platforms behind firewalls, while others could run on Linux systems in the 
cloud. This feature provides opportunities for addressing Intellectual Property, licensing, 
ITAR, and potentially even security level and classification issues by enabling models to 
participate in testing without being made publically available. 


4.3.1.1 AMIL Implementation 


AMIL provides the data and process communication mechanism upon which other components 
of the ARRoW system are built.  It assumes only that external models and modeling tools 
provide some sort of access interface and that they are capable of exporting unique identifiers 
for modeling elements that are relevant across multiple models. AMIL creates proxies for these 
elements as nodes in an attributed graph. These nodes can be associated with related nodes 
(proxies of other model elements) with attributed links. The approach represents only the 
proxies that are required and only introduces the interconnections that are useful. The 
underlying attributed graph semantics provides a general and extremely flexible foundation in 
support of the model interconnection semantics. Both nodes and edges of the interconnection 
network contain lists of key-value pairs that can be extended without arbitrary limit. New 
relationship types can be introduced on demand without compromising performance. 


The physical data store AMIL is built on scales to billions of nodes and relationships. The 
existing AMIL interpreter can be embedded, or AMIL statements can be executed by invoking 
the AMIL Web Service. The data transport that we selected follows a standard format and is 
thus easy to use.  


Existing tools can be integrated into AMIL through the use of plug-ins. For example, we have 
implemented a plug-in for the CAD tool Pro/Engineer (Pro/E and recently renamed Creo), 
that allows us to utilize Pro/E as a geometry server within ARRoW. The Pro/E plug-in 
dynamically provides parametric information for generating information about a design such as 
mass and moments of inertia. A similar plug-in was implemented for the SysML tool Magic 
Draw, allowing for information (capturing requirements, for example) to represented and 
manipulated in SysML and seamlessly used by other tools by through the intermediary of the 
AMIL database. 


4.3.2 Component Model Library 


The Component Model Library (CML) has two primary purposes. First, it is a repository that 
stores technological knowledge and facilitates its sharing and communication between work 
threads and components. Second, it encourages re-use of artifacts and makes it easy to do so in 
a reliable and consistent manner. A centralized component library supports distributed design, 
because it is available anywhere, and facilitates design evolution, because it is always available. 


Design exploration and verification is greatly facilitated by having a Component Model Library 
(CML) that contains data about available options. Heuristic or combinatorial search can be used 
for aspects of design that can be framed as a fixed topology in which components from the 
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library be combined. While developing and populating a complete CML for IFV design was out 
of scope for the project, we developed requirements, a design, and implemented a prototype 
CML in order to facilitate our development and demonstration of ARRoW. (See Appendix 7.4.) 


In the context of ARRoW, the CML advantageously contains information beyond models and 
data of physical components.  In particular, it is useful to also have archetypes stored there, and 
to include all relationship information that is available regarding archetypes, components, and 
models at varying levels of abstraction. As a consequence, the CML is not a hierarchical data 
store, but also contains a complex web of relationships among its elements. These relationships 
can greatly facilitate design exploration.   Information on how this information can be used can 
be found in appendices 3, 4, and 6. 


Key to using the CML is the ability to search for artifacts that met specific needs. AMIL 
provides a formal ontology and supports semantic searches of it using a standard language. 
This is utilized in supporting search of the CML for components or models meeting particular 
needs. For example, engines meeting specific size and performance requirements, whether in 
terms of torque, power output or fuel efficiency. 


4.3.3 Verification Methods 


Formal verification methods offer sophisticated means of assuring that a design satisfies 
requirements that can, for some issues, provide significant efficiencies in computing 
probabilistic assessments of correctness over basic Monte Carlo approaches. Various candidate 
methods have been investigated during this project (see appendices 3, 9, and 10), and others are 
being developed by other groups. All of the formal verification methods currently available 
impose restrictions on models and design and so are currently applicable to only a limited 
subset of IFV related design issues. Consistent with the overall approach of taking advantage of 
specialized reasoners, ARRoW provides for the use of formal verification methods where they 
apply, without requiring that all models or design formalisms employed obey a limiting 
framework. Conditions for appropriate use of these methods, as with the use of other specialized 
reasoners, can be captured as analytic archetypes, and included in test sets for routine 
execution. 


4.3.4 Metrics 


Metrics are central to the analysis of design alternatives.  Some may be specified by system 
requirements, others may be selected by designers seeking to better understand properties of 
their designs. Some metrics can be directly calculated from available models.  Others, notably 
complexity and adaptability metrics and Probabilistic Certificates of Correctness (PCCs), can 
require substantial additional computation. In order to facilitate ease of use of needed metrics, 
ARRoW includes: 


 A metrics library containing algorithms for computing metrics such as robustness and 
adaptability 


 A generic metric model that would allow for ease of metric development and 
integration by outside users 


 An extensible metrics framework to support selection and evaluation of metrics, with 
supporting infrastructure allowing metrics to pull data from AMIL as needed 


 A metrics dashboard to provide continuous graphical display of selected metric values 
as alternative designs are explored 
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The ARRoW metrics framework seamlessly integrates metrics with simulation and design 
tools, hides the back-end AMIL details, is easily re-configurable and supports straight-forward 
metric creation. The metrics framework is an extension of AMIL, and the same mechanism for 
integrating 3rd party tools into AMIL is applied to metrics. Consequently, the metrics 
framework provides the ability to rapidly prototype and integrate new metrics. 


An example of the Demo dashboard is shown in Figure 8. The various panels within the 
dashboard are provided by the different views that have been developed, and include: metrics 
values, assessment of metrics values (excellent, bad, worst), comparison of design alternatives 
against requirements, and monitoring graphics. 


Metrics themselves have many consumers, so the dashboard is easily configurable to support 
those consumers. Top sponsor leadership and company management may be interested in cost 
and system effectiveness, and capability and gap analysis, whereas the upper project 
management are more interested in the health of the design and risk mitigation metrics.  Direct 
line management will be interested in reviewing tracking book metrics.  


To support the varying needs of the different metrics consumers, three demonstration 
dashboards were implemented during ARRoW development: Demo, Design, and 
Requirements. The Demo dashboard is used to demonstrate a sample of a top level cost 
analysis and capability assessment. The Design dashboard relies on the outputs of an ECTo 
design exported to AMIL and presents the results of a mobility model and other design metrics 
such as calculated total cost and total weight. The Requirements dashboard provides a table of 
integrated Signal complexity results. 
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Figure 8.  Example Dashboard Configuration 


Appendix 7.2 contains details about metrics implementation in ARRoW along with brief 
descriptions of the metrics implemented during META ARRoW Phase 1b.  A much longer 
exposition on promising complexity and adaptability metrics can be found in the META 
ARRoW Phase 1a Final Report. 


4.4 Notional Demo System Application 


The ARRoW system development used a series of design challenge problems in order to 
illustrate key capabilities in the context of a non trivial problem that exists in the combat 
vehicle design space today. The most thoroughly investigated challenge problem was that of 
designing the egress system for an IFV squad. 


The Ramp challenge problem: 


 Considered alternative solutions for the ramp assembly and its supporting subsystems 
and components to enable subsequent selection of solutions for further design 
exploration 


 Considered trade-offs of multiple inter-related subsystems/component alternatives in 
order to realize an optimal solution for a given set of criteria 


 Used realistic requirements in order to emulate a real design process and in order to 
calculate correctness of solution alternatives 
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The various versions of the IFV Ramp challenge problem allowed ARRoW developers to 
address a highly scalable problem containing contributions from every design domain, 
including cyber-physical subsystems, and an operational context. These problems were 
addressed across a broad range of abstractions, including high fidelity simulations of ramp 
dynamics and mechanical deformations and drive response to operational stimuli including the 
impacts of footfalls of soldiers running down the ramp. Together with conceptual design 
problems demonstrated with ECTo, these problems span a range of realistic problems, 
establishing the viability of ARRoW to support the design of an entire system at scale, given 
the necessary models, archetypes, and a complete component model library. 


5. Conclusions 


Technologies developed for the ARRoW system provide an infrastructure facilitating 
computational exploration of designs with continuous test and verification using multiple 
models, multiple specialized reasoners, libraries of components, design patterns, and workflows. 
AMIL provides an executable graphical database that supports relationship maintenance 
among diverse models, designs, reasoners, patterns, and workflows, allowing either local or 
distributed execution of computations. The innovation of archetypes, allowing design patterns 
and workflows to be applied across a broad range of designs and stages in the design process, 
provides an improved means of capturing and automating engineering practice in order to join 
previously isolated MBE islands. 


This infrastructure facilitates more aggressive use of computation, while reducing the workload 
on experts, allowing for mixed initiative exploration for acceptable solutions. It provides an 
extensible basis for automation, providing more opportunity for innovation and allowing new 
models and tools to be incrementally introduced, and existing tools to be replaced as better 
alternatives emerge.  


6. Recommendations 


6.1 Integration of Additional Tools 


The ARRoW infrastructure provides a foundation in which multiple models, solvers, and 
reasoners can be jointly used to solve difficult design and verification problems. In order to 
exploit this foundation to achieve the goal of 5x reduction in times from requirements to first 
operational prototype, a large number existing specialized design and analysis tools will need 
to be connected to ARRoW. The benefits of doing so go beyond the automation of analytic 
processes currently in routine use, as continuous testing and validation can detect problems 
much earlier (when they are cheaper to fix, and have less schedule impact), and can potentially 
facilitate the discovery of superior designs.  


At its current level of maturity, ARRoW can usefully support requirements analysis, 
conceptual design exploration, and the use of models of moderate abstraction to refine designs. 
Incorporating very high fidelity models and design tools presents additional challenges, both in 
terms of software engineering, and capturing required systems engineering knowledge. The 
investment to continue ARRoW development to include such tools could provide improved 
ability to capture combinations of phenomena. Figure 99 conveys a unique subjective 
assessment by engineers at BAE Systems Land & Armaments of both the degree of difficulty 
and importance for 36 combinations of physical effects in the design and verification of an IFV. 
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Figure 9.  Multiphysics Levels of Difficulty/Maturity and Relevance to IFV 
Development 


Among the classes of multiphysics phenomena portrayed in Figure 9, various tradeoffs could 
be made in prioritizing their implementation. In order to facilitate making these choices, we 
have identified the most significant deep-physics analytical activities necessary for the 
development of combat vehicles. The following list synopsizes the most important analyses 
that involve high fidelity multiphysics simulation and analysis for IFV design. 


Significant deep-physics analytical domains and activities. (Not rank ordered) 


 Structural: 


 Load Assessment. Assess structural integrity for static load conditions 


 Load Transmission. Determine transfer function through chassis to mounted 
components and subsystems from external shocks and vibrations 


 Durability and Life Prediction. Accumulate and assess typical operational loading 
for the combat vehicle on the structure(s) 


 Survivability: 


 Mine Blast Simulation. Predict and assess the chassis structural performance when 
exposed to under-belly explosion 
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 Armor: Prediction of armor recipe performance 


 Automotive – Land: 


 Static Attitude. Ensure ground clearance and vehicle attitude/wheel loading under 
various Gross Vehicle Weight (GVW), lift load, grade and slope conditions 


 Mission Rated Speed. Predict the maximum speed, governed by crew acceleration 
and vibration, crossing a given terrain 


 Obstacle Crossing. Simulate the go/no-go performance for the vehicle crossing 
mobility obstacles 


 Drivetrain/Powerplant Simulation. Simulate powerplant and drivetrain for 
mobility and obstacle events for performance assessment 


 Automotive – Aquatic: 


 Water Speed. How fast can the vehicle travel (and maneuver). 


 Buoyancy. Buoyancy reserve and self-righting 


 Thermal: 


 Combat Operation Thermal Performance. Simulate the thermal exposure and 
response for crew and components during a typical combat mission 


 Compartmental Cooling. Assess airflow and temperature distribution for an 
extreme thermal loading condition. 


 Powerplant Cooling. Simulate the thermal load and ambient heat rejection for 
various combat missions 


 Towing and Transport: 


 Rail Impact. Simulate the vehicle rail transportability scenario of a ―Hump‖ test 


 Transport Tie Down. Longitudinal pull load 


 Towing. Performance towing similar/like kind vehicles 


 Towed. Performance assessment under tow 


The subjective estimate of our engineers is that this list captures 80+% of the deep, high-
fidelity multiphysics based analytical work needed to support design and verification of an IFV. 
The list is dominated by system level analysis, as this level of performance typically involves 
multiple sub-systems, and consequently a large number of domains. Description at this level is 
most readily done in terms of system level mechanics, but note that for each member of the list 
there are multiphysics effects, and multiple design domains, frequently including control 
systems and electronics. 


Note that the classes of verification listed above have overlaps in the models and kinds of 
information they would use. Figure 10 diagrams some of the overlaps and commonalities we 
will exploit in implementing this list of analytic tests. The shading of the ellipses indicates the 
relative ease of coupling. Darker shades indicate less challenging integration. Topics in the 
ellipses of lighter shades provide more of a challenge, but we believe these also can be met with 
additional investment.  
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Figure 10.  Overlap Among Multiphysics Modeling and Analysis Topics 


6.2 Application to Other Domains 


ARRoW has been designed to support design of any complex system for which the necessary 
libraries are provided.  However, testing and development to date have all been specific to IFV 
design problems. Testing ARRoW’s applicability to other domain would both confirm the 
achievement of this goal, and potentially reveal architectural revisions that would improve its 
utility. 


6.3 Achieving Industry Reform and a 5x Compression in System 
Development Time 


In order to achieve significant improvements in the nation’s ability to rapidly design and field 
new weapon systems, innovation is needed in both the processes and supporting tools used in 
designing these systems. By providing a means to connect what are presently isolated 
applications of model based engineering, ARRoW is an important innovation of this kind. 
Capturing the promise ARRoW presents will require combining it with existing commercial 
tools, open source and academic innovations, and mechanisms, allowing private models and 
reasoners to be used in a more open context. This combination will provide a means for defense 
companies, whose greatest expense is their engineering talent, to get more leverage from this 
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resource and subsequently become more agile, faster, and cost effective, while at the same time, 
tapping the innovation potential of the ―crowd‖ through facilitating democratized design. By 
establishing the competitive advantage of reducing their footprint and creating more value 
sooner, the industry can become an active agent in its own reform. 


Additionally, the existence of software platforms that also allow interoperation of open source 
and commercial tools will bring market forces to bear, leading over the longer term to 
discovery of the best balance between open source and commercial design tools. As with the 
historical case of Electronic Design Automation (EDA), it is the positive engagement between 
systems of open innovation and commercial interests that is needed to achieve the long-term 
goals of Adaptive Vehicle Make (AVM).  


The restructuring of defense and software tool industries will involve processes that will 
continue beyond the end of the AVM program. The use of hybrid approaches for the duration 
of AVM can promote these processes and lay a foundation that can guide this evolution 
towards desired long term goals. 


6.4 The Hybrid Approach to Democratizing Design 


ARRoW’s open architecture, support for distributed design, the automation of systems 
engineering practices, together present a possibility of using ARRoW to enable a wider range 
of individuals to contribute complex design enterprises. Access for a wider range of design 
talent can be very helpful in discovering innovative solutions. Conversely, professional 
engineering expertise can facilitate crowd innovation, by providing the context and assistance 
with highly technical aspects of design problems. ARRoW could be used to promote 
democratization of design in multiple ways: 


 Proven design patterns can be captured and stored in the CML. These patterns provide 
both the relationship graph of the components in a particular design and the constraints 
these components impose on each other. These patterns also capture domain expertise 
and experience, providing for beneficial, potentially innovative contribution from non 
domain experts. 


 Analytic workflows used to calculate important metrics can similarly be captured, 
providing significant assistance in automating the testing and verification of designs, 
especially to assess system level properties. 


 Dual-use development of user interfaces and tools to serve both professional engineers 
and the crowd can ensure that the crowd tools are sufficiently powerful to support 
successful designs, and in particular militarily relevant designs. 


 Flexible infrastructure allowing users scalability in the choice of commercial design 
tools (frequently expensive) and equivalent, albeit often more limited and/or not 
supported, low-cost or free tools, promotes both outreach to novice participants and the 
involvement of professionals, who can in collaboration with other crowd users provide 
important design ideas and insights.  


 The participation of professional engineers in the management of crowd sourcing 
exercises can monitor the course of design activities, potentially providing feedback, 
assistance, and verification of any system properties not adequately addressed by 
automated means. 


A crowd-sourcing design exercise would illuminate this opportunity further.  
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7. Appendices 
Appendices are included with this report as separate, external documents due to the volume of 
material.  The following is provided as title and number reference summary. 


7.1 System Engineering and Architecture 


7.2 Tool Design 


7.3 Modeling Language 


7.4 Library Requirements 


7.5 System Demonstration 


7.6 Advanced Reasoning and Applications of ARRoW Technology 


7.7 Metrics Developed by Team Member (BBN) 


7.8 Spatial Design Exploration (BBN) 


7.9 RMPL (MIT) 


7.10 Verification (MIT) 


7.11 Programmatics 
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List of Symbols, Abbreviations, and Acronyms 


Symbol, 
Abbreviation, 


Acronym 
Definition 


AFSC Air Force Systems Command 


ACAT Acquisition Category 


AIDE Arrow IDE 


Ao Operational availability 


AoA Analysis of Alternatives 


APG Aberdeen Proving Grounds 


ARL Army Research Lab 


AROC Army Requirements Oversight Council 


BCT Brigade Combat Team 


BII Basic Issue Items 


C2 Command and Control 


CDD Capability Development Document 


CDR Critical Design Review 


CFV Cavalry Fighting Vehicle 


CG Commanding General 


CG Commanding General 


CML Component Model Library 


CONOP Concept of Operations  


CPD Capability Production Document 


CRM Customer Relationships Management 


CSCI Software Configuration Item 


CSSV Combat Service Support Vehicle 


CSV Combat Support Vehicle 


CV Combat Vehicles 


DC  Design Component 


DCSCD Deputy Chief of Staff for Combat Developments 
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Symbol, 
Abbreviation, 


Acronym 
Definition 


DMI Defense Material Item 


DoD Department of Defense 


DRACAS Defect Reporting and Corrective Action System 


DT&E Development Test & Evaluation 


DTLOMS Doctrine, Training, Leader Development, Organization, Materiel and Soldier 


EMC Electromagnetic Capability 


EMD Engineering and Manufacturing Development 


EMI Electromagnetic Interference 


EVMS Earned Value Management System 


FCC Federal Communication Commission 


FIR Field Incident Report 


FRP Full Rate Production 


FSR Field Service Representative 


GPS Global Positioning System 


GUI Graphical User Interface 


HFE Human Factors Engineering 


HLA High Level Architecture 


HSI Human System Integration 


HVAC Heating, Ventilation, and Air Conditioning 


HW Hardware 


IAT&C Integration, Assembly, Test, and Checkout 


ICA Industrial Capabilities Assessment 


ICD Initial Capabilities Document 


ICT Integrated Concept Team 


IDE Integrated Development Environment 


IFV Infantry Fighting Vehicle 


IM Insensitive Munitions 
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Symbol, 
Abbreviation, 


Acronym 
Definition 


INCOSE International Council on Systems Engineering 


IPR In-Process Review 


ISR Intelligence, Surveillance, Reconnaissance 


JCIDS Joint Capabilities Integration & Development System 


JROC Joint Requirements Oversight Council 


Kph Kilometers per Hour 


KPP Key Performance Parameter 


KSA Key System Attribute 


LCC Life-Cycle Cost 


LRIP Low Rate Initial Production 


MANPRINT Manpower and Personnel Integration 


MATDEV Material developer 


MBE Model Based Engineering 


MBSE Model Based System Engineering 


MGV Manned Ground Vehicle 


MM  Master Model 


MMBF Mean Miles Between Failures 


MOE Measure of Effectiveness 


MOM Measure of Merit 


MOP Measure of Performance 


MOS Military Occupational Specialty 


MOU Measure of Usage 


MRA Manufacturing Readiness Assessment 


MRL Manufacturing Readiness Level 


MSA Materiel Solution Analysis 


MTBF Mean Time Between Failure 


MTBSA Mean Time Between System Aborts 
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Symbol, 
Abbreviation, 


Acronym 
Definition 


MTTR Mean Time to Repair 


NATO North Atlantic Treaty Organization 


NCO Non Commissioned Officer 


NRE Nonrecurring engineering 


O&O Organization and Operation 


ORD Operational Requirement(s) Document 


OT&E Operational Test & Evaluation 


PBS Product Breakdown Structure 


PLM Product Lifecycle Management 


PM Program Manager 


PMO Program Management Office 


POC Point of Contact 


QA Quality Assurance 


R&D Research and Development 


RD Requirements Design 


RFP Request for Proposal 


RoF Rate of Fire 


RPG Rocket-Propelled Grenade 


RTTC Requirements to Test Case 


SAC System Analysis & Control  


SBS System Breakdown Structure 


SD System Design 


SE Software Engineering 


SME Subject Matter Expert 


SoI System of Interest 


SVN Subversion 


SVS Surface Vehicle System 
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Symbol, 
Abbreviation, 


Acronym 
Definition 


SW Software 


TBD To be determined 


TBR To be reviewed 


TBS To be supplied 


TC Test Case 


TCA Test Case Archetype 


TD Technology Development 


TDP Technical Data Package 


TOE Tables of Organization and Equipment 


TPM Technical Performance Measure 


TRA Technology Readiness Assessments  


TRADOC Training and Doctrine Command 


TRL Technology Readiness Level 


TSM TRADOC System Management 


TTP Tactics, Techniques, and Procedures 


UGS Unmanned Ground Vehicles 


UI User Interface 


UML Unified Modeling Language 


V&V Validation & Verification 
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7.1 ARRoW System Engineering and Architecture 


7.1.1 ARRoW Systems Analysis 


This section describes the systems analysis performed in META Phase 1b that provides an 
analytical foundation for the Adaptive, Reflective, Robust Workflow (ARRoW) Integrated 
Development Environment (IDE) architecture described in section 7.1.2. Our goal was to 
develop an AIDE system architecture that supports: 


 Faster delivery of adaptable systems that are trusted, assured, reliable and interoperable 


 New processes, methods and tools to build adaptable Defense Material Items (DMIs) 


 Early Concept Engineering 


 Model-Driven Design, Model-Based Engineering, and Model Based Systems 
Engineering methodologies 


 An open, virtual, realistic environment for validation and manufacturing 


 Scalability from today‘s manually driven development tools and processes to integration 
of tomorrow‘s automation techniques, algorithms, and applications 


 An infrastructure that is tool agnostic: it does not prescribe particular tool choices, but 
provides a framework that supports heterogeneous ARRoW design implementations 


The purpose of the ARRoW Systems Analysis effort was to develop ideas to explore and 
develop for ARRoW technologies, architecture, design, and proof of concept capabilities and 
tools in the areas of: 


 Automated requirements development for a DMI 


 Automated selection of a DMI PBS 


 Automated requirements allocation to DMI PBS elements 


 Automated reduction of design space exploration  


 Automated selection of preferred design alternative(s) 


 Automated metrics for formal decisions and trade studies 


 Automated verification preparation 


 Automated reporting and recording of verification results 


The ARRoW Systems Analysis on cardinal aspects of Combat Vehicle Development 
(Requirements Analysis, System Design, Systems Analysis and Control, Verification & 
Validation) reveals examples of: 


 Product development systemic issues (e.g., poor quality requirements, lack of 


requirements templates and reuse, lack of PBS templates and reuse, lack of development 


metrics templates and reuse, lack of design concept discriminator templates and reuse)  


 Potential product development enablers (e.g., model-based work products, reuse, 


templates, patterns, archetypes, reference architectures, libraries, automation) 


The ARRoW Systems Analysis section includes: 


 AIDE brainstorming results 


 Typical requirements quality issues and corrective actions 
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 Hard vs. Soft requirements 


 ARRoW Behavioral analysis 


 Example development metrics 


 Design concept discriminator Analysis 


 META Project Product Breakdown Structure  


 Notional IFV System of Interest  


 IFV reference architecture SysML model 


7.1.1.1 ARRoW IDE (AIDE) Brainstorming Results 


A series of brainstorming meetings were held that challenged the participants with the 
following: 


“Create a Revolutionary Approach to Combat Vehicle Development” 


The full list of ideas offered in these brainstorming sessions can be found in the accompanying 
reference document whose filename is ―ARRoW IDE Brainstorming.docx‖. Many of the ideas 
in that document have influenced the analysis and architecture of ARRoW during META 
Phase 1b.  


Table 7.1-1 provides a synopsis of some of the more forward thinking items taken from 
brainstorming ideas that might influence future development. 


Table 7.1-1.  List of AIDE Brainstorm Ideas 


No. Idea 


1 AIDE continuously integrates an acquisition customer User Interface throughout 
development effort. AIDE should support continuous monitoring of customer satisfaction 
(validation). 


2 AIDE optimizes reporting to management and receiving management approval. AIDE 
supports continuous monitoring of the health of the project and the design. 


3 Develop Expert Systems for every engineering discipline/process (e.g., Safety, 
Maintainability, Configuration Management specialist, System Engineering, Reliability, 
Testability). Expert System Agents run in background to continuously assess master 
model (like a spell checker). 


4 Create models (physical and cognitive) of the user for automated trials and feedback. 


5 AIDE continuously integrates the Warfighter User Interface throughout the 
development effort: how is the Warfighter executing the mission, operating the 
equipment and making use of the system capabilities. 


6 Think of iFAB as additionally part of the early development process. AIDE facilitates 
automated prototyping of hardware, supporting early test so as to detect emergent 
behavior of hardware not accounted for in software-based models as well as continuous 
model validation. 
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No. Idea 


7 Programmable, automated test rigs are integrated with the master model. For example, 
vibration and temperature test environments can be automatically configured based on 
system requirements. 


8 AIDE will automatically generate engineering charts and diagrams so humans can 
interpret patterns. AIDE additionally has automated agents that look for these patterns. 


9 AIDE will provide a single log-on interface. Based on user roles (e.g., manager, curator, 
professional developer, crowd source, etc.), AIDE automatically configures the user 
interface to provide appropriate privileged access to data and applications (e.g., ITAR 
data, licensed applications, etc.). Within the AIDE, security needs are transparently 
managed. All models know their security levels and simulations can be run in appropriate 
environments and with appropriately authenticated/need-to-know personnel. 


10 In general, relevant information is available to the developer. All DoD data is accessible 
by appropriately cleared personnel, facilities, and organizations. All DoD programs share 
data with each other. 


11 Actual Sustainment statistics (e.g., Ai, MTTR, MTBSA, MTBF), Field Incident Reports 
(FIR), Operations & Support reports) feed into CML and AIDE elements. The AIDE 
Verification environment generates similar metrics to Sustainment statistics and will be 
able to directly compare to field maintenance and usage reports. 


12 Designers, integrators, Field Service Representatives (FSRs), and end-users have access 
to a ―Review‖ Web-site to comment on and rate products created by or used by AIDE 
(ala Amazon.com). This product rating data is associated with CML elements and is 
readily available in the AIDE to influence future designs. Designers and integrators have 
access to a ―Review‖ Web-site to comment on and rate Requirements, Uses Cases, Test 
Cases, Component Models, Archetypes, or in general any library element. This rating 
data is associated with the respective library elements and is readily available in the 
AIDE to influence future designs. AIDE interfaces with social networks (e.g., Customer 
Relationships Management [CRM]) to influence the design process. 


13 AIDE will allow the user to define an objective function and then, via automated design 
exploration and optimization, create a design that realizes that function. 


14 AIDE can roll-back to any prior point in the development (robust versioning control). 


15 AIDE maintains pedigrees of components such as: TRL and supporting evidence, history 
of demonstrations, manufacturing safety critical audits, model accreditations, etc.  


16 AIDE supports ―Read Only‖ test results. 


7.1.1.2 Typical Requirements Quality Issues and Corrective Actions 


A diverse range of quality issues can exist for requirements at the beginning and end of a 
development phase and during the transition from development to production. Typical DMI 
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programs such as one for a combat vehicle or an Infantry Fighting Vehicle (IFV) undertake 
daunting time consuming and labor intensive requirements analysis and definition tasks during 
the development phase. Requirements engineering can be an extremely complex discipline 
because of the numbers of stakeholders involved in the development process and the precious 
use of resources. Although requirements gain quality as the development phase progresses, 
some requirements do not gain significant ground in maturity. 
―Poor quality requirements are costly. Some statistics to illustrate the point:  


 50% of product defects are actually due to requirement errors  


 80% of rework is on fixing those errors  


 30% of devices ship with 50% or fewer of the originally specified features  


Gunnar Hofmann, a researcher in the requirements management area, found that ‗successful 
projects typically allocate 15 to 30% of resources to requirements management 
activities.‘‖[HOF11] 


Successful DMI development programs conduct early and often validation of requirements to 
enable building and delivering a ―right‖ quality product. Cardinal ingredients to validating 
requirements are measuring and tracking the quality of individual requirements. Table 7.1-2 
defines an example set of factors that have been used to determine the quality and issues of 
requirements. Table 7.1-3 indicates that multiple quality issues can exist for an individual 
requirement more often than not. Table 7.1-4 identifies candidate corrective actions to 
overcome requirement quality issues.  


Section 7.1.1.3 proffers a requirements maturity roll-up metric within the ―Problem Domain 
Understanding quadrant‖ on a sample Combat Vehicle Development Project Scorecard that is a 
summary compilation of requirement quality issues. Requirements maturity roll-up analysis 
and requirement quality measurement and tracking provide key project visibility mechanisms 
into requirements validation progression. 


Requirements quality measurement and tracking tools should: 


 Address requirements quality issues before the beginning of relevant design phases 


 Resolve requirement quality issues before formal decisions are made on design 


 Ensure steady progression on requirement quality and maturation 


 Early and often project visibility into requirements validation  


 Ensure that the right product is built 


Table 7.1-2 identifies an example set of requirement quality factors used to determine the 
quality issues/maturity of a requirement. 


Table 7.1-2.  Requirement Quality Factor Definitions 


Example Requirement Quality Factors  


A requirement is immature when it lacks one or more of the following quality factors. 


 Title Definition 


1 Necessity The requirement specifies an essential capability, characteristic or 
quality. Unjustified or ―nice to have‖ requirements add cost to the 
system. 
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Example Requirement Quality Factors  


A requirement is immature when it lacks one or more of the following quality factors. 


 Title Definition 


2 Conciseness The requirement states only what must be done. Explanations, 
justification and definitions go in the rationale attribute. 


3 Measurability The requirement is stated in qualitative, quantitative, or probabilistic 
terms. If stated qualitatively, it specifies the standard for comparison. 
If stated quantitatively, it specifies tolerances of quantity or a range of 
acceptability, not an absolute. If stated probabilistically, it specifies 
confidence levels. 


4 Clarity and 
Unambiguous 


The requirement is stated in terms that are specific and have only one 
interpretation. 


5 Implementation/ 


Design Freedom  


The requirement is stated in terms of what is required, not how it will 
be met, either directly or by implication. 


6 Attainability/ 
Feasibility 


The requirement can be achieved by one or more concepts within 
defined program constraints such as cost, schedule or risk. 


7 Completeness and 
Stand-alone 


The requirement needs no further amplification for understanding 
when separated from the other requirements. 


8 Consistency The requirement does not contradict the other requirements at the 
same level or any requirement above its level. Terminology is used 
the same way throughout the requirements. 


9 Verifiability The requirement is stated in quantified terms such that it can be 
verified in one or more of five methods: analysis, modeling & 
simulation, inspection, demonstration or test. However, requirements 
should not be specified as tests. The verification is put in the 
appropriate verification attributes. 


10 Singularity Each requirement is a single thought. Only one ―shall‖ per 
requirement should be used. 


11 Uniqueness The requirements do not duplicate or overlap other requirements at 
the same level. 


12 Proper Level The requirement is written for the proper level in the PBS/System 
Breakdown Structure (SBS). 


13 Positivity Each requirement is written as a positive statement rather than a 
negative one (i.e., avoid the use of ―shall not‖). 


 
Table 7.1-3 represents an example of the multitude of quality issues associated with a given 
requirement that is typically experienced during the development of a complex cyber-physical 
combat vehicle system.  


Table 7.1-3.  Example Rationale for Requirement Quality Issues 


Example Rationale for Requirement Quality Issues 


Performance 
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Unless otherwise specified, performance requirements in the following paragraphs shall be met with the 
Vehicle at maximum weight, resting on a flat, hard, level surface, and over the range of environmental 
conditions specified herein.  


 


Requirements relating to personnel shall apply to males in the 5th through 95th percentile in stature 
wearing cold weather gear. 


Quality Issue Definition Analysis 


Conciseness The requirement states only 
what must be done. 
Explanations, justification and 
definitions go in the rationale 
attribute. 


The 1
st
 requirement statement beginning with ―Unless 


otherwise specified ...‖ is not concise (e.g., a product 
performance requirement). It is a: 


 test condition for a to be determined (TBD) set of 
product requirements 


 generalization statement 


This statement is best suited for either section 4 
(Quality Assurance Provisions – e.g., the test 
requirements/approach for product requirements) of a 
specification or a Verification Plan and associated test 
procedure.  


Measurability  
 


The requirement is stated in 
qualitative, quantitative, or 
probabilistic terms. If stated 
qualitatively, it specifies the 
standard for comparison. If 
stated quantitatively, it 
specifies tolerances of 
quantity or a range of 
acceptability, not an absolute. 
If stated probabilistically, it 
specifies confidence levels. 


The 1
st
 requirement statement beginning with ―Unless 


otherwise specified ...‖ is not explicitly measureable as 
stated.  


It does not state qualitative, quantitative, or probabilistic 
terms. 


This statement needs to explicitly state the qualitative, 
quantitative, or probabilistic terms for the combinations 
of test conditions for each relevant product performance 
requirement. 


Clarity & 
Unambiguous 
 
 


The requirement is stated in 
terms that are specific and 
have only one interpretation. 


The 1
st
 requirement statement beginning with ―Unless 


otherwise specified ...‖ is not specific.  


It does not identify specific: 


 product performance requirements 


 combinations of test conditions  


This statement needs to explicitly state a finite list of 
product performance requirements and an exact 
combination of test conditions for each relevant product 
performance requirement. 


Completeness & 
Stand-alone 


The requirement needs no 
further amplification for 
understanding when 
separated from the other 
requirements. 


The 1
st
 requirement statement beginning with ―Unless 


otherwise specified ...‖ is not complete and standalone.  


It by itself means nothing unless the other product 
performance requirements are included. 


This statement needs to explicitly state a finite list of 
product performance requirements and an exact 
combination of test conditions for each relevant product 
performance requirement. 
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Example Rationale for Requirement Quality Issues 


Performance 


Unless otherwise specified, performance requirements in the following paragraphs shall be met with the 
Vehicle at maximum weight, resting on a flat, hard, level surface, and over the range of environmental 
conditions specified herein.  


 


Requirements relating to personnel shall apply to males in the 5th through 95th percentile in stature 
wearing cold weather gear. 


Quality Issue Definition Analysis 


Consistency 
 


The requirement does not 
contradict the other 
requirements at the same 
level or any requirement 
above its level. Terminology is 
used the same way 
throughout the requirements. 


The 2
nd


 requirement statement relating to Human 
System Integration (HSI)/Human Factors Engineering 
(HSE) is not consistent with requirements in the 
HSI/Human Engineering section.  


This statement needs to be deleted to eliminate 
contradiction with the HSI/Human Engineering section. 


Verifiability 
 


The requirement is stated in 
quantified terms such that it 
can be verified in one or more 
of five methods: analysis, 
modeling & simulation, 
inspection, demonstration or 
test. However, requirements 
should not be specified as 
tests. The verification is put in 
the appropriate verification 
attributes. 


The 1
st
 requirement statement beginning with ―Unless 


otherwise specified ...‖ cannot be explicitly verified as 
stated.  


Viable verification methods (analysis, modeling & 
simulation, inspection, demonstration or test) cannot be 
identified because the statement does not identify 
specific: 


 product performance requirements 


 combinations of test conditions  


This statement needs to explicitly state a finite list of 
product performance requirements and an exact 
combination of test conditions for each relevant product 
performance requirement to ascertain viable verification 
methods for each relevant product performance 
requirement. 


Uniqueness/ 


Duplication 


The requirements do not 
duplicate or overlap other 
requirements at the same 
level. 


The 2
nd


 requirement statement relating to HSI/HSE 
overlaps requirements in the HSI/Human Engineering 
section.  


This statement needs to be deleted to eliminate 
duplication with the HSI/Human Engineering section. 


 
Table 7.1-4 provides further examples of typical of requirements quality issues that need 
requirements refinement and validation. This example set of requirement quality issues 
includes potential corrective actions to improve the quality of the requirements. 


Table 7.1-4.  Examples of Requirements Quality Issues and Corrective Actions 


Typical Requirements  


Title Statement Quality Issues Corrective Actions 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


Performance Unless otherwise specified, 
performance requirements in the 
following paragraphs shall be met 
with the Vehicle at maximum 
weight, resting on a flat, hard, 
level surface, and over the range 
of environmental conditions 
specified herein. Requirements 
relating to personnel shall apply 
to males in the 5th through 95th 
percentile in stature wearing cold 
weather gear.  


 Conciseness 


 Measurability  


 Clarity & Unambiguous 


 Completeness and  
   Stand-alone 


 Consistency 


 Verifiability 


 Uniqueness/Duplication 


1) Derive and flow down 
driving design constraint 
requirements to vehicle 
and lower level product 
specifications to ensure 
respective designs can 
be used under pertinent 
operating environmental 
conditions (i.e., 
components on hard 
surface and muddy 
surface). 
2) Eliminate duplication 
and/or consistency 
issues with the ingress 
and egress requirement 
in the HSI/Human 
Engineering section. 
3) Derive and flow down 
HSI/HFE requirements to 
respective components of 
the vehicle PBS. 


Acceleration The Vehicle at maximum capacity 
weight shall accelerate from a 
standing start with the engine 
idling to 40 mph in not more than 
20 sec under nominal conditions. 
The vehicle, at curb weight, shall 
accelerate from 0 to 40 mph in 
not more than 15 sec.  


 Measurability 


 Clarity & Unambiguous 


 Completeness and 
Stand-alone 


 Verifiability 


1) Derive a vehicle 
acceleration loads (TBD 
g's) requirement to flow 
down to the Rear 
Egress/Ingress assembly 
such it retains its closed 
position while the vehicle 
is under maximum 
forward acceleration. 


Threat  


Ballistic 
Protection 


The Vehicle shall provide 
protection against 14.5 mm 
machine gun and RPG-7 threats. 


 Measurability  


 Clarity & Unambiguous 


 Completeness and 
Stand-alone 


 Verifiability 


 Uniqueness/Duplication 


1) Determine threat 
protection quantification 
factors (e.g., friend-to-
threat range, munitions 
energy level) to quantify 
the degree of threat 
protection by threat type. 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


Rear Egress/ 


Ingress 
Assembly 


The time required for the Rear 
Egress/Ingress assembly to fully 
open or close with the engine 
running shall not exceed 10 sec. 
The Rear Egress/Ingress 
Assembly lock mechanism shall 
permit single hand locking and 
unlocking.  


 Measurability 


 Clarity and 
Unambiguous 


 Implementation/ 
Design Freedom 


 Verifiability 
Proper Level 


 Positivity 


1) Develop requirements 
that are clear, 
measurable & verifiable, 
implementation free, 
stated in a positive 
manner, and at the right 
level of the PBS. 


2) Derive and flow down 
requirement to respective 
components (e.g., Rear 
Egress/Ingress 
assembly, Rear 
Egress/Ingress latch) of 
the vehicle PBS. 


Interior Lighting All interior lights, except the turret 
panel and turret drive power 
lights, shall extinguish 
automatically when either the 
Rear Egress/Ingress Assembly or 
the Rear Egress/Ingress 
Assembly door is opened.  


 Measurability 


 Clarity & Unambiguous 


 Implementation/ 
Design Freedom 


 Verifiability 


 Proper Level 


1) Develop requirement 
that is clear, measurable 
& verifiable, 
implementation free, and 
at the right level of the 
PBS. 


2) Derive and flow down 
requirement to respective 
components depending 
on architecture and 
solutions (e.g., chassis, 
Rear Egress/Ingress 
assembly) of the vehicle 
PBS. 


Driver's Switches 
& Indicators 


The Vehicle shall provide the 
following analog functions and 
indicators:  
a. Rear Egress/Ingress Up/Down 
switch and unlocked indicator 


 Clarity & Unambiguous 


 Implementation/ 
Design Freedom 


1) Develop vehicle level 
requirement that is clear 
and implementation free. 


2) Derive and flow down 
requirements (e.g., 
performance, and internal 
interfaces) to respective 
PBS components 
depending on 
architecture and solutions 
(e.g., chassis, driver 
controls, passenger 
personnel controls, Rear 
Egress/Ingress 
assembly). 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


Failure Handling After a failure is detected and 
acknowledged (if required), failure 
handling shall disable only the 
functionality affected by the 
detected failure, and the 
remaining Vehicle shall continue 
operation. The Vehicle shall be 
capable of handling occurrence of 
multiple failures by disabling the 
summation of impacted functions. 
When a failure occurrence 
impacts the Vehicle functionality, 
the Vehicle shall inform the 
personnel of the loss. The Vehicle 
shall not create conditions that 
may present an unacceptable risk 
to personnel or result in serious 
damage to equipment. The 
Vehicle shall transition to a safe 
mode as required. The Vehicle 
shall remain in a safe mode until 
crew acknowledgement is 
received from failure handling 
Pop-up. The Vehicle shall allow 
the crew to display the 
malfunction advisory list.  


 Measurability 


 Clarity & Unambiguous 


 Implementation/ 
Design Freedom 


 Completeness & 
Stand-alone 


 Verifiability 


 Proper Level 


 Positivity 


1) Develop failure 
handling requirements 
set that are clear, 
measurable & verifiable, 
implementation free, and 
at the right level of the 
PBS. 


2) Derive and flow down 
requirements to 
respective components 
depending on 
architecture and solutions 
(e.g., electronics, SW, 
user interface (UI), Rear 
Egress/Ingress 
assembly) of the vehicle 
PBS. 


Emergency 
Operation 


The Vehicle shall provide an 
emergency operation capability to 
drive the vehicle in the case of 
electronics failures. Functions 
required to support driving the 
vehicle include: 
a. Rear Egress/Ingress Assembly 
up/down  


 Measurability 


 Clarity & Unambiguous 


 Verifiability 


1) Develop vehicle level 
emergency operation 
requirements set that is 
clear, measureable & 
verifiable. 


2) Derive and flow down 
requirements to 
respective components 
depending on 
architecture and solutions 
(e.g., electronics, SW, 
user interface (UI), Rear 
Egress/Ingress 
assembly) of the vehicle 
PBS. 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


Embedded 
Diagnostics 


The Vehicle shall perform 
embedded diagnostics 
functionality sufficient to eliminate 
special diagnostic equipment.  


 Measurability 


 Clarity & Unambiguous 


 Completeness & 
Stand-alone 


 Verifiability 


1) Develop vehicle level 
embedded diagnostics 
requirements set that is 
clear, complete & stand-
alone, and measureable 
& verifiable. 


2) Derive and flow down 
requirements to 
respective components 
depending on 
architecture and solutions 
(e.g., electronics, SW, 
user interface (UI), Rear 
Egress/Ingress 
assembly) of the vehicle 
PBS. 


Climate The Vehicle shall be capable of 
operating under the conditions 
specified in AR 70-38, for the 
climatic categories hot and basic 
without a cold start aid, and 
categories cold and severe cold 
with an aid.  


 Clarity & Unambiguous 


 Completeness & 
Stand-alone 


 Singularity 


 Uniqueness 


 


Traceability Issues: 


 AR 70-38 
requirements 


1) Restate into complete 
& standalone vehicle 
level operating climatic 
environmental design 
constraint requirements 
that are clear, singular, 
and unique. 


2) Flow down the 
operating climatic 
environmental design 
constraint requirements 
to the Rear 
Egress/Ingress 
assembly. 


Missing 
Environmental 
Requirements 


Natural: Ambient Pressure, 
Temperature Shock, Solar 
Radiation, Salt Fog, Rain & Hail, 
Ice & Snow, Winds, Lightning 
(Direct & Indirect), Sand & Dust,  
Induced: Weapon/gun firing 
environmental loads: (shock, 
vibration, thermal, & blast), non-
firing thermal loads, vehicle 
movement shock and vibration 


N/A 1) Develop and/or derive 
vehicle level natural and 
induced environmental 
design constraint 
requirements. 


2) Flow down pertinent 
natural and induced 
environmental design 
constraint requirements. 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


MTBF  The MTBF was a missing 
reliability requirement. 


Candidate - The Vehicle 
Mean Time Between 
Failures (MTBF) shall be 
greater than 120 hours 
(Threshold) and 168 
hours (Objective). 
 


1) Derive a vehicle level 
reliability (MTBF) design 
constraint requirement to 
enable reliability budget 
allocations to 
components on the 
vehicle PBS. 


2) Flow down the 
allocated reliability 
budget (MTBF) 
requirement to the Rear 
Egress/Ingress 
assembly. 


General Safety The Vehicle shall ensure the 
highest degree of safety and 
health consistent with mission 
requirements throughout its life 
cycle.  


 Conciseness 


 Measurability 


 Clarity & Unambiguous 


 Attainability & 
Feasibility 


 Completeness & 
Stand-alone 


 Verifiability 


 Uniqueness 


1) Develop the complete 
& stand-alone vehicle 
level safety requirements 
set (e.g., environmental, 
material, equipment 
motion, weapon firing 
and munitions handling, 
emitter usage, software, 
failure modes, electrical, 
mechanical, explosive). 


2) Flow down the 
pertinent safety 
requirement to the Rear 
Egress/Ingress 
assembly. 


Transportability .TBP Missing other 
Transportability 
environmental 
requirements: e.g., Shock 
and vibration 
requirements associated 
with Air, Sea, & Land 
modes of transportation 


1) Develop the complete 
& stand-alone vehicle 
level transportability 
environmental 
requirements set (e.g., 
shock, vibration for air, 
sea, and land 
transportation modes). 


2) Flow down the 
pertinent transportability 
environmental 
requirement to the Rear 
Egress/Ingress 
assembly. 
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Typical Requirements  


Title Statement Quality Issues Corrective Actions 


Materials, 
Processes, and 
Parts Selection 


All materials, parts, and 
processes selected for use in the 
Vehicle construction shall be 
compatible with the safety, 
performance, and environmental 
requirements as specified herein.  


 Measurability 


 Clarity & Unambiguous 


 Attainability & 
Feasibility 


 Completeness &  
Stand-alone 


 Verifiability 


 Singularity 


1) Develop the complete 
& stand-alone vehicle 
level materials design 
constraint requirements. 


2) Flow down the 
pertinent material design 
constraint requirements 
to the Rear 
Egress/Ingress 
assembly. 


 


7.1.1.3 Hard Vs. Soft Requirements  


Timely progressive requirements maturation drives success for both project management and 
systems engineering. Requirements maturity measures the endurance or in other words the 
hardness or softness of a requirement. A ―hard‖ or long lasting requirement possesses all 
excellent quality factors, a verb form that obligates commitment to deliver, absence of 
forbidden words, a priority of importance that the product meets the requirement at delivery, 
and bi-directionally traceable to substantiated rationale, and higher level and/or lower level 
requirements. The four cardinal attributes of a requirement that can be used to determine the 
maturity of a requirement (hardness or softness) are: 


 Quality factors 


 Verb forms of ―To be‖ 


 Forbidden words and phrases 


 Prioritization 


 Bi-Directional traceability 


One or more quality factors that are less than excellent determine that a requirement is soft or 
not enduring. Refer to table 7.1-6 for quality factor attributes of a requirement. 


Verb tense and mood of the verb forms of ―To be‖ used in a requirement statement dictate 
whether a requirement is hard or soft and to the extent in which a requirement is hard or soft. 
A requirement verb form of ―To be‖ obligates a commitment that is mandatory, desirable, or 
optional.   
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Table 7.1-5 provides requirement ―To Be‖ key word definitions consistent with the 
International Council on Systems Engineering (INCOSE) Systems Engineering 
Handbook.[INC10] 
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Table 7.1-5.  Requirement "To Be" Key Words 


Requirement Verb Forms of “To Be”Error! Bookmark not defined.
2
 


No. Verb Tense 
and Mood Description 


1 Shall A mandatory requirement that originates from a stakeholder. Requirements are 
demands upon the designer or implementer and the resulting product. The verb 
―shall‖ is the imperative form of the verb ―to be‖. The verb ―shall‖ identifies 
requirements and requires verification. 


2 Should A statement that conveys a desirable requirement or capability by the customer, 
compliance is not required. The verb ―should‖ is an indefinite form of the verb ―to 
be‖. When developing specifications minimal use of the verb ―should‖ is expected. 
Use the ―Should‖ statements are not requirements. 


3 Must A customer desire, or possibly a goal, but not a requirement and does not require 
verification. If ―Shall‖ and ―Must‖ are both are used in a requirements specification, 
there is an implication of difference in degree of responsibility upon the 
implementer. 


4 May An optional requirement or a statement relating to how the mandated requirements 
can be achieved. 


5 Will A statement of intent or a statement relating to something outside the scope of the 
product to be developed, but that is relevant to the product under consideration. A 
statement containing ―will‖ can be used to identify a future happening or convey an 
item of information, explicitly not to be interpreted as a requirement. 


 


Forbidden words or phrases lead to ambiguity and determine whether a requirement is soft or 
not enduring. Table 7.1-6 provides a sample of forbidden words or phrases that is consistent 
with the International Council on Systems Engineering (INCOSE) Systems Engineering 
Handbook. [INC10] 


Table 7.1-6.  Sample Forbidden Requirement Words and Phrases 


Sample Forbidden Words and PhrasesError! Bookmark not defined.
3
 


No.  Type Examples 


1 Superlatives Supreme, excellent, fullest, least, outstanding, highest, greatest, best, most, worst, 
unparalleled, unrivalled, peerless, matchless, unsurpassed, of the highest order, 
poor, ordinary 


2 Subjective 
Language 


user friendly, easy to use, efficient, effective, cost effective, good, readable, 
seamless, visible, ideal, assist, quick, correct, practicable, consistent, necessary, 
near, clear, intended, capable 


3 Vague 
Pronouns 


he, she, this, that, they, their, who, it, its, which 
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Sample Forbidden Words and PhrasesError! Bookmark not defined.
3
 


No.  Type Examples 


4 Ambiguous 
Adverbs and 
Adjectives 


all, full, low, adequate, applicable, appropriate, almost always, better, significant, 
maximum, minimal, minimum, timely, real-time, precisely, appropriately, 
approximately, various, multiple, many, few, limited, accordingly, some, high, bad, 
rapid, easy, complete, incorrect 


5 Open-ended 
Non-


verifiable 
Terms 


provide support, but not limited to, as a minimum, sufficient, give, do, provide 


6 Comparative 
Phrases 


better than, higher quality, like, equivalent, in order to, includes but shall not be 
limited to, between 


7 Loopholes if possible, as appropriate, as applicable, however, relevant, could, possible, 
consider, must, may,  


8 Other 
Indefinites 


etc., and so on, to be determined (TBD), to be reviewed (TBR), to be supplied 
(TBS), and/or, shall not, will be required, would, is 


 


Priority assignment determines whether a requirement is soft or not enduring. Table 7.1-7 
provides examples of the priority types: 


Table 7.1-7.  Examples of Requirements Priority Assignments 


Examples of Requirement Priority Assignments 


No.  Type Examples 


1 Mandatory A requirement that is deemed to be imperatively fulfilled by the product. 


2 Desirable A requirement that is deemed to be worth being fulfilled by the product. 


3 Optional A requirement that is deemed to be electively fulfilled by the product. 


4 Regulatory 
or Legislative 


A requirement that is deemed to control or governed fulfillment by the product. 


5 Tradable A requirement that is deemed to be partially or zero fulfilled by the product. 


 


The ―bi-directional traceability‖ of a requirement determines whether a requirement is hard or 
soft. A requirement should have traceability to substantiated rationale or an analytical 
foundation, and upward or downward traceability to requirements. A low-level, detailed 
requirement without traceability to a parent requirement is potentially a requirement with no 
basis for existence (gold plating). A customer or higher-level PBS requirement that does not 
yield lower level requirements that are either derived, decomposed, or allocated are potentially 
irrelevant, unrealizable, not having been fulfilled or implemented, or not testable.   
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Table 7.1-8 provides examples of downward traceability requirements.  
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Table 7.1-8.  Examples of Requirement Bi-Directional Traceability 


Examples of Requirements Bi-Directional Traceability 


No.  Type Examples 


1 Derivation Operate vehicle => conserve fuel, fuel carrying capacity 


Vehicle dash speed (acceleration) => Power Package/Power Train power and 
torque => Engine power and torque, Power Transport (Transmission) power and 
torque 


Transportability => military lift cargo weight limits, airlift and rail lift cargo 
dimension limits  


P kill or P raid annihilation => P Detect, P Decide, P Weapon Launch, P Missile Launch, P hit 


Ao => MTBF, MMBF  


2 Decomposition Operate vehicle => Move, Maneuver, Start, Initialize, Shutdown vehicle => 
Accelerate, move on highway, move on cross country, turn vehicle, climb obstacle, 
cross gap/trench 


Engage target => Initialize weapon, calculate ballistic solution, load weapon, point 
weapon, fire weapon, return to battery 


3 Allocation Flow down of weight, reliability, environmental conditions budgets 


4 No further 
allocation or 


decomposition 


Transportability, Personnel and training, operator manuals, facilities and facility 
equipment requirements 


  


A requirement is considered to be soft when its attributes are characterized with one or more of 
the following: 


 One or more excellent quality factors are missing 


 Verb forms ―should, must, may, or will‖ are used for the verb forms of ―To be‖ 


 Forbidden words or phrases are used in the requirement statement 


 Prioritization is determined to be either desirable, optional, or tradable 


 Bi-directional traceability lacks substantiated rationale or analytical foundation, or leads 
to an orphan requirement or childless parent requirement 


7.1.1.4 ARRoW Behavioral Analysis 


This section describes the analysis performed to discover desired functional capabilities of the 
ARRoW Integrated Development Environment (IDE). An analysis of external actors was 
performed to understand the context in which ARRoW will operate as well as to identify 
automation opportunities. Textual requirements for ARRoW were written and are provided in 
this section. Use cases were developed to elaborate essential functionality of ARRoW and to 
identify an emergent logical architecture of ARRoW. 


7.1.1.4.1 ARRoW Actors 


An analysis was performed to identify actors that historically influence the design and program 
management of ground combat systems. These same actors potentially might interface, either 
directly or indirectly, with the AIDE. This section describes the actors that were identified as a 
result of this analysis. 
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In this context, ―actor‖ is defined to be an entity that represents the role of a human, an 
organization, or any external system that that participates in the use of the AIDE. Since an 
actor represents a ‗role‘, it is possible, for example, that a particular person can assume multiple 
roles, and thus can be represented by multiple actors. 


The rich breadth and depth of expertise that traditionally drives the design of combat systems 
is evidenced by the extensive, but by no means exhaustive, list of actors described herein. It 
should be noted that any attempt to reduce or eliminate the need for any of these actors, such as 
through automation techniques within the AIDE, must fill the resultant design-influence 
knowledge void by other means. Possibilities include: 


 Development of expert systems agents as surrogates for these actors 


 Development of non-traditional requirements and their attendant test cases to support 
automated verification that ―subject matter expert‖ design rules are adhered to 


 Reuse of configuration managed design components that are strictly accredited in terms 
of the specific subject matter areas represented by these actors. 


Figure 7.1-1 depicts a SysML diagram of ARRoW actors. Generalization-specialization role 
relationships are shown in this diagram using standard SysML notation whereby arrowheads 
terminate on the actor with the more general role. For example, at the top of the hierarchy in 
this diagram is the ―ARRoW User‖ actor – the most general actor depicted. Specializations of 
the ―ARRoW User‖ include the ―Acquisition Community Member‖ and ―SoI Development 
SME‖ actors. 


A non-normative convention is used in our SysML diagrams to distinguish human actors from 


nonhuman actors. Human actors are represented with a stick figure symbol, for example:  


Nonhuman actors are represented in block form, for example:  
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Figure 7.1-1.  ARRoW Actors 


Descriptions of the actors shown in Figure 7.1-1, alphabetically sorted by actor name, are 
provided in Table 7.1-9. These actors can be additionally found in the MagicDraw file 
―META_Project.mdzip‖, in the package labeled ―6.1.1 Actors‖ with the description text in the 
documentation metadata field associated with each actor element. 
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Table 7.1-9.  ARRoW Actor Descriptions 


Actor Name Description 


Analysis Archetype Developer A library content developer of any analysis archetype. 


Applied Mechanics Analyst An Applied Mechanics Analyst applies advanced modeling techniques to 
analyze fluid dynamics, multi-body dynamics, thermal dynamics, 
shock/vibration analysis, etc. Generally has advanced degree. 
Typically, engineering mechanics is used to analyze and predict the 
acceleration and deformation (both elastic and plastic) of objects under 
known forces (also called loads) or stresses. 
When treated as an area of study within a larger engineering curriculum, 
engineering mechanics can be subdivided into: 


     Statics, the study of non-moving bodies under known loads  


     Dynamics (or kinetics), the study of how forces affect moving bodies  


     Mechanics of materials or strength of materials, the study of how 
different materials deform under various types of stress  


     Deformation mechanics, the study of deformations typically in the 
elastic range  


     Fluid mechanics, the study of how fluids react to forces. Note that fluid 
mechanics can be further split into fluid statics and fluid dynamics, and is 
itself a subdiscipline of continuum mechanics. The application of fluid 
mechanics in engineering is called hydraulics.  


     Continuum mechanics is a method of applying mechanics that 
assumes that all objects are continuous. It is contrasted by discrete 
mechanics.  
 


[edit] Major topics of applied mechanics 


     Acoustics  


     Analytical mechanics  


     Computational mechanics  


     Contact mechanics  


     Continuum mechanics  


     Dynamics (mechanics)  


     Elasticity (physics)  


     Experimental mechanics  


     Fatigue (material)  


     Finite element method  


     Fluid mechanics  


     Fracture mechanics  


     Mechanics of materials  


     Mechanics of structures  


     Rotordynamics  


     Solid mechanics  


     Soil mechanics  


     Stress waves  


     Viscoelasticity 


ARL Vulnerability Analyst ARL = Army Research Lab 
 
A Vulnerability Analyst will analyze and review integrated solutions of 
armor, spall liners, component placement, and hull design to assess force 



http://en.wikipedia.org/wiki/Elastic_Deformation

http://en.wikipedia.org/wiki/Plastic_Deformation

http://en.wikipedia.org/wiki/Stress_(physics)
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protection/ mission effectiveness characteristics of a system. 
 
Analyses could include: 


 Shotline Analysis 


 Ballistic Impact Analysis 


 Fragmentation Impact Analysis 


 Shape Charge Impact Analysis 


 Sympathetic Detonation Analysis 


 Mine Blast Analysis 
 
The ARL reviews combat systems’ vulnerabilities. A system that fails 
such a review may not be allowed to be fielded. 


AIDE Developer Developer of the AIDE product. Analyzes capabilities of, architects, 
designs, integrates, verifies, and deploys the AIDE.  


ARRoW Power User An ARRoW user who has advanced knowledge and skills related to use 
and configuration of the ARRoW toolset/environment. 


ARRoW Tool Developer An ARRoW Developer who specifically develops a tool that integrates 
into the AIDE. 


ARRoW User An ARRoW User is a general role for any human that uses the AIDE. 


Battle Lab Representative A member of a battle lab group who might compose a model of a real or 
notional system for evaluation in an operational scenario. The model 
might be constructive, virtual, or live. 


Circuit Designer An engineer who designs electrical circuits. 


CML Curator This role is charged with maintaining the integrity of the CML. 


Combat Arms User End user that includes representatives from: 


 Infantry 


 Armor 


 Field Artillery 


 Air Defense Artillery 


 Aviation 


 Special Forces 


 Corps of Engineers 


Combat Service Support User End user that includes representatives from: 


 Adjutant General Corps 


 Finance Corps 


 Transportation Corps 


 Ordnance Corps 


 Quartermaster Corps 


Combat Support User End user that includes representatives from: 


 Signal Corps 


 Military Police Corps 


 Military Intelligence Corps 


 Civil Affairs 


 Chemical Corps 


Command & Control Expert Expert who understands battle command software, command and control 
messaging, and in general any interface to external command and control 
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centers of operation. 


Communications Engineer Engineer who designs and analyzes wireless communications equipment 
and systems. 


Component Developer Develops components for inclusion in the CML. Adds/modifies 
components to Component Model Libraries pursuant to library curator 
polices/procedures. 
 
Components may or may not be initially developed within the AIDE. 


Computer Architect Develops architectures for computer processing systems including 
networked processing systems. 


Context Model Developer Creates models of external environments and systems that might 
interface with the system of interest. 


Controls Engineer An engineer who develops control hardware, software and algorithms for 
control systems. Examples include electrical motor servo control, thermal 
management control, and hydraulic systems control. 


Design Archetype Developer A library content developer of any design archetype or design reference 
architecture. 


Design Integration Engineer An design integration engineer manages the physical integration, 
including assigned location, of all components within the SoI. 


Domain Engineer A general role for a classical engineering discipline such as a mechanical 
or electrical engineer. 


Domain Tool Developer Developer of a Domain Tool. Refer Domain Tools. 


Domain Tools Tools, such as ProE, that are used by domain specific engineers to 
design the system of interest or its components. 


Electrical Power Engineer An electrical engineer who architects and designs power generation, 
distribution, and control systems and components. 


EMI / EMC Expert EMI = Electromagnetic Interference 
EMC = Electromagnetic Compatibility 
An expert, generally with an electrical engineering background, who 
understands the effects of electromagnetic coupling between 
components and systems and who is able apply design principles to 
minimize adverse effects of such phenomena. 


FCC Representative FCC = Federal Communications Commission 
 
Expert who would validate that intentional radiated emissions are 
permissible within the USA. 


Full Spectrum Simulator A Full Spectrum Simulator is BAE Systems' concept of an external 
wargaming environment that could request the AIDE to construct a virtual 
prototype of a specified SoI and/or serve up its simulation, for example, 
via an HLA federation. 
 
Full spectrum operations range from stable peace operations to major 
combat operations. Full Spectrum Operations includes variant sets of 
tasks required to conduct offensive, defensive, stability, and civil support 
operations. 
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Government Needs Website This is a notional website that the government acquisition community 
would use to publish any form of request for contributions from the crowd. 
Such a website might publish challenge problems, requests from the 
cloud for design concepts, formal Requests for Proposals, detailed 
System Requirements Specifications, etc. The form of any such request 
might be standardized such that the AIDE can link a master model to a 
government needs interest or request. 
 
Such a website might be used by unsophisticated individuals as well as 
major defense contractors. 


Human Factors Engineer An engineer who architects, designs, and analyzes the ergonomics of 
systems and components as well as the predicted performance of 
humans using the system. 


HVAC Expert HVAC = Heating, Ventilation, and Air Conditioning 
 
An HVAC expert additionally designs Chemical, Biological, and Nuclear 
particle filtration and overpressure systems. 


IAT&C Engineer IAT&C = Integration, Assembly, Test, and Checkout 


iFab The output of the ARROW toolset is a "blueprint" which is then sent to an 
iFab tool for virtual manufacturing.  


Information Assurance 
Engineer 


An expert in the field of cyber security. 


Innovation-Driven SOI 
Developer 


A member who executes clockwise thinking, i.e., creates ideas without 
being constrained by knowledge, explores the ideas, challenges the 
ideas, and discovers problems that can be solved with the ideas. 
 
Could be a Grad Student, for example. This person may have a technical 
background, but might also be an artist or a science fiction writer. 


ISR Engineer ISR = Intelligence, Surveillance, Reconnaissance 
 
An ISR Expert specifies and/or designs sensors, cameras, and sensor 
data processing and data distribution equipment. 


Knowledge-Driven SOI 
Developer 


A member who executes counterclockwise thinking, i.e., uses 
assumptions facts, and beliefs to establish knowledge, develops solutions 
based on knowledge, validates solutions to the knowledge, and applies 
solutions to the problems at hand. 


Library Content Developer A library content developer works on products that are meant to be 
applied across a multiplicity of future potential systems of interest, 
whereas a SoI developer is concentrating on solutions that are targeted 
to a specific design solution. 


Library Curator A library curator administers and manages the integrity of the library that 
they are responsible for. A curator controls the quality of the entities 
within the library, the certification of the trustworthiness and integrity of 
the collection content, ensures library services are maintained, are 
functional, and perform adequately, manages configuration of the library, 
and controls the security of and access to the library. 


Library Developer A Library Developer develops the infrastructure and services that are 
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associated with the library. 


Logistics Engineer A Logistics Engineer is a SoI Development Subject Matter Expert (SME) 
focused on the scientific organization of the purchase, transport, storage, 
distribution, and warehousing of materials and finished goods of the 
system of Interest. 


Maintainability Engineer A Maintainability Engineer is a SoI Development SME focused on the 
ease in which a product can be maintained (preventative and corrective 
maintenance) in order to minimize the downtime of the System of interest 
(SoI). Thus increasing the operational availability (Ao) of a SoI. 
 
Maintainability– The ease with which a SoI to be retained in, or restored 
to, a specified condition when maintenance is performed by personnel 
having specified skills using prescribed procedures and resources at 
each prescribed level of maintenance and repair. 
 
Maintainability engineering aides in maximizing SoI uptime and 
operational availability (Ao) by providing design influence and analysis in 
the following cardinal product life cycle considerations: 


 isolate defects or their cause  


 correct defects or their cause  


 meet new requirements  


 make future maintenance easier 


 cope with a changed environment 
 
In some cases, maintainability involves a system of continuous 
improvement - learning from the past in order to improve the ability to 
maintain systems, or improve reliability of systems based on 
maintenance experience. 
 
The maintainability engineering effort in the conception and design phase 
is critical to ensure that high system availability is obtained at optimum 
Life Cycle Support Cost. 
 
 Maintainability engineering effectively influences the System of Interest's 
availability calculation by minimizing downtime: the time required to bring 
a failed system back to its operational state or capability. This down time 
is normally attributed to maintenance activities. This minimized downtime 
does not happen at random, it is made to happen by actively ensuring 
that full consideration is given during the conceptual and design phase. 
Therefore the inherent maintainability characteristics of a system must be 
assured. This can be achieved by the implementation of specific design 
practices and validated through a maintainability assessment process, 
utilizing both analyses and testing. The following are cardinal 
maintainability engineering assurance activities: 


 Maintainability Programs  


 Maintainability Assessment  


 Maintainability Modeling  


 Maintainability Demonstration  


 Design for Maintainability  


 Defect Reporting and Corrective Action System (DRACAS) 


Malicious User This is any user of the AIDE that has malicious intent. Such a user may 
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be an amateur or a member of a sophisticated organization, including 
foreign governments.  
 
A malicious user might create content that has intentional side effects 
that may be difficult to detect but could make its way into deployed 
systems. 
 
Additionally, a malicious user might disrupt ARRoW services such as by 
employing denial of service. Such an attack could be in the form of 
overloading web servers or by provoking non-useful simulations that 
consume server processing bandwidth. 


Mechanical Engineer Mechanical engineering is a discipline of engineering that applies the 
principles of physics and materials science for analysis, design, 
manufacturing, and maintenance of mechanical systems. It is the branch 
of engineering that involves the production and usage of heat and 
mechanical power for the design, production, and operation of machines 
and tools. 


Mobility Expert A mechanical engineer who specializes in vehicle power train, steering, 
and/or suspension systems. 


Modeling & Simulation 
Engineer 


A software engineer who specializes in the design of modeling systems 
used for simulating the behavior of physical or cyber designs in the 
context of various external environments. 


NATO Representative Any NATO representative that would be interested in the SoI design, 
capability, or its modeled behavior. 


Navigation Systems Expert An engineer who specializes in the capability of and integration of 
navigation equipment such as Global Positioning System (GPS) and 
inertial navigation systems.  


Networking Architect An electrical or software engineer who specializes in the design and 
analysis of local area or wide area data networks. 


Operating Environment Expert A software engineer who specializes in the design and integration of 
operating systems, hypervisors, middleware, etc. 


Operational Commander Actual strategic user of the system. Stakeholder based on operational 
capabilities and Deep Green level use cases. 


OT&E Representative OT&E = Operational Test & Evaluation 


PMO Member PMO = Program Management Office 
 
This member can be of any Program Management Office that supports 
the acquisition of materiel for the U.S. Government. 


Process Monitor Quality assurance role, making sure the vehicle is designed and built 
correctly with respect to DoD processes and guidelines. 


Producibility Engineer An engineer who can influence the design to ensure it can be 
manufactured most easily and cost effectively. 


Program Manager The lead manager of the government acquisition organization directly 
responsible for the proper execution of the program (cost, schedule, and 
performance) that develops the system of interest.  


Program Office The government acquisition organization that is ultimately responsible for 
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the proper execution of the program that develops the system of interest. 
A program office might manage multiple programs, each with its own 
Program Manager. 


R&D Center Representative R&D = Research & Development 
 
Government funded R&D centers that undertake creative work on a 
systematic basis in order to maintain and/or increase the stock of 
knowledge in the interest of the United States of America, or for the 
betterment of mankind, culture and society. 
Research and development is often scientific and focused towards 
developing particular technologies, and devising new applications based 
on the stock of knowledge and technologies. 


Regulatory Authority This includes any agency or organization representative that may need to 
review and/or analyze and approve the SoI design and the context in 
which the design may be used and is fielded. 


Reliability Engineer A Reliability Engineer is a SoI Development SME focused on the study, 
evaluation, and life-cycle management of reliability of the System of 
Interest (SoI): the ability of a system or component to perform its required 
functions under stated conditions for a specified period of time. 
 
Basic Reliability - The duration or probability that a SoI will perform 
satisfactorily (failure-free performance) for a given time when used under 
specified operating conditions. As a general definition, reliability is the 
capacity of parts, components, equipment, products and systems to 
perform their required functions for desired periods of time without failure, 
in specified environments and with a desired confidence. There are two 
specialized types of reliability: Logics Reliability and Mission Reliability. 
 
Logistics Reliability – The ability of a SoI to perform failure free, under 
specified operating conditions and time without demand on the support 
system, measured as a mean time between maintenance actions. 
Logistics reliability is a measure of a system's ability to operate without 
logistics support. All failures, whether the mission is or can be completed, 
are counted. 
 
Mission Reliability – The probability that the SoI is operable and capable 
of performing its required function for a stated mission duration or for a 
specified time into a mission. 
 
Reliability engineering and maintainability engineering are inter-
dependent. 
 
Reliability engineering discipline concerned with predicting, monitoring, 
testing, and improving the reliability of a system, device, or process. 
 
Reliability engineering for complex systems require a different more 
elaborated systems approach than reliability for simple systems/parts. 
Reliability engineering is closely related to system Safety engineering in 
the sense that they both use common methods for their analysis and 
require input from each other. Reliability engineers should have broad 
skills and knowledge. Reliability engineering has important links with 
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Functional design, Hardware Design, Software, Manufacturing, 
Transport, Handling, Storage, Spare parts, Operational issues, Human 
Operators and maintainers, Repair shops, Software, Manuals, Training 
and more. 


Requirement Archetype 
Developer 


Develops requirement archetypes for inclusion in the CML or other 
libraries. 


Safety / Environmental 
Engineer 


An engineer who analyzes and influences designs in terms of safety and 
environmental impact. 


Safety Board Representative Example: Weapon Systems Explosive Safety Review Board. 


Software Architect The main responsibilities of a software architect include: 


 Limiting choices available during development by: 
- choosing a standard way of pursuing application 


development 
- creating, defining, or choosing an application framework for 


the application 


 Recognizing potential reuse in the organization or in the 
application by: 
- Observing and understanding the broader system 


environment 
- Creating the component design 
- Having knowledge of other applications in the organization 


Software architects can also: 


 Subdivide a complex application, during the design phase, into 
smaller, more manageable pieces 


 Grasp the functions of each component within the application  


 Understand the interactions and dependencies among 
components 


 Communicate these concepts to developers 
In order to perform these responsibilities effectively, software architects 
often use Unified Modeling Language and OOP. UML has become an 
important tool for software architects to use in communicating the overall 
system design to developers and other team members, comparable to 
the drawings made by building architects. 


Software Engineer  Software Engineering (SE) is a profession dedicated to designing, 
implementing, and modifying software so that it is of high quality, 
affordable, maintainable, and fast to build. It is a systematic approach to 
the analysis, design, assessment, implementation, test, maintenance and 
reengineering of software, that is, the application of engineering to 
software. 


SoI Analyst A System of Interest (SoI) developer who uses the AIDE to analyze the 
design or performance of the SoI. 


SoI Acquisition Community 
Member 


General role for any member of the government acquisition community. 


SoI Developer SoI = System of Interest 
 
A library content developer works on products that are meant to be 
applied across a multiplicity of future potential systems of interest, 
whereas a SoI developer is concentrating on solutions that are targeted 
to a specific design solution. 
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SoI Developer - Designer A System of Interest (SoI) developer who uses the AIDE design a new 
SoI or any of its components. 


SoI Developer - Reference 
Architecture 


A System of Interest (SoI) developer who uses the AIDE design a new 
design archetype or reference architecture. 


SoI Developer - Test Case Coordinates with Requirements developer to create ARRoW-compatible 
test cases and test case archetypes. 


SoI Developer - Test Result 
Analyzer 


A System of Interest (SoI) developer who uses the AIDE design a new 
test result analyzer. 


SoI Developer - Verifier This is the person who reviews the test results reported by ARRoW for 
the purpose of disposition. 


SoI Developer -Requirements Performs requirements analysis, writes requirements and requirements 
archetypes, derives/decomposes and allocates requirements and 
requirements archetypes. Assigns test method to each requirement 
created. 


SoI Development SME SME = Subject Matter Expert 
 
A SoI SME is someone who has some specialized expertise in a field, the 
application of which could potentially influence the design of the SoI. 


SoI End User Actual strategic user of the fielded system of interest, including any 
personnel involved in its needed support services.  


Specialty Engineer Specialty Engineering is a general class of engineering disciplines that 
include Reliability, Maintainability, Logistics, Human Factors, Testability, 
Producibility, Safety, and Environmental engineering. 


Survivability Expert A Survivability Expert can analyze and design integrated solutions of 
armor, spall liners, component placement, and hull design to optimize 
force protection/mission effectiveness characteristics of a system. 


SW Integration Expert A software engineer who specializes in the integration and test of 
software systems. 


Systems Engineer A SE is a specialized domain engineer who applies an engineering 
discipline to a SoI that concentrates on the design and application of the 
whole (system) as distinct from the parts. The SE looks at a problem in its 
entirety, taking into account all the facets and all the variables and 
relating the social to the technical aspect. A SE integrates multiple 
disciplines and specialty groups into a set of activities that proceed from 
concept to production to operation. 
 
A SE applies an interdisciplinary approach and means to enable the 
realization of a successful SoI. The SE focuses on defining customer 
needs and required functionality early in the development cycle, 
documenting requirements, and then proceeding with design synthesis 
and system validation while considering the complete problem: 
operations, cost and schedule, performance, training and support, test, 
manufacturing, and disposal. The SE also considers both the business 
and the technical needs of all customers with the goal of providing a 
quality SoI that meets the user needs. 


Test Case Archetype 
Developer 


Develops test case archetypes for inclusion in the CML or other libraries. 
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Test Range/Facility 
Representative 


Test ranges and test facilities have severe constraints on SoI design and 
operation limits. Test articles sent to these facilities may need special 
configurations to conform to these constraints and may need to be 
independently verified that they conform to these constraints before the 
article can be used on the range/facility. 
 
Notes: 
- A Safety Assessment Report (SAR) is generally required to be delivered 
to this representative. 
- A Safety Fan Declaration is typically provided for ballistic or flyable 
rounds that declares the worst case maximum flight envelop through 
which the round will pass under any normal or failure mode condition. 


Testability Engineer A Testability Engineer is a SoI Development SME focused 
 
Testability - A design characteristic which allows the status (operable, 
inoperable, or degraded) of an item to be determined and the isolation of 
faults within the item to be performed in a timely manner (MIL-STD-
2165). A design characteristic that allows its operational status to be 
determined and the isolation of faults to be performed efficiently (IEEE 
Std 1522). 
 
Testability Analysis – The engineering practice associated with evaluating 
the testability of a system, device, or process. 


TRA Archetype Developer Develops test result analyzer archetypes for inclusion in the CML or other 
libraries. 


TRADOC Member TRADOC = Training and Doctrine Command 


Training and Doctrine 
Developer 


A Training and Doctrine Developer creates Tactics, Techniques, and 
Procedures (TTPs) that include use of materiel solutions, including the 
SoI. 


Training Engineer An engineer who specializes in the content development of embedded 
and non-embedded training materials. 


TSM Representative (1 of 4) TSM = TRADOC System Management 
 
The CG, TRADOC will establish a TSM office to provide intensive 
management beyond the scope of normal management resources 
available to the proponent for: 
 
(1) A materiel system, a family of materiel, or a group of closely 
related/interdependent materiel systems that are being developed. 
 
(2) Non-system training devices or training systems. 
 
b. TRADOC System Managers will normally be considered for 
establishment between Milestones A and B, at the end of Materiel 
Solution Analysis, or when a concept is approved. Programs must meet 
the following criteria for establishment of a TSM: 
 
(1) Program must be an ACAT I, ACAT II, or other high-priority materiel 
system as determined by CG, TRADOC. 
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(2) Must be a program manager/program executive officer managed 
program. 
 
(3) Workload must be such that the program cannot be managed within 
the resources and structure available to the proponent. 
 
(4) Workload or uniqueness of the program must be such that an existing 
TSM cannot assume the program. Intent of this regulation is not to 
preclude combining of individual system responsibilities in one TSM. 


 


TSM Representative (2 of 4) (5) Program must be higher priority or have greater need for a TSM than 
existing TSM managed programs. Charter revisions through DCSCD 
whenever they perceive that a need exists. TSM duties and 
responsibilities. TRADOC System Managers will: 
 
a. Serve as the TRADOC user representative and single Point of Contact 
for systems assigned in accordance with the TSM charter.  
 
b. Provide intensive, centralized, total system management and 
integration of all DTLOMS considerations. 
 
(1) Doctrine. Coordinate the development of doctrine and tactics, 
techniques and procedures from individual to collective, tracing back to 
the operational and organizational concept. 
 
(2) Training. Coordinate development of home station and institutional 
training for individual, crew and unit. Coordinate development and fielding 
of training aids, devices (system and non-system), simulations and 
simulators for use in training in the institution, home station, and Combat 
Training Centers. 
 
(3) Leader Development. Coordinate development of leader (NCO and 
Officer) training and development. 
 
(4) Organization. Coordinate development of basis of issue plans for 
assigned systems and associated ancillary equipment, including all 
aspects of logistical support. Coordinate development of force design 
updates and Tables of Organization and Equipment (TOEs) related to 
assigned systems. 
 
(5) Materiel. Coordinate TRADOC position on system reviews, ensure 
requirement documents are updated as needed, ensure DTLOMS and 
the logistics support system are in place for system testing and first unit 
equipped, and plan for system product improvements and 
recapitalization. 
 
(6) Soldier. Identify and reconcile all Manpower and Personnel Integration 
(MANPRINT) issues, including safety. Coordinate development of new 
military occupational specialty (MOS) and appropriate career progression 
as needed. 
 
c. Monitor and synchronize all aspects of total system development, 
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testing and evaluation, corrective actions, acquisition, materiel release, 
and fielding, to include direct interaction with the program/project/product 
managers (PMs) and materiel developers (MATDEVs) of the primary and 
ancillary system(s), test community, and the fielding/gaining commands. 


TSM Representative (3 of 4) d. Using an Integrated Concept Team (ICT) with empowered membership 
from schools and MATDEVs, coordinate the development and 
documentation of all related materials, as needed: 
 
e. In coordination with the proponent Directorate of Combat 
Developments propose refinement of system requirements in the ORD. 
Justify or validate system requirements at all levels of the Army, 
Department of Defense (DoD), and Congress, as directed. 
 
f. Participate in MATDEV system concept analyses and cost performance 
trade-off and cost as an independent variable analyses by providing 
detailed warfighting capability impact of specific system characteristics. 
Provide TRADOC senior leadership recommendation for all design 
reviews. 
 
g. Prepare TRADOC position on, receive TRADOC leadership approval, 
and participate in decision reviews (In Progress Review (IPR)/Army 
Systems Acquisition Review Council/Army Requirements Oversight 
Council (AROC)/Joint Requirements Oversight Council (JROC)/Defense 
Acquisition Board) for assigned systems. Provide user input for 
documentation of these reviews, such as Acquisition Program Baseline. 
Act as user representative on any other acquisition reviews/boards for 
assigned systems. 
 
h. As a part of unit set fielding, support total package fielding by 
managing a coordinated schedule of work for TRADOC schools and 
activities in support of system development and initial fielding.  
 
i. Identify and prioritize system hardware and software deficiencies to the 
MATDEV for corrective action. Review and evaluate proposed actions 
and engineering change proposals of the project or program manager to 
ensure that user requirements are adequately addressed. 
 
j. Provide for system improvements (Preplanned Product Improvements, 
System Enhancement Program, Service Life Extension Program, 
recapitalization efforts, etc.) in coordination with the proponent. This is 
accomplished through the identification of Science and Technology, 
Science and Technology Objectives, Advanced Technology 
Demonstrations, Advanced Concept Technology Demonstrations, and 
Concept Experimentation Programs for systems assigned to the TSM. 
 
k. Ensure test units are trained and prepared for testing. Coordinate all 
user involvement in system testing (for example, scenario development, 
test support, unit training, and user subject matter expertise). Monitor 
technical and user test activities for assigned systems to keep TRADOC 
leadership informed of system progress and to initiate corrective action 
for user unit or test personnel/activities as needed. 


TSM Representative (4 of 4) l. Crosswalk and reconcile O & O concept to ORD characteristics to the 
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Request for Proposal (RFP) materiel specifications, ensuring the 
acquisition strategy meets user needs.  
 
m. Articulate system operational and organizational concepts associated 
with their system as a member of combined arms system of systems and 
joint environments. 
 
n. Provide user coordination to manpower estimates. 
 
o. Provide use representation in analysis of alternatives (AoAs), and 
other studies, evaluations, and efforts supporting the development 
programs. 
 
p. Provide TRADOC representation to allied/prospective users of the 
assigned systems. 


Use Case Creator Creates the operational use cases and test cases that derive from them. 
Maintains and controls access to the tests. 


User Interface Expert An expert in the design and architecting of software and hardware 
interfaces with the user, including Graphical User Interfaces (GUIs). 


War Fighter Front line user of the system. Stakeholder concerns are about how it 
operates.  


Weapons Expert A subject matter expert in the field of combat systems armament. 


7.1.1.4.2 ARRoW Requirements 


During the development of the ARRoW use cases and the ARRoW architecture, a few 
behavioral requirements emerged that were most expediently captured as text requirements. 
Although the list of these textual requirements is quite brief, it is provided in Table 7.1-10 or 
the purpose of completeness of this report. These requirements can be additionally found in the 
MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.1.3 Requirements‖. 


Table 7.1-10.  ARRoW Requirements 


ID Name Requirement Text 


3 Requirements  {Header} 


3.1 Functional Requirements  {Header} 


3.1.1 SoI Test Requirements  {Header} 


3.1.1.1 Estimate Execution 
Duration 


ARRoW shall provide an estimate of Test Case execution duration 
prior to initiation of the test. This duration may be normalized to a 
benchmark standard. 


3.1.1.2 Configure the Test 
Environment for the UUT 


ARRoW shall configure the test environment for design-under-test. 
 
Rationale: The test environment includes all of the test support 
environment assets required to execute the test. 
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ID Name Requirement Text 


3.1.1.3 Record Test Result ARRoW shall record the test results. 


3.1.1.4 Check Missing Rqmt 
Dependency 


ARRoW shall check that each requirement dependency in a 
requirement archetype is mapped to an actual SoI requirement. 


3.1.1.5 Record Test Failure 
Cause 


ARRoW shall record the cause of failure when a test fails. 


3.1.1.6 Test Failure Guidance ARRoW shall compare historical test failure causes to the current 
design and shall notify the user if design discrepancies exist in this 
regard. 


3.1.1.7 Recommend Order of 
Test Case Execution 


ARRoW shall recommend the execution order when multiple test 
cases are run in a shared simulation. 


3.1.1.8 Utility Curves ARRoW shall support utility curve association with requirements 
and verification. 
 
Rationale: as in Quality Functional Deployment, there can be 
degrees of requirement compliance other than just Pass/Fail. This 
requirement is intended to support this capability. 


3.1.1.9 Report Test Result ARRoW shall report test results such that both required results and 
actual results are depicted. 


3.1.1.10 Configure Unit For test ARRoW shall configure the design-under-test for testing. 


3.1.2 SoI Design Requirements {Header} 


3.2 ARRoW Interface 
Requirements 


{Header} 


3.3 ARRoW Design 
Constraints 


{Header} 


 


7.1.1.4.3 ARRoW Use Cases  


The main thrust of the AIDE use case analysis for this phase of the META project was to 
explore how requirements imposed on a System-of-Interest (SoI) will flow to test cases that in 
turn can be executed to verify that the SoI satisfies those requirements. This is sometimes 
referred to as the ―Requirements to Test Case (RTTC) flow problem‖. 


The SysML use case artifacts described in this section can be additionally found in the 
MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.1.4 Use Cases‖. 


Figure 7.1-2 provides a top level overview of the relationships between the generalized 
ARRoW actors, the top level use cases that they interact with, and the SysML packages in 
which these use cases are contained. 


The initial set of top level use case categories include: 


 Acquiring System of Interest (SOI) Designs 
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 Developing & Delivering SOI Designs  


 Developing & Supporting the AIDE 


 Protecting Against Malicious Acts 
 


The ―Acquiring SOI Designs‖ use case category includes lower level use cases for SOI 
capability analysis and capability gap analysis, and enabling interaction with government 
needs. The ―Developing & Delivering SOI‖ use case category involves use cases to assist the 
developer of the SOI in requirements analysis, design, design analysis, verification-testing, and 
transition of design to production. The ―Developing & Supporting the AIDE‖ use case category 
includes the generation of library content, curating the library, and developing the AIDE. The 
―Protect Against Malicious‖ use case category includes active and passive measures to protect 
the AIDE, and its data and users. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement. 


 


Figure 7.1-2.  AIDE Top Level UCs-Actors 


 


Figure 7.1-3 is a SysML diagram that shows the beginning organization of a use case analysis 
to explore the RTTC flow problem. The use cases associated with this AIDE functionality are 
contained in the package labeled ―Rqmt & TC UCs‖. As a ‗housekeeping‘ technique, a ―ToDo‖ 
package is nested within the ―Rqmt & TC UCs‖ package, and contains those use cases that have 
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been identified but have not yet had internal textual content created for them. The use case 
labeled ―Requirement to Test Case Flow‖ was used as the driving use case for the development 
of the ARRoW architecture supporting the ARRoW RTTC flow process. The text for this use 
case is provided in Figure 7.1-4. 


 


 


Figure 7.1-3.  Rqmts & TC Use Cases 
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Figure 7.1-4.  RTTC Flow Use Case 


  


Requirements to Test Case Flow Use Case 


Author  


John Bangs, Steve Schmitt 


 


Date  


7/12/2011  


 


Description  


This use case explores the steps involved in creating a test case that can verify a given SoI requirement.  


 


Preconditions  


All levels of requirement specifications related to the SoI have been created.  


 


Stimuli  


 


Main Flow  


1. Import the set of rqmts (a specification) into ARRoW. This entails recording the text of the rqmts into the ARRoW 


environment.  


2. For each requirement:  


2.1. Peruse a library of existing rqmt archetypes (RAs) and find an applicable RA.  


2.2. Create a copy of the RA and place it in the master model.  


2.3. Associate the SoI rqmt with the RA (e.g., using a Wizard). TBR: this step may also allow for modification of the 


RA's template expression  


2.4. Modify and/or add to the default RA-to-design entity allocation relationships (e.g., using a Wizard).  


2.5. Optionally add and define a utility function.  


2.6. For each RA referenced in the Requirement Archetype Dependency List:  


2.6.1 Execute steps 2.2 through 2.6.1 using the appropriate constraint requirements in the SoI specs. TBR: 


Probably need to account for multiple grades of utility function sensitivity that flows from requirement to 


specific test case.  


3. For each RA:  


3.1. Create a copy of its associated Test Case Archetype (TCA) and place it in the master model.  


4. For each TCA:  


4.1. Modify the TCA to make it an executable Test Case (TC) (e.g., using a Wizard). Note: since step 2.4 previously 


allocated the RA to the design entity, and since this TC's parent TCA has a one-to-one association with that RA, 


then this TC is allocated to the design entity.  


4.2. Create a Test Result Analyzer (TRA) that compares the test results to the associated SoI requirement. Note: could 


be built automatically in some cases.  


5. For each TC:  


5.1. Create a component model (CM).  


5.2. Associate the CM and TC into a TC-CM Pair.  


5.3. Associate the TC-CM Pair with the appropriate DUT.  


 


Postconditions  


A test case and component model have been created and associated with a DUT. The TC and CM are derived from the 


associated SoI requirement.  


 


--------------------------------------------  


 


Alternate Flow  


<Rqmt Archetype Not Found>  


2.1. Requirement Archetype was not found, so execute Create Requirement Archetype UC  
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In addition to the RTTC flow analysis, an initial analysis was performed to identify use cases 
that could apply to ARRoW functionality not directly related to the RTTC flow problem. 
Inputs were solicited from subject matter experts within the ARRoW tool design community.  
Figure 7.1-5 shows the use cases and actors identified in this analysis. 


 


Figure 7.1-5.  Design UCs 


 


7.1.1.5 Example Development Metrics 


Program personnel typically use a variety of metrics charts (e.g., scorecard, line, scatter plot, 
control, bar, pie, histograms, area, bubble, radar, etc.) to execute a combat vehicle development 
project and transition into a combat vehicle production project. Figure 7.1-6 illustrates an 
example project metrics scorecard. Project metrics scorecards or dashboards communicate 
overall project status on a wide range of indicators, and aide in information briefings, and 
managing by exception. Figure 7.1-7 illustrates an example individual metric template chart. 
Individual metrics charts communicate details on plans, progress, trends, impacts, and aide in 
developing a thorough understanding and decision making. Development metrics can also 
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serve double duty or be leveraged as aids to project formal decisions, trade studies, and pivotal 
phase transitions such as production and deployment of combat vehicles.  


Example Project Metrics Scorecard 


Project leaders configure project scorecards to provide roll ups or summaries of lower level 
metrics charts to meet the needs of the project forum and/or communication plan. Figure 7.1-6 
illustrates an example of a project metrics scorecard for a notional IFV covering a range of 
typical program and project metrics for: 


 Cost and system effectiveness  


 Joint Capabilities Integration & Development System (JCIDS) capabilities-based 
assessments and gap analysis 


 Design maturity and health 


 Problem domain understanding 


 Project health 
 


 


Figure 7.1-6.  Example Project Scorecard for a Notional IFV 
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Example Individual Metric Template Chart 


Figure 7.1-7 illustrates a typical individual metric line-control chart template used as a Systems 
Analysis & Control tool by program management to monitor a technical performance 
measurement (TPM) within project design maturity & health metrics. TPMs are created for 
the purpose of tracking design progress for key requirement and supporting management 
decision-making. A line-control metrics chart provides project leadership with the following 
design maturity & health knowledge enablers within the System Analysis & Control process: 


 Performance tracking 


 Planned performance, risk reduction, or opportunity exploitations 


 Threshold triggers 


 Trend indications 


Individual metrics chart templates can be used to: 


 Project probable performance over time 


 Provide indications of design progress by recording actual performance observed  


 Assist decision making by comparing actual versus projected performance 


 Provide early warning of technical problems 


 Support trend analysis and assessments as to whether operational requirements will be 
met 


 Support impact analysis of proposed changes to system performance  
This individual metrics chart template can be used for Design Maturity & Health Metrics (e.g., 
all TPMs – weight, physical dimensions, transportability, start-up times, energy conservation, 
movement speeds, reliability, etc.  
 


 


Figure 7.1-7.  Example Individual Metric Template Chart 
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Project Formal Decision/Trade Study Criteria and Measures 


Table 7.1-11 provides an example of common metrics that are used as measures for evaluation 
criteria in formal decisions or trade studies to: 


 Balance requirements  


 Assist requirements compliance path forward decisions 


 Select technologies, design concepts, hardware and/or software alternatives 


 Assist design development path forward decisions  


 Assist integration, assembly, test, and checkout path forward decisions 


 Assist verification and validation path forward decisions 


Table 7.1-11.  Example Metrics for Trade Criteria and Measures 


Criterion Description Measure 


Production 
Cost 


Cost for recurring production of the 
alternative. 


Average Unit Production Cost relative to 
Baseline Product  


Development 
Cost 


Cost to develop, design, test, implement, 
and certify the alternative (includes all 
program costs through LRIP). 


Hardware Non-Recurring Engineering (HW 
NRE) cost  


  Software Non-Recurring Engineering (SW 
NRE) cost  


Inter-
operability 


The ability of the alternative to operate 
across new, existing, and foreign 
platforms.  


Weapons Compatibility 


  Munitions Compatibility 


  Command & Control (C
2
) Compatibility 


  Communications Compatibility 


  Logistics Compatibility—transportability, 
Supplies 


Adaptability The ability of the alternative to satisfy 
current and future operational needs. 
Includes commonality, scalability, 
modularity, and upgradeability/ 
extensibility.  


Component Commonality 


  Future Capability Growth Potential 


Survivability The ability of the alternative to complete 
the mission under threat measures or 
countermeasures. Includes susceptibility, 
vulnerability, and recoverability.  


Insensitive Munitions (IM) Characteristics 


 


  Anti-Jam Capability (self-defense, 
communications) 
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Criterion Description Measure 


Safety The effect the alternative has on 
minimizing hazards or injury to 
operations and maintenance personnel. 
The criterion also includes safety to 
ordnance and equipment.  


Basic Safety  


  Equipment Safety 


  Weapons & Munitions Safety 


  Operational Safety 


  Software Safety 


Reliability The effect the alternative has on the 
probability that the projectile does not fail 
to complete its mission under specified 
supply, handling, storage, and firing 
conditions.  


Parts Count 


  Complexity 


Risk The cost, schedule, and technical risk 
level of developing the alternative.  


Technology Risk 


  Schedule Risk 


  Cost Risk 


Capability The capability of each alternative for 
providing the core functionality.  


Lethality – Range, Rate of Fire (RoF) 
Accuracy 


  Mobility – Speed, Acceleration 


  C
2
 – Planning, Execution 


  Communications – Range, Throughput 


  Survivability - Reaction 
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Transition to Production & Deployment 


The transition success from a combat vehicle development phase using the ARRoW Integrated 
Development Environment (IDE) into a combat vehicle production phase hinges on 
incorporating transition to production & deployment metrics. The AIDE would assist in 
conducting Manufacturing Readiness Assessments (MRAs) and use Manufacturing Readiness 
Levels (MRLs) to determine readiness for production.  
―MRAs ensure mature manufacturing processes to meet:  


 Cost commitments  


 Product quality and consistency requirements 


 On time delivery‖[MRL10] 
―MRL goals are to use:  


 Mature technologies  


 Stable designs  


 Production processes in control‖  
The purpose of MRLs is to provide decision makers with a common understanding of the 
relative maturity and risks associated with manufacturing technologies, products, and processes 
being considered. The purpose and definitions of MRLs range from: 


 Design readiness and producibility 


 Manufacturing plans and schedules, processes, tools, training, skills, risks 


 Supply chain, QA, material availability, long lead 


 Demonstrated production (pilot lines, Low Rate Initial Production (LRIP), Full Rate 
Production [FRP]) 


Manufacturing readiness and producibility are as important to the successful development of a 
combat vehicle as those of readiness and capabilities of the technologies intended for the 
combat vehicle. Manufacturing risk identification and management begins at the earliest stages 
of technology development, and continues vigorously throughout each stage of a program‘s 
development life-cycle. MRL levels 1 – 8 as listed in Table 7.1-12 span development phases from 
Materiel Solution Analysis (MSA) to Technology Development (TD) up through engineering 
& Manufacturing Development (EMD). [MRL10] 
―MRL is a measure used to assess the maturity of manufacturing readiness serving the same 
purpose as Technology Readiness Levels serve for technology readiness. MRLs are designed to 
be measures used to assess the maturity of a given technology, component or system from a 
manufacturing prospective. The MRL intent was to create a measurement scale that would 
serve the same purpose for manufacturing readiness as technology readiness levels (TRLs) 
serve for technology readiness – to provide a common metric and vocabulary for assessing and 
discussing manufacturing maturity, risk and readiness. MRLs were designed with a numbering 
system to be roughly congruent with comparable levels of technology readiness levels (TRLs) 
for synergy and ease of understanding and use.‖ [MRL10] 
―MRAs and MRLs answer production transition questions and reduce manufacturing risk 
unanswered by Technology Readiness Level (TRLs):  


 Is the technology producible  


 What will the design cost in production  


 Can the design be made in a production environment  



http://en.wikipedia.org/wiki/Technology_Readiness_Level

http://en.wikipedia.org/wiki/Technology_Readiness_Level
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 Are key materials and components available‖ [MRL10] 


Table 7.1-12.  MRL Definitions 


Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5
 


MRL Definition Description Phase 


1 Basic 
Manufacturing 
Implications 
Identified 


This is the lowest level of manufacturing readiness. 
Basic research expands scientific principles that may 
have manufacturing implications. The focus is on a 
high level assessment of manufacturing opportunities. 
The research is unfettered. 


Pre Material 
Solution 
Analysis 


2 Manufacturing 
Concepts 
Identified 


Invention begins. Manufacturing science and/or 
concept described in application context. Identification 
of material and process approaches are limited to 
paper studies and analysis. Initial manufacturing 
feasibility and issues are emerging. 


Pre Material 
Solution 
Analysis 


3 Manufacturing 
Proof of 
Concept 
Developed 


Conduct analytical or laboratory experiments to 
validate paper studies. Experimental hardware or 
processes have been created, but are not yet integrated 
or representative. Materials and/or processes have 
been characterized for manufacturability and 
availability but further evaluation and demonstration 
is required. 


Pre Material 
Solution 
Analysis 


4 Capability to 
produce the 
technology in a 
laboratory 
environment. 


Required investments, such as manufacturing 
technology development identified. Processes to 
ensure manufacturability, producibility and quality are 
in place and are sufficient to produce technology 
demonstrators. Manufacturing risks identified for 
prototype build. Manufacturing cost drivers identified. 
Producibility assessments of design concepts have 
been completed. Key design performance parameters 
identified. Special needs identified for tooling, 
facilities, material handling and skills. 


Material 
Solution 
Analysis 
(MSA) leading 
to a Milestone 
A decision. 
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Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5
 


MRL Definition Description Phase 


5 Capability to 
produce 
prototype 
components in 
a production 
relevant 
environment. 


Mfg strategy refined and integrated with Risk Mgt 
Plan. Identification of enabling/critical technologies 
and components is complete. Prototype materials, 
tooling and test equipment, as well as personnel skills 
have been demonstrated on components in a 
production relevant environment, but many 
manufacturing processes and procedures are still in 
development. Manufacturing technology development 
efforts initiated or ongoing. Producibility assessments 
of key technologies and components ongoing. Cost 
model based upon detailed end-to-end value stream 
map. 


Technology 
Development 
(TD) Phase. 


6 Capability to 
produce a 
prototype 
system or 
subsystem in a 
production 
relevant 
environment. 


Initial mfg approach developed. Majority of 
manufacturing processes have been defined and 
characterized, but there are still significant 
engineering/design changes. Preliminary design of 
critical components completed. Producibility 
assessments of key technologies complete. Prototype 
materials, tooling and test equipment, as well as 
personnel skills have been demonstrated on 
subsystems/ systems in a production relevant 
environment. Detailed cost analysis include design 
trades. Cost targets allocated. Producibility 
considerations shape system development plans. Long 
lead and key supply chain elements identified. 
Industrial Capabilities Assessment (ICA) for MS B 
completed. 


Technology 
Development 
(TD) phase 
leading to a 
Milestone B 
decision. 


7 Capability to 
produce 
systems, 
subsystems or 
components in 
a production 
representative 
environment. 


Detailed design is underway. Material specifications 
are approved. Materials available to meet planned 
pilot line build schedule. Manufacturing processes and 
procedures demonstrated in a production 
representative environment. Detailed producibility 
trade studies and risk assessments underway. Cost 
models updated with detailed designs, rolled up to 
system level and tracked against targets. Unit cost 
reduction efforts underway. Supply chain and supplier 
QA assessed. Long lead procurement plans in place. 
Production tooling and test equipment design & 
development initiated. 


Engineering & 
Manufacturing 
Development(
EMD) leading 


to Post CDR 


Assessment 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 47 Refer to cover page for Distribution Statement. 


Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5
 


MRL Definition Description Phase 


8 Pilot line 
capability 
demonstrated. 
Ready to begin 
low rate 
production. 


Detailed system design essentially complete and 
sufficiently stable to enter low rate production. All 
materials are available to meet planned low rate 
production schedule. Manufacturing and quality 
processes and procedures proven in a pilot line 
environment, under control and ready for low rate 
production. Known producibility risks pose no 
significant risk for low rate production. Engineering 
cost model driven by detailed design and validated. 
Supply chain established and stable. ICA for MS C 
completed. 


Engineering & 
Manufacturing 
Development 


(EMD) leading 


to a Milestone 


C decision. 


9 Low Rate 
Production 
demonstrated. 
Capability in 
place to begin 
Full Rate 
Production. 


Major system design features are stable and proven in 
test and evaluation. Materials are available to meet 
planned rate production schedules. Manufacturing 
processes and procedures are established and 
controlled to three-sigma or some other appropriate 
quality level to meet design key characteristic 
tolerances in a low rate production environment. 
Production risk monitoring ongoing. LRIP cost goals 
met, learning curve validated. Actual cost model 
developed for FRP environment, with impact of 
Continuous improvement. 


Production & 
Deployment 
leading to a 
Full Rate 
Production 
(FRP) 
decision. 


10 Full Rate 
Production 
demonstrated 
and lean 
production 
practices in 
place. 


This is the highest level of production readiness. 
Engineering/design changes are few and generally 
limited to quality and cost improvements. System, 
components or items are in rate production and meet 
all engineering, performance, quality and reliability 
requirements. All materials, manufacturing processes 
and procedures, inspection and test equipment are in 
production and controlled to six-sigma or some other 
appropriate quality level. FRP unit cost meets goal, 
funding sufficient for production at required rates. 
Lean practices well established and continuous 
process improvements ongoing. 


Full Rate 
Production/ 
Sustainment 
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Acronym and Metric Definitions 


System Effectiveness – ―A probability measure that the system solution can successfully meet 
an overall operational demand within a given time when operated under specific conditions. 
System effectiveness reflects the technical characteristics of the system solution (e.g., 
performance, availability, supportability, dependability). System effectiveness is the ability of 
the system solution to do the job for which it was intended.  


 Single-measures and Multiple-measures can be used to express system effectiveness.  


 The objective is to reflect system design attributes and logistics support elements 
―[BF90] 


Cost Effectiveness – ―A measure of a system solution in terms of mission fulfillment (system 
effectiveness) and total life-cycle cost (LCC). Reliability is a major factor in determining the 
cost effectiveness of a system solution.  


 A singular cost effectiveness is hard to measure since many factors that influence the 
operation and support of a system solution cannot be realistically quantified e.g., 
interactions effects of other systems, political implications, extreme environmental 
factors).  


 Cost effectiveness can be express in various perspectives, depending on the specific 
mission or system capability parameters chosen for evaluation.  


 A set of cost effectiveness measures are typically used to express the cost effectiveness 
of a system solution.  
- System effectiveness/LCC 
- System benefits/LCC 
- Availability/LCC 
- System capacity/LCC 
- Supply effectiveness/LCC‖[BF90] 


Measures of Merit (MOMs) – A set of characteristic parameters used to define the 
effectiveness, performance, usage, and suitability of a system in the context of its operations and 
fielding. MOMs take into account mission objectives, functions, capabilities, and tactical, 
strategic, and political constraints. 


Measure of Effectiveness (MOEs) – A set of operational characteristic parameters that define 
how well the system performs its overall and assigned missions and executes tasks in 
operational situations under a given sets of conditions. The MOEs are used to predict, 
determine, and assess force and system effectiveness. Product development use MOEs for early 
and continuous verification and validation:  


 Design to predict that the system will perform as expected in the intended battlespace 


 Development Test & Evaluation (DT&E) to determine whether the system meets its 
specifications 


 Operational Test & Evaluation (OT&E) to determine the operational success of the 
system 


Measure of Performance (MOP) – A set of capability parameters that define how well a 
system performs during operations and execution of assigned tasks. MOPs represent the 
performance abilities of the system.  
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Measure of Usage (MOU) – A set of operational and sustainment characteristic parameters 
that define how much the system is utilized or how many supplies are being consumed during 
operations and execution of assigned tasks. 


Measures of Suitability (MOS) – A set of appropriateness characteristic parameters that 
define of how fitting a system is during deployment. 


Key Performance Parameters (KPPs) – KPPS those critical system characteristics that, when 
achieved, allow the attainment of operational performance requirements. They are technical 
measures associated with Joint Capabilities Integration & Development System (JCIDS) 
documents: Initial Capabilities Document (ICD), Capability Development Document (CDD), 
and Capability Production Document (CPD).  


―KPPs are those attributes of a system that are considered critical or essential to the 
development of an effective military capability. KPPs must be measurable and testable to enable 
feedback from test and evaluation efforts to the requirements process. KPPs are validated by 
the Joint Requirements Oversight Council (JROC) for JROC Interest documents, by the Joint 
Capabilities Board for JCB Interest documents, and by the DoD component for Joint 
Integration, Joint Information, or Independent documents. Capability development and 
capability production document KPPs are included verbatim in the acquisition program 
baseline.‖ [CJCS09] 


Key System Attributes (KSAs) – ―KSAs are those system attributes or characteristics 
considered critical or essential for an effective military capability and considered crucial to 
achieving a balanced solution/approach to a system, but not critical enough to be designated a 
KPP. KSAs provide decision makers with an additional level of capability performance 
characteristics below the KPP level and require a sponsor 4-star, Defense agency commander, 
or Principal Staff Assistant to change.‖ [CJCS07] 


TPMs (Technical Performance Measures) – TPMs are those system attributes created for 
the purpose of tracking the health of a design, and supporting the decision-making process. 
They provide indications of design progress and status and/or risk mitigation progress and 
status. They are monitored on a frequent basis as the design is being completed. TPMs are 
traceable to requirements and must be measurable parameters.  


Characteristics of a Good Measure of Merit (MOM) 


The following are characteristics of well-defined Measure of Merit (MOM) 


 Relevant – MOMs are pertinent to the missions, functions, capabilities, critical issues, 
and intended uses of the product.  


 Complete – The set of MOMs needs to be a complete set of measures to adequately 
represent and understand the product‘s effectiveness, performance, suitability, and 
utility while fielded in its intended environment. A MOM needs no further amplification 
for understanding when separated from other MOMs. 


 Clear and Unambiguous – MOMs are precisely stated in terms that are specific and 
have only one interpretation. 


 Mutually Exclusive – Each MOM should be independent of each other to prevent 
dependency coupling issues. 


 Enduring Importance – MOMs should have long-term significance for personnel 
starting from project beginning to closure. 
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 Measurable – MOM inputs need to be assessable using quantification methods. If MOE 
inputs are assessed qualitatively, then standard measurement criteria is required. 


7.1.1.6 Design Concept Discriminator Analysis 


Infantry Fighting Vehicle (IFV) product development requires iterative decision making and 
progressive trade studies starting from concept exploration to the final design in a Technical 
Data Package (TDP) issued for production. Figure 7.1-8 illustrates examples of criteria 
measures in a typical hierarchical order that are commonly used in formal decisions and trade 
studies on DMI development programs.[BF90] 


 


Figure 7.1-8.  Example Order of IFV Criteria Measures for Formal Decisions/Trade 
Studies 


Example 4th Order Mobility Criteria Measures for a Notional IFV 


The Notional IFV Mission Statement contained in Section 7.1.1.8 was used to refine the 
common abstract 4th order capability criteria measures illustrated in Figure 7.1-8 to a set of 
typical criteria measures that could be used as design concept mobility discriminators for an 
IFV or all combat vehicles.   
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Table 7.1-13 provides example ranges of mobility performance that can be used to assist in 
automated IFV design concept space reduction or selection of preferred IFV design concept 
alternatives (Wheeled or Tracked). 
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Table 7.1-13.  Example Ranges for Mobility Performance 


Example Ranges for Mobility Performance 


No. 


Capability 


Wheeled Tracked 


Solutions usually offer high-speed 
mobility with versatility in maneuver, 
firepower, and transportability 


Solutions for Cross-Country Mobility 
Dominance for Maneuver or Heavy 
Firepower 


Major focus is on obtaining high 
speeds on improved surfaces (primary 
& secondary) with 2-4 times energy 
efficiency over track vehicles 


Major focus is on obtaining 
maneuverability on un-improved 
surfaces (trails & cross-country) and 
negotiating obstacles 


1 Energy 
Efficiency 


5.0 – 9.0 km/gal (1.32 – 2.38 km/liter) 
@ 50 kph on primary roads 


1.0 – 4.0 km/gal (0.26 – 1.06 km/liter) 
@ 50 kph on primary roads 


2 Dash Speed 
(Acceleration) 


70 - 80 kph in 15 – 20 seconds on 
hard level surface road 


40 - 50 kph in 15 – 20 seconds on hard 
level surface road 


3 Highway Speed 80 - 105 kph 30 - 80 kph 


4 Cross-country 
Speed 


15 - 25 kph on 1-6 inches of terrain 
roughness @ 20% of total distance 
miles 


30 - 45 kph on 1-6 inches of terrain 
roughness and @ 35-50% of the total 
distance miles 


5 Turning Radius 360 degree left and right turn within 
1.5 vehicle diagonal length 


360 degree left and right turn within 1.0 
vehicle diagonal length 


6 Weight 20 - 50 tonnes 25 - 80 tonnes 


7 Transportability Deploy a Brigade Combat Team (BCT) 
of Wheeled Combat Platforms 
anywhere in the world within 96 hrs, a 
Division within 120 hrs, and 5 
Divisions in 30 days using Strategic 
Military Lift assets (Airlift - C-17/C-5) 
and Tactical Lift assets (Fix Wing (C-
130) and Rotary Wing (CH-47)) 


Deploy a Brigade Combat Team (BCT) 
of Tracked Combat Platforms anywhere 
in the world within 30 days using 
Strategic Military Lift assets (Sealift 


(RORO) and Airlift (C-17/C-5)) 
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7.1.1.7  META Project Product Breakdown Structure 


A PBS was created to hierarchally organize the products produced by the BAE Systems Team 
in support of the META program. This PBS was used as a basis for organizing the package 
structure within the file used to capture and document SysML artifacts produced in support of 
the META Systems Engineering analysis effort (MagicDraw file ―META_Project.mdzip‖, see 
Figure 7.1-9). Additionally, this PBS was used as a basis for organizing the Systems 
Engineering directory structure within the Subversion (SVN) version control repository (see 
Figure 7.1-10). 


Table 7.1-14 provides a brief description for each of the PBS elements. 


Table 7.1-14.  META Product Breakdown Structure Elements 


No. Element Name Description 


1 ARRoW Toolset All software applications and associated products that are integrated 
into the ARRoW Integrated Development Environment (AIDE). May 
be developmental or non-developmental items with respect to META 
project scope. 


1.1 System Documentation The User’s Manual and Version Description Document for the 
delivered version of the integrated toolset. 


1.2 Toolset System Package The package delivered to the DARPA customer that includes the set 
of software tools developed along with their supporting 
documentation. 


1.3 Systems Engineering Any Systems Engineering analysis artifacts specifically associated 
with the ARRoW Toolset development. 


1.4 OTS Tools Off-the-Shelf Tools. Non-developmental software applications 
integrated into the AIDE. 


2 Component Model Library Artifacts related to the infrastructure, interfaces, and content of the 
Component Model Library. 


3 Demos Products and documentation related to all demonstrations presented 
at the various PI meetings. 


4 Vehicle System Model All requirements, behavioral analysis, and design associated with a 
notional Combat Fighting Vehicle that is the target product of the 
AIDE toolset, workflow, and processes. 


5 Integrated Toolset 
Documentation 


Development effort and products associated with writing a User’s 
Manual and Version Description Document. 


5.1 Users Manual The User’s Manual describes the general process for using the 
toolset and how to use each tool within the toolset. 


5.2 Version Description 
Document 


The Version Description Document describes what is included in the 
release package, known issues, and system requirements and 
instructions for installing the toolset. 


6 Systems Engineering All Systems Engineering analysis artifacts associated with 
development of the AIDE toolset. 


6.1 Requirements 
Development 


All effort and artifacts associated with defining the required use of, 
behavior of, and capability of the AIDE. 
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No. Element Name Description 


6.1.1 Actors Description of human and non-human actors that interface with the 
AIDE toolset. 


6.1.2 CONOPS Concept of Operations analysis and documentation of the AIDE. 


6.1.3 Requirements Textual requirements for the AIDE. 


6.1.4 Use Cases Use case analysis and SysML documentation that drives the 
required behavior of the AIDE. 


6.2 Architecture 
Development 


Analysis and documentation of the AIDE architecture. 


6.3 Design Analysis and documentation of the AIDE low level design elements. 


6.4 Verification & Validation Artifacts and analysis related to the Verification & Validation of the 
AIDE. 


6.5 IAT&C Artifacts and analysis related to the Integration, Assembly, Test and 
Checkout of the AIDE. 


6.6 Specialty Engineering Any Specialty Engineering artifacts and analysis related to 
development the AIDE. 


7 Program Management Any analysis and artifacts associated with management of the META 
program. 


7.1 Risk & Opportunity 
Management 


Any artifacts associated with risk and opportunity management of the 
META program. 


7.2 Briefings Any artifacts associated with META program briefings to the DARPA 
customer. 


7.3 Configuration & Data 
Management 


Any artifacts associated with Configuration & Data Management 
efforts in support of the META program. 


7.4 EVMS Any artifacts associated with Earned Value Management efforts in 
support of the META program. 
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Figure 7.1-9.  SysML Package Structure 
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Figure 7.1-10.  Subversion Repository Structure 


 


7.1.1.8 Notional IFV System of Interest 


A notional Infantry Fighting Vehicle (IFV) containing a representative set of requirements, 
behavior, structure, and properties was created as a System-of-Interest (SoI) for the ARRoW 
Integrated Development Environment (IDE).  


This section contains the following: 


 Notional Defense Material Item (DMI) IFV Problem Statement 


 Notional Defense Material Item (DMI) IFV Mission Statement 


 Notional IFV requirements analysis 


 Notional IFV PBS analysis 


 Notional IFV use case and behavioral analyses 


Notional DMI IFV Problem Statement: Design a notional Infantry Fighting Vehicle (IFV) 
system such that the total solution is optimized to a set of system-level correctness criteria, and 
is conformant to the system requirements.  


Notional DMI IFV Mission Statement: The notional IFV is a versatile medium armored 
vehicle which provides cross-country mobility dominance, for mounted firepower, 
communications, and protection to a mounted mechanized infantry squad, overwatch support 
for a dismounted infantry squad, and deployable anywhere in the world. 


7.1.1.8.1 Notional IFV Requirements Analysis 


The example requirements serve as a typical set of customer requirements that could be 
experienced during the development of a complex cyber-physical system, such as an IFV. The 
Notional IFV requirements analysis identified a subset of mobility performance, environmental 
conditions, physical characteristics, ownership and support, design and construction 
requirements common across DMI Surface Vehicle Systems (SVSs) or combat vehicles 
(Infantry, Armor, and Artillery). Cardinal IFV capabilities include transporting a protection 
infantry squad and enabling egress of a squad infantry at a dismount point on the battlefield.  


The example requirements are generalized to be non-program specific, amped-up or toned-
down with no analytical foundation, and can be found on Web sites listed in this section or in 
military publications similar to Jane‘s Military Vehicles. An independent assessment concluded 
that the notional IFV and Ramp Assembly requirements contained in this section and in the 
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IFV SysML model are not ITAR or company proprietary restricted information. The following 
references were used to generate the example sets of notional IFV and ramp assembly 
requirements that are non-ITAR and/or company proprietary restricted: 


 Material Need (MN) For An Infantry Fighting Vehicle/Cavalry Fighting Vehicle 


(IFV/CFV), 2 March 1978 


 Operational Requirements Document for Bradley Modernization Program (M2/M3A3), 


12 March 2001 


 IFV (M2A3) AND CFV (M3A3) Performance Specification Rev J (19207-12465518), 17 


December 2009 


 Bradley System Specification Rev C (19207-12386023), 1 June 1999 


 Crusader System Specification, 14 November 1997 


 http://www.army-guide.com/eng/product364.html 


 http://www.youtube.com/watch?v=6_RMDiLCRRM 


 http://military.wikia.com/wiki/M2_Bradley 


 http://en.wikipedia.org/wiki/M2/M3_Bradley_Fighting_Vehicle 


 http://www.fas.org/man/dod-101/sys/land/m2.htm 


 http://www.army.mil/factfiles/equipment/tracked/bradley.html 


 http://www.history.army.mil/books/www/256.htm 


 http://www.history.army.mil/books/www/256.htm 


 http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-
s&va=m2+m3+bradley+fighting+vehicle 


 http://www.army-technology.com/projects/bradley/ 


 http://www.historyofwar.org/articles/weapons_bradley.html 


 http://militarytechyard.blogspot.com/2009/04/m2m3-bradley-fighting-vehicle.html 


 http://www.armedforces-int.com/projects/m2_m3_bradley_fighting_vehicles.html 


 http://pediaview.com/openpedia/M2/M3_Bradley_Fighting_Vehicle#Armament 


 http://www.wikinfo.org/index.php/M2_Bradley 


 http://en.citizendium.org/wiki/M2_Bradley_%28armored_fighting_vehicle%29 


 http://www.military-today.com/apc/m2_bradley.htm 


 http://www.military-today.com/apc/m3_bradley.htm 


 http://www.3ad.org/18inf/documents.htm 


  



http://www.army-guide.com/eng/product364.html

http://www.youtube.com/watch?v=6_RMDiLCRRM

http://military.wikia.com/wiki/M2_Bradley

http://en.wikipedia.org/wiki/M2/M3_Bradley_Fighting_Vehicle

http://www.fas.org/man/dod-101/sys/land/m2.htm

http://www.army.mil/factfiles/equipment/tracked/bradley.html

http://www.history.army.mil/books/www/256.htm

http://www.history.army.mil/books/www/256.htm

http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-s&va=m2+m3+bradley+fighting+vehicle

http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-s&va=m2+m3+bradley+fighting+vehicle

http://www.army-technology.com/projects/bradley/

http://www.historyofwar.org/articles/weapons_bradley.html

http://militarytechyard.blogspot.com/2009/04/m2m3-bradley-fighting-vehicle.html

http://www.armedforces-int.com/projects/m2_m3_bradley_fighting_vehicles.html

http://pediaview.com/openpedia/M2/M3_Bradley_Fighting_Vehicle#Armament

http://www.wikinfo.org/index.php/M2_Bradley

http://en.citizendium.org/wiki/M2_Bradley_%28armored_fighting_vehicle%29

http://www.military-today.com/apc/m2_bradley.htm
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Example of Notional IFV Requirements in a SysML Model 
Table 7.1-15 provides examples of notional IFV requirements captured in a SysML model. 


Table 7.1-15.  Example of Notional IFV Requirements in a SysML Model 


Example of Notional IFV Requirements in a SysML Model 


# ID Name Text 


1 IFV1 1.0 Scope Header 


2 IFV2 2.0 Applicable Documents Header 


3 IFV3 3.0 Requirements Header 


4 IFV3-1 3.1 Ramp Assembly Description Header 


5 IFV3-2 3.2 Performance Requirements Header 


6 IFV3-2-3-1-1 3.2.3.1.1 Protect Against Ballistic 
Threats 


The IFV shall provide protection against 14.5 mm 
machine gun and RPG-7 threats. 


7 IFV3-2-5-2-1 3.2.5.2.1 Lower Ramp The IFV shall achieve an opening ramp duration of 
not greater than 10 seconds. 


8 IFV3-3 3.3 Interface Requirements Header 


10 IFV3-4 3.4 Physical Requirements Header 


11 IFV3-4-1 3.4.1 Weight The IFV maximum combat weight shall be not 
greater than 45359.24 kg (TBR 100000 lbs). 


12 IFV3-5 3.5 Ownership and Support 
Requirements 


Header 


13 IFV3-5-1 3.5.1 Reliability Header 


14 IFV3-5-1-1 3.5.1.1 MTBF The IFV predicted Mean Time Between Failures 
(MTBF) shall be greater than 120 hours (Threshold) 
and 168 hours (Objective) (TBR). 


15 IFV3-6 3.6 Environmental Requirements Header 


16 IFV3-7 3.7 Design and Construction 
Requirements 


Header 


17 IFV3-7-1 3.7.1 Materials, Processes, and 
Parts 


Header 


18 IFV3-7-1-1 3.7.1.1 Watertightness The IFV shall restrict the entrance of water into the 
vehicle during fording operations at 48 inches deep. 


19 IFV3-7-2 3.7.7 Human Systems Integration Header 


19 IFV3-7-2-1 3.7.7.1 Ingress and Egress The IFV shall permit ingress and egress of a 95th 
percentile (in size) male wearing Arctic gear. 
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Additional Examples of Notional IFV Requirements 


Table 7.1-16 provides additional examples of notional IFV requirements. 


Table 7.1-16.  Additional Examples of Notional IFV Requirements 


Additional Examples of Notional IFV Requirements 


No. Name Text 


1 1.0 Scope Header 


2 1.3 System Overview The IFV is a tracked, medium armored vehicle which provides cross-
country mobility, for mounted firepower, communications, and protection 
to a mounted mechanized infantry squad, and overwatch support for a 
dismounted infantry squad. 


3 1.4 Document Overview This document is a ―representative set‖ of performance, functional, 
interface, and design constraint requirements for an Infantry Fighting 
Vehicle (IFV). Both mechanized infantry problem and solution domains 
in breadth and depth are stated as requirements. The requirement 
statements vary in maturation and quality due to issues such as: 
necessity, conciseness, measurability, clarity, implementation/design 
freedom, attainability/feasibility, completeness & stand-alone, 
consistency, verifiability, singularity, uniqueness, proper level, and 
positivity. 


4 2.0 Applicable Documents Header 


5 3.0 Requirements Header 


6 3.1 Performance 
Requirements 


Unless otherwise specified, performance requirements in the following 
paragraphs shall be met with the Infantry Fighting Vehicle (IFV) at 
maximum combat weight, resting on a flat, hard, level surface, and over 
the range of environmental conditions specified herein. Requirements 
relating to personnel shall apply to males in the 5th through 95th 
percentile in stature wearing Mission Oriented Protective Posture 
(MOPP-IV) gear and Arctic gear. 


7 3.1.1 Mobility Except where otherwise specified, the automotive performance shall be 
on dry, level, hard-surfaced roads and the IFV shall perform as specified 
herein without irregular operation, damage to any component, or danger 
to any crew or squad member. 
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Additional Examples of Notional IFV Requirements 


No. Name Text 


8 3.1.1.1 Operational Profile The IFV shall be capable of 24 continuous hours of combat as follows:  


a. Sixteen hours shall consist of:  


  - 35% (5.6 hr) at rated engine idle speed.  


  - 35% (5.6hr) over cross-country terrain from 2.0 miles per hour (mph) 
to maximum safe speed.  


  - 20% (3.2 hr) over dirt and gravel roads from 10 mph to maximum safe 
speed.  


  - 10% (1.6 hr) on hard-surfaced roads at 10 mph to maximum 
operating speed.  


b. Eight hours shall be at silent watch with electrical equipment operated 
as needed for no more than three continuous hours, depending on 
ambient temperature, without recharging batteries 


9 3.1.1.2 Cruising Range The IFV shall operate on internally carried fuel for at least 300 miles at 
an average sustained speed of 30 miles per hour. 


10 3.1.1.3 Dash Speed 
(Acceleration) 


The IFV at combat weight shall accelerate from a standing start with the 
engine idling to 50 mph in not more than 25 sec under nominal 
conditions. The IFV, at curb weight, shall accelerate from 0 to 50 mph in 
not more than 20 sec. 


11 3.1.1.4 Highway Speed The IFV shall attain a highway speed of not less than 50 mph. 


12 3.1.1.5 Cross-Country 
Speed 


The IFV shall attain a cross-country speed of not less than 28 mph. 


13 3.1.1.6 Slope Operation The IFV shall ascend or descend dry slopes up to 60% either forward or 
backward, and shall maintain at least 15 mph in the forward direction 
while climbing hard-surfaced slopes up to 15%. The IFV shall maneuver 
on dry side slopes up to 45% either forward or backward direction. 


14 3.1.1.7 Turning Radius The IFV shall pivot 360 deg right or left within a 35-ft diameter circle. 


15 3.1.1.8 Fording Under its own power, the IFV without special preparation, shall ford 
water up to 50 in deep with up to 35% embankment slopes, while 
retaining full functionality. 


16 3.1.1.9 Climb Obstacle The IFV shall climb obstacles at a height not less than 1.5 m. 


17 3.1.1.10 Cross Gap The IFV shall cross trenches at a width not less than 1.5 m. 


18 3.1.1.11 Towing The IFV, operating either forward or in reverse, shall tow comparable 
IFVs over cross-country terrain. In the forward direction, the IFV shall be 
capable of towing such an IFV cross-country at up to 5 mph for 10 miles. 


19 3.1.2 Survivability Header 


20 3.1.2.1 Protect Against 
Ballistic Threats 


The IFV shall provide protection against 14.5 mm machine gun and 
RPG-7 threats. 
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Additional Examples of Notional IFV Requirements 


No. Name Text 


21 3.1.3 Auxiliary Systems Header 


22 3.1.3.1 Intercom The IFV shall accommodate a vehicular intercommunication system with 
controls at the commander’s station and communications ports at each 
vehicle member station. 


23 3.1.3.2 Rear Ramp The time required for the rear ramp to fully open or close with the engine 
running shall not exceed 10 sec. The ramp lock mechanism shall permit 
single hand locking and unlocking. 


24 3.1.3.3 Seals Static seals shall prevent Class II and Class III leaks. Dynamic seals 
shall prevent Class III leaks.  


25 3.1.3.4 Blackout Lighting Header 


26 3.1.3.4.1 Interior Lighting All interior lights, except lights for turret control and turret drive power 
indication, shall extinguish automatically when either the rear ramp or 
the rear door is opened. 


27 3.1.3.5 Driver’s Switches 
and Indicators 


The IFV shall provide the following functions and indicators:  


a. Ramp Up/Down switch and unlocked indicator  


28 3.1.4 Emergency 
Operations 


The IFV shall provide an emergency operation capability in the case of 
electronics failures. Vehicle operations requiring backup include:  


a. Fuel Pump operation 


b. Steering operation  


c. Transmission operation  


d. Ramp up/down  


e. Ramp Lock/Unlock 


29 3.2 Physical Characteristics Header 


30 3.2.1 Weight The air shipping weight of the IFV shall not exceed 60,000 lb. The curb 
weight shall not exceed 100,000 lb. The maximum combat weight shall 
not exceed 120,000 lb. 


31 3.2.2 Dimensions The dimensions when configured for shipping, height shall not exceed 
120 in, width 110 in, and length 250 in. 


32 3.2.3 Angle of 
Approach/Angle of 
Departure 


The angle of approach for the IFV, defined as the angle between the 
ground and a line through the forward most part of the hull and track, 
shall be a minimum of 75 deg. The angle of departure, defined as the 
angle between the ground and the rear-most part of the hull and track 
(excluding the pintle) up to at least 40 in, shall be a minimum of 50 deg. 


33 3.2.4 Ground Clearance The IFV shall have a minimum ground clearance to the bottom of the 
hull of 18 in at the front and 16 in at the rear. 


34 3.2.5 Interior Arrangement Header 
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Additional Examples of Notional IFV Requirements 


No. Name Text 


35 3.2.5.1 Personnel Seating 
Capacity 


The IFV shall provide seats for personnel as shown in table XV. 


Table XV. Personnel Seating Capacity. 


Configuration  
Number of Crew 
Members  


Number of Squad 
Members  


IFV Personnel 3  7  
 


36 3.2.5.2 Space Allowance Space calculations shall use a 95th percentile (in stature) male wearing 
Arctic clothing and MOPP-IV gear. Space allocation for the squad 
members, driver, gunner, and commander shall be in accordance with 
MIL-HDBK-759B. Interior stowage space shall be provided for the 
fighting equipment of the squad.  


37 3.2.6 Ramp The IFV shall include a ramp at its rear that permits rapid entry and exit 
of personnel and supplies. The ramp shall include a door. The ramp 
shall satisfy the following requirements:  


a. Incorporates a quick-opening/closing device, an internal hold-closed 
locking device, and a hold-open device.  


b. Incorporates an automatic blackout switch.  


c. Restricts the entrance of water into the IFV during fording.  


d. Has a means of being padlocked from the outside. 


e. Permits side-by-side mount/dismount of two 95th percentile (in 
stature) males wearing Arctic clothing and MOPP-IV gear. 


38 3.3 Environmental 
Conditions 


Header 


39 3.3.1 Storage and 
Transport 


The IFV shall be capable of being stored and in transit without 
sustaining damage under the climate design types hot, basic, cold, and 
severe cold, including all daily cycle categories as defined in AR 70-38 
table 2-1; i.e., -60 o F to +160 o F induced air temperature. 


40 3.3.1.1 Storage and Transit 
Humidity 


The IFV shall be capable of being stored and in transit without 
sustaining damage under the climatic design types hot, basic, cold, and 
severe cold, including all daily cycle categories as defined in AR 70-38 
table 2-1; i.e., nil to 100% induced relative humidity. 


41 3.3.1.2 Storage The IFV shall not require preservation for storage less than 120 days. 
The IFV shall require preservation prior to storage exceeding 120 days.  


42 3.3.1.3 Altitude The IFV shall be capable of being stored and in transit up to 40,000 ft 
above sea level. 


43 3.3.2 Operating Conditions Header 


44 3.3.2.1 Climate The IFV shall be capable of operating under the conditions specified in 
AR 70-38, for the climatic categories hot and basic without a cold start 
aid, and categories cold and severe cold with an aid, with the exceptions 
in paragraph 3.3.2.2.  







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 63 Refer to cover page for Distribution Statement. 


Additional Examples of Notional IFV Requirements 


No. Name Text 


45 3.3.3 Steam and Waterjet 
Cleaning 


The IFV shall demonstrate no performance degradation and show no 
evidence of damage or deformation following a steam and waterjet 
cleaning process which uses a cleaner conforming to P-C-437 Type II, 
P-D220D, or commercial equivalent. Jet pressure shall be 100 +/-10 
pounds per square inch gage (psig) for steam and 40 +/-10 psig for 
water. The jet shall be applied perpendicular to the assembly from a 
distance of not more than 1 ft for steam and not more than 3 ft for water. 
The assembly shall be subjected to the jet at the rate of not less than 1 
ft2/min. 


46 3.5 Reliability The IFV including Government furnished equipment shall maintain at 
least 500 Mean Miles Between Failures (MMBF) when operated as 
described in 3.1.1.1. The IFV Mean Time Between Failures (MTBF) 
shall be greater than 120 hours (Threshold) and 168 hours (Objective). 


47 3.6 Availability The IFV including government furnished equipment shall maintain 
achieved availability of at least 0.80 when operated as described in 
3.1.1.1. Achieved availability is defined as the ratio of operating time to 
the total of operating and maintenance time. 


48 3.7 Safety The IFV shall ensure the highest degree of safety and health consistent 
with mission requirements throughout its life cycle.  


49 3.8 Logistics/Diagnostics Header 


50 3.8.1 Built-In Test (BIT) Header 


51 3.8.1.1 Self-Test BIT 
(SBIT) 


SBITs, internal to each subsystem, shall execute automatically upon 
power up and results shall be displayed within 20 sec of the application 
of power to the turret electronics. 


52 3.9 Transportability The IFV shall have exterior lifting and tiedown provisions for the modes 
of transport listed below: 


53 3.9.1 Road The IFV shall be capable of being transported on a Heavy Equipment 
Transporter. 


54 3.9.2 Rail The IFV shall be capable of being transported over U.S. railways without 
disassembly. For foreign transport, IFV width requirements may be met 
by removing side armor and the closure kit, if installed. IFV width 
requirements described by TM 55-2350-252-14 shall be met. 


55 3.9.3 Water The IFV shall be capable of being transported by break-bulk cargo 
ships, barge-carriers, roll-on/roll-off ships, and military landing craft. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 64 Refer to cover page for Distribution Statement. 


Additional Examples of Notional IFV Requirements 


No. Name Text 


56 3.9.4 Air The IFV shall be capable of being transported in C5 and C17 aircraft in 
conformance with MIL-STD-1791, ―Designing for Internal Aerial Delivery 
in Fixed Wing Aircraft,‖ and as described in Air Force Systems 
Command (AFSC) Design Handbook DH 1-11.  


a. The width, height, and weight shall be reducible for air transport by 
the IFV crew within one hour, assisted by unit tools and personnel, using 
organic assets (fork lift, M88, or M578.).  


b. The IFV will arrive at the loading pad minus its ammunition, Basic 
Issue Items (BII), weapons, fuel, personal gear, and supplemental 
armor. 


57 3.10 Design and 
Construction 


Header 


58 3.10.1 Materials All materials, parts, and processes selected for use in the IFV 
construction shall be compatible with the safety, performance, and 
environmental requirements as specified herein. 


59 3.10.1.1 Fungal growth Materials used in the IFV shall not support fungal growth. 


60 3.10.1.2 Corrosion 
Resistance 


Metals and alloys used in the construction of the IFV that are exposed to 
corrosive environmental conditions shall be corrosion resistant or shall 
be coated or metallurgically processed to resist corrosion. Except where 
impractical, dissimilar metal combinations that promote corrosion 
through galvanic action shall be insulated to prevent corrosion. 


61 6.0 Note Header 


62 6.1 Definitions Header 


63 6.1.1 Curb Weight The IFV is complete with all components and systems, fully serviced 
with liquids and one-fourth full fuel tank, with track pads, driver, no OVE, 
no weapons installed, no other crew or squad aboard, no BII, AAL or 
ICOEI, no ammunition or water, and no supplemental armor tiles. Items 
may be simulated by ballast weights located at the appropriate center of 
gravity.  


64 6.1.2 Combat Weight The IFV is complete with all components and systems, fully serviced 
with liquids and a full fuel tank, with track pads, all OVE BII, AAL, ICOEI, 
25 mm and 7.62 mm weapons installed, all ammunition and water, crew 
and squad, and supplemental armor tiles installed. Items, such as crew, 
ammunition, supplemental armor tiles, etc., may be simulated by ballast 
weights located at the appropriate center of gravity.  


65  6.1.3 Approximately As close as reasonable for the intended purpose. In the opinion of the 
operator the item being tested will not cause failure or malfunction of the 
system, or cause the system to not function. 


66 6.1.4 Smooth In the opinion of the operator, the item being tested does not exhibit 
discernable erratic operation, chatter, jump, bind, skip, or does not 
prevent the operator from properly functioning the item being tested. 
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Additional Examples of Notional IFV Requirements 


No. Name Text 


67 6.1.5 Subjectively An intuitive and conscious consideration by the operator, that the item 
being tested, observed, or checked meets or exceeds the intended 
function.  


68  6.1.6 Focus Clear, without blurriness, objects at a distance of more than 200 m are 
sharp and clear. 


69 6.1.7 Subjective Evaluation This verification is a subjective evaluation of the operation or response 
of the system or component in question. Conclusions of success depend 
on the interpretations of an experienced operator/tester, rather than on 
numbers derived from instrumentation, bus data, or other quantitative 
results. 


70 6.1.8 Hardware/Software 
Test 


Specific functions, responses, and other parameters of the system or 
component in question have been measured or determined during 
Software/Hardware Final Qualification Tests, component tests, or 
subsystem tests. Therefore, quantitative or instrumented measurements 
at the system/IFV level may not be required. 


71 6.1.9 Previous Tests Where appropriate, use the procedures and results of tests of other 
functions as evidence that the requirements of this paragraph are met. 


72 6.1.10 Classification of 
Leaks 


Class I: Fluid seepage is not great enough to form drops, but is shown 
by wetness or color changes. Class II: Fluid leakage is great enough to 
form drops. Drops do not drip from the item being checked or inspected. 
Class III: Fluid leakage is great enough to form drops that fall from the 
item being checked or inspected. 


 


Notional Ramp Assembly Requirements in a SysML model 


Table 7.1-17 provides notional IFV Ramp Assembly requirements captured in a SysML model. 


Table 7.1-17.  Notional Ramp Assembly Requirements in a SysML Model 


Notional Ramp Assembly Requirements in a SysML Model 


No. ID Name Text 


1 Ramp1 1.0 Scope Header 


2 Ramp2 2.0 Applicable Documents Header 


3 Ramp3 3.0 Requirements Header 


4 Ramp3-1 3.1 Ramp Assembly Description The Rear Egress/Ingress assembly is an automated 
inclined vehicle pathway that connects the vehicle 
personnel payload compartment with the ground 
surface.  


The Rear Egress/Ingress assembly enables 
onloading and offloading of personnel for a vehicle. 
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Notional Ramp Assembly Requirements in a SysML Model 


No. ID Name Text 


5 Ramp3-2 3.2 Performance Requirements Header 


6 Ramp3-2-1 3.2.5.2.1 Lower Ramp The Ramp Assembly shall achieve an opening ramp 
duration of not greater than 10 seconds. 


7 Ramp3-2-2 3.2.5.2.2 Raise Ramp TBP 


8 Ramp3-2-3 3.2.3 Initialize/Prep Ramp TBP 


9 Ramp3-2-4 3.2.4 Shutdown Ramp TBP 


10 Ramp3-2-5 3.2.3.1.1 Protect Against Ballistic 
Threats 


The Ramp Assembly shall provide protection 
against 14.5 mm machine gun and RPG-7 threats. 


11 Ramp3-3 3.3 Interface Requirements Header 


12 Ramp3-4 3.4 Physical Requirements Header 


13 Ramp3-4-1 3.4.1 Weight The Ramp Assembly weight shall be not greater 
than 453.59 kg (TBR 1000 lbs). 


14 Ramp3-5 3.5 Ownership and Support 
Requirements 


Header 


15 Ramp3-5-1 3.5.1 Reliability Header 


16 Ramp3-5-1-
1 


3.5.1.1 MTBF The Ramp Assembly predicted Mean Time Between 
Failures (MTBF) shall be greater than 10000 hours 
(Threshold) and 14000 hours (Objective) (TBR). 


17 Ramp3-6 3.6 Environmental Requirements Header 


18 Ramp3-7 3.7 Design and Construction 
Requirements 


Header 


19 Ramp3-7-1 3.7.1 Materials, Processes, and 
Parts 


Header 


20 Ramp3-7-1-
1 


3.7.1.1 Watertightness The Ramp Assembly shall restrict the entrance of 
water into the vehicle during fording operations at 48 
inches deep. 


21 Ramp3-7-2 3.7.7 Human Systems Integration Header 


22 Ramp3-7-2-
1 


3.7.7.1 Ingress and Egress The Ramp Assembly shall permit ingress and 
egress of a 95th percentile (in size) male wearing 
Arctic gear. 


 
Figure 7.1-11 illustrates an example allocation of requirements to the IFV Ramp assembly. 
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Figure 7.1-11.  Example Allocation of Requirements to Ramp Assembly 
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7.1.1.8.2 IFV Product Breakdown Structure (PBS) Analysis 


PBS-based Reference Model 


Department of Defense (DoD) Systems Engineering defines a ―Reference Model‖ as a common 
conceptual framework for a System-of-Interest (SoI). DoD Handbook (MIL-HDBK-881A) 
identifies (Product Breakdown Structure) ―PBS-based‖ reference models for Defense Materiel 
Items (DMIs).[SEF01] 


A PBS-based Reference model is a direct output of the Architecture Development process and 
is also a Systems Analysis & Control tool because of its multi-faceted utility on product 
development, and engineering and project management. It aids the development of a SoI by 
providing a PBS-based framework for engineering work products in the following process 
areas: 


 Requirements Development (RD) – Product concept of operations & use cases, 
functional/logical architecture, decomposed & derived requirements, model-based 
specifications, requirement maturation metrics, requirement repository & management 
environment 


 System Design (SD) - Requirements allocation & flow down, architecture views/view 
points, architecture/concept/design alternatives, specialty engineering design influence, 
integrated design & domain engineering, computer aided design & model-based designs 
and analysis, interface design definition & budgets, technology maturation & growth, 
SD maturity & health assessment metrics (technical performance measurements 
(TPMs), requirements compliance, technology readiness assessments (TRA)s & 
manufacturing readiness assessments (MRAs), state-of-integration readiness) 


 System Analysis & Control (SAC)- Effectiveness analysis (cost & system), capability & 
gap assessments, formal decisions/trades, Risk & opportunity management, 
configuration & data management, interface (I/F) management 


 Verification & Validation (V&V) – Strategy & plans, test cases & procedures results, 
V&V metrics 


A PBS-based reference model also provides structure for: 


 Identifying products, processes, data, documents, and models, 


 Organizing risk and opportunity management, 


 Enabling configuration and data management,  


 Organizing integrated product development teams, 


 Developing work packages for work orders and material/parts ordering, and  


 Organizing technical reviews and audits 
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Defense Material Items (DMIs) 


MIL-HDBK-881A identifies End/Mission PBS information to aid in the creation of a PBS-
based reference model for each of the following DMI types: 


 ―Surface Vehicle Systems (SVSs) 


 Ordnance Systems 


 Missile Systems 


 Sea Systems 


 Aircraft Systems 


 Space Systems 


 Electronic/Automated SW Systems 


 Unmanned Air Vehicle Systems‖ [AMSC05] 


―MIL-HDBK-881A also identifies common products and services to develop, produce, and 
support the end/mission product. The common products and services are categorized as the 
following enabling products: 


 ―Systems Engineering/Program Management (SE/PM) 


 System Test and Evaluation (T&E) 


 Development Test Evaluation/Operational Test Evaluation (DTE/OTE) 


 Training (Equipment, Services, Facilities),  


 Data (Technical Publications, Engineering Data, Support Data, Management Data, 
Data Repository) 


 Peculiar Support Equip (PSE) and Common Support Equip (CSE) 


 Operational/Site Activation, Industrial Facilities, Initial Spares & Repair Parts‖ 
[AMSC05] 


Surface Vehicle System (SVS) PBS-Based Reference Model 


The SVS is an abstract and generic structure for all DoD primary and secondary vehicles that 
navigate over the earth‘s surface including manned and unmanned surface systems and 
amphibious vehicles. The SVS PBS-based reference model provides the framework for the IFV 
PBS-based sub-reference model and other like sub-reference models depending on vehicle role, 
mission, or deployment:  


 Combat Vehicles (CVs), Combat Support Vehicles (CSVs), and Combat Service Support 
Vehicles (CSSVs)  


 Vehicle roles and/or missions Fires/Effects, Maneuver (Infantry & Armor), 
Reconnaissance, Engineer, Ordnance, Amphibians, Cargo and Logistics, 
Transportation, Medical, Food Service, Class III (POL), Mobile Work Units.  


 Unmanned Ground Vehicles (UGSs) and Manned Ground Vehicles (MGVs) 


Example IFV PBS-based Reference Model Development 


Figure 7.1-12 illustrates MIL-HDBK-811A PBS-based elements of a notional IFV that served 
as a basis for the creation of an example notional IFV Reference Architecture and PBS-based 
Design Archetypes for the AIDE. 
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Figure 7.1-12.  Notional IFV PBS 
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Table 7.1-18 provides a brief description for each of the Notional IFV PBS elements. 


Table 7.1-18.  Notional IFV PBS Elements 


Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1 IFV A vehicle system with the capability to navigate over the surface. Surface 
vehicle categories include vehicles primarily intended for general purpose 
applications and those intended for mating with specialized payloads. 
Includes, for example: 


a. Cargo and logistics vehicles, mobile work units and combat vehicles 


b. Combat vehicles serving as armored weapons platforms, reconnaissance 
vehicles, and amphibians 


The mobile element of the system embodying means for performing 
operational missions. Includes, for example: 


a. Means of propulsion and structure for adaptation of mission equipment or 
accommodations for disposable loads 


1.1 Chassis 
Assembly 


The vehicle's assembly of structure, compartments and equipment 
installations required to provide the mobility element of combatant vehicles. 
Includes, for example: 


a. Hull Structure  


b. Personnel and weapons compartments  


c. Chassis Electronics 


d. Suspension & Steering 


e. Auxiliary Equipment 


f. Power Package/Power Train 


g. Special equipment 


h. NBC/ECU 


h. Software 


1.1.1 Hull Structure The vehicle's primary load bearing component which provides the structural 
integrity to withstand the operational loading stresses generated while 
traversing various terrain profiles. 


Includes, for example: 


a. Simple wheeled vehicle frame or combat vehicle hull which satisfies the 
structural requirements and also provides armor protection 


b. Structural subassemblies and appendages which attach directly to the 
primary structure 


c. Towing and lifting fittings, bumpers, hatches, and grilles 


d. Provision to accommodate other subsystems such as mountings for 
suspension, weapons, turret, truck body, cab, special equipment loads 


1.1.1.1 Squad 
Compartment 


The major component to be mated to a chassis to provide a complete 
vehicle having a defined mission capability. 


Includes, for example: 


a. Accommodations for personnel, cargo, and such subsystems as need to 
be placed in proximity to operators 
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Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1.1.1.2 Driver’s 
Compartment 


The major component to be mated to a chassis to provide a complete 
vehicle having a defined mission capability. 


Includes, for example: 


a. Accommodations for personnel, cargo, and such subsystems as need to 
be placed in proximity to operators 


1.1.2 Ramp Assembly Includes, for example: 


a. Ramp structure which satisfies the structural requirements and also 
provides armor protection 


b. Structural subassemblies and appendages which attach directly to the 
ramp structure 


c. Provision to lower/raise and secure the ramp structure 


d. Provision to accommodate other subsystems such as mountings for 
survivability equipment loads 


1.1.2.1 Ramp Structure Includes, for example: 


a. Ramp structure which satisfies the structural requirements and also 
provides armor protection 


1.1.2.2 Ramp Drive Includes the means to lower and raise the ramp structure 


1.1.2.3 Ramp Latch Includes the means secure the ramp structure when in the closed position 


1.1.3 Chassis Vetronics All hardware/software used to integrate the electronic subsystems and 
components of the vehicle, such as computer resources, data control and 
distribution, controls and displays, and power generation and management. 
Electronic Subsystems and components to be integrated include, for 
example: 


a. Information systems such as command and control (C2), mission planning 
and logistics functions, C4ISR 


b. High end real-time systems such as sensors, robotics, active protection, 
mission critical applications 


c. High power load management systems such as the electronic turret, 
electric drive, autoloader 


d. Automotive/utility systems such as steering, brake and throttle by wire and 
the auxiliary load management 


1.1.3.1 Ramp Controller All hardware/software used to integrate the ramp electronic subsystems and 
components of the ramp controller, such as computer resources, data 
control and distribution, controls and displays, and power generation and 
management. Electronic Subsystems and components to be integrated 
include, for example: 


a. High end real-time systems such as sensors, mission critical applications 


b. High power load management systems such as the electronic electric 
drive 
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Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1.1.4 Suspension/ 
Steering 


The means for generating tractive efforts, thrust, lift, and steering forces 
generally at or near the earth's surface and adapting the vehicle to the 
irregularities of the surface. 
Includes, for example: 


a. Wheels, tracks, brakes, and steering gears for traction and control 
functions 


b. Rudder thrust devices and trim vanes for amphibians 


c. Springs, shock absorbers, skirts, and other suspension members 


1.1.5 Auxiliary 
Automotive 


The group of hardware and software subsystems which provide services to 
all of the primary vehicle subsystems (as distinguished from the special 
equipment subsystems) and which outfit the chassis. 
Includes, for example: 


a. The on-board diagnostics/prognostics system, fire extinguisher system 
and controls, chassis mounted accessories 


b. The winch and power take-off, tools and on-vehicle equipment 


c. Crew accommodations (when otherwise not provided for) 


Excludes, for example: 


a. Electrical subsystems and components which are now included in the 
vetronics WBS element. 


1.1.6 Power Package/ 
Drive Train 


The means for generating and delivering power in the required quantities 
and driving rates to the driving member. 
Includes, for example: 


a. Engine-mounted auxiliaries such as air ducting and manifolds, controls 
and instrumentation, exhaust systems, and cooling means 


b. Power transport components as clutches, transmission, shafting 
assemblies, torque converters, differentials, final drivers, and power 
takeoffs 


c. Brakes and steering when integral to power transmission rather than in the 
suspension/steering element 


1.1.7 Special 
Equipment 


The special equipment (hardware and software) to be mated to a chassis or 
a chassis/body/cab assembly to achieve a special mission capability. 
Includes, for example: 


a. All items required to convert basic vehicle configurations to special-
purpose configurations 


b. Blades, booms, winches, robotic arms or manipulators, etc., to equip 
wreckers, recovery vehicles, supply vehicles and other field work units 


c. Furnishings and equipment for command, shop, medical and other 
special-purpose vehicles 
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Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1.1.8 Navigation 
Equipment 


The equipment (hardware and software) installed in the vehicle which 
permits the crew to determine vehicle location and to plot the course of the 
vehicle. 


Includes, for example: 


a. Navigation systems such as dead reckoning, inertial, and global 
positioning systems 


b. Landmark recognition algorithms and processors 


1.1.9 NBC/ECU The subassemblies or components which provide nuclear, biological, 
chemical protection and survivability to the vehicle crew, either individually or 
collectively, during a nuclear, biological, chemical attack. 
Includes, for example: 


a. A positive pressure system; micro-climate cooling; air conditioning and 
purification system; ventilated face piece (mask); nuclear, biological, 
chemical detection and warning devices; decontamination kits; and 
chemical resistant coatings 


1.2 IFV System SW That software designed for a specific computer system or family of computer 
systems to facilitate the operation and maintenance of the computer system 
and associated programs for the primary vehicle. (ref. ANSI/IEEE Std 
610.12) 
Includes, for example: 


a. Operating systems—software that controls the execution of programs 


b. Compilers—computer programs used to translate higher order language 
programs into relocatable or absolute machine code equivalents 


c. Utilities—computer programs or routines designed to perform the general 
support function required by other application software, by the operating 
system, or by system users 


d. All effort required to design, develop, integrate, and checkout the air 
vehicle system software including all software developed to support any 
primary vehicle applications software development 


e. Primary vehicle system software required to facilitate development, 
integration, and maintenance of any primary vehicle software build and 
CSCI 


Excludes, for example: 


a. All software that is an integral part of any specific subsystem specification 
or specifically designed and developed for system test and evaluation 


b. Software that is an integral part of any specific subsystem, and software 
that is related to other WBS Level 2 elements 
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Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1.3 Msn Application 
SW 


Includes, for example: 


a. All the software that is specifically produced for the functional use of a 
computer system or multiplex data base in the primary vehicle (ref. 
ANSI/IEEE Std 610.12) 


b. All effort required to design, develop, integrate, and checkout the primary 
vehicle applications Computer Software Configuration Items (CSCIs) 


Excludes, for example: 


a. The non-software portion of air vehicle firmware development and 
production 


b. Software that is an integral part of any specific subsystem and software 
that is related to other WBS Level 2 elements 


1.4 C2 Equipment All hardware/software used to integrate the Command & Control (C2) 
subsystems and components of the vehicle, such as computer resources, 
data control and distribution, controls and displays. 


C2 Subsystems and components to be integrated include, for example: 


a. Information systems such as mission planning and logistics functions 


1.5 Turret Assembly The structure and equipment installations required to provide the fighting 
compartment element of combatant vehicles. 
Includes, for example: 
a. Turret armor and radiological shielding, turret rings, slip rings 
b. Attachments and appendages such as hatches and cupolas 
c. Accommodations for personnel, weapons, and command and control 
Excludes, for example: 
a. Fire control and stabilization system 


1.5.1 Armament 
Equipment 


The means for combatant vehicles to deliver fire on hostile targets and for 
logistics and other vehicles to exercise self-defense. 
Includes, for example: 
a. main gun, launchers, and secondary armament 
Excludes, for example: 
a. Fire control systems 


1.5.2 Munitions 
Handling 
Equipment 


Automatic Loading. The equipment (hardware and software) for selecting 
ammunition from a stored position in the vehicle, transferring it, and loading 
the armament 
system. 
Includes, for example: 
a. The means to eject spent cases and misfired rounds 
b. Ammunition storage racks, transfer/lift mechanisms, ramming and ejecting 
    mechanisms, as well as specialized hydraulic and electrical controls 
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Notional IFV PBS Element Definitions 


Element 
Level # Element Name Description 


1.5.3 Fire Control 
Equipment 


The equipment (hardware and software) installed in the vehicle which 
provides intelligence necessary for weapons delivery such as launching and 
firing. 
Includes, for example: 
a. Radars and other sensors necessary for search, recognition and/or  
    tracking 
b. Controls and displays 
c. Sights or scopes 
d. Range finders, computers, computer programs, turret and gun drives, and 
    stabilization systems 


1.5.4 Communications 
Equipment 


The equipment (hardware and software) within the system for commanding, 
controlling, and transmitting information to vehicle crews and other personnel 
exterior to operating vehicles. 
Includes, for example: 


a. Radio frequency equipment, microwave and fiber optic communication 
links, networking equipment for multiple vehicle control, and intercom and 
external phone systems 


b. Means for supplementary communication like visual signaling devices 


c. Navigation system and data displays not integral to crew stations in the 
turret assembly or the driver's automotive display in the cab 


1.5.5 Intelligence, 
Reconnaissance, 
Surveillance (ISR) 
Equipment 


All hardware/software used to integrate the intelligence, surveillance, 
reconnaissance (ISR) subsystems and components of the vehicle, such as 
computer resources, data control and distribution, controls and displays. 


1.5.6 Turret Vetronics All hardware/software used to integrate the electronic subsystems and 
components of the turret, such as computer resources, data control and 
distribution, controls and displays, and power generation and management. 
Electronic Subsystems and components to be integrated include, for 
example: 


a. Information systems such as command and control (C2), mission planning 
and logistics functions, C4ISR 


b. High end real-time systems such as sensors, robotics, active protection, 
mission critical applications 


c. High power load management systems such as the electronic turret, 
electric drive, autoloader 


Example Mobility Components and Properties 


The following organization of mobility subsystems for a notional IFV, a specialized combat 
vehicle, into three subsystems provides design alternative flexibility for both wheeled and 
tracked combat vehicle concepts: 


 Power Package/Power Train (Engine & Transmission) 


 Steering & Braking 


 Suspension 
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The steering and braking subsystem is integral to the power package/train subsystem for 
tracked combat vehicle concepts and integral to the suspension subsystem for wheeled combat 
vehicle concepts. MIL-HDBK-881A served as a guide to organize the mobility subsystems and 
lower level components. 


Table 7.1-19 identifies an initial example of notional IFV mobility subsystem components and 
properties. Figure 7.1-13 illustrates an example of a notional IFV PBS with affiliated product 
design properties using a reference architecture design archetype. For example, initial 
properties are identified for acceleration (dash speed), center of gravity, deceleration 
(retardation), ground clearance, cruising range, turning radius, and velocity (speeds for cross 
country and highway travel) at the notional IFV level. 
 


Table 7.1-19.  Initial Example of Mobility Components and Properties 


 Subsystem 


Property 
Unit of 


Measure Power Package/Power Train Steering & Braking Suspension 


  Component 


  Engine 
Power Transport 
(Transmission)   


Power hp (kW) x x   


Torque lb-ft (N-m) x x   


Dimensions/Space 
Claim 


(h x w x l) 


in (mm) x  


in (mm) x  


in (mm) 


x x   


Weight lbs (kg) x x   
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Figure 7.1-13.  Notional IFV Reference Architecture Components and Properties 


 
Table 7.1-20, Table 7.1-21, Table 7.1-22, and Table 7.1-23 provide further details on mobility 
subsystem components and properties to be taken into consideration when further developing 
the ARRoW design engineering and analysis tools for a notional IFV. 


Table 7.1-20. Power Package/Power Train Subsystem Components and Properties 


 Subsystem 1
st


 Tier Components 


Property Unit of Measure 
Power Package/ 


Power Train Engine Power Transport 


Lower Level Components    Transmission, 
Torque Converter, 


Clutch, 


Shaft Assembly, 


Differential, 


Final Drive, 


Power Take-Off 


Type Various x Size X.X 
(Inline/V/Rotary) 


# cylinders 


x 


Power hp (kW) x x x 
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 Subsystem 1
st


 Tier Components 


Property Unit of Measure 
Power Package/ 


Power Train Engine Power Transport 


Gross Input Power (Max) hp (kW)   x 


Gross Net Power (Max) hp (kW)   x 


Torque lb-ft (N-m) x x x 


Gross Input Torque (Max) lb-ft (N-m)   x 


Gross Net Torque (Max) lb-ft (N-m)   x 


Dimensions  


(h x w x l) 


in (mm) x  


in (mm) x  


in (mm) 


x x x 


Weight lbs (kg) x x x 


Rate Speed min-max rpm x x x 


Bore x Stroke (dia x dist) in (mm) x in (mm) x x  


Displacement cid (cc) x x  


Materials Various x x x 


Cost $ x x x 


Mounting list of connections x x x 


Orientation   x x x 


Gearing # of speeds x  x 


Fwd Speeds # of speeds x  x 


Rwd Speeds # of speeds x  x 


Drive Selection All Wheel, 
Selective, Full time 


x  x 


Power Takeoff (PTO)   x  x 


 


Table 7.1-21.  Steering & Braking Subsystem Components and Properties 


 Subsystem 1
st


 Tier Components 


Property 
Unit of 


Measure 
Steering & 


Braking Steering Gears Brakes 


Rudder 
Thrust 


Devices 
Trim 


Vanes 


Type  x     


Brake Power hp (kW)      
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 Subsystem 1
st


 Tier Components 


Property 
Unit of 


Measure 
Steering & 


Braking Steering Gears Brakes 


Rudder 
Thrust 


Devices 
Trim 


Vanes 


Dimensions  


(h x w x l) 


in (mm) x  


in (mm) x  


in (mm) 


x     


Weight lbs (kg) x     


Materials Various x     


Cost $ x     


Mounting list of 
connections 


x     


Orientation   x     


 


Table 7.1-22.  Suspension Subsystem Components & Common Properties 


Suspension Subsystem Components & Common Properties 


 Subsystem 1
st


 Tier Components 


Property 
Unit of Measure or 


Description Suspension 
Springs & 
Dampers Wheels Tracks Skirts 


Lower Level Components   Shock 
Absorbers, 


Torsion Bars, 


Struts 


   


Type Various x x x x x 


Dimensions – Space 
Occupied 


(h x w x l) 


in (mm) x  


in (mm) x  


in (mm) 


x x x x x 


Weight lbs (kg) x x x x x 


Materials Various x x x x x 


Cost $ x x x x x 


Mounting list of connections x x x x x 


Orientation Forward, Rear, 
Center, Left Right, 
Top, Bottom  


x x x x x 
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Table 7.1-23.  Suspension Subsystem Component Unique Properties 


Suspension Subsystem Component Unique Properties [WS11] 


 Subsystem 1
st


 Tier Components 


Property Unit of Measure or 
Description 


Suspension Springs & 
Dampers 


Wheels Tracks Skirts 


Spring Rate  x x    


1) Used to isolate vehicle from terrain 


2) A ratio used to measure how resistant a spring is to being compressed or expanded during the spring's 
deflection 


Wheel Rate  x     


The effective spring rate when measured at the wheel 


Roll Couple %  x     


1) The effective wheel rate, in roll, of each axle of the vehicle as a ratio of the vehicle's total roll rate.  


2) Critical in accurately balancing the handling of a vehicle.  


3) Commonly adjusted through the use of anti-roll bars, but can also be changed through the use of 
different springs. 


Weight Transfer  x     


1) The total amount of weight transfer is affected by four factors: the distance between wheel centers 
(wheelbase in the case of braking, or track width in the case of cornering) the height of the center of 
gravity, the mass of the vehicle, and the amount of acceleration experienced. 


2) The speed at which weight transfer occurs as well as through which components it transfers is complex 
and is determined by many factors including but not limited to roll center height, spring and damper rates, 
anti-roll bar stiffness and the kinematic design of the suspension links. 


3) Weight transfer during cornering, acceleration or braking is usually calculated per individual wheel and 
compared with the static weights for the same wheels. 


Unsprung Wgt Xfer  x     


Unsprung weight transfer is calculated based on the weight of the vehicle's components that are not 
supported by the springs. This includes tires, wheels, brakes, spindles, half the control arm's weight and 
other components. These components are then (for calculation purposes) assumed to be connected to a 
vehicle with zero sprung weight. They are then put through the same dynamic loads. The weight transfer 
for cornering in the front would be equal to the total unsprung front weight times the G-Force times the 
front unsprung center of gravity height divided by the front track width. The same is true for the rear. 


Sprung Wgt Xfer  x     
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Suspension Subsystem Component Unique Properties [WS11] 


 Subsystem 1
st


 Tier Components 


Property Unit of Measure or 
Description 


Suspension Springs & 
Dampers 


Wheels Tracks Skirts 


Sprung weight transfer is the weight transferred by only the weight of the vehicle resting on the springs, 
not the total vehicle weight. Calculating this requires knowing the vehicle's sprung weight (total weight 
less the unsprung weight), the front and rear roll center heights and the sprung center of gravity height 
(used to calculate the roll moment arm length). Calculating the front and rear sprung weight transfer will 
also require knowing the roll couple percentage. 


The roll axis is the line through the front and rear roll centers that the vehicle rolls around during 
cornering. The distance from this axis to the sprung center of gravity height is the roll moment arm length. 
The total sprung weight transfer is equal to the G-force times the sprung weight times the roll moment 
arm length divided by the effective track width. The front sprung weight transfer is calculated by 
multiplying the roll couple percentage times the total sprung weight transfer. The rear is the total minus 
the front transfer. 


Jacking Forces  x     


Jacking forces are the sum of the vertical force components experienced by the suspension links. The 
resultant force acts to lift the sprung mass if the roll center is above ground, or compress it if 
underground. Generally, the higher the roll center, the more jacking force is experienced. 


Travel  x     


Travel is the measure of distance from the bottom of the suspension stroke (such as when the vehicle is 
on a jack and the wheel hangs freely) to the top of the suspension stroke (such as when the vehicle's 
wheel can no longer travel in an upward direction toward the vehicle). 


Damping  x x    


Damping is the control of motion or oscillation, as seen with the use of hydraulic gates and valves in a 
vehicles shock absorber. This may also vary, intentionally or unintentionally. Like spring rate, the optimal 
damping for comfort may be less than for control. 


Damping controls the travel speed and resistance of the vehicle's suspension. An undamped car will 
oscillate up and down. With proper damping levels, the car will settle back to a normal state in a minimal 
amount of time. Most damping in modern vehicles can be controlled by increasing or decreasing the 
resistance to fluid flow in the shock absorber. 


Camber Control  x     


Camber changes due to wheel travel, body roll and suspension system deflection or compliance. In 
general, a tire wears and brakes best at -1 to -2° of camber from vertical. Depending on the tire and the 
road surface, it may hold the road best at a slightly different angle. Small changes in camber, front and 
rear, can be used to tune handling. Some race cars are tuned with -2~-7° camber depending on the type 
of handling desired and the tire construction. Oftentimes, too much camber will result in the decrease of 
braking performance due to a reduced contact patch size through excessive camber variation in the 
suspension geometry. The amount of camber change in bump is determined by the instantaneous front 
view swing arm (FVSA) length of the suspension geometry, or in other words, the tendency of the tire to 
camber inward when compressed in bump. 


Roll Center Height  


 


x     
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Suspension Subsystem Component Unique Properties [WS11] 


 Subsystem 1
st


 Tier Components 


Property Unit of Measure or 
Description 


Suspension Springs & 
Dampers 


Wheels Tracks Skirts 


This is important to body roll and to front to rear roll stiffness distribution. However, the roll stiffness 
distribution in most cars is set more by the antiroll bars than the RCH. The height of the roll center is 
related to the amount of jacking forces experienced. 


Instant Center  x     


Due to the fact that the wheel and tire's motion is constrained by the suspension links on the vehicle, the 
motion of the wheel package in the front view will scribe an imaginary arc in space with an ―instantaneous 
center" of rotation at any given point along its path. The instant center for any wheel package can be 
found by following imaginary lines drawn through the suspension links to their intersection point. 


Anti-Dive & Anti Squat  x     


Anti-dive and anti-squat are percentages and refer to the front diving under braking and the rear squatting 
under acceleration. They can be thought of as the counterparts for braking and acceleration as jacking 
forces are to cornering. The main reason for the difference is due to the different design goals between 
front and rear suspension, whereas suspension is usually symmetrical between the left and right of the 
vehicle. 


Flexibility & Vibration 
Modes of Suspension 
Element 


 x     


In modern cars, the flexibility is mainly in the rubber bushings. For high-stress suspensions, such as off-
road vehicles, polyurethane bushings are available, which offer far more longevity under greater stresses. 


Isolation from High 
Frequency Shock 


 x     


For most purposes, the weight of the suspension components is unimportant, but at high frequencies, 
caused by road surface roughness, the parts isolated by rubber bushings act as a multistage filter to 
suppress noise and vibration better than can be done with only the tires and springs. (The springs work 
mainly in the vertical direction.) 


Contribution to Unsprung 
Wgt and Total Wgt 


 x     


These are usually small, except that the suspension is related to whether the brakes and differential(s) 
are sprung. 


Force distribution  x     


The suspension attachment must match the frame design in geometry, strength and rigidity. 


Air Resistance (drag)  x x x x x 


Certain modern vehicles have height adjustable suspension in order to improve aerodynamics and fuel 
efficiency. And modern formula cars, that have exposed wheels and suspension, typically use 
streamlined tubing rather than simple round tubing for their suspension arms to reduce drag. Also typical 
is the use of rocker arm, push rod, or pull rod type suspensions, that among other things, places the 
spring/damper unit inboard and out of the air stream to further reduce air resistance. 
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7.1.1.8.3  Notional IFV Use Case and Behavioral Analyses  


The section contains notional IFV use case and behavioral views used to develop ARRoW 
design and analysis tools. This section also identifies and describes the actors associated with 
IFV use cases. 


Example Breadth of Notional IFV Mounted Operations Use Cases 


Figure 7.1-14 illustrates a breadth of use case examples and affiliated actors for IFV Mounted 
Operations. The example set of mounted operations use cases includes:  


 Startup and shutdown of an IFV by an IFV crew member  


 Manage IFV power by an IFV crew member  


 Control vehicle movement and maneuver a mounted infantry squad by the driver 
and/or squad member 


 Command & control the IFV operations by the vehicle commander, squad leader, or 
squad member 


 Deliver IFV effects by the vehicle commander or gunner 


 Exploit IFV intelligence, surveillance, and reconnaissance ISR/situation awareness (SA) 
by the vehicle commander or gunner 


 Communicate with operational nodes by the vehicle commander  


 Sustain the IFV by a mechanic 
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Figure 7.1-14.  Notional IFV Mounted Operations Use Cases Diagram 
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Actors 
Figure 7.1-15 illustrates an example set of actors affiliated with the happy path, design limit 
and safety testing, and bad day testing for IFV operations. The set of actors that interact with 
the IFV range from mounted squad members, dismounted squad members, vehicle crew 
members to other vehicles and personnel that could be in proximity to the IFV operations. 


 


Figure 7.1-15.  Notional IFV Actors Diagram 
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Table 7.1-24 provides example descriptions for each of the actors that could be affiliated with 
the happy path, performance envelope, and bad day testing for IFV operations. 


Table 7.1-24. Example Actor Descriptions 


Actor Name Description 


IFV Personnel Represents all IFV crew members and mounted squad members. 


IFV Crew Represents all IFV crew member roles of vehicle commander, gunner, or 
driver. 


Vehicle Commander Represents the IFV crew member commanding the overall operations 
and use of the IFV. The Vehicle Commander issues commands to the 
driver for IFV movement and maneuver and ramp operations, and the 
gunner for weapon operations and target engagement and intelligence, 
surveillance, and reconnaissance operations. 


Gunner Represents the IFV crew member operating an infantry support weapon 
such as a main gun/cannon, secondary gun/machine gun, anti-tank 
guided missile launcher, or automatic grenade launcher,  


Driver Represents the IFV crew member operating the IFV for movement and 
maneuver, and ramp operations. 


Squad Members Represents all squad positions/roles of squad leader, fire team leader, 
rifleman, automatic rifleman, grenadier, or designated marksman. 


Mounted Squad Members Represents all squad positions/roles of squad leader, fire team leader, 
rifleman, automatic rifleman, grenadier, or designated marksman while 
being transported in a personnel carrying vehicle. 


Mounted Squad Leader Represents the first-line supervisor in an enlisted individual's chain of 
command while being transported in a personnel carrying vehicle. The 
Squad Leader is in command of the squad and issues orders to Fire 
Team Leaders. This individual is responsible for the daily activities that 
an individual performs, to include any career-mandated training. 
Ultimately, this individual becomes a mentor, trainer, role model, and 
supervisor all in one. 


Left Side Squad Members Represents all squad positions/roles of squad leader, fire team leader, 
rifleman, automatic rifleman, grenadier, or designated marksman while 
being transported on the left side of a personnel carrying vehicle. 


Right Side Squad Member Represents all squad positions/roles of squad leader, fire team leader, 
rifleman, automatic rifleman, grenadier, or designated marksman while 
being transported on the right side of a personnel carrying vehicle. 


Dismounted Squad Members Represents all squad positions/roles of squad leader, fire team leader, 
rifleman, automatic rifleman, grenadier, or designated marksman while 
dismounted from a personnel carrying vehicle. 


Dismounted Squad Leader Represents the first-line supervisor in an enlisted individual's chain of 
command when dismounted from a personnel carrying vehicle. Same 
responsibilities as the mounted squad leader 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 88 Refer to cover page for Distribution Statement. 


Actor Name Description 


Mechanic Represents all maintenance personnel tasked to perform organizational 
or higher level organizational maintenance on the IFV and that could be 
in close proximity to IFV ramp assembly operations. 


Personnel Not Clear of the 
Vehicle 


Represents all personnel types that could be in close proximity to IFV 
ramp assembly operations. Includes: crew members, mounted squad 
members, dismounted squad members, maintainers, etc. 


Cbt Vehicles Represents all vehicle types that could be in close proximity to IFV ramp 
assembly operations. Includes: combat vehicles (e.g., IFV), combat 
support vehicles (e.g., engineer), and combat service support vehicles 
(e.g., medical, ammunition, maintenance). 


 


Definitions for Ramps, Doors, Hatches 


A ramp is an inclined vehicle egress/ingress pathway that connects the infantry fighting 
vehicle squad/payload compartment with the ground surface. Ramps and hatches pivot on a 
horizontal or near horizontal axis while doors pivot on a vertical or near vertical axis. Hatches 
are incorporated on the top and/or bottom of a frame/hull primarily to provide egress/ingress 
to a crew/operator position and for emergency exits. Doors are incorporated on the sides of 
vehicle hull/frame to provide access to vehicle position and/or equipment, egress/ingress, 
and/or upload and offload of cargo and supplies. A Ramp is incorporated into the vehicle 
hull/frame to provide a continuous path way from the vehicle to the ground for upload and 
offload of personnel, cargo, and/or supplies. 


 


Operate Ramp Use Cases Diagram 


Initial IFV ramp assembly use case and behavioral analyses provided doctrinal operational 
context (e.g., dismount/mount warriors side-by-side, after a fully opened ramp). Subsequent 
use case and behavioral analyses (e.g., dismount/mount warriors side-by-side while the ramp is 
in motion) was provided to determine the operational impacts on ramp assembly design limits. 
Figure 7.1-16 illustrates Operate Ramp use cases that were used to develop ARRoW design 
and analysis tools and assist in developing an optimal fault tolerant cost effective IFV Ramp 
assembly design: 


 A happy path/doctrinal ramp operations use case where the ramp completes lowering 
before the squad dismounts 


 A use case where the infantry squad dismounts while the ramp is moving to determine 
design limits, safety qualify, or exercise bad day operations  


These views also served to develop and analyze IFV ramp design alternatives for quarterly 
demonstrations. 
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Figure 7.1-16.  Example Operate IFV Ramp Use Cases Diagram 


 


Example Details on Operate Ramp Use Case 


Figure 7.1-17 illustrates example details on the Operate Ramp use case for consideration in 
detailed design activities for the Ramp assembly. Example details on the Operate Ramp use 
case includes: 


 Stopping and parking the vehicle before ramp operations 


 Observing clearance to the rear of the vehicle 


 Sounding audio alarm before operating the ramp 


 Turning on master power 


 Removing the loads on/tension off the moving parts of the ramp, 


 Releasing the ramp lock and unlocking the ramp 


 Lowering and reversing the direction of the ramp motion 
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Figure 7.1-17.  Example Details On Operate Ramp Use Case 


 


Operate Ramp before Squad Dismounts Activity and Interaction Diagrams 


Figure 7.1-18 illustrates the activities and Figure 7.1-19 illustrates the interactions for the 
Operate Ramp before Squad Dismounts use case. 
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Figure 7.1-18.  Operate Ramp before Squad Dismounts Activity Diagram 
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Figure 7.1-19.  Operate Ramp before Squad Dismounts Interaction Diagram 
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Operate Ramp while Squad Dismounts Activity and Interaction Diagrams 


Figure 7.1-20 illustrates the activities and Figure 7.1-21 illustrates the interactions for the 
Operate Ramp while Squad Dismounts use case. 


 


Figure 7.1-20.  Operate Ramp while Squad Dismounts Activity Diagram 
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Figure 7.1-21.  Operate Ramp while Squad Dismounts Interaction Diagram 
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7.1.1.9 IFV Reference Architecture SysML Model 


A SysML model of an Infantry Fighting Vehicle (IFV) reference architecture was created (a 
reference architecture is a kind of design archetype). An automated report generated from the 
MagicDraw® SysML model is provided in an accompanying reference document. Its filename 
is ―IFVRefArchStructuralReport.rtf‖. 


7.1.2 ARRoW Architecture 


This section describes the ARRoW architecture developed for META phase 1b. This 
architecture was influenced by, and developed to be consistent with, the analytical foundation 
described in section 7.1.1 above. 


7.1.2.1 Archetypes 


The ARRoW architecture fundamentally depends on the pervasive use of a variety of 
archetypes. This section introduces the subject of archetypes and describes in detail some of the 
specific archetypes used in the ARRoW architecture. 


An archetype is ―the original pattern or model from which all things of the same kind are 
copied or on which they are based; a model or first form; prototype.‖ [DC11] 


Archetypes are foremost created for the purpose of reuse. Because they are intended to be reused, 
archetypes are generally stored in the CML so that they can be easily discoverable and 
available for application on multiple projects. Archetypes are generally copied from the CML 
into the Master Model, and are then refined into a form, either manually or through 
automation techniques, specific to the system-of-interest being developed. 


7.1.2.1.1 Benefits of Archetypes 


A number of benefits can be realized through the use of archetypes: 


1. Once an archetype is developed, significant development time can be saved through 
its reuse. If the archetype is properly constructed, the time and effort required to 
refine the archetype into an instance specific to the new application will be much less 
than creating it from scratch. 


2. Proven concepts, best practices, and accredited approaches can be designed into the 
archetypes so that designs conforming to institutional quality standards can 
confidently be applied to new projects. 


3. Using principles of model based engineering, relationships between archetype 
elements can be pre-allocated in the CML and these relationships can then be reused 
when imported into the master model. Because the analysis required to derive and 
define these relationships can frequently be significant, the reuse of these 
relationships can be a significant system analysis time-saver. Examples include: 


a. Hierarchal ―product structure‖ containment relationships, supporting 
reference architecture reuse of entire systems and subsystems. 


b. ―White-box‖ pre-allocation of test cases and requirements to design 
components, supporting automated verification of designs.  


c. Groupings of requirements (requirement sets) related to MIL-STDs, System 
Performance Specifications, system capabilities, common design constraints, 
best practice design standards, etc. 


d. Programmatic performance metrics linked to both producers and consumers 
of the data. 
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4. Archetypes can provide a base architecture and associated templates that are 
conducive to automation techniques. Examples include: 


a. Assumption-Guarantee Contracts (Requirement Archetypes) 
b. Requirement Specification Languages (RSLs) (Requirement Archetypes) 
c. Natural Language Interpreters (Requirement Archetypes) 
d. Various Reasoners (Test Case, Analysis Archetypes) 


7.1.2.1.2 Requirements and Requirement Archetypes 


Requirements have been traditionally expressed in the form of natural language text, and have 
historically been delivered to developers of systems in the form of specification documents that 
are comprised of multiple requirements. 


In recent years, advances in requirement management tools have supported the treatment of 
requirements as records in a central relational database. This approach has facilitated improved 
methods of managing relationships between requirements and other requirements, 
relationships between requirements and specific elements of the design, and relationships 
between requirements and test procedures/test result reports. Additionally, customizable 
metadata can be attached to requirements using these tools. These tools frequently provide the 
capability to import from/export to electronic document formats such as MS Word® for 
compatibility with legacy methods of managing requirements. Examples of such tools include 
IBM Rational® RequisitePro®[IBM11b], IBM® Rational® DOORS®[IBM11a], and 
Cameo™ Requirements+[MD11]. 


SysML provides support for documenting requirements, their associated relationships, and 
customizable metadata as well. Although today‘s SysML authoring tools tend to be somewhat 
primitive in terms of requirements authoring and management capability, the SysML language 
itself provides the underlying essential semantics needed to describe requirements and their 
relationships with the system of interest. We have chosen to use SysML as the common 
language for documenting requirements within the ARRoW environment because of its 
standardization and ubiquity. Many of today‘s SysML authoring tools provide plug-ins and/or 
data exchange capability with multiple high-end requirements management tools, so the best of 
both worlds (standard underlying model and powerful requirements management) can be 
achieved using SysML.   


When we refer to the ―ingestion‖ of requirements into ARRoW, we mean the process of 


 Importing the source requirements into the ARRoW master model 


 If necessary, translating the requirements from their native format into the SysML 
language. 


After requirements are ingested, they must be processed (―digested‖) to be usable in the 
ARRoW environment. This involves 


 Binding the requirements to the appropriate master model elements 


 Associating and updating any desired metadata with the requirements 


 If appropriate, translating the text of the requirements into a form more suitable to 
being processed within the ARRoW environment 


The source requirements that are ingested and processed are generally associated with the 
system level of the system of interest rather than lower order subsystems and components of 
the system. The ultimate manifestation of the ARRoW concept would ideally eliminate the 
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need for all but system level requirements, instead supporting only a hierarchy of test cases 
against the design that culminate in verification of the system requirements. In fact, there is 
nothing in the ARRoW concept that depends on lower level requirements existing or being 
verified, per se. However, there will likely be needs outside of the ARRoW environment that 
will impose a required capability of ARRoW to support a hierarchal structure of requirements 
and automated verification techniques below the system level. Some of these needs include: 


 Not all elements of the system, at least initially, will lend their complete design to 
ARRoW and/or their implementation by iFAB. Examples include the development of 
needed software components (SW development is not yet a part of ARRoW), new 
technology requiring hands-on experimentation with hardware, safety critical systems 
where bodies within the government may insist on development and test procedures 
outside the scope of ARRoW, or simply dependency on suppliers not yet integrated into 
the ARRoW/iFAB environment. In each of these cases, it may be necessary to develop 
requirements (natural language or otherwise) that are formally imposed on an 
organization for development of a portion of the system of interest. These requirements 
will need to be derived from the system requirements. 


 For the purposes of project and design management, it may be desirable to have ―watch 
points‖ interspersed at lower levels within the system design that can notify the 
developer if certain limits are exceeded. These watch points need not be formal 
requirements, but can be of identical form to requirements, including the manner in 
which they interact with the verification mechanics of ARRoW. Examples of useful 
watch points might be weight budgets, cost budgets, message latencies, etc. 


 Trade studies can be automated within ARRoW to compare the relative utility of 
alternative designs residing at arbitrary levels within the system product structure. 
Requirements can be used to support the analysis of multiple criteria used to assess 
these alternatives. Requirements in the ARRoW master model are generally verified by 
comparing test results to an expected value or characteristic described in the 
requirement. The verdict resulting from this comparison can be binary in nature 
(pass/fail), or it can be the output of a utility function whose input domain is a test 
result value and whose output is a score that grades (continuously or discretely) across a 
range from ―no effective utility‖ to ―maximum possible utility‖. Thus, the standard 
mechanism for verifying requirements can be used to analyze trade study criteria as 
well. 


 Subsystems and components will eventually reside in the CML, and should have 
performance specifications associated with them in some form to aid in the proper 
selection of elements from the CML. These specifications should be in the form of 
requirements to best interface with the ARRoW tool chain. These requirements may or 
may not be in the form of assumption-guarantee contracts, but as identified in the 
contracts approach, simulation processing time can be saved if the system can be 
analyzed based on the guaranteed performance of a system‘s components instead 
needing to simulate the behavior of all of its components. 


Since the processing of requirements (system-level or derived lower-level) can involve a 
significant amount of analysis and documentation effort, they are prime candidates for 
improvement within the development paradigm of ARRoW. To that end, we propose the 
concept of ―Requirement Archetypes‖ (RAs). 
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RAs are patterns for requirements of like types. Requirements are refined from RAs within 
ARRoW. The process of refinement generally involves copying the RA from the CML, 
modifying the archetype pattern to make it a requirement specific to the system of interest 
being developed, and associating the refined requirement (either directly or indirectly) with the 
source requirement. RAs exist in the CML in two major forms: 1) they are pre-allocated to 
design components and to their corresponding test case archetypes such that the act of 
importing designs or design archetypes from the CML into the master model will also import 
the associated RAs, and 2) they are grouped into Requirement Archetype Sets (RASs) that are 
logical groupings of RAs that are associated with typical functions, capabilities, or constraints 
of systems that might be developed. Examples of grouping criteria for RASs might be sample 
performance specifications (composed of RAs, not requirements), RAs grouped by associated 
MIL-STDs, functional groupings such as heavy combat vehicle mobility RAs, etc. 


The process of copying RAs into the master model involves the use of both of these forms. 
Candidate RASs can be imported by doing keyword searches based on source requirements‘ 
subject matter. Likewise, candidate design archetypes and their associated RAs can also be 
imported based on similar keyword searches. Once both of these RA forms are in the master 
model, they are compared as an aid to determine if there are missing source requirements or 
missing requirements allocated to the design. 


Note that to the extent that source requirements provided by the customer conform to the 
existing scope and form of RASs already in the CML, the requirements analysis effort needed 
for the new system of interest can be greatly simplified. 


Requirements and RAs are of identical form and can have similar associations with other 
master model elements, but generally differ in the values assigned to their metadata (although 
in some cases, RAs may exist in the CML that are fully refined to requirements). An example of 
a requirement archetype is shown in Figure 7.1-22.  


 


Figure 7.1-22.  Sample Requirement Archetype with Metadata 


 


An RA is a SysML «requirement» model element from which new stereotypes can be derived 
to provide additional metadata that may be of use in managing the requirement. Each SysML 
«requirement» minimally has an ―Id‖ and a ―Text‖ field. The Id is a project unique identifier for 
the requirement. The Text is the actual body of the requirement. 
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RAs are patterns for requirements. They can include additional metadata for suggested use 
(such as that shown in Figure 7.1-22), they can be pre-allocated to elements in the CML 
(including other RAs, design components, and test case archetypes), and the value of their Text 
field can also be of a form that is a pattern for general use. 


The nature of the RA or requirement text can take on many forms based on the type of 
requirement involved, including references to non-textual model elements. Just a few examples 
include: 


 References to Use Case or Sequence Diagram based required behavior 


 Assumption-Guarantee Contracts boilerplate 


 Formal Requirements Specification Language (RSL) boilerplate 


 Languages facilitating Qualitative/Quantitative Reasoners 


 Three-dimensional Physical Envelope Constraints 


 Operational requirements stated in a way that invites proper construction of appropriate 
dynamic, multi-physics based Operational Virtual Prototype simulations 


 Performance Requirements that lend themselves to parametric descriptions 


Examples of how this last bullet can be provided in archetype form and then refined to specific 
infantry fighting vehicle requirements is shown in Table 7.1-25. 


Table 7.1-25. Sample Requirement Archetype Text 


Topic Archetype IFV Refinement Examples 


Mobility Requirement Archetype Set 


Dash Speed 


 


The <subject> shall accelerate from <X1> to 
<X2> kph in not more than <Y> sec on 
<Terrain type> at a <Z> degree slope 


The <IFV> shall accelerate from <0> to <80> 
kph in not more than <25> secs on <primary 
roads> at a <0> degree slope.  


   The <IFV> shall accelerate from <0> to <45> 
kph in not more than <25> secs on <cross-
country terrain> at a <0> degree slope.  


Speeds 


 


The <subject> shall attain <Direction> speed 
of not less than <X> kph on <Terrain> at a <Z> 
degree slope 


The <IFV> shall attain <forward> speed of not 
less than <80> kph on <primary roads> at a 
<0> degree slope.  


   The <IFV> shall attain <rearward> speed of 
not less than <16> kph on <primary roads> at 
a <0> degree slope.  


   The <IFV> shall attain <forward> speed of not 
less than <45> kph on <cross-country terrain> 
at a <0> degree slope.  


   The <IFV> shall attain <rearward> speed of 
not less than <5> kph on <cross-country 
terrain> at a <0> degree slope.  
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Topic Archetype IFV Refinement Examples 


   The <IFV> shall attain <objective forward> 
speed of not less than <80> kph on <primary 
roads> at a <0> degree slope.  


   The <IFV> shall attain <threshold forward> 
speed of not less than <30> kph on <primary 
roads> at a <0> degree slope.  


 The <subject> shall attain <Direction> speed 
within and including the endpoints of the 
range from <X1> to <X2> kph on <Terrain> at 
a <Z> degree slope 


The <IFV> shall attain <forward> speed within 
and including the endpoints of the range from 
<30> to <80> kph on <primary roads> at a <0> 
degree slope.  


   The <IFV> shall attain <rearward> speed 
within and including the endpoints of the 
range from <8> to <16> kph on <primary 
roads> at a <0> degree slope.  


   The <IFV> shall attain <forward> speed within 
and including the endpoints of the range from 
<30> to <45> kph on <cross-country terrain> 
at a <0> degree slope.  


   The <IFV> shall attain <rearward> speed 
within and including the endpoints of the 
range from <5> to <8> kph on <cross-country 
terrain> at a <0> degree slope.  


Turning Radius The <subject> shall turn <Bearing1> or 
<Bearing2> <X> degrees within <Y.Y> times 
the vehicle diagonal length <Z.Z> m 


The <IFV> shall turn <left> or <right> <360> 
degrees within <1.0> times the vehicle 
diagonal length <7.5> m. 


Energy 
Efficiency 


The <subject> shall consume not greater than 
<X.XX> KPL at <Y> kph on <Terrain Type> at a 
<Z> degree slope 


The <IFV> shall consume not greater than 
<0.32-0.95> KPL at <48> kph on <primary 
roads> at a <0> degree slope. 


Climb Obstacle The <subject> shall climb obstacles at a 
height not less than <X.X> m 


The <IFV> shall climb obstacles at a height not 
less than <1.5> m. 


Cross Gap The <subject> cross trenches at a width not 
less than <X.X> m 


The <IFV> shall cross trenches at a width not 
less than <1.5> m. 


Fording The <subject> shall ford water at a depth not 
less than <X.X> m. 


The <IFV> shall ford water at a depth not less 
than <1.5> m. 


Cruising Range The <subject> shall travel on internally 
carried fuel for no less than <X> km at <Y> 
kph average sustained speed on <Terrain 
type>. 


The <IFV> shall travel on internally carried 
fuel for no less than <480> km at <45> kph 
average sustained speed on <primary roads>. 


Personnel Capacity Requirement Archetype Set 
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Topic Archetype IFV Refinement Examples 


Personnel 
Capacity 


The <subject> shall be sized for a <Personnel 
Organization type> of <X> soldiers. 


The <IFV> shall be sized for a <crew> of <2> 
soldiers. 


   The <IFV> shall be sized for a <crew> of <3> 
soldiers. 


   The <IFV> shall be sized for a <squad> of <6> 
soldiers. 


   The <IFV> shall be sized for a <squad> of <9> 
soldiers. 


Physical Characteristics Requirement Archetype Set 


Weight The <subject> <Weight type> shall be not 
greater than <X.X> tonnes 


The <IFV> <air shipping weight> shall be not 
greater than <45.0> tonnes. 


   The <IFV> <curb weight> shall be not greater 
than <50.0> tonnes. 


   The <IFV> <maximum combat weight> shall 
be not greater than <55.5> tonnes. 


 


 


The <IFV> <transport dimensions> shall be 
not greater than height <3.0> m, width <2.7> 
m, and length <6.3> m. 


Dimensions 


 


 The <subject> <Dimension type> shall be not 
greater than height <X.X> m, width <Y.Y> m, 
and length <Z.Z> m 


The <IFV> <operational dimensions> shall be 
not greater than height <4.0> m, width <3.3> 
m, and length <6.8> m. 


Ground 
Clearance 


The <subject> <Orientation> ground 
clearance type shall be not less than <X.X> m 


The <IFV> <front> ground clearance shall be 
not less than <0.45> m. 


   The <IFV> <rear> ground clearance shall be 
no less than <0.4> m. 


Ramp Angle 
Clearance 


The <subject> <Ramp Angle Clearance type> 
shall be not less than <X.X> degrees 


The <IFV> <Angle of Approach> shall be not 
less than <75> degrees. 


   The <IFV> <Angle of Departure> shall be not 
less than <50> degrees. 


Transportability Requirement Archetype Set 


Airlift Cargo 
Dimension 
Limits 


 The <subject> shall comply with <Airlift asset 
type> cargo transportability dimension limits 
of height <X.X> m at width <Y.Y> m, width 
<Y.Y> m, and length <Z.Z> m. 


The <IFV> shall comply with <C-17> cargo 
transportability dimension limits of height 
<3.6> m at width <5.2> m, width <5.2> m, and 
length <19.9> m. 
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Topic Archetype IFV Refinement Examples 


   The <IFV> shall comply with <C-17> cargo 
transportability dimension limits of height 
<3.9> m at width <4.3> m, width <4.3> m, and 
length <19.9> m. 


   The <IFV> shall comply with <C-5> cargo 
transportability dimension limits of height 
<2.7> m at <5.4> m width, width <5.4> m, and 
length <36.9> m. 


   The <IFV> shall comply with <C-5> cargo 
transportability dimension limits of height 
<3.9> m at <3.6> m width, width <3.6> m, and 
length <36.9> m. 


   The <IFV> shall comply with <C-130> cargo 
transportability dimension limits of height 
<2.6> m at width <2.7> m, width <2.7> m, and 
length <16.8> m. 


Raillift Cargo 
Dimension 
Limits 


The <subject> shall comply with <Raillift asset 
type> cargo transportability dimension limits 
of height <X.X> m at width <Y.Y> m, width 
<Y.Y> m, and length <Z.Z> m. 


The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <4.37> m at width <1.26> m, 
width <1.26> m, and length <15.30> m. 


    The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <4.25> m at width <1.85> m, 
width <1.85> m, and length <15.30> m. 


    The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <4.15> m at width <2.17> m, 
width <2.17> m, and length <15.30> m. 


    The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <3.91> m at width <2.60> m, 
width <2.60> m, and length <15.30> m. 


    The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <3.49> m at width <3.04> m, 
width <3.04> m, and length <15.30> m. 


    The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability dimension 
limits of height <3.25> m at width <3.15> m, 
width <3.15> m, and length <15.30> m. 
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Topic Archetype IFV Refinement Examples 


Militarylift 
Cargo Weight 
Limit 


The <subject> shall comply with <Militarylift> 
cargo transportability weight limit of <X.X> 
tones. 


The <IFV> shall comply with <C-17> cargo 
transportability weight limit of <58.9> tonnes. 


   The <IFV> shall comply with <C-5> cargo 
transportability weight limit of <80.7> tonnes. 


   The <IFV> shall comply with <C-130> cargo 
transportability weight limit of <19.5> tonnes. 


   The <IFV> shall comply with <NATO Rail M 
Envelope> cargo transportability weight limit 
of <70> tonnes. 


Survivability Requirement Archetype Set 


Threat 
Munition 
Protection 


The <subject> shall protect against <Threat 
type> munitions. 


The <IFV> shall protect against <14.5 mm 
machine gun> munitions. 


    The <IFV> shall protect against <RPG-7> 
munitions. 


Vehicle Threat 
Protection 


The <subject> shall provide <Vehicle Amount 
type> protection against <Threat type> 
munitions 


The <IFV> shall provide <360 degree> 
protection against <Threat type> munitions. 


    The <IFV> shall provide <crew compartment> 
protection against <Threat type> munitions. 


    The <IFV> shall provide <engine 
compartment> protection against <Threat 
type> munitions. 


    The <IFV> shall provide <weapon 
compartment> protection against <Threat 
type> munitions. 


    The <IFV> shall provide <squad 
compartment> protection against <Threat 
type> munitions. 


 


Figure 7.1-23 and Figure 7.1-24 provide examples of how two additional classes of 
requirements might be categorized and how they might share a common verification approach 
within each category. Although we have not yet constructed requirement archetypes for these 
categories, it can be seen that the dramatically different forms of respective verification might 
invite RA patterns that can be optimally expressed to relate to the corresponding most 
appropriate test cases. 


 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 104 Refer to cover page for Distribution Statement. 


 


Figure 7.1-23.  Physical Envelope Verification 


 


 


Figure 7.1-24.  Operational Virtual Prototype Verification 
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7.1.2.1.3 Test Cases and Test Case Archetypes 


Refer to section 7.1.2.6 for additional information relating to the ARRoW entities that interact 
with Test Cases and Test Case Archetypes, including diagrams related to this topic. 


Within the scope of ARRoW, a Test Case (TC) is defined to be an executable that configures 
and orchestrates the test of, and stimulates the inputs of a Design Component (DC) for the 
purpose of verifying one or more requirements levied against that DC or a product structure 
parent of that DC. 


The DC has a corresponding Component Model (CM) that models the behavior or physical 
properties of its detailed design. This CM reacts to the stimuli generated by the TC, and 
produces output that is compared to a required output and/or routed to some other element 
within the Master Model (MM) for further processing.  


A TC does not have visibility into the internal structure or behavior of the DC, including its 
associated CMs. In other words, a TC has a ―black box‖ interface to the DC. However, a TC 
does impose a required interface standard on the DC for all inputs and outputs related to the 
test. This interface standard might include both run time data exchange interfaces as well as 
configuration/setup and status reporting interfaces. 


TCs are frequently refined from Test Case Archetypes (TCAs). Within the CML, TCAs are 
pre-allocated to design archetypes. TCAs might be composed of pseudo-code, parameterized 
functions/services expressed in a general purpose language, Simulink® blocks, SysML 
parametric diagrams, or any form of expression that can provide a template for the logic of a 
TC. A TC may be a modification of a TCA, highly refined within the master model to make it 
an executable for supporting test of a specific DC, or it may be the unmodified TCA itself if that 
TCA can appropriately be applied to the run time test of the DC. For example, the CML will 
contain, in addition to design archetypes, design components associated with specific model 
numbers of equipment. The TCAs for such components may be indistinguishable from TCs. 


In a top-down design process, it frequently is necessary to specify requirements for a design 
component before that component is actually designed. In fact, new components are frequently 
designed pursuant to the requirements imposed on them. In general, a black box test of a 
component for the purpose of verifying a requirement can be constructed if all relevant external 
interfaces of that component are known and well defined. This standardized test mechanism 
can thus be reused against many alternative design solutions and revisions without needing to 
change the structure/logic of the TC. Additionally, proprietary information related to the 
component design need not be exposed as long as the external interfaces are openly 
documented. 


Thus, TCs and TCAs are generally expected to be open-source, whereas CMs may be 
proprietary and might be published as an executable without exposing the source code. Both 
TCAs and CMs are expected to be published in the CML. 


Many requirements will have a recurrent set of environmental constraint (context) 
requirements that apply during their verification test as test conditions. For example, ambient 
temperature, altitude, and road surface properties will normally influence mobility performance, 
so the verification test of, say an acceleration requirement of a vehicle, would be performed 
under prescribed test conditions of the required ambient operational temperature range, 
maximum required altitude, and specified road condition model. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 106 Refer to cover page for Distribution Statement. 


When a TC is constructed, it must account for all the relevant test conditions imposed on the 
test based on the relevant context requirements that will typically apply to the associated 
design component. TCAs provide a mechanism by which this analysis can be reused. TCAs can 
have references to multiple Requirement Archetypes (RAs) that act in the role of test 
conditions for the test of the primary requirement(s) being verified. 


There is a logical two-dimensional matrix that relates the set of all context requirements 
imposed on a system and the set of all requirements whose verification is dependent on test 
conditions specified by context requirements. Any particular context requirement is verified 
only after every requirement dependent on that context is verified. The AIDE will support 
verification of context requirements by keeping track of which context-dependent requirements 
have been verified against the current system of interest design.. 


7.1.2.2 ARRoW Context Diagram 


"ARRoW" is the BAE Systems META team's solution to the META problem. ARRoW 
includes tools (both developmental as well as non-developmental), but also includes all 
architectural templates, interface standards, libraries, etc. necessary to support development of 
new systems. These new systems are herein referred to as "System(s) of Interest" (SoI). 


The "ARRoW Integrated Development Environment" ("ARRoW IDE" or "AIDE") represents 
the entire deployed runtime environment that supports development of a System of Interest, as 
well as any documentation supporting the AIDE user for the use and maintenance of the AIDE. 
For the purposes of this analysis, "ARRoW" and "ARRoW IDE" can be used interchangeably, 


The AIDE is an "integrated" environment, meaning that the developer of ARRoW has 
architected and verified that the ARRoW tool chain and data will function together as a 
system. Additionally, subsequent to deployment, either the initial developer or a subsequent 
authority assures the AIDE continues as an integrated solution, including the integrated 
functionality of non-developmental, open-source, and freeware tools. 


The AIDE users will include SoI end users, the SoI acquisition community, SoI developers, 
regulatory authorities, and component vendors. 


A context diagram depicting major actors that interface with the AIDE is shown in Figure 7.1-
25. Refer to section 7.1.1.4.1 above for descriptions of these actors. 
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Figure 7.1-25.  AIDE Context Diagram 


 


7.1.2.3 AIDE Entities 


Figure 7.1-26 is a SysML block definition diagram that provides an overview of the major 
components and tools that comprise the AIDE. Connectors with diamonds indicate that the 
block on the diamond side contains the other block. Connectors with arrow heads indicate that 
the block on the arrow head side is a generalization of the other block. 
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Figure 7.1-26.  AIDE 


A high level overview of Figure 7.1-26 follows.  


Master Model 


The ARRoW development paradigm embraces principles of Model Based Engineering (MBE) 
and Model Based Systems Engineering (MBSE) whereby, to the maximum extent practical, all 
aspects of the SoI design and its development process are contained in an underlying unified 
model that can be accessed and manipulated by a diverse set of development tools. In ARRoW, 
this is called the Master Model (MM). 


The Master Model (MM) contains the system being developed beginning with requirements 
and culminating in the handoff to iFab. This includes all data associated with the specific 
design, including requirements, metrics, geometry, software, controls, links to specific entities 
within the component model library, and all data normally contained in a Technical Data 
Package for a military system. All components of the toolchain use and store data within the 
MM via AMIL. 


PLM Repository 


Because development of a SoI will normally involve multiple developers working concurrently, 
the AIDE will need to support this. The evolution and configuration of the MM will need to be 
managed to the same rigor that data is managed on complex projects today. Thus, we 
anticipate that the MM will reside in a repository managed by a sophisticated Product Lifecycle 
Management (PLM) toolset. 


Library 
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The ARRoW development process generally entails the import of model elements from various 
libraries into the MM, and then a new SoI is developed within the MM by modifying some of 
the imported elements, creating new elements, and creating new relationships between 
elements.  


In the context of the AIDE, we have identified a number of archetype categories that can 
potentially contribute to more efficient development of new systems. We have logically 
organized these archetype categories as if they would each have their own library structure and 
custodian. Whether each of these notional libraries is actually implemented as part of the 
ARRoW solution is left as a design decision for future consideration. 


ARRoW Documentation 


Critical to the success of any IDE is a set of quality documentation that describes its use and 
capabilities. A user manual is an example of such documentation. Additionally, we anticipate 
that certain data exchange standards will be required, and will pertain to both tool interfaces 
and library interfaces. 


ARRoW Toolset 


The ARRoW Toolset is a set of software tools to: 


 Aid in SoI design, analysis, and verification 


 Provide an infrastructure for the AIDE 


Descriptions of the blocks shown in Figure 7.1-26, alphabetically sorted by block name, are 
provided in Table 7.1-26. The above diagram, and its constituent blocks can be additionally 
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture 
Development‖, with the description text in the documentation metadata field associated with 
each block. 


Table 7.1-26.  AIDE Block Descriptions 


Block Name Description 


AMIL ARRoW Model Interconnection Language (AMIL) is a tool used to 
represent the links or the network of those models of the System of 
Interest (SoI) that ARRoW works with either directly or as a proxy. 


Analysis Tools Analysis Tools is a set of application programs that aid in the 
development of project and product metrics information that includes:  


 Project health  


 System and cost effectiveness 


 Problem domain understanding 


 Design maturity and health 
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Block Name Description 


Analysis Archetype Library The Analysis Archetype Library is a repository for templates of analysis 
types (categories). It is expected that the analysis archetype templates 
will include: 


 System Analysis 


 Operational Analysis 


 Requirement Analysis 


 Design Analysis 


 Design maturity and health 


 Support Analysis 


ARRoW Documentation AIDE documentation set is a collection of documents that: 


 Aid users in the operations and maintenance of the AIDE  


 Identify and define internal and external interfaces of the AIDE 


AIDE The Adaptive, Reflective, Robust Workflow (ARRoW) Integrated 
Development Environment (IDE) includes the following elements: 


 Set of master models to represent to the data for the pertinent System 
of Interest (SoI) being developed 


 A Product Lifecycle Management (PLM) repository for all product 
information relating from concept through design and release for 
production, to operations & support and disposal 


 An ARRoW toolset to aid in SoI design, analysis, and verification, and 
provide an infrastructure for the integrated development environment  


 A library set consisting of product component models, project & product 
development archetypes, and product context models 


 A database of relevant stakeholder review comments on components in 
development or deployed 


 -AIDE documentation set for users, maintainers, and interface 
standards 


ARRoW Infrastructure Tools Adaptive, Reflective, Robust Workflow (ARRoW) Infrastructure Tools are 
application programs that provide for and support the foundation of the 
ARRoW integrated development environment (IDE). 


ARRoW Plug-ins Adaptive Reflective Robust Workflow (ARRoW) Plug-ins are application 
programs that add capabilities to an existing application programs or to 
enable customization of application functionality so that existing 
application programs can be utilized in the AIDE. 


ARRoW Toolset The Adaptive, Reflective, Robust Workflow (ARRoW) Toolset is a set of 
tools to: 


 Aid in SoI design, analysis, and verification 


 Provide an infrastructure for ARRoW integrated development 
environment (IDE) 


ARRoW UI The ARRoW User Interface (UI) includes all needed UIs to support the 
set of ARRoW users. 


ARRoW User Manual ARRoW User Manual is a collection of documents that aid users in the 
operations and maintenance of the AIDE. 
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Block Name Description 


CML A Component Model Library (CML) is a collection of component models 
that represent products at various lifecycle stages: 


 Technology Development 


 Engineering & Manufacturing Development 


 Production & Deployment 


 Operations & Support 


Component Review Database Component Review Database contains review comments provided by 
end users, the acquisition community, developers, etc. against any entity 
that is either published in a library or physically in use in the real world. 


Context Model Library The Context Model Library includes Aberdeen Proving Grounds (APG) 
Course models, Weather Models, satellite constellation models, threat 
models, lethal effects models, OneSAF, etc. 


Design Archetype Library The Design Archetype Library is a repository for templates of design 
types (categories). It is expected that the design archetype templates will 
include: 


 Product Breakdown Structure (PBS) Items 


 Component Items 


 Design Domains 


 New Technology Based Items 


Design Tools Design tools are a set of product development application programs that 
enable users to develop a System-of-Interest (SoI). 


ECTo ECTo (Early Concepting Tool) is a tool used for vehicle level concept and 
prototype development. 


Envisioner Envisioner is a qualitative simulation tool used to aid in early and often 
confirmation that the specified requirements are fulfilled by the System-
of-Interest (SoI). 


ESKER ESKER (Expert-System Knowledgebase Evaluation Reasoner) is a tool 
used for look-ahead and design space exploration for a System of 
Interest (SoI). 


GEAR GEAR (Generic Ensemble Archetype Reasoners) is a set of rule-based 
tools used to develop archetypes for analysis, design, and 
implementation. 


Galileo Galileo is a tool used to operate on and reason with AMIL data and library 
information. Galileo automates through orchestration and choreograph 
the product development cycle of design and test exploration 
(processes). 


Interface Standards Interface Standards is a set of hardware and software interface 
documentation that identify and define:  


 Internal interfaces between ARRoW elements (data and tools) 


 External interfaces to the AIDE 
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Block Name Description 


Library A library set consisting of product component models, project & product 
development archetypes, and product context models used to develop a 
System of Interest (SoI). 


Master Model The ARRoW Master Model (MM) is the aggregate of all data, model 
elements and their relationships that define and document the System of 
Interest (SoI) under development as well as the management of the SoI 
development process. 


Mechanical CAD Tool A Mechanical Computer-Aided Design (CAD) tool is a design process 
and documentation application that supports multi-dimension modeling 
(e.g., 2 or 3) of physical elements and their materials for a System of 
Interest (SoI). 


Metrics Dashboard The Metrics Dashboard is the set of user interfaces (UIs) to support the 
Metrics Framework applications that aid in the development and 
management of project and product metrics information. 


Metrics Framework Metrics Framework is a set of application programs that aid in the 
development and management of project and product metrics information 
that include:  


 Project health  


 System and cost effectiveness 


 Problem domain understanding 


 Design maturity and health 


PLM Repository A PLM (Product Lifecycle Management) Repository is a set of data stores 
managed by a PLM Tool for all information that affects a product from 
concept, through design and release for production, to operations & 
support and disposal. 


PLM Tool A PLM (Product Lifecycle Management) tool is an application tool that 
manages and communicates all information that affects a product from 
concept, through design and release for production, to operations & 
support and disposal. 


Project Health Archetype 
Library 


The Project Health Archetype Library can include the following archetype 
libraries for: 


 Risk and opportunity management 


 Cost and schedule management 


Requirements Archetype 
Library 


The Requirements Archetype Library is a repository for templates of 
requirement types (categories). It is expected that requirement archetype 
templates will include: 


 Operational requirements 


 Design constraints 


 External Interfaces 


 Budgetary requirements 


 Product delivery requirements 
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Block Name Description 


SoI Analysis Data System of Interest (SoI) analysis data is investigative methodical 
information about a product's operational usefulness, support burden, 
and design. The SoI analytical data can range from the system level to 
individual domain specific engineering disciplines. Systems level analysis 
can include cost and system effectiveness analyses, life cycle cost 
analysis, formal decisions/trade studies, architectural analysis, capability 
& gap assessments, risk analysis, etc. Domain specific engineering 
analytical information can include: thermal, shock and vibration, electrical, 
communications, etc. 


SoI ARRoW Infrastructure 
Data 


System of Interest (SoI) ARRoW Infrastructure Data is the information 
generated as a result of using the ARRoW infrastructure tools on the SoI.  


SoI Design Data System of Interest (SoI) design data is the plan elements of information 
for the creation of a product that is either a development item or a non-
developmental item. Design data can range from conceptual information, 
through detail design information of domain specific engineering 
disciplines and "build to print" production information, to "as built" 
information of a deployed product. 


SoI Verification Data System of Interest (SoI) verification data is confirmation information about 
a product that determines whether the product is compliant with its 
requirements. A verification of a product also includes its work products, 
(e.g., lower level specifications, designs, processes). 


SysML Tool A Systems Engineering (SE) Modeling Language (SysML) tool is a 
graphical SE modeling application that supports requirements and 
architecture development, systems analysis & control, and verification 
and validation for a System of Interest (SoI). 


Test Case Archetype Library The Test Case Archetype Library is a repository for templates of test 
case types (categories). It is expected that test case archetype templates 
will include: 


 Operational requirements 


 Design constraints 


 External Interfaces 


 Budgetary requirements 


 Product delivery requirements 
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Block Name Description 


Test Result Analyzer 
Archetype Library 


The Test Result Archetype Library is a repository for templates of test 
result types (categories). It is expected that test result archetype 
templates will include: 


 Roll-Up results 


 Quantitative 


 Qualitative 


 Pass 


 Pass with margin 


 Fail 


 Limited operational use  


 Metrics 


 Safety 


 Certification 


 Acceptance 


 Sell-off 


 Qualification 


Verification Tools Verification Tools are a set of application programs that aid in early and 
often confirmation that the specified requirements are fulfilled by the 
System-of-Interest (SoI). Verification application programs provide 
enabling information to determine corrective actions on non-conformance 
issues. Verification tools confirm that the SoI and all its elements perform 
their intended functions and meet the performance requirements 
allocated to them (i.e., that the system has been built right). Verification 
tool usage is also influenced by risk management, and safety and 
mission criticality of the SoI. 


Web UI for Component 
Review 


The Web User Interface (UI) includes all Web-based graphical user 
interfaces (GUI) to support users of the Component Review Database. 


 


7.1.2.4 ARRoW Master Model 


The ARRoW Master Model (MM) is the aggregate of all data, model elements and their 
relationships that define and document the System of Interest (SoI) under development as well 
as the management of the SoI development process. The ARRoW development paradigm 
embraces principles of Model Based Engineering (MBE) and Model Based Systems 
Engineering (MBSE) whereby, to the maximum extent practical, all aspects of the SoI design 
and development process are contained in an underlying unified model that can be accessed and 
manipulated by a diverse set of development tools. 


The normal ARRoW process of development entails the import of model elements from the 
CML and other external sources into the MM, and then a new SoI is developed within the MM 
by modifying some of the imported elements, creating new elements, and creating new 
relationships between elements.  


Please refer to Figure 7.1-27. Because development of a SoI will normally involve multiple 
developers working concurrently, the AIDE will need to support this. The evolution and 
configuration of the MM will need to be managed to the same rigor that data is managed on 
complex projects today. Thus, we anticipate that the MM will reside in a repository managed 
by a sophisticated Product Lifecycle Management (PLM) toolset. The AIDE will facilitate 
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multiple developers concurrently modifying elements of the MM in their local workspace 
environments and then integrating their changes into the unified MM via a managed process 
supported by the PLM toolset. 


 


Figure 7.1-27.  Master Model 


Descriptions of the blocks shown in Figure 7.1-27, alphabetically sorted by block name, are 
provided in Table 7.1-27. The above diagram, and its constituent blocks can be additionally 
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture 
Development‖, with the description text in the documentation metadata field associated with 
each block. 


Table 7.1-27.  Master Model Descriptions 


Block Name Description 


Configuration Managed 
Master Model 


This is a specialization of a Version Managed Master Model that not only 
is version controlled, but additionally is configuration managed. 


Master Model The ARRoW Master Model (MM) is the aggregate of all data, model 
elements and their relationships that define and document the System of 
Interest (SoI) under development as well as the management of the SoI 
development process. 


PLM Repository PLM = Product Lifecycle Management 
 
A PLM Repository is the data store managed by a PLM Tool. 


Version Managed Master 
Model 


This is a version of the master model that resides in a repository that 
enforces version control of the master model and/or its constituent 
elements. 
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Block Name Description 


WIP Master Model WIP = Work in Progress 
 
This is a version of the master model that is privately maintained by a 
particular SoI developer. 


Workspace Storage The memory or storage used by an individual developer that contains the 
work in progress elements of the master model that the developer needs 
to access and potentially may need to modify. 


 


7.1.2.5 ARRoW Library Elements 


In the context of the AIDE, we have identified a number of archetype categories that can 
potentially contribute to more efficient development of new systems. Refer to section 7.1.2.1 
above for a description of archetypes. We have logically organized these archetype categories 
as if they would each have their own library structure. Whether each of these notional libraries 
is actually implemented as part of the ARRoW solution is left as a design decision for future 
consideration. Figure 7.1-28 is a SysML diagram depicting this logical organization of 
archetype libraries. 


 


Figure 7.1-28.  Archetype Library (Notional) 


Descriptions of the blocks shown in Figure 7.1-28, alphabetically sorted by block name, are 
provided in   
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Table 7.1-28. These archetype library blocks can be additionally found in the MagicDraw file 
―META_Project.mdzip‖, in the nested package chain labeled ―6.2 Architecture | Library | 
Archetype Library‖, with the description text in the documentation metadata field associated 
with each block element. 
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Table 7.1-28.  Archetype Library Descriptions 


Library Name Parent Description 


Archetype 
Library 


None The Archetype Library includes original patterns or models of 
entities and behaviors from which all things of the same kind are 
copied or on which they are based. 


Budgetary Reqs 
Archetype 
Library  


Requirements 
Archetype Library 


The Budgetary Reqs Archetype Library can include the following 
types of requirements that are budgeted to lower level entities of 
the SoI. 


 Weight 
 Reliability 
 Testability 
 Accuracy 
 Timeline 


Budgetary Reqs 
Test Case 
Archetype 
Library 


Test Case 
Archetype Library 


The Budgetary Requirements Test Case Archetype Library can 
include the following types of test cases to test the SoI design to 
the SoI budgetary requirements. 


 Weight 


 Reliability 


 Testability 


 Accuracy 


 Timeline 


Component Item 
Archetype 
Library 


Design Archetype 
Library 


The Component Item Archetype Library can include the following 
building block entities to create component item solution 
alternatives based an original pattern or model of a component 
entity. A Component Item Archetype can be use for a reference 
architecture. Component Item archetypes include: 


 Engines 


 Transmissions 


 Chassis/Hulls 


 Radios 


 C2 


 ISR 


Cost-Schedule 
Archetype 
Library 


Project Health 
Archetype Library 


The Cost-Schedule Archetype Library can include the following 
cost models and project tracking items to create Cost Model 
alternatives and Project Tracking alternatives. 


 Development Cost 


 (AUPC) Average Unit production Cost 


 (MPC) Manufacturing Production Cost  


 (VAC) Variance at Complete  


 Cv & cv (Cumulative & Current Cost Variance) 


 Sv & sv (Cumulative & Current Schedule Variance) 


 CPI & cpi (Cumulative & Current Cost Performance Index) 


 SPI & spi (Cumulative & Current Schedule Performance Index) 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 119 Refer to cover page for Distribution Statement. 


Library Name Parent Description 


Design Analysis 
Archetype 
Library 


Analysis 
Archetype Library 


The Design Analysis Archetype Library can include the following 
types of domain engineering analysis to influence SoI design and 
determine the maturity of the SoI design. 


 Thermal Analysis 


 Structural Analysis 


 Dynamic Analysis: 
- Gun Firing Shock 


- Firing on Move 
- Emplaced Firing 
- Crew Shock & Vibration 
- Transport Loading 
- Air Drop 
- Chassis Vibration Transmission 


 Finite Element Analysis 


 Fluids Analysis 


 Electrical & Electronics Analysis 


 Power Analysis 


 E3/EMC/EMI Analysis 


 Communications Analysis 


 Controls Analysis 


 Timeline Analysis 


 Equipment Motion Analysis 


 Signature Management Analysis 


 Vulnerability Analysis: 
- Shotline Analysis 
- Ballistic Impact Analysis 
- Fragmentation Impact Analysis 
- Shape Charge Impact Analysis 
- Sympathetic Detonation Analysis 
- Mine Blast Analysis 


 Information Assurance Analysis 


 Fire Control Analysis 
- Wpn Pointing 
- Technical Fire Control 
- Wpn Firing Stationary & On-the-move 


 Accuracy Analysis 


 HSI Analysis 


 Safety Analysis 


 Reliability, Maintainability, & Testability Analysis 


 Assembly & Producibility Analysis 


 Logistics Analysis 


 Transportability Analysis 


Design 
Archetype 
Library 


Archetype Library The Design Archetype Library is a repository for templates of 
design types (categories). It is expected that the design archetype 
templates will include: 


 PBS Items 


 Component Items 


 Design Domains 


 New Technology Based Items 
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Library Name Parent Description 


Design 
Constraint Reqs 
Archetype 
Library 


Requirements 
Archetype Library 


The Design Constraint Requirements Archetype Library can 
include the following types of design constraint requirements 
imposed on the SoI. 


 Context – Environment 


 EE, ME, & SW 


 Specialty Engineering - Safety, HSI, RM&T 


 Standards - Federal, Military, ESOH, etc. 


 Operational and Life Cycle – PHST 


 Cost 


Design 
Constraint Reqs 
Test Case 
Archetype 
Library 


Test Case 
Archetype Library 


The Design Constraint Requirements Test Case Archetype Library 
can include the following types of test cases to test the SoI design 
adherence to design constraint requirements. 


 Context – Environment 


 EE, ME, & SW 


 Specialty Engineering - Safety, HSI, RM&T 


 Standards - Federal, Military, ESOH, etc. 


 Operational and Life Cycle – PHST 


 Cost 


Design Domain 
Archetype 
Library 


Design Archetype 
Library 


The Design Domain Archetype Library can include the following 
building block design domains for use in the design of DMI-PBS 
Items and Component Items and to create Design Domain 
alternatives. 


 Physical 
- Includes spatial guidelines, rules, and constraints. Used to 


create layout alternatives based an original pattern or model 
of building blocks 


 Thermal 


 Power 


 Controls 


 Fire Control 


 Signal 


 Computing 


 Platform Electronics 


 C4ISR 


 BattleSpace Communications 


 Network Ready 


 EMC/E3 


 SW 


 Information Assurance (IA) 


 Crew/Battle Station 


 Training 
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Library Name Parent Description 


Design Maturity-
Health Analysis 
Archetype 
Library 


Analysis 
Archetype Library 


The Design Maturity-Health Analysis Archetype Library can include 
the following types of domain engineering analysis to monitor the 
progress of the SoI design and determine the maturity of the SoI 
design. 


 TPMs (Technical Performance Measures): 
- Weight 
- Start-Up (All Up, Drive Away - Sec) 
- Energy Conservation (MPG, GPH) 
- Movement Speeds (CC, Sprint, HWY - MPH) 
- Engagement Response Time (Sec) 
- Fires (Ph, RgMax,Min, & Effect, ROF) 
- Tgt Acq/SA (Rg, Accuracy, Coverage) 
- Engagement Detection (Point of origin) 
- Force Protection (Egress, IED) 
- Reliability (MTBSA, MTBF)  
- Maintainability (MTTR) 
- Reserve Capacity (Pwr, Therm, Proc, Mem) 
- Force Interoperability (Opns/Logistics) 
- MOSA (Degree, # of Characteristics) 


 Requirement Compliance 
- Performance 
- Functional 
- Design Constraints 
- Interfaces 
- Safety 


 TRL (Technical Readiness Level) 
- Green Energy Propulsion TRL 
- TRL #n 


 MRL (Manufacturing Readiness Level) 
- Green Energy Propulsion MRL  
- MRL #n 


 State of Design Integration 
- Problem Burn Down 
- Problem Criticality (#, Degree) 
- Integration Demographics 
- # of Re_Integrations 


 Req-Design Feature Bi-Directional Traceability 


Ext Interface 
Reqs Archetype 
Library 


Requirements 
Archetype Library 


The External Interface Requirements Archetype Library can 
include the following types of external interface requirements to the 
SoI. 


 Mechanical 


 Electrical 


 SW 


 ICDs 


 Standards 


 Interface MIL-STDs 
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Library Name Parent Description 


Ext Interface 
Reqs Test Case 
Archetype 
Library 


Test Case 
Archetype Library 


The External Interface Requirements Test Case Archetype Library 
can include the following types of test cases to test he SoI design 
interface compatibility and adherence with external interface 
requirements to the SoI. 


 Mechanical 


 Electrical 


 SW 


 ICDs 


 Standards 


 Interface MIL-STDs 


Metrics 
Archetype 
Library 


Archetype Library The Metrics Archetype Library is a repository for templates of 
metrics types (categories). It is expected that the metric archetype 
templates will include:  


 System and cost effectiveness 


 Problem domain understanding 


 Design maturity and health 


New Technology 
Based Item 
Archetype 
Library 


Design Archetype 
Library 


The New Technology Based Item Archetype Library can include 
the following newly introduced building block technology item for 
use in the design of DMI-PBS Items and Component Items and to 
create New Technology Based Item alternatives. 


 Counter Threat Blast Effects (IED) 
- Blast Chimneys 


 Hybrid Electric Drives 


 Green Energy Sources 


 Precision Guided Munitions 


 GPS Based Applications 


Operational 
Analysis 
Archetype 
Library 


Analysis 
Archetype Library 


The Operational Analysis Archetype Library can include the 
following types of operational analysis to determine the operational 
impacts of the SoI capabilities and design. 


 Effects/Lethality Analysis 


 Mobility Analysis 


 Battlefield Communications Analysis 


 Survivability Analysis 
- Self Defense 


 Interoperability 


 Threat Analysis 
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Library Name Parent Description 


Operational 
Reqs Archetype 
Library 


Requirements 
Archetype Library 


The Operational Requirements Archetype Library can include the 
following types of usage requirements for the SoI. 


 Scenario - OMS/MP 


 Acceleration 


 Rate 


 Response 


 I/O 


 Capacity 


 State/Mode Transitions 


 Functionality 


 Capability 


Operational 
Reqs Test Case 
Archetype 
Library 


Test Case 
Archetype Library 


The Operational Requirements Test Case Archetype Library can 
include the following types of test cases to test the SoI design 
performance to meet the operational requirements. 


 Scenario - OMS/MP 


 Acceleration 


 Rate 


 Response 


 I/O 


 Capacity 


 State/Mode Transitions 


 Functionality 


 Capability 


PBS Item 
Archetype 
Library 


Design Archetype 
Library 


PBS = Product Breakdown Structure 
 
The PBS Item Archetype Library can include the following product 
structures for Defense Material Items (DMI) to create materiel 
solution alternatives based an original pattern or model of a 
product framework or structure of entities. A PBS Item Archetype 
can be use for a reference architecture 
 
DMI-PBS Item archetypes include product structures for: 


 Ground Vehicle Systems (Surface Vehicle Systems) 


 Ordnance Systems 


 Maritime Systems (Sea Systems) 


 Missile Systems 


 Aircraft Systems 


 Electronic/Automated Software Systems 


 Space Systems 


 Unmanned Vehicle Systems 
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Library Name Parent Description 


Product Delivery 
Archetype 
Library 


Requirements 
Archetype Library 


The Product Delivery Reqs Archetype Library can include the 
following types of requirements that measure and improve the 
quality, performance, and delivery velocity of the SoI to satisfy our 
customer's needs, on time, and within cost commitments. 


 Qualification 


 Acceptance 


 Certification 


 Safety 


Product Delivery 
Test Case 
Archetype 
Library 


Test Case 
Archetype Library 


The Product Delivery Requirements Test Case Archetype Library 
can include the following types of test cases to measure and 
improve the quality, performance, and delivery velocity of the SoI 
design to satisfy our customer's needs, on time, and within cost 
commitments. 


 Qualification 


 Acceptance 


 Certification 


 Safety 


Project Health 
Archetype 
Library 


Archetype Library The Project Health Archetype Library can include the following 
archetype libraries for: 


 Risk and opportunity management 


 Cost and schedule management 


Requirements 
Analysis 
Archetype 
Library 


Analysis 
Archetype Library 


The Requirements Analysis Archetype Library can include the 
following types of problem domain analysis to define the customer 
needs, required functionality, and the complete problem: 
operations, cost and schedule, performance, training and support, 
test, manufacturing, and disposal. 


 Capability & Gap Analysis 


 Functional Analysis 


 Use Case/Scenario Analysis 


 Object Oriented Analysis 


 Requirements Maturity 


 Requirements Stability 


 Requirements Bi-Directional Traceability 


 External Interface Definition 


 SWaPC-C Analysis 


Requirements 
Archetype 
Library 


Archetype Library The Requirements Archetype Library is a repository for templates 
of requirement types (categories). It is expected that requirement 
archetype templates will include: 


 Operational requirements 


 Design constraints 


 External Interfaces 


 Budgetary requirements 


 Product delivery requirements 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System  Engineering 
and Architecture 


 


© BAE Systems 2011. All rights reserved. 125 Refer to cover page for Distribution Statement. 


Library Name Parent Description 


Risk-Opportunity 
Mgt Archetype 
Library 


Project Health 
Archetype Library 


The Risk-Opportunity Management Archetype Library can include 
the following example risk and opportunity items to create Cost 
Model alternatives and Project Tracking alternatives. 


 If PwrPk Perf is not obtained, then Dash Speed is not met 


 If R occurs, then consequence C - Risk n 


 If alternative energy density is obtained, then energy 
conservation is exceeded 


 If O occurs, then benefit B - Opportunity n 


Support Analysis 
Archetype 
Library 


Analysis 
Archetype Library 


The Support Analysis Archetype Library can include the following 
types of life cycle sustainment analysis to influence SoI design and 
determine the logistics support package to sustain over the life 
cycle of the SoI. 


 Sustainment Analysis 


 LCEP Analysis (Life Cycle Environmental Profile) 


System Analysis 
Archetype 
Library (1 of 2) 


Analysis 
Archetype Library 


The System Analysis Archetype Library can include the following 
types of effectiveness, and capability assessment & gap analysis 
on the SoI design. 


 Cost Effectiveness Analysis: 
- Sys Effectiveness/LCC 
- Availability/LCC 
- Sys Capacity/LCC 
- System Benefit/LCC 


 System Effectiveness Analysis: 
- Measures of Effectiveness (MOEs) 


o Pk, Pra, (Mobility, Firepower)  
o Effects on Tgt (Destroy, Neutralize, Suppress) 
o # Objectives Seized 


 
- Measures of Performance (MOPs) 


o Range 
o RoF 
o Tgt Acq (Detect, Tracking) 
o Position & Heading 
o Response Time 
o ToF 
o Movement Speeds 
o Terrain Negotiation 


 
- Measures of Usage (MOUs) 


o Engagement Duration (FM, Direct, Tgt Acq)  
o # of Rds Fired/per Msn/kill 
o # of Supplies Transferred 
o # Tgts Defeated 
o # Msn Executed 


o # of Moves 
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Library Name Parent Description 


System Analysis 
Archetype 
Library (2 of 2) 


Analysis 
Archetype Library 


- Measures of Suitability (MOSs) 
o Weight 
o Ease of installation 
o Interoperability 
o Adaptability 


 


 Capability & Gap Assessments 
- Key Performance Parameters (KPPs) 


o Survivability 
o Force Protection 
o Sustainment (Availability) 
o Net-Ready/Interoperability 
o System Training 
o Energy Efficiency 


 
- Key System Attributes (KSAs) 


o Command & Control (Contact, Info, Planning) 
o Intelligence (Coverage, METT, Tgt Acq Rg) 
o Fires (Capacity, Response Time, Pk, Rg) 
o Movement & Maneuver (Speed, Terrain, Transport) 
o Protection (Jam Resistance, IA) 
o Sustainment (Reliability & Ownership Cost) 


System Effectiveness—A probability measure that the system 
solution can successfully meet an overall operational demand 
within a given time when operated under specific conditions. 
Reflects the technical characteristics of the system solution (e.g., 
performance, availability, supportability, dependability). The ability 
of the system solution to do the job for which it was intended.  


 Cost Effectiveness - A measure of a system solution in terms of 
mission fulfillment (system effectiveness) and total life-cycle cost 
(LCC). Reliability is a major factor in determining the cost 
effectiveness of a system solution 
 


- Find the most effective solution with the least cost by 
determining the cost-effectiveness differences between 
alternatives of solutions 


Test Case 
Archetype 
Library 


Archetype Library The Test Case Archetype Library is a repository for templates of 
test case types (categories). It is expected that test case archetype 
templates will include: 


 Operational requirements 


 Design constraints 


 External Interfaces 


 Budgetary requirements 


 Product delivery requirements 
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Library Name Parent Description 


Test Result 
Analyzer 
Archetype 
Library 


Archetype Library The Test Result Archetype Library is a repository for templates of 
test result types (categories). It is expected that test result 
archetype templates will include: 


 Roll-Up results 


 Quantitative 


 Qualitative 


 Pass 


 Pass with margin 


 Fail 


 Limited operational use  


 Metrics 


 Safety 


 Certification 


 Acceptance 


 Sell-off 


 Qualification 


 


7.1.2.6 ARRoW Requirements to Test Case Flow Architecture 


The architecture described in this section is that portion of the AIDE related to functionally 
how requirements are ingested into the master model, how test cases relate to the verification 
of those requirements, how run time testing of requirements is executed, and how test result 
verdicts are determined and flowed to other elements within the AIDE. We refer to this overall 
process as the Requirements to Test Case (RTTC) Flow. 


Figure 7.1-29 shows a simplified view of the static architecture of ARRoW elements related to 
the RTTC flow. These elements are shown as they relate within both the Master Model (MM) 
and the Component Model Library (CML). Figure 7.1-30 shows a simplified view of the entities 
and their interfaces that are involved in the run time execution of the test and verification 
process. Please refer to both of these diagrams as part of the following discussion.  


Refer to section 7.1.2.1.2 for a more comprehensive discussion of requirements, requirement 
archetypes, and requirement archetype sets. A Requirement Archetype Set (RAS) contains 
multiple Requirement Archetypes (RAs) and optionally other RASs. The CML contains both 
RASs and RAs. RAs are indirectly bound to Design Archetypes (DAs) in the CML via their 
mutual Test Case Archetypes (TCAs). When DAs are imported into the MM, references to the 
associated TCAs and RAs are also automatically imported. Multiple TCA-RA pairs will quite 
possibly be associated with a particular DA, since multiple requirements are commonly 
allocated to components. However, mutually exclusive TCA-RA pairs may also be associated 
with a particular DA element. For example, for US Marine Corps use of a component, one 
TCA-RA pair might apply, but for US Army use of that same component, a different TCA-RA 
pair might apply. By importing the appropriate RAS(s) from the CML, the imported RA 
references can be de-conflicted within the MM, and consequently the appropriate TCAs can be 
determined as well since each RA has exactly one corresponding TCA. 


At this point in our discussion, the MM has RAS(s), RAs, TCAs, and DAs – all archetypes. 
Archetypes must generally be refined to instances that specifically apply to the System of 
Interest (SoI) being developed. 
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Each DA will be refined to a Design Component (DC) within the MM. This might be 
accomplished, for example, by assigning values to design parameters, selecting specific 
equipment models from the CML, or even selecting optional architectural relationships from 
the CML. Note that in the context of this discussion, a DA or a DC can be at any level within a 
product structure hierarchy (e.g., system, subsystem, assembly, or component). 


Once refined, a DC will have one or more Component Models (CMs). A CM is a model of a 
component that potentially has ―white box‖ knowledge of the component design. This 
knowledge is frequently necessary for all but low fidelity models of components. Since details of 
the design may be modeled, the construction of a CM may be proprietary. CMs are generally 
written and published in the CML for the purpose of supporting some or all of the suite of tests 
that are expected to be applied to the DC. A DC might support multiple CMs differing in 
fidelity and performance that are compatible with the same Test Case (TC). The DC itself 
provides a standard interface between the CMs and TCs that orchestrate the test of the DC. 
This standard interface support includes both run time data exchange interfaces as well as 
configuration/setup and status reporting interfaces. 


A TC is an executable that stimulates the DC for the purpose of verifying a requirement. The 
DC has a corresponding CM that reacts to the stimuli and produces output that can then be 
either compared to a required output or routed to some other element within the MM. A TC 
does not have visibility to the internal structure or behavior of the DC, including its associated 
CM. In other words, it has a ―black box‖ interface to the DC. This standardized test mechanism 
can thus be reused against many alternative design solutions and revisions without needing to 
change the structure/logic of the TC. 


A TC may be a modification of a TCA to make it an executable for supporting test of a specific 
DC, or it may be the unmodified TCA itself if that TCA can appropriately be applied to the run 
time test of the DC. 


As mentioned above, importing the DA will result in the importation of one or more RAs 
associated with the DA and its refined DC. Each of these RAs may or may not be refined to a 
corresponding requirement. The decision to create a requirement is based on whether a 
requirement is deemed to be needed at any particular level within the SoI product structure. 
Requirements will minimally be needed at the system level, since in general they will need to 
trace to the customer provided source requirements. However, at lower levels in the product 
structure, the choice to create a requirement will be based on whether a test result at that level 
needs to be compared against some expected result, threshold value, or utility function. If it 
does not, then the test result can instead be routed up the product structure hierarchy for 
further processing so that it can support verification of a higher level requirement. 


If a requirement is created by refining it from its parent RA, then it needs to be verified, of 
course. Requirements are verified with the addition of one more element: a Test Result 
Analyzer (TRA). Generally, a requirement is verified by the following process: a test case 
stimulates the DC, the DC reacts with a resultant output, this output is then compared to the 
required output by the TRA, and the result of this comparison (the verdict) is then dispatched 
or published to the appropriate consumers such as verdict loggers, the metrics framework, or 
an element of the ARRoW user interface. 


It is anticipated that common patterns for the construction of TRAs will be defined, including 
the use of common, reusable code. As an aid to the development of TRAs, we allow for the 
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definition of TRA archetypes. TRA Archetypes reside in the CML and can be imported into the 
MM and refined to create TRA instances specific to the verification tests needed. 


 


Figure 7.1-29.  RTTC Entities - Structure View 
 


 


Figure 7.1-30.  RTTC Entities - Run-Time Interfaces View 
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Figure 7.1-31.  ARRoW RTTC Entities 


Descriptions of the blocks shown in Figure 7.1-31, alphabetically sorted by block name, are 
provided in Table 7.1-29. The above diagram, and its constituent blocks can be additionally 
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture 
Development‖, with the description text in the documentation metadata field associated with 
each block. This diagram is essentially a SysML metamodel of the ARRoW RTTC 
architecture. 
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Table 7.1-29.  ARRoW RTTC Entities Description 


Block Name Description 


AIDE The AIDE includes all ARRoW tools, libraries, and the master model. 


Component Model A component model models the DUT in the context of a specific test 
case. In general, it is constructed to react to stimuli from the test case 
and provide response output representative of what the real component 
(that realizes the design) would do. 
 
This component model supports use of legacy tools that might include 
white box insight into the DUT as well as external environmental factors. 


Context Requirement A Context Requirement (CR) is a requirement that specifies the external 
environment to which a design will be exposed. It includes natural or 
induced environments such as temperature or electromagnetic effects, as 
well as interoperability/interface requirements with external systems. 
 
A CR is sometimes not tested directly, but rather is verified by executing 
a test case for each requirement that uses that context requirement as 
part of its set of test conditions. 


Context Rqmt Archetype A Context Requirement Archetype is simply an archetype for a Context 
Requirement. 


Design Component A design component is a specific implementation that conforms to a PBS 
Design Archetype. It can be at any level in a product breakdown 
structure. 


Design Under Test A Design Under Test (DUT) is that portion of a Design Component that 
can simulate the design in order to verify that the design conforms to the 
requirements allocated to it. 


Developer's Requirement This includes business development goals, budgets 
(tolerance/power/etc.). This is requirements not validated by customer but 
used by contractor management to influence/constrain the design. Is 
problem space related. Does not include design rules, design guidelines, 
etc. that are solution space related. 


Interface Control Requirement Legacy interface management approaches that manage interfaces such 
as using Interface Control Documents (ICDs) will employ an interface 
requirement structure in the ARRoW environment. 
 
Note that interfaces will include both design integration interfaces as well 
as ARRoW environment interfaces. An example of an s ARRoW 
environment interface would be a test case configuration interface. 


Manufacturing Data This block is included to illustrate that a design can include more 
elements than just virtual test related things. 


PBS Design Archetype PBS = Product Based Structure 
 
This is a template for similar design types (architectures). A PBS Design 
Archetype facilitates reuse via abstracted levels in a reference design 
architecture. 
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Block Name Description 


Requirement Archetype This is a template for similar requirement types (categories). It is 
expected that many types will exist. A requirement Archetype facilitates 
reuse and mapping to abstracted levels in a reference design 
architecture. 


Requirement Archetypes generally conform to the following: 


1. It has a template expression of a requirement, written in a way that can 
be ultimately refined to be a well expressed requirement. For example, 
this could be written in natural language text conforming to well known 
systems engineering best practice characteristics or even a formal 
requirements expression language. It can support parameterization if 
necessary. 


2. It supports default traceability to multiple (0..*) reference architecture 
and/or design entities. TBR: this needs to be captured in the block 
definition diagram (bdd). 


3. It has a one-to-one mapping to a specific test case archetype. 


4. It supports multiple (0..*) references to requirement archetypes on 
which the associated test case results depend. 


5. It supports (0..1) utility functions. 


SoI Requirement This type of requirement must be validated with the customer, and its 
verification must be validated by the customer. 


SoI Requirement Specification 
Set 


This includes all specifications that are part of the SoI's spec tree (e.g., A-
spec, system spec, subsystem specs, critical item development specs, 
etc.). This includes customer supplied specs as well as developer created 
specs. 


System of Interest (SoI) The System of Interest (SoI) is the system that is being developed using 
the ARRoW toolset. In this context a SoI can be an entity at any level 
within a product breakdown structure. 


TC-CM Pair This is simply a container that shows that there is a one-to-one 
relationship between a specific test case (TC) and its corresponding 
component model (CM). 


Test Case A test case is an executable that stimulates the DUT for the purpose of 
verifying a requirement. The DUT has a corresponding component model 
that reacts to the stimuli and produces output that can then be compared 
to the required output. 


A Test Case does not have visibility to the internal structure or behavior 
of the DUT including its associated component model. This standardized 
test mechanism can be reused against many design solutions without 
needing to change the structure/logic of the test case. 


A test case may be a modification of a test case archetype to make it an 
executable for supporting verification of a specific requirement against a 
specific DUT, or it may be the unmodified test case archetype itself if that 
TCA can appropriately be applied to the DUT in this context. 
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Block Name Description 


Test Case Archetype This is an archetype for similar test case types (categories). It is expected 
that these archetypes will map one-to-one to requirement archetypes. A 
test case Archetype facilitates reuse and mapping to abstracted levels in 
a design reference architecture. 


Certain classes of requirements will have a set of recurrent constraint 
(context) requirements that apply during the verification test as test 
conditions. 


For example, ambient temperature will normally influence mobility 
performance, so the verification of, say an acceleration requirement, 
would be done using test conditions of the required ambient operational 
temperature range. Verification of the acceleration requirement is 
therefore dependent on the ambient operational temperature 
requirement. 


Note: the dependent RAs could optionally be copied into the Master 
Model when the parent RA is copied, with ARRoW guiding the user to fill 
in appropriately. Include notion of shallow copy vs. deep copy. 


Test Result Analyzer Generally, a requirement is verified by the following: a test case 
stimulates the DUT, the DUT provides resultant output, and this output is 
then compared to the required output by the Verifier. In some cases, the 
Test Case may execute without the need to execute the Test Result 
Analyzer (TRA). For example, the DUT output may be routed to a higher 
assembly level Test Case or DUT, where the summary test results are 
verified at that level only. 


Test Result Analyzer 
Archetype 


This is a template for similar Test Result Analyzer (TRA) logic classes. A 
TRA Archetype facilitates reuse of verification patterns. 


Utility Function This is a way of relating the DUT performance/capability/behavior to 
perceived value to the customer or management. Perceived value can be 
binary (e.g., pass/fail), enumerated (e.g., fail, threshold, objective, 
exceeded), continuously scaled (e.g., linear, exponential, s-curve, etc.), 
or any other function deemed applicable. Note: include default utility 
function support in some RAs. 


Verdict Logger This presents verification results to the user and/or saves the results to 
persistent storage. 
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7.2   Tool Design 


This table documents META tool components that we have developed over the past year. Each 
of the components has met one or more needs outlined in the original META proposal. The 
underlying technology shows the innovative approaches that we have come up with to make 
the tools work well. 


Tool 
Component 


Meets Need Underlying Technology Demo 


ARRoW 
Integrated 
Development 
Environment 
(AIDE) 
Interface and 
Dashboard 


Demonstration capabilities, 
system launch and control 


Eclipse/SpringHTML, , Maven, 
Subversion, Tomcat, Java, 
Metrics, more 


Jan, Mar, 
May, Jul, 
Sep 


Metrics Suite Design progress, Complexity 
measures 


Entropy-based methods, Design 
Curvature algorithms, contention 
models (BBN), (also see metrics 
docs) 


Jan, Mar, 
May, Jul, 
Sep 


CAD 
(Pro/Engineer 
plug-in) 


Provide interface and access 
between ARRoW tools and 
Pro/Engineer 


Pro/Engineer API, C++ Mar, May 


AMIL Heterogeneous model and tool 
interconnect 


Graph database, Java/Prolog/C++ 
API, persistence and caching 
control, graph viewer 


May, Jul 


Galileo T&V Probabilistic Certificate of 
Correctness, Diagnostics, 
Language 


Monte Carlo and Importance 
Sampling, Context Model PDF’s 
and Ratio distributions, Reach-
set Analysis (MIT), K-means 
clustering, Expert system  


May, Jul 


ESKER Look-ahead and Design Space 
Exploration, Adaptability via set-
based concurrent engineering, 
Levels of Abstraction, Language 


Expert system state expansion 
and search, Rule-based design 
structure matrix, AMIL-aware, 
variable fidelity modeling, partial 
decomposition, 
subjective/qualitative rankings 


May, Jul 


Envisioner Qualitative Simulation Lisp May  
SysML 
(MagicDraw 
plug-in) 


Requirements MagicDraw API, AMIL-
interconnected 


May, Jul 


CML/Master 
Model 


Abstraction Control, Component 
Reuse 


Ontology-based search, 
Maven/Artifactory delivery 
mechanism 


Jul, Sep 
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Tool 
Component 


Meets Need Underlying Technology Demo 


ECTo Vehicle-level concepting and 
prototyping 


C++ object hierarchy of generic 
domain models 


Jul, Sep 


Metrics 
Infrastructure 
and Dashboard 


Integrated metrics analysis and 
calculation services, role and 
interest-configurable graphical 
user interface 


AMIL-integrated service 
architecture using Java Standard 
Object Notation (JSON text 
metric definition files) 


Jul, Sep 


Generative 
Archetype 
Reasoning 
(GEAR) 


Synthesis, Component Reuse, 
Domain-specific reasoners 
(design, analysis, …), Language 


Semantic Web technologies such 
as OWL, Description Logic and 
Declarative  Logic Programming, 
Lisp, SPARQL, Protégé 


Sep 


Cloud 
Deployment 


Provide mechanism to support 
wide distribution and crowd 
participation 


Amazon Cloud deployment 
mechanisms 


Sep 


7.2.1 AMIL 
7.2.1.1 Introduction 
The ARRoW Model Interconnection Language (AMIL) is used to represent the models that 
ARRoW works with—either directly, when the models are very abstract, or as a proxy, when 
the actual model is represented in a specialized tool like Simulink® or CREO™. More 
important, it represents the links among those models. AMIL is deployed as a web service, and 
provides a basic API for creating and manipulating nodes, links, and their properties; it is most 
useful to think of it as a network of models, rather than as a computer language. Java clients are 
expected to use the AmilLib wrapper library, which presents an object model of nodes and 
links, and hides the web service interactions; C++ clients like the Early Concepting Tool 
(ECTo) use a similar wrapper. The textual representation of AMIL data in JavaScript Object 
Notation (JSON) (Introducing JSON, 2011) or Resource Description Format (RDF) (World 
Wide Web Consortium, 2004), and the exact set of operations provided by the web service, are 
only of interest within ARRoW components. An overview of the AMIL structure is shown in 
Figure 7.2-1. 
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Figure 7.2-1.  AMIL Structure 


AMIL was not designed to represent every component that might be needed to build a fighting 
vehicle. Rather, it provides an abstraction that supports reasoning about basic structures and 
connections in a consistent way, without attempting to provide services for which robust, high-
performance implementations are already widely available. 


AMIL is built on the open-source graph database Neo4j (neo4j.org). The implementation uses 
elements of Tinkerpop Blueprints (tinkerpop.com) to support the importation and use of OWL 
(World Wide Web Consortium, 2004) to represent a formal ontology, and to support Simple 
Protocol and RDF Query Language (SPARQL) (World Wide Web Consortium, 2008) queries 
against the ontology. 


In what follows, we will first describe AMIL’s basic structure, then the use of dynamic nodes to 
support metrics and the Component Model Library (CML). Finally, we will discuss the formal 
ontology embedded in AMIL’s repository, and its relationship to the other structures managed 
by AMIL. 


7.2.1.2 AMIL Structure 


The AMIL repository contains nodes and links. It is not quite a conventional triple store, 
because both types of objects can contain an arbitrary number of named attributes, as opposed 
to the standard representation of RDF statements as SUBJECT-PREDICATE-OBJECT. As 
will be discussed below, the AMIL repository contains RDF in that form, with the more 
complex AMIL nodes and links overlaid on the RDF structures. 
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Within AMIL, there are two types of nodes: “immediate” and “dynamic,” described below. 
Either type can be accessed by name, by retrieving one of the ends of a link, or by query; both 
types are represented in the data store by a unique ID and an arbitrary set of named attributes, 
where the values can be strings, numbers, or arrays of strings or numbers. Links between 
nodes have an arbitrary type—new types are created on request—as well as their own sets of 
attributes. While nodes have a unique ID, the database key for a link consists of its type and the 
unique IDs of its start point and its end point. 


Although nodes can have arbitrary sets of attributes, there are some attribute names that 
AMIL assigns specific meanings to. For example, any node associated with a class definition in 
the formal ontology will have a “classDefinition” attribute; the set of attributes associated with 
a particular class will be stored by AMIL in the “featureNames” attribute of the class node. 
These reserved names are documented more fully in the Software Users Manual. Similarly, 
certain link types may be given specific interpretations by AMIL in some contexts. For both 
nodes and links, the reserved names are used either to support dynamic nodes, or to support 
access to the ontology by AMIL clients. As shown in the following figure, and discussed more 
fully below, AMIL stores a compact representation of the ontology to allow it to hide the 
details of the database structure from its clients. 


This shows a small piece of the ontology: 


 
The three upper nodes represent the Engine class and two of its subclasses, which are 
connected to the parent by “subclassOf” links. The bottom node is a specific model of gas 
engine, tied to its class by an “instanceOf” link. The set of featureNames identifies specific items 
that are declared in the ontology, so will be available for semantic queries; the engine’s power 
rating is one. 


Archetypes, requirements, metrics, and components in the CML are all represented by similar 
groups of nodes and links, with their own specific link types and node attributes. Additional 
subsystems can easily be supported. 


 


METAF018


UniqueID: http://projects.baesystems.com/.../cmlAGT1500_turbine_engine
Nickname: AGT1500_turbine_engine
Power: 1118549
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]


UniqueID: http://projects.baesystems.com/.../meta#DieselEngine
classDefinition: DieselEngine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]


UniqueID: http://projects.baesystems.com/.../meta#GasEngine
classDefinition: GasEngine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]


UniqueID: http://projects.baesystems.com/.../meta#Engine
classDefinition: Engine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]


linkType: subClassOf


linkType: instanceOf
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Requirement authoring in SysML is an example of an AMIL client application that capitalizes 
on the ability to create arbitrary link types and properties in AMIL, as shown in Figure 7.2-2. 


 
Figure 7.2-2.  Example Requirement in AMIL 


As discussed previously, requirements are an important concept in development with META. 
In order to allow requirements to effectively drive design space exploration, authoring a 
requirement in SysML creates a new type of link, "constraint", to carry relevant constraint 
data, as well as creating its own set of attribute names to carry requirement-specific 
information. 


7.2.1.3 Dynamic Nodes 


The nodes shown so far are all “immediate”: when an immediate node is retrieved by an AMIL 
client, the client simply receives a representation of the name-value pairs associated with the 
node. Many of the things represented in the AMIL graph are executable models; dynamic 
nodes allow these executable models to be invoked transparently by any AMIL client. The code 
associated with a dynamic node is executed on the server, so there is no need for additional 
client software installation, and the results of the execution are presented as a set of name-value 
pairs, just as if the node were immediate. 


Dynamic nodes are stored in the repository with a set of named attributes. The “valueType” 
attribute either labels the node as immediate, or identifies a Java class accessible to the server 
that will be used to evaluate the node. The set of such classes is extensible, but not dynamic; 
changing it requires a server restart The attribute set from the repository is passed to the 
evaluation class, which may then do whatever is needed to return the node’s values: it can 


METAF019


UniqueID: PowerRequirement
classDefinition: Requirement
description: “The ifvEngine must 
use an engine with a power rating 
of at least 400kW , but must not 
exceed 1MW”


linkType: property


UniqueID: IFVEngine
nickname: ifvEngine


UniqueID: ifvEngine.Power
valueType: Watts


linkType: constraint
lowerValue: 400000
upperValue: 1000000
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perform a straight Java computation, but it can also run an executable, invoke a web service, or 
return the contents of a file. 


Figure 7.2-3 shows a subset of the nodes and links associated with an executable model to 
estimate the mass of the exit ramp on an infantry fighting vehicle (IFV), based on the ramp’s 
dimensions and the survivability requirements of the IFV. The ramp mass model itself is a 
legacy C program; the valueType property “external” tells AMIL that this node will be 
evaluated by a class that allows the execution of arbitrary external code; there are more 
structured evaluators for metrics and the component model library. The evaluation class, in 
turn, will use the GenericExecutable class to run the legacy C code, as specified in other 
attributes of the node. 


 
Figure 7.2-3. Fragment of Executable Model 


The model’s parameters will, in this case, be passed to it on the command line. The parameters 
are identified by links from the node representing the model to other nodes in the graph: the 
ramp’s height, in this case, is stored as a simple value. The “parameter” link from the 
LowFidelityRampMass node causes that value to be pulled in for the model. The 
“ArmorThickness” parameter, on the right, is a little more complicated: in this case, 
ArmorThickness itself is another executable model, which in turn requires its own set of 
parameters. The parameter shown, PenetratorMass, was published from a SysML application 
as a requirement. 


When a client application retrieves the LowFidelityRampMass node, AMIL begins by invoking 
its “external” node type handler, which then invokes the GenericExecutable class. Each of these 
invocations has full access to AMIL, of course; as GenericExecutable gathers the parameters 
for the executable, it retrieves the “ArmorThickness” node, which causes a recursive invocation 
of GenericExecutable. The second invocation retrieves the parameters for that the armor 
thickness model, runs it, and returns an attribute set, one of whose members is “AMILValue.” 
The first invocation of GenericExecutable can then proceed. 


METAF020


UniqueID: LowFidelityRampMass
valueType: external
className: com.bae.meta.amilextern.GenericExecutable
executableName: LowFidelityRampMassModelMain


linkType: parameter 
foreign ValueName: AMILValue


UniqueID: ArmorThickness
valueType: external
className: com.bae.meta.amilextern.GenericExecutable
executableName: ArmorMain


UniqueID: RampHeight
AMILValue: 19


UniqueID: PenetratorMass
REQUIREMENT_VALUE: 400.0


linkType: parameter 
foreign ValueName: REQUIREMENT_VALUE
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As described, this can be a very expensive process. Each of the executable models could take a 
very long time to execute, and the chain of models required to evaluate a given node is 
potentially quite large. Although there has been no need to implement it in the current system, 
there is nothing to prevent caching of dynamic node evaluations, either in the server’s memory 
or in the database: the handler for the node has full access to the database, including the ability 
to modify existing nodes and create new ones. 


AMIL is central to the implementation of metrics and to the implementation of the prototype 
CML. For metrics, each metric definition is a dynamic node, of type “metric,” which can be 
retrieved with parameters that specify the model for which the metric is to be computed; the 
code has full access to the AMIL graph, so can retrieve parameters from other nodes, or run 
arbitrary external computations to determine metric values. For the CML, the bulk of the data 
is stored externally to AMIL; an index is maintained in AMIL to facilitate searches against the 
CML’s content—for example, find all engines in the CML with a power output greater than 
350 kw. AMIL was not designed to store all of the details of those engines, which might 
include full Computer-Aided Design (CAD) drawings, very precise thermal models, torque 
curves, and so on; rather, it helps client applications identify the appropriate models to retrieve 
from the CML repository, and provides the coordinates within the repository for those models. 


7.2.1.4 Ontology 


AMIL and AmilLib provide some very basic search capabilities, and others can be added. A 
primary requirement is to search highly structured, semantically rich data associated with 
models in the component model library. We also have a need to represent archetypical 
structures, where a component of the archetype might start out as “Engine,” and eventually be 
refined to a specific model of a specific brand of gas turbine engine, based on size, power, 
thermal characteristics, and so on. This kind of search is best supported by using a formal 
ontology, which allows queries based on the meaning of the data. A free-text search, or even a 
Google-style search, would be much too imprecise, missing matches because of differing 
vocabulary terms or misspellings, or returning spurious matches because it couldn’t match 
numerical size, weight, and power (SWAP) parameters. 


At database initialization time, AMIL loads a predefined set of OWL files to populate the 
ontology. These include class definitions as well as instance definitions, which, as discussed in 
Section 7.2.2.2, act as an index for the Component Model Library. The nodes and edges created 
by this process are stored in the same repository as the rest of the AMIL database, but the form 
of the data is rather different: where AMIL supports arbitrary, extensible sets of attributes on 
nodes and edges, the ontology has a well-defined and very small set of link types and attributes. 
In AMIL’s model, the weight of a component would be stored as a “Weight” attribute on the 
node representing the component; in the ontology, the weight is stored as the “value” attribute 
of a node that can be reached from the component node by following links of specific types. 


In order to support both models, AMIL post-processes the ontology during database 
initialization, in order to identify all of the classes, instances, and features—which correspond to 
AMIL’s attributes—that were created. Using this information, AMIL adds new links, and adds 
new attributes to class and instance definition nodes; at the end, a component’s weight will be 
stored both as an attribute of the component node, for AMIL clients, and as a feature associated 
with the node, for ontology searches. 


Because AMIL is the only thing accessing the repository, it is feasible for it to maintain 
consistency despite all of the duplicated data. When an AMIL client changes an attribute that 
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was defined by the ontology, AMIL can find and update the feature value as well; if an AMIL 
client creates a new instance of an ontology class, AMIL will create all the required attributes 
and links to support its full use. 


The ontology exists primarily to be searched; searches are supported using the SPARQL query 
language. Queries can find instances of particular classes, and can filter based on instance 
features; thus, a simple request like “find all engines whose weight is less than 250 kg and 
whose power output is greater than 300 kW” is easily expressed, and can be evaluated very 
efficiently. Figure 7.2-4 shows a snippet of the formal ontology, its representation in AMIL, 
and a query to retrieve some elements defined by the ontology. 


 
Figure 7.2-4. Data Flow for Semantic Queries 


7.2.2 Component Model Library 


The Component Model Library (CML) has two primary purposes. First, it is a repository that 
stores technological knowledge and facilitates its sharing and communication between work 
threads and components. Second, it encourages re-use of artifacts and makes it easy to do so in 
a reliable and consistent manner. A centralized component library supports distributed design, 
because it is available anywhere, and facilitates design evolution, because it is always available. 


7.2.2.1 CML Architecture 


Maven repository managers 


The CML semantics borrows heavily from the semantics Apache Maven[MVN11] uses to 
reference software artifacts and identify dependencies. The overlap allows us to leverage 
existing Maven tools to build the CML infrastructure. The CML uses a Maven repository 


METAF022


AMIL


{
"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L": {


"power_watt": "387763",
"value": 


"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L",


"OBJECT_ID": 
"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L",


"Property": "23000",
"monetary_usdollar": "23000",
"featureNames": [   "Mass", "Cost", "Power" ] ,
"featureIds": [
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Ma ss",
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Cost" ,
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Pow er",
] ,


"kind": "uri",
"NICKNAME": "NORINCO_12150L",
"mass_kilogram": "895"


},
"type": "node"


},


Norinco 12150L Engine RDF


AMIL 
Client


Norinco 12150L Engine JSON


<owl:NamedIndividual rdf:about="http://projects.baesystems. com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#D ies el Engin e"/ >
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Mass "/>
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Power"/>
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Cost"/>
</owl:NamedIndividual>


<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Mass" >
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Mass "/>
<meta:mass_kilogr am rdf:datatype="http://www.w3.org/2001/XMLSchema#decim al" >895</met a: mass _kilogr am >
</owl:NamedIndividual>


<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Power">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Power"/ >
<meta:power_watt rdf:datatype="http://www.w3.org/2001/XMLSchema#decim al" >387763</meta:power _watt >
</owl:NamedIndividual>


<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Cost">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Cost"/ >
<meta:monetary_usdollar
rdf:datatype="http://www.w3.org/2001/XMLSchema#decima l">23000</met a: monetary _usdoll ar>
</owl:NamedIndividual>


"SELECT DISTINCT ?component WHERE {  
?subclass rdfs:subClassOf


meta:Engine . 
?component a ?subclass .


}


SPARQL query for 
engines in client 
application


Load engine ontology into 
AMIL data store


AMIL returned JSON 
representing a ‘fattened’ 
node of properties and values
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manager as a back-end store for components and models. Repository managers generally 
provide an interface between developers and online repositories; for the CML, Artifactory 
[ART11] acts as a content management system for storing resources associated with a given 
component or model (e.g., MagicDraw files, Matlab files, photos, videos, etc.). The following 
repository managers are popular in the Maven community: Nexus [NXZ11], Artifactory, and 
Apache Archiva [ARC11]. Artifactory was selected for its stability, usability, and active 
user/developer community. It is available in several distributions with varying capabilities and 
license restrictions; for the CML, the free open source version is sufficient. 


Artifactory feature set 


Despite its novel application in CML, Artifactory addresses several concerns out of the box: 


1. User management – restricting and permitting access to CML 
2. REST [RST11] interface – providing programmatic access to CML resources 
3. Web GUI – providing an easy-to-use browser interface to CML resources 
4. System logging – monitoring CML usage 
5. Backups – data loss prevention 
6. Dependency management – maintenance of artifact dependency trees 


Artifactory usage in CML 


In CML design, Artifactory saves bandwidth by delaying the transfer of large data files into the 
ARRoW workspace. For example, the user might search for an engine with a given set of 
parameters, and select a single engine from the search results. Not until the user needs to use 
the data files associated with that engine will they be brought into the local cache by 
Artifactory. 


Artifacts—CAD drawings, spec sheets, executable models, and so on—can be uploaded to the 
Maven repository via Maven’s command-line interface or through Artifactory’s web interface. 
Artifact versions are categorized as snapshots or releases: a release artifact will not change, 
while a snapshot artifact can change. Snapshots and releases are uploaded to separate locations 
in the Maven repository. 


AMIL serves as the index for the CML, allowing semantic searches to retrieve the metadata for 
a specific component model. The metadata includes the Maven “coordinates,”1


Figure 7.2-5


 which the AMIL 
“cml” dynamic node type will use to retrieve artifacts from Maven via Artifactory’s REST 
interface ( ). A traditional Maven repository would set the packaging coordinate to 
be an archive format such as jar, war, or zip; CML overloads it to be a more flexible file 
extension setting to account for the wide variety of system engineering file formats. Artifactory 
provides a basic search capability as well, but it is focused on retrieval of versions of software 
packages, so is not easily extended to support the queries required for system design. 


                                                 
1 The Maven coordinates are group ID, artifact ID, version, and packaging. For example, 
com.tinkerpop.blueprints is the group ID for all of the Tinkerpop code used to support the AMIL 
ontology; an artifact ID is blueprint-neo4j-graph, the library for interfacing Tinkerpop to neo4j; a 
version would be 1.0-BAE, and packaging would be jar. These four values uniquely identify the library 
version in the world of Maven; a copy of the library can be cached locally, or retrieved from any Maven 
repository that has it, without further thought. 
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Figure 7.2-5.  CML Query for Data in Artifactory 


7.2.2.2 CML Search 


Key to using the CML is the ability to search for artifacts that met specific needs. In cyber-
physical design three major use cases for CML search are in design space exploration,   
analytical compositions and design verification. 


Design space exploration 


In META, a design starts with a set of requirements, which are essentially constraints on the 
design space. In design space exploration, we can use these constraints to limit the space of 
possible component configurations. However, it is often the case that design requirements are 
contradictory, so the problem cannot be solved automatically, for example by using constraint-
based solvers. The goal instead is let designers use their domain knowledge, providing support 
through the CML’s search facility. For example, the size of the engine compartment for a 
vehicle might already be known, but performance requirements require an engine with 
particular capabilities, whether in terms of torque, power output or fuel efficiency. At this point 
a designer can search for engines in the CML that can meet the space and performance 
requirements. If no results are returned, then it is clear that there are problems with the 
requirements and that the design is over-constrained, unless developing a new engine is within 
scope. If results are returned, the engineer can select one, or, if his design software supports it, 
retain all matching engines as candidates until subsequent requirements, such as weight claims, 
allow the set to be further reduced. 


Analytical Compositions 


System designers regularly perform repetitive sets of analysis in the course of system design, 
often as part of test and verification of a design. These analyses consist of a common set of tools 
and methods applied in an analytic workflow, with the design data flowing from one analytical 
tool to the next. There are a wide variety of design modeling methods available to engineers 
(CAD, Finite Element Analysis [FEA], Thermal, etc). There are also a number of general 
purpose modeling tools that have a wide user base, such as Simulink and OpenModelica. For an 
engineer, finding the most appropriate model to use in a particular workflow is often a time 


METAFR029


AMIL


CML


artifactId
groupId
version


ArtifactoryREST 
Interface


download


query artifactId
groupId
version
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consuming task. A CML query service can aid them by helping them find design models which 
meet their requirements, in terms of input and output parameters, or in terms of what type of 
analysis is to be performed. 


Design verification 


In design verification, the design task (which is a synthetic task) has been completed to some 
level of detail, and the goal is to analyze the design to confirm that it still fulfills all the 
requirements and design assumptions. Perhaps later on in a design, a weight claim for the 
drivetrain was imposed that made the current engine choice in appropriate. At this point the 
engineer can perform another search of the CML with the updates set of engine requirements. 
Tradeoffs might have to be made at the margins—relaxing one requirement slightly could 
allow for a consistent design. 


As discussed in Section 7.2.1.4, AMIL provides a formal ontology and supports semantic 
searches of it using a standard language. We believe this allows the best combination of high 
precision and expressive power in queries, which are critical to the use of the CML. A goal of 
future work would be to provide support both in the AMIL/CML API and in the user interface 
for the types of searches supported by SPARQL, without requiring knowledge of its relatively 
difficult syntax, or knowledge of the relatively complex naming conventions that are used in 
OWL ontologies. 


7.2.3 Conceptualization – The Early Concepting Tool 


The Early Concepting Tool (ECTo) guides a vehicle design process by applying abstract 
components that fit together a priori as a result of applying archetypal rules. Any down-select 
process that excludes incompatible components is made possible by doing DSE as a successor 
stage. The ECTo concepting reasoner captures spatial representations, complex space claims, 
and articulations, which are difficult to represent and reason with in pure logic.  


As a system design tool ECTo enables editing of a master model primarily through the 
hierarchical assembly and manipulation of components from the CML. It is focused primarily 
on empowering a designer in the early design phase to be able to incorporate and manipulate 
major design drivers and rapidly assess the qualities of system concepts. The resultant concepts 
can be used as the basis for more detailed design. 


The ECTo includes a 3D viewer called Zulu to represent the vehicle design concept and to aid 
in initial spatial layout and rudimentary packaging without the burden of a commercial CAD 
tool. ECTo was developed as a tool which could be used independently or that can fit naturally 
into the ARRoW toolchain and interact closely with the projects AMIL graph. Figure 7.2-6 
highlights the key layout of the tool. 
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Figure 7.2-6. ECTo Layout and Views 


The ECTo’s logic reasoner works on vehicle archetypes at specific levels of modular 
abstraction, incorporating encoded knowledge of interactions and design rules of how the 
modules fit together. The intermodule influence diagrams at block levels are selected from 
composites of lower level archetypes. The first pass that ECTo makes is at the conceptual 
stage, in which we can then realize a concept system2


Synthesis. Synthesis at the concepting level is the art of realization based on merging intent 
(requirements) with possible embodiments (components from the model library). ECTo 
synthesizes a numerical subsystem/component space and weight claim topology with a visual 
representation and an accompanying AMIL blueprint that another tool or engineer can use. 
The design may not be complete either—as when alternative design options are available, and 
an identifier tag can be used to indicate sets of components which can provide inputs to another 
decision support system.  


. 


                                                 
2 ECTo thus creates “ectypes” which the conceptual realization or instances of a vehicle archetype 
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Component Model 
LibrarySystem Design


System Requirements 
and Properties


Component Properties


Tool Log


 
Figure 7.2-7. ECTo Exploration Panes 


7.2.3.1 ECTo Architecture 
The overall architecture of ECTo is based on the premise of editing a master model primarily 
through the hierarchical assembly and manipulation of components from the CML. To this end, 
both system design data and CML data can be stored or retrieved interchangeably using either 
local XML files or the Arrow Web Services AMIL graph. The interface between ECTo and the 
Arrow Web Services is intended to be very transparent and provides an example for how a 
design tool would interface with these services. 


The ECTo is written in C++ and build on top of the Qt application framework using Visual 
Studio. The ECTo uses a C++/Qt based AMIL client library to facilitate all its interactions 
with the AMIL graph. Zulu is built using the Unity Engine and communicates with ECTo 
using UDP messages. 


ECTo Main Window. ECTo is made up of several configurable panels with the candidate 
system as shown Figure 7.2-7 in a typical layout. 
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Zulu. The interactive 3D visualization component to ECTo, called Zulu, runs as a separate 
process. No state is stored in the visualization and it is not required to be run for ECTo to 
function, though this provides the easiest way to manipulate components and generate a spatial 
view of the system. Figure 7.2-8 illustrates the Visualization capability. 


 


Figure 7.2-8. Zulu (ECTo's 3D Visualization) 


System Design Toolbar. ECTo maintains a list of all the elements it is operating with so it is 
meant to work as an exploration tool with its own private set of data. This means that ECTo 
essentially assumes it owns the system hierarchy while it is editing it. For checking design 
consistency, models can be run explicitly by selecting a model to execute or by executing all 
models. Refer to the ECTo user’s manual for more information. 


Query CML creates a SPARQL query for refinements of a selected component and queries for 
items in the ontology that are valid refinements of abstract item selected.  


System Hierarchy. The hierarchical representation of the system is displayed in the System 
Design panel. The values of the major states are displayed in a table. The ‘Local State’ column 
is the state values for only the component selected. The ‘Rollup State’ column displays a rollup of 
values for the selected state and all that states children. System level rollups for Mass, Cost, 
Length, Width, and Height are always displayed in the System Properties panel. 
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Figure 7.2-9. System Hierarchy and CML Panel 


System Requirements and Properties Panel. This panel stores all the system level properties 
or any properties that need to be exchanged between component models. The ‘Value’ column 
indicates the current systems estimated performance and the ‘Req’ column is used to maintain 
the system requirement or derived requirements for that property. Most key system inputs are 
considered requirements but they can be adjusted by a designer so they can assess how 
particular inputs drive a design. Figure 7.2-10 shows the supporting system and component 
panel. 
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Figure 7.2-10.  Supporting System and Component Panel 


Component Panel. This panel shows and allows one to edit the properties of a specific 
component. Components with associated models will frequently have additional properties that 
are specific to that model. For example, the SoldierCompartment model uses additional 
properties to construct the soldier compartment such as seating arrangement, squad size 
assumptions, clearances, etc. 


Component Model Library Panel. The CML panel shows components from the CML which 
can be included into the system hierarchy by dragging a component from this panel to the 
parent in the system you want to attach this component to.  


Components can be loaded into this panel either through XML files using or as a result of a 
query to the CML service in Arrow Web Services.  


As additional ways to interact with and search a CML are established, this panel can evolve to 
support additional approaches. Additionally, CML repositories should be able to easily export 
indexes of components into a compatible XML file. The file CML.xml in ECTo’s working 
directory provides an example of various CML components used to build up the IFV in the 
demo walkthrough below. 


7.2.3.2 ECTo Models 
Certain nodes, indicated by having a green background in the System Hierarchy, have Models 
associated with them. These are typically parametrically driven components or systems that 
change their properties or are ‘built’ based on inputs to those models. For example the 
‘SoldierCompartment’ Model, when executed takes the requirement from the System Properties 
panel for ‘number_soldiers’ and various other inputs in the Component Properties panel to 
construct the space claim and mass for a the Soldier Compartment. If the number_soldiers 
requirement is changed and run, this model will see the number of soldiers and the various 
properties of the compartment, bench, egress volumes, etc., change to reflect this. 


The ECTo models are run from the System Design Toolbar, either individually on a selected 
model or by executing all models in the system. Running all models traverses the tree and 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design 


 


© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement. 


executes models from children models up, models under the sub-tree of another model node are 
executed before the ancestor node’s model. Executing Models can retrieve and set data in the 
System Properties widget as they run, so one model’s output can be used as input or modified 
by another model. This data flow can also be used to control the execution order of models or 
to establish an implicit causal network of models. 


Another different kind of model included in ECTo is the Hull Shaper model. If you select the 
‘Hull’ Model component, you should see a Hull Shaper UI popup in the Zulu visualization. By 
modifying these fourteen dimensions a designer can capture the essential shape of most 
traditional combat vehicles. As the Hull is modified, estimates of weight are calculated and cost 
if calculated using the cost per pound input parameter. If this model is insufficient to represent 
a design, a different hull model or component can be used in its place. Figure 7.2-11 shows a 
hull shaper model. 


 


 
Figure 7.2-11.  Hull Shaper Model 
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In the System Properties panel, a quick look calculation is made as modifications occur to 
generate a minimum Engine Power that would be required for a vehicle of this weight class to 
achieve the required maximum speed (as show in the System Properties as top_speed). If the 
sytem is modified to make it heavier, the required Engine Power will go up. Additionally, if the 
top_speed requirement is modified in the System Property panel, this will also change the 
minimum required Engine Power. This calculated, or derived, requirement for minimum 
Engine Power is used when querying for viable refinements of Engine. 


One way to quickly change the weight of the vehicle is to modify the ‘AvgThickness’ 
component property for the ‘Hull’ Model component. If the average hull thickness is changed 
from 0.02 m to 0.03 and the Hull model is run, the new model will represent a heavier armored 
vehicle. 


Query for viable engines in CML. If we selected an ‘Engine’ model node in system hierarchy, 
then we can ‘Query CML for Candidate Component Refinements’, and observe a SPARQL 
query in the Output Log panel. The Query Results is added to the CML panel, and only 
engines returned that exceed the minimum Engine Power calculated in the System Property 
panel. 


Replace abstract engine with specific engine. Delete an ‘AbstractEngine’ and replace it with 
a concrete engine from the library. 


Path Forward 
ECTo is a prototype of an early system conception and analysis tool and has the potential to 
evolve into a very powerful system engineering asset. 


Architectural modifications 


• Migrate IFV specific delegates and models into dynamically loadable libraries, these 
libraries can then be stored and brought into ECTo from the CML. 


• Include Ability to do multidimensional sweeps across input values or enumerated sets.  
Add output tables and data export utilities to facilitate analysis of this data. 


• As statistical models are incorporated allow for execution of Monte Carlo runs. 
• Fully incorporate a Design Set node that can be used to represent alternatives and any 


level in the hierarchy and tools. 


Enhance the System Properties panel to allow for a designer to adjust values and still maintain 
original requirements perspective.  Add a third column for actual requirement, a column for 
value to use as system input and a value for actual estimated output. 


7.2.4 Co-Analysis and Exploration 


This section summarizes Generic Ensemble (GEAR) and Expert-System Knowledgebase 
Evaluation Reasoner (ESKER). For more details and examples of use, refer to Appendix 7.6.  


7.2.4.1 Principles Behind GEAR 


The idea of aligning archetypes with reasoners leads to the term GEAR to describe these 
capabilities. Reasoners, patterns, templates, design rules, and archetypes are essentially 
synonyms for this generic capability. The prominent idea behind GEAR is to apply similar 
rule-based semantics in the context of developing archetypes for analysis, design, and 
implementation. The goal is to extend the information laid out in AMIL and leave it in a 
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symbolic format, suitable for mapping into more concrete representations. The symbolic 
representation thus forms an “archetype” for the specified behavior.   


The first step is to start out with a domain model of some sequence (potentially concurrent) of 
steps that may build into a cyber-physical realization. This sequence is referred to as a plan, a 
use case, a scenario, a thread, or any term providing essentially a narrative description. The 
main connecting theme is that it forms a set of behaviors that would typically reproduce a 
human’s action (automation) or improve on some already automated realization. In practice, 
these sequences draw from typical or archetypal behaviors that have stood the test of time. The 
key is to not reinvent the wheel each time the engineering development process needs to 
implement a behavior. Instead behavioral recipes can be extracted from the repository and 
applied to a start-up design task that reduces development time. This requires a description 
that can generate concrete realizations based on the behavioral archetypes and requirements. 


See Appendix 7.6 for a detailed treatment of GEAR.  


7.2.4.2 ESKER 


The ESKER is the Expert-System Knowledgebase Evaluation Reasoner tool for design space 
exploration which ties together AMIL and logical semantic reasoning to facilitate Design Space 
Exploration (DSE).  ESKER contains the engine that drives the search. The semantic web 
reasoners available use a similar inference engine (Prolog). ESKER also uses a declarative form, 
making it very compatible with triple-store and description logic. 


The ESKER evaluates utility criteria for a given set of components selected from a set of 
variants. We initially assume that the model components would fit together; a precursor 
archetypal model actually establishes the specification for components that can get integrated 
together, which is also what ECTo does from vehicle structural design rules.  


 
Figure 7.2-12.  ESKER 
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System optimization has historically remained a challenging problem because the complexity 
involved in simply choosing between alternatives of any significant number makes a purely 
quantitative approach prohibitive. Although algorithmic automation approach can alleviate the 
bookkeeping, several challenges remain, especially in terms of integrating results from a set of 
tools that provide the intermediate decision support. 


Concepting and Design Phases. The general statement of the problem is concisely framed in 
a basic two-dimensional design space. The scenario typically occurs with the design of any 
sufficiently detailed product, such as a ground vehicle or a weapon system and it involves 
selecting alternatives with respect to some set of criteria. Within the first dimension, a set of 
concept or design alternatives exists. Some examples may include: 


• Capacity of vehicle in terms of different count of troops 
• Tracked vs. Wheeled 
• Gun Caliber 
• Engine Type 
• Etc. 


 


In the second dimension, a set of optimization criteria exists to arrive at the best choice of 
element alternatives. The criteria can have various requirements and constraints associated 
with their description and typically fall into a set of established categories, such as: 


• Cost 
• Reliability 
• Performance 
• Weight 
• Etc. 


The system engineering puzzle is to choose which alternatives fit best together within a given 
set of criteria. The major difficulty in doing this from a global perspective is that both the 
product and optimization categories cross a broad spectrum of disciplines and will likely 
integrate a number of disciplines and analysis tools together to provide the most effective 
solution. That is the nature of system engineering, and why a cross-disciplinary approach is 
vital. 


The results of this implementation show that an expert system backed by a dynamic knowledge 
base is well suited for the optimization task. These objectives can provide a formal mechanism 
to rationalizing the engineering decisions made: 


• Declarative Knowledge 
• Structured Decisions 
• Human still in the loop 
• Generate a narrative for explanation and regression (i.e., a provenance capability) 


 


A search optimization problem. The problem boils down to optimizing among the 
alternatives considering constraints, requirements, and various measures of effectiveness. Most 
of these measures either come about through heuristics, analysis models, or simulation of the 
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alternative being studied. An approach is needed that will selectively lock choices to prevent an 
explosion of alternatives3


Originally, the expert system organization was predicated on a two-stage process. The first 
stage included heuristics and straightforward calculations (cost lookup, first-order rules, etc.). 
The second stage would feature more elaborate simulations, via connections to external tools. 
The plan was to eventually allow the second stage outcomes to get adopted as first stage 
heuristics as the tacit knowledge matures. 


.  


A detailed treatment of ESKER is provided in Appendix 7.6.  ESKER has been implemented in 
the functions of Design Space Exploration and PCC calculation. 


7.2.5 Tool Plug-ins 


Plug-in architectures are implemented by distinct but cooperating modules. We describe each 
plug-in separately in the following paragraphs. 


7.2.5.1 Magic Draw/SysML 


To demonstrate an integrated SysML capability for ARRoW, we developed Magic Draw plug-
in extensions via the Java-based plug-in architecture of the Magic Draw tool suite. These tools 
were then used to support modeling of a ground vehicle reference architecture model. This 
section describes the various features of the extensions that were made to the Magic Draw tool.  


7.2.5.1.1   Magic Draw Plug-In Architecture 


Magic Draw is a Unified Modeling Language (UML)/SysML tool written in Java, and 
provides a plug-in based architecture that allows developers to write Java code to extend or 
modify its behavior. Magic Draw exposes an API to allow plug-ins access to the user interface 
and the model database. Refer to the Magic Draw documentation for more information. 


7.2.5.1.2 ARRoW Magic Draw Plug-In 


We developed a single ARRoW plug-in for Magic Draw, with a variety of capabilities. The 
ARRoW plug-in provides the following functionality: 


• Initialize the plug-in 
• Collect requirements in a way that can be integrated into AMIL without language 


parsing.  
• Read and writes from/to AMIL graph database 
• Solve parametric equations 
• Generate custom reports (e.g., OWL schemas) 
• Query, read data, load models, and publish models into the component model library 
• Select a refinement of a design archetype 
• Provide model element information 
• Extend SysML model elements with ARRoW stereotypes 


                                                 
3 A spreadsheet-based approach, although table-driven,  is untenable since it lacks: (1) Large-scale 
maintainability, with the “if-then” rules particularly difficult to implement and (2) Customizable 
extensibility to outside tools. The latter strongly suggests that flexible reasoners could play a vital role. 
Interesting to note that, despite decades of development of decision support systems and methodologies, 
spreadsheets are still popular as primary tools for decision making. 



http://en.wikipedia.org/wiki/Decision_support_system�

http://en.wikipedia.org/wiki/Spreadsheet�
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These capabilities are described further in the plug-in software documentation. All source code 
is found in Subversion (SVN) under the mdplugin project. 


7.2.5.1.2.1 Initialization 


On startup, Magic Draw checks a certain directory for plug-ins. The mdplugin project, when 
Maven Install is run, build the plug-in and installs it the proper directory under the 
MDUML_HOME environmental variable. A file, plugin.xml tells Magic Draw about the plug-
in, including the name of the root Java class to initialize it, and JAR dependencies the plug-in 
has. The ArrowPlugin class is responsible for initialization and installation of all ARRoW 
capabilities within Magic Draw. 


7.2.5.1.2.2 Requirements Capture 


Requirements are captured as SysML requirements model elements, which are really just 
wrappers around the text of the requirement. For ARRoW, we need to get at the meat of the 
requirement and how it impacts the architectural elements of the system. To achieve this, we 
created a custom dialog that would capture the relationship between blocks, requirements, and 
properties, store it within the model, and publish it to AMIL.  


A dialog box, implemented in the MD plug-in, is used to manage the requirements mapped 
onto a block and the properties they affect. The dialog captures the range of values constraint 
that the requirement places on the block property. 


Figure 7.2-12 shows a screen shot of the dialog box for the Opening block, with requirements 
Req1 and Req2 placing constraints on the size property. The prototype captures ranges of 
values, in the form lVal < property < uVal. This can change to deal with other syntax, 
tolerances, or more general expressions as we evolve the solution.  


 
Figure 7.2-13.  Opening Block Dialog Box 


7.2.5.1.2.3 AMIL 
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The MD plug-in adds a menu item to the main File menu to Publish to AMIL the model. All 
requirements and all Blocks with the <<RequirementValues>> stereotype are published to 
AMIL. The following diagram documents the pattern of SysML elements as they are mapped 
to AMIL nodes. This happens within the RequirementValues.java class. 


Write 


Blocks, instances, properties, and requirements are each mapped to their own AMIL node. The 
arc from block to property represents the ownership of the property by a block. Attributes of 
the property, such as type, description, etc., are not shown.  


The arcs from requirements to property represent the constraints or desired values of the 
property, and the range expression is mapped to attributes of the arc. As illustrated in Figure 
7.2-13, the lVal and uVal ranges are included on the arcs. 


 
Figure 7.2-14.  AMIL Representation of Requirement Ranges of Values 


Design values are assigned to a property and mapped to the AMIL graph using a designValue 
property on the SysML property’s AMIL node.  


The ARRoW allows reading back out of the AMIL graph for a single node. The ARRoW 
SysML tools support reading back designProperty values back from the AMIL graph, allowing 
tools to exchange design information. Since SysML is the authoritative source for requirements 
in our application of ARRoW, requirement values are not read from AMIL. This feature will 
also read back properties in ECTo’s format of name-value pairs on the AMIL node. Named 
AMIL properties that do not align with SysML properties are ignored. 


Read 


This feature is implemented in PopulateFromAMIL.java.  


7.2.5.1.2.4 Parametric Models 
We used parametric diagrams to mathematically relate block properties with one another. 
While we did not extend Magic Draw to achieve this capability, we do note that other Magic 
Draw add-ons are required. ParaMagic and either OpenModelica, Modelica, or Mathematica 
are required for full parametric support. 


METAF023
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7.2.5.1.2.5 Report Templates  


Magic Draw uses the open source velocity tool as the means for generating reports from the 
models. While not part of the Java plug-in extensions, we have created custom reports for 
ARRoW. These templates are in SVN in the mdplugin/src/main/resources/templates 
directory. 


The owl.txt report generates an OWL schema from the SysML models.  


SysMLStructuralReportTemplate.rtf is a fix to Magic Draw’s default report template that 
includes blocks in the report.  


Refer to the Magic Draw documentation for how to use custom reports from the Tools>Report 
Wizard menu option. 


7.2.5.1.2.6 CML Query 
The ARRoW can query the CML database for components of a particular type, like engine, and 
can even build more complex queries to find engines with power in a specific range. As 
illustrated in Figure 7.2-14, the results are shown in a dialog box, allowing the user to browse 
the results. A single result can be selected, which loads the CML property values into the 
model element’s SysML properties.  


This occurs within the PopulateFromCMLAction.java and PopulateFromCML.java classes. 
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Figure 7.2-15.  Browsing Query Results 


7.2.5.1.2.7 CML Publish 
A Magic Draw package, containing an archetype, can be published to CML from within Magic 
Draw. This adds the mdzip file to the CML and Artifactory, which supports the CML. 


7.2.5.1.2.8 Archetype Refinement 
The reference architecture includes decision points in selecting among design patterns or 
components within the design. An ARRoW plug-in class, RefineDesignArchetypeAction.java, 
reads from an AMIL node that triggers a reasoner within the AMIL graph to run, collect 
design data, rank alternatives, and provide the top ranked option. The selected option is then 
automatically added to the design. 


7.2.5.1.2.9 Node Info 
As an exploration and understanding tool, the ARRoW plug-in allows model elements on 
diagrams or in the containment (tree) view to be queried about their type and other 
information. This is in the NodeInfo.java class.  
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7.2.5.1.2.10 ARRoW Stereotypes 
The ARRoW defines stereotypes to extend the Block and Requirement SysML model elements. 
These are described in the Language section of this Final Report. 


7.2.5.1.3 Tool Considerations 
For this work, we chose to use the Magic Draw UML/SysML tool, version 17.0, service pack 
2. There are many other tools that support UML/SysML, including some open source tools. 
While we made some extensions to the tool, via a plug in architecture that Magic Draw 
exposes, we kept those extensions to a minimum. Other tools have similar extendibility 
approaches, so these plug ins can be adapted to other tools.  


The profiles, extensions to the SysML language, should be interoperable with other tools, as 
should the UML and SysML models of the reference architecture.  


ParaMagic is a tool from InterCax that extracts SysML parametric models and makes them 
available to a solver, such as Open Modelica. ParaMagic has no open source equivalent 
currently. However, it would be possible to write a SysML-tool-independent utility to extract 
the parametric model to AMIL, then write a solver on top of the AMIL graph.  


The following lists the features of a UML/SysML tool that we are using and dependent on 
within ARRoW. 


• Tool extension architecture, like a plug in capability, to add custom menu items, dialog 
boxes, etc., to the tool. 


• Ability to use the extension mechanism to create an interface to AMIL. 
• Supports the UML 2.X and SysML 2.X standards 
• Supports profiles 
• Ability to partition models into separate files, at least package level 
• XMI interoperability 
• Support for all diagrams and constructs used in the Reference Architecture. 


7.2.5.1.4 Future Work  


7.2.5.1.4.1 Separating the Archetypes into Separate Files 


Currently, all design archetypes live in one file, under models/SysML/IFV.mdzip in SVN. 
Each archetype should be broken out into its own package and file for storage in CML. 


7.2.5.1.4.2 Auto-Requirement Mapping 


Requirement archetypes are mapped onto the reference architecture components they impact. A 
corresponding relationship happens at the design level with requirements attached to design 
elements. This process could be automated, to create and attach requirements from 
requirement archetypes as design elements are created.  


7.2.5.1.4.3 Design Under Test Configuration for Test/Co-Simulation 


Using the internal block diagrams, behavioral models can be composed to support a co-
simulation. This SysML diagram can then be leveraged into executing the composition, 
extracting models from CML and deploying it on the appropriate platforms.  


7.2.5.1.4.4 Synchronization with ECTo 


Both ECTo and SysML cover the design space from different viewpoints. We could combine 
the reference architecture and ECTo to create a Domain Specific Language (DSL), a language 
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that supports the capabilities and expressiveness of UML/SysML, but with the visual interface 
of ECTo. Constraints can be enforced by warning the user that the engine usually doesn’t go 
inside the squad compartment. The DSL would also ease the mapping of requirements onto the 
design elements.  


Ideally, ECTo would evolve into a tool that is plug-and-play, meaning that new component 
types could be added without having to change the ECTo code base itself. Parametric 
relationships that are hard coded into ECTo now could be authored in SysML and exported 
into AMIL for use by ECTo. Likewise, design archetypes, components, subcomponents, and 
peer connection patterns could be packaged for use by ECTo.  


Ultimately, one of the desired features of the META project is to support the analysis of 
parametric models outside the context of MagicDraw. MagicDraw could continue to be used 
for authoring parametric relationships between components, just as it would be used for 
developing the ontology interface for CML. The parametric models would also be published 
into AMIL. However, instead of running the ParaMagic plugin from within MagicDraw, a 
similar tool living in the cloud could be launched from within AMIL and used to solve the 
parametric equations. This way, MagicDraw, ECTo, and other tools could benefit from the use 
of tool independent parametric models, and the mathematical analysis would move from the 
client to the cloud. 


7.2.5.2 Pro/Engineer (Creo) Plug-In 
7.2.5.2.1 Introduction 


The Pro/Engineer (Pro/E) was recently renamed Creo, but is referred to in this paper as 
Pro/E. This plug-in dynamically provides parametric information for generating mass, 
moments of inertia, model structure, and baselines of Pro/E objects.  


The information generated uses JSON (JavaScript Object Notation) for lightweight data-
interchange. The JSON provides an easy text format that is language independent but has 
conventions that are familiar to programmers. In addition, since the AMIL language is a 
derivative of JSON, it allows for easy input into the META systems. 


7.2.5.2.2 Benefits 
As the main worker, the Pro/E Plug-in does the heavy lifting of calculating the parametric 
information and producing the necessary output. The plug-in consumes information placed on 
the queue, with the JMS provider ensuring that items in the queue are only processed once. 


 The architecture design for the Pro/E plug-in is configured to leverage cloud technology. For 
example, if the demand for processing Pro/E objects increases additional workers can be 
started. This offers parallel processing for on demand resource utilization while the plug-in 
dynamically analyzes and calculates mass properties of any Pro/E object.  


7.2.5.2.3 Conclusion 
The Pro/E Plug-in provides critical parametric-constraint properties to allow automated 
design decisions. 


7.2.5.3 Incorporating Lightweight, Open Source, Freeware Tools into the Tool Chain 
7.2.5.3.1 Engineering Design Tools Investigation 
The BAE Systems META tool chain is founded upon the notion of heterogeneous tool and 
technology integration and lightweight, unobtrusive data integration mechanisms. This 
approach attempts to enable the integration of fast and automated abstract design 
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methodologies, but retains the capability to access high-fidelity domain-specific tools and 
capabilities where needed and appropriate for the development of a complex, safety-critical, 
weapons platform like a combat vehicle.  


An analysis was completed to evaluate lightweight tool capabilities in the design chain. An 
evaluation found existing open source tools with similar functionality matched to commercial 
tools as shown Figure 7.2-15. An initial investigation assessed CAD due to its cost and 
complexity.  


 
Figure 7.2-16.  Relevant Commercial and Open Source Tools 


7.2.5.3.2 Capability Sampling 


A capability assessment was concluded evaluating low-cost or freely-available CAD tools for 
use in the META program. Some of the things evaluated include ease-of-use, flexibility, ability 
to create and modify geometry, and any APIs to allow automation through scripting or other 
software interfaces. 


Low-cost or free (commercial or open-source) CAD tools can be an important part of early 
product development. These CAD tools with an easy but powerful user interface coupled with a 
richly-populated component model library will allow a wide user community to try out 
different early concept layouts of a system. 


The CAD tool capabilities to focus on at this early stage in conceptual design (of a large system 
layout) include easy placement and movement of component geometry (singly or in groups), 
easy geometry creation and modification, and presentation ability. Less important capabilities 
include top-down design tools, drafting/annotation modules, or other detail-design capabilities. 
Another important characteristic of a useful CAD tool is the ability to deal with 
importing/exporting geometry from other CAD systems while still allowing full modeling 
capabilities of the CAD tool (i.e. no loss of functionality or geometry). 


Later, during preliminary design, the CAD tools can shift to more powerful (presumably more 
expensive) CAD tools to support a more robust development activity. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design 


 


© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement. 


7.2.5.3.3 Conclusion 


Generally, there are a lot of unknowns (such as performance with large models) with the CAD 
software packages evaluated. Additional evaluations are necessary to conclude where and how 
best to use open source and freeware software.  


7.2.6 Metrics 


Metrics provide the ARRoW designer with valuable calculations for measuring design 
performance.  In addition, metrics support credible decisions within the limited resources of 
design space exploration.  By designing a controlled process for assimilating metrics given 
design goals, assumptions, and limitations, design space exploration proves more efficient. 


In order to facilitate evaluation and exploration of design space in META, the purpose of 
metrics is threefold: 


1. provide the ARRoW designer with innovative metrics used for measuring design 
performance 


2. offer an extensible framework for integrating and developing metrics 
3. allow the ARRoW designer to inspect and analyze metric calculations through a 


comprehensive user interface 
 


7.2.6.1 Metrics Framework 
The metrics framework provides the mechanism for integrating metrics for design evaluation. 
The purpose is to facilitate the evaluation of a design by providing quantitative measures, 
flexible metric selection and grouping. The metrics framework also provides the ability to 
rapidly prototype and integrate new metrics. 


The framework is designed to use metrics consisting of at most two types of sub-elements; 
evaluators and statistics.  In addition, statistics incorporate a third type of element: measures.  
Each component is defined as follows:  


Measures  


Measures are quantities that can be directly observed from the design under development. For 
example, the weight of a vehicle's hull is a quantity that is directly measured from the design, 
without requiring further reasoning or analysis.  Measures, however, often times are coupled 
with running a simulation in order to measure quantities calculated after the simulation. 


Evaluators  


Evaluators orchestrate the execution of measures used to compute a metric. For example, the 
metric 'Total Weight of the Vehicle' requires the use of an evaluator to execute many measures 
responsible for measuring the weight of individual vehicle components. 


Statistics  


Statistics perform a summarization of data.  A statistic may be used to compute an average or 
maximum calculation.  A statistic may, however, return the entire set or a subset of values 
collected by an evaluator as a form of summarization. 


Metrics, evaluators and statistics are represented by AMIL nodes and are associated through 
AMIL links. Modeling metric elements in AMIL facilitates analysis and reasoning over the 
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design characteristics represented in AMIL (additional discussion on the use of AMIL for 
metrics is given in Section 7.2.1.3). 


Figure 7.2-17 illustrates the structure of a metric.  Metrics directly reference an evaluator and 
at least one statistic element.  The metrics framework evaluates a metric by first evaluating the 
metric's evaluator.  By evaluating the evaluator, data is collected from the various referenced 
design and model properties.  Subsequently the statistics nodes are used to process all of the 
collected data for statistical analysis.  


 


 
Figure 7.2-17.  A Generic Metric Composition 


The metrics framework also maintains some key features listed below: 


• Metrics used within the framework are consistent and repeatable.  Consecutive 
executions of a metric maintain the same analysis when no changes are made to 
simulation or model data. 


• Provides a convenient abstraction for interfacing metrics with design data in AMIL 
• Manages node versions over time  
• Capable of easily integrating executable models with limited concern about ownership 


or proprietary data 


7.2.6.2 Specific Metrics 
Using the structure of the generic metric model designed within the framework, a number of 
metrics were built and integrated for this effort. Two of these metrics were developed external 
to BAE, and were integrated within days.  For a more mature system, we believe this time 
would be just hours. 


7.2.6.2.1 Weight 


As shown in Figure 7.2-17, system designers can calculate the total weight of the proposed 
design by accessing weight information provided to by ECTo. The metric evaluator walks the 
AMIL graph for the vehicle design, collecting weight values in support of the metric 
computation. The metric statistic contains the information to sum these values. The value for 
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the weight metric can be used as input to Matlab Simulink mobility simulations in support of 
computing other metrics such as top speed, fuel efficiency and time to accelerate to 20 MPH.  


 
Figure 7.2-18.  Total Weight Head Node Connectivity Computation 


7.2.6.2.2 Graph Complexity 


Complex designs are known to be, on average, more fragile than simple ones, and feature more 
dependencies; longer integration, testing, and maintenance times; and greater susceptibility to 
abstractions leakage “at the seams.” Because the AMIL graph provides the “glue” for the design 
under consideration, we are able to generate simple graphical measures to understand how the 
complexity of one design compares to another. We have implemented the following metrics: 
total node count, count of incoming and outgoing links to each node, and maximum link counts 
to/from a node. These metrics are simple enough that they also support testing for new 
ARRoW users to verify operational server and database, and successful loading of metric data. 


7.2.6.2.3 Signal Complexity 


This metric calculates the signal entropy of a time series to indicate complexity. This metric 
was developed by team member BBN and is documented in Section 7.7.  


Because the metrics framework is an extension of AMIL, the same mechanism for integrating 
3rd party tools into AMIL is applied to metrics. A standard evaluator node is provided by 
AMIL to call an externally authored AMIL node with "overridden" parameters passed in and 
extract "user configured" output values associated with those input parameters. For the 
statistic node, 3rd party tools or metric authors can use a pre-defined statistic node (such as 
max, min, sum, count, etc), build a new statistic node, or omit one altogether. The integration is 
completed by pointing the metric node to the defined evaluator and statistic nodes. 
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7.2.6.2.4 PCC Calculation 


This metric utilizes the PARC Envisioner to generate a PCC comparison across two designs 
for a ramp use case. This metric was integrated similar to the BBN metric integration above.  


7.2.6.2.5 Design Decision Support 


The MagicDraw Plug-in (discussed in Section 7.2.4) employs the metrics framework to reason 
a best platform type based on comparisons between constraints of the design and constraints of 
the candidate platform types. In this case, the evaluator collects the requirements stored as 
AMIL nodes, evaluates all candidate design measurements against all criteria and returns the 
minimum distance result. The minimum statistic used here passes back both the numeric result 
along with information about the candidate design for which that result was computed.  


7.2.6.2.6 Max Torque Variation 


This metric measures the sensitivity of a model to variations in its inputs. The amount that 
each of the simulator input variables is to be varied is defined in the evaluator. A mesh grid of 
multivariate inputs is created by the evaluator and assigned to the measurement node, to result 
in a sensitivity analysis to the amount of change in the result of Simulation 3’s output for a 
determined amount of change of input.  


7.2.6.2.7 Procurement Cost 


In order to support a procurement cost metric, we used an accepted model that mapped weight 
to procurement cost and used rough cost per pound data, in 2011 dollars, for several 
classification types. These costs were based on the average unit production of 5000 units. The 
17 classifications in the model are Automatic Fire Emergency System (AFES), Armor, Chassis 
Structure, Crew Station, Defensive Armament, Dismountable, Electronic Control System 
(ECS), External Lighting, Fuel, Hit Avoidance, Hydraulics, NBC, PDM, Platform Electronics, 
Propulsion, Signature Management, Suspension.   


7.2.6.3 Metrics Dashboard 


Feedback to users on design performance is provided by the metrics dashboard. Metrics 
themselves have many consumers, so the dashboard is easily configurable to support those 
consumers. Top sponsor leadership and company management may be interested in cost and 
system effectiveness, and capability and gap analysis, whereas the upper project management 
are more interested in the health of the design and risk mitigation metrics.  Direct line 
management will be interested in reviewing tracking book metrics.  


To support the varying needs of the different metrics consumers, there are three demonstration 
dashboards implemented: Demo, Design, and Requirements. The Demo dashboard is used to 
demonstrate a sample of a top level cost analysis and capability assessment. The Design 
dashboard relies on the outputs of an ECTo design exported to AMIL and presents the results 
of a mobility model and other design metrics such as calculated total cost and total weight. The 
Requirements dashboard provides a table of the integrated PARC and BBN Signal complexity 
results.  


Each dashboard is composed of a combination of views. As shown in Figure 7.2-18, these views 
pull data from AMIL and use HTML, JSON, and JavaScript. Each view specifies one or more 
AMIL nodes from which to retrieve data. The views then request the AMIL node results, glean 
the desired properties from them and display them.  
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Figure 7.2-19.  Dashboard Structure in AMIL 


The dashboard views developed to date include: 


1. Assessment view: dynamically constructed “gumball” rollups of data received via AMIL. 
An assessor compares calculated values to minimum and required values and determines, 
according to a rule, which region the value falls into. An example of the quadratic and 
linear assessors of the value of the System Weight metric is shown below. The quadratic 
specifies a characteristic length from the requirement to where the assessment is no longer 
excellent while the linear specifies a percentage of minimum below which the assessment is 
deemed as worst. Using an assessor determines the color displayed for a metric in the 
assessment panel. 


2. Progress Bars/Bar charts:  dynamically evaluates a node value against an objective 
measure (which is likely referencing a requirement) 


3. Details View: Dynamically construct a table of data values received via AMIL 
4. Metric Details View: Dynamically construct a table of evaluator data values (inputs and 


outputs for each data point) 
5. Summary View: Dynamically construct an HTML summary of the statistic results 


contained within a metric 


The dashboard is configurable both in terms of data displayed and widget placement on the 
screen.  


Additional data nodes represent content for the dashboard panels. For example, a necessary 
metric for a quality IFV design may be that the tank has wheels or tracks and a turret. A 
sufficient condition for a good design may be that the cost and weight are within desired 
ranges. To support display of such information, the content nodes can reference other AMIL 
nodes (indicator for having a turret, or ranges for cost) for which we can extract a value to 
analyze and present.  


An example of the Demo dashboard is shown in Figure 7.2-19. The various panels within the 
dashboard are provided by the different views that have been developed, and include: metrics 
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values, assessment of metrics values (excellent, bad, worst), comparison of design alternatives 
against requirements, and monitoring graphics. 


 
Figure 7.2-20.  Example Dashboard Configuration 


The work of Phase 1B has extended a vehicle designer’s ability to make decisions based on 
objective feedback on the design. The ARRoW metrics framework seamlessly integrates 
metrics with simulation and design tools, hides the back-end AMIL details, is easily re-
configurable and supports straight-forward metric creation.  


7.2.7 Cloud Deployment 


Use of the Amazon Web Service (AWS) cloud provided a simple mechanism for deploying the 
ARRoW Web service for external use. A cloud computer instance is similar to any other 
computer that can be bought off the shelf. AWS provides a barebones Windows or Linux 
system and the user installs software required to run the application. The strengths of cloud 
computer instances are their ability to be readily available on the Web, their ability to scale in 
storage and computational power as necessary, and its ability to store and reuse instance 
images.   


AWS incorporates a Security Group capability to control access to the cloud instance. The 
Security Group is basically a list of IP addresses and ports through which access is established. 
Through this list, Administrators of the cloud instances establish rules for governing which 
external IP addresses have access to the cloud instance, and which types of connections are 
allowed (e.g., SSH, HTTP, VNC, …).  Each cloud instance is externally identified through an 
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IP address. When an instance is started or rebooted, it is assigned a new IP address. AWS 
incorporates an Elastic IP capability that provides a static IP address for external access so that 
users only have to remember the one address. 


Cloud instances are scalable through computational power, RAM amount, and disk storage 
size. When an instance is launched, AWS provides an option for selecting the size of the 
computer in terms of number of processors and size of RAM. After the instance is launched, 
any amount of disk storage can be added. 


AWS provides a capability for creating and storing images of cloud instances. This provides a 
convenient configuration management mechanism for maintaining baseline versions of the 
application and testing enhancements to that application. An image is a snapshot of the of the 
computers software configuration. This includes the operating system, application software, 
user accounts, environmental variables, data files, and anything else required to reestablish the 
running instance.  Once the application is installed and successfully verified in a running 
instance, an image of the instance provides a means for getting back to this exact running state 
at any time. This then provides the freedom to change the instance to tryout potential 
enhancements without worry of losing the known good state. 


During Phase 1B of the contract, two cloud instances were successfully configured to run the 
ARRoW Web service. One instance utilized a Red Hat Enterprise Linux 64 bit operating 
system and the other a Microsoft Windows 2008 R2 SP1 64-bit architecture operating system. 
The procedures for establishing these two instances are included in the User’s Manual that 
accompanies this report. 
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7.3 Modeling Languages in ARRoW 


7.3.1 Languages and Their Purpose 


This appendix surveys the requirements for languages that have emerged from developing 
ARRoW in phase 1B. This includes describing the properties of and uses for two languages 
developed as part of this effort: AMIL (ARRoW Model Interconnection Language) and QML 
(Qualitative Modeling Language).  Additionally, we describe the use of SysML (an existing 
language) in ARRoW. An unlimited number of additional languages potentially have a role in 
ARRoW as means to express models. During Phase 1B, Modelica, MatLab/Simulink, C++, and 
Java models were used, as well as the CAD modeling system Pro/Engineer. These languages 
are not discussed here, as their role in modeling components and systems is not unique to 
ARRoW. 


SysML is used in ARRoW to represent system requirements, to support aspects of 
requirements analysis as part of the conceptual design process, and to provide one source of 
archetypes to support the design process. Its use as a repository is the primary focus of 7.3.2 
which describes its use in expressing a ―reference architecture‖ for Infantry Fighting Vehicle 
(IFV) design. 


Section 7.3.3 describes the role of AMIL in capturing the relationships among heterogeneous 
elements in ARRoW. In focusing on language requirements, this document describes AMIL’s 
role in providing this foundation for ARRoW.  Implementation details for AMIL can be found 
in the Tool_Design appendix.  And the user’s manual also provides descriptions of how AMIL 
tools can be used to support design. 


Finally, section 7.3.4 describes QML, a language for describing the behavior of components in 
terms of transitions among qualitatively similar states. Models in QML are necessary in order 
to perform analysis based on qualitative simulation, a technology investigated in phase 1B of 
this project.   


The remainder of section 7.3.1 presents thoughts about the various roles languages play in the 
design of complex systems, the need for multiple languages to fill these roles.  And it attempts 
to orient the various languages presented against a framework of language role. 


7.3.1.1 Roles of Languages in Designing Complex Systems 


Models are used throughout the process of designing, analyzing, verifying, diagnosing, and 
manufacturing a ground combat vehicle. Some models serve a specific role within the process. 
For example, a block diagram in SysML may be used to design the vehicle from the perspective 
of the functional decomposition of the system. On the other hand, you may have a CAD model 
of a component that is used to design the shape and structure of it, but this model also may be 
used as the basis for structural analyses using a Finite Element Analysis (FEA) tool.  


The diversity of both tasks and information to be represented implies that designers will utilize 
a diversity of languages. Further, no model is a perfect and accurate representation of the final 
product or the natural phenomena. Figure 7.3-1 shows some of the differences between the 
domains of representation engineers must utilize. 


While different in topic there are parallels between the domains of design and analysis. Design 
effort is focused on the decomposition of the problem and defining the function and bounds of a 
system or a component. Analysis is more focused on the composition of models resulting from 
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that decomposition to verify that system behavior or performance is as designed or planned in 
relation to a representation of its environment. Design is not ignorant of these relations and 
analysis also must deal with decomposition, but that their primary focus does differ. 


 


Figure 7.3-1. Three Worlds of Engineering 


Throughout the history of engineering, design and analysis has been to larger or lesser degrees 
put on paper. Different languages, informal at first, then standardized, and to some extent 
formalized have been created to record these aspects of engineering. These languages for 
analysis and design of cyber-mechanical systems can be catalogued and organized in multiple 
ways, e.g., by physical domain or engineering discipline they cover, by the type of 
computational model they embody, or by the stage of the design process they are usually 
invoked in. 


For purposes of describing the roles languages play, we identify three broad phases of the 
design process:  


 Description languages characterize the behavior of a component, or a collection of 
components, by representing, for example, the equations that govern it or its geometry. 


 Analysis languages describe the processes and protocols used to test and verify whether 
the system behavior is as desired. 


 Synthesis languages define how components are interconnected and for what purpose. 


Figure 7.3-2 roughly lays out finer grained tasks in relation to these broad phases. In Figure 
7.3-3, we list the languages created as part of ARRoW and place them in a Venn diagram 
according to their most dominant aspects. For context and comparison, we also add other 
engineering design languages. 
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Figure 7.3-2.  Categorization of Languages 


 


 


Figure 7.3-3.  Roles of Languages in Design 


The rest of this appendix describes all of the language advances we have made during phase 1B. 
The flow of this appendix tries to follow the typical design process as it flows from 
requirements to design and analysis. 
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7.3.2 Reference Architecture 


Development of new vehicles, planes, and other complex systems engineering products has 
languished by comparison to electronic design. ASIC capacity has increased according to 
Moore’s Law, doubling every 18 months. ASIC design has learned to make complex designs 
out of composable components, but those operate with interfaces of ones and zeros, with some 
well known physics in support. Their tools have formalized the low level knowledge of 
transistor layout and allow ASIC designers to operate at higher levels of abstraction. This has 
led to the exponential increase in productivity.  


While the design space of systems engineering is orders of magnitude more complex, the 
ability to capture the rules, patterns, limitations, interfaces, and components of systems in all 
dimensions is key to raising the level of abstraction for systems engineers and capturing the 
benefits that have been realized for other design domains.  


One of the key obstacles in this effort is the integration of domain-specific engineering efforts 
at the system level. Systems engineers are constantly balancing trade-offs in weight, power, 
range, cost, schedule, capability, etc., across domains. Multiple engineering domains relevant to 
IFV designs have evolved separately, and have their own vocabulary, notation, and tools that 
continue to evolve.  This makes it difficult for systems engineers to understand all the domain 
specific models and make design trade-offs.  


This section describes our use of SysML to create a reference architecture that brings together 
product knowledge with engineering domain viewpoints to create an engineering knowledge 
base. This captures product architecture, design patterns, archetypes, and relationships in a 
way that can be shared among all stakeholders. And by this means, the experience of systems 
engineers is captured in machine readable form.  


Figure 7.3-4 shows a top level view of the reference architecture for a ground vehicle along 
with the context with which the vehicle interacts. Domain viewpoints are integrated into the 
architecture, and trade-off calculations are formalized using sets of parametric equations built 
from a library of physics and mathematical relationships.  


 


Figure 7.3-4.  Reference Architecture 


7.3.2.1 SysML as the Umbrella for Multi-viewpoint Systems Integration 


ARRoW uses SysML to describe the reference architecture of a military ground vehicle. 
SysML is a general purpose language for describing systems architecture and design. However, 
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it does not extend well into domain specific engineering areas. You cannot make a CAD 
drawing with SysML, nor a circuit diagram. So, SysML based systems engineering models 
must sit above the domain specific efforts, to link them together. The systems model identifies 
the key structures, properties, interfaces, and behaviors between the components and between 
the domain engineering efforts. Figure 7.3-5 shows this relationship. 


SysML
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Figure 7.3-5.  SysML Integration with Domain Specific Engineering Areas 


Designers often rely on their skill and experience to recognize and keep track of the 
interactions among the domains. This does not scale well to increasingly complex systems, nor 
can it support domain experts that need to understand how and why the decisions they make 
affect other areas. SysML provides the infrastructure to relate the multiple aspects of system 
development and prevent the design leakage that occurs at the seams between components and 
between domain engineering groups.  


The SysML models of the reference architecture tie into the SysML models of the domain 
viewpoints. These domain viewpoints contain the high level properties that are typically part of 
the trade-off analysis for systems engineers. From the viewpoint models, system architecture 
decisions flow down to the domain engineers and tools, and results flow back up to the system 
architecture for impact analysis and exploration of side effects. The SysML models bridge the 
gaps between the engineering domains. 


One could argue that SysML could be the ―one language‖ to express all aspects of vehicle 
development. All engineering tools use some kind of data format which can be expressed in 
UML/SysML. Behaviors that allow the tools to execute mathematical computations and 
graphical visualizations can be expressed, completely and at various levels, in UML/SysML. 
(UML/SysML includes a model-level programming language called (UML). However, creating 
a universal language for all engineering domains would wipe out years of experience 
developing those domain specific languages. Instead, in the ARRoW language toolset, 
UML/SysML is used as a glue language to integrate the domain specific languages together.  


Each of the domain specific engineering areas is considered a viewpoint in the reference 
architecture. In modeling terms, a viewpoint addresses the questions and concerns of a set of 
stakeholders that have an interest in the system. Each viewpoint is isolated from its counterparts. 
While the electrical viewpoint is integrated with other components and subsystems, such as 
communications, computing, etc., the viewpoint allows the entire vehicle electrical system to be 
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taken as a whole. Domain specific tools and languages can then be used from here to complete 
the analysis of power consumption, generation, transient effects like power surges, and 
assessments of cross-coupling interference.  


The SysML model of the reference architecture only needs to capture the architecture of the 
vehicle, including property values, interconnections, and behavioral patterns to pass this 
information down to domain specific (viewpoint) models and engineering tools for analysis. 
This interface to the other tools is facilitated by AMIL.  


7.3.2.2 Engineering Activities 


Reference architecture supports the engineering activities of synthesis, analysis, and 
description.  


7.3.2.2.1 Synthesis 


The reference architecture describes how components can be connected by capturing the idea of 
connection patterns. For example, moving mechanical energy from one place to another, on a 
motorcycle from the engine to the wheel, can be done with a driveshaft, chain, or belt. There 
are different tradeoffs involved – a driveshaft is less efficient, but requires little maintenance. 
These tradeoffs are also captured in the reference architecture.  


Reasoners are created that operate from the reference architecture. The reasoners rank design 
alternatives by comparing the component context in the design with applicability data 
associated with each option. For example, a reasoner to choose between a tracked and wheeled 
vehicle evaluates the design’s mass, desired speed, acceleration, and maneuverability.  


7.3.2.2.2 Analysis 


The reference architecture captures test archetypes, which are templates for testing certain 
types of requirements. For example, a test archetype for acceleration defines interfaces to the 
design under test—a throttle control and a speedometer readout—and the test driver 
behavior—floor it until the desired speed is reached. Then a verifier compares the how long it 
took to reach that speed with the required acceleration.  


7.3.2.2.3 Description 


The reference architecture can use any of the behavioral SysML models to describe behavior. 
State machines describe the behavior of a component. Sequence and activity diagrams describe 
component interactions as well. Internal block diagrams describe the interfaces of other non-
SysML models, such as Simulink models. These block diagrams can then be composed using 
ports and connectors to build the behavioral model of the entire system.  


7.3.2.3 Archetypes 


Archetypes are patterns or templates that can be used as a starting point for developing a 
product. The reference architecture includes a collection of archetypes that capture the design 
patterns, constraints, and possible combinations of components to build a system. Any phase of 
engineering, from requirements through test, can make use of archetypes. 
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7.3.2.3.1 Types of Archetypes 


The following types of archetypes are supported in the reference architecture.  


7.3.2.3.1.1 Requirements Archetypes 


A requirement archetype defines a pattern for writing a requirement. The archetype includes 
systems engineering best practices for phrasing the requirement to make it clear, complete, 
precise, and testable. The requirement archetype is written in such a way that the requirements 
archetype just needs to fill in the blanks. The example below shows a requirement archetype for 
vehicle acceleration.  


The <subject> shall accelerate from <X1> to <X2> kph in not more than <Y> sec on 
<Terrain type> at a <Z> degree slope. 


A requirement archetype set packages related requirement archetypes together. For example, 
mobility related requirement archetypes, such as acceleration, maximum velocity, turning 
radius, and obstacle negotiation are packaged together. These archetypes form the core set of 
requirements that must be considered when creating a requirements document.  


Current military vehicle procurement is heavily focused on the requirements documents to 
define the contract as to what will be delivered. Requirement archetypes provide a head start in 
developing these requirements with a template of all the aspects to be considered, providing 
guidance of issues to be considered, based on systems engineering experience, for use by the 
crowd. 


The future of military vehicle development using the META toolset may be less focused on 
requirements and more on use cases and executable test cases. However, requirement 
archetypes provide a framework for defining non-functional requirements, such as safety and 
reliability.  


Figure 7.3-6 shows a requirement archetype allocated to a component in the reference 
architecture. Here, acceleration is a typical requirement of a ground vehicle. The ground 
vehicle, NGV, is an instance of the GroundVehicle in the system design. The Acceleration 
requirement is an instance of the Acceleration requirement archetype, with the data and 
context filled in.  
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Figure 7.3-6.  Requirement Archetypes and Design Archetypes 


Requirements can automatically be allocated to design elements based on the relationship 
between requirements archetypes and components in the reference architecture.  


7.3.2.3.1.2 Design Archetypes 


Design archetypes capture the design patterns involved in a typical system. The design 
archetype describes the subcomponents, relationships, properties, interfaces, and behavioral 
models of a component. The archetype provides guidelines to designers in decision and trade-
offs, helping to determine the requirements for components and aiding in the selection of 
appropriate components from the CML.  


The core of the design archetype is the block definition diagram, where the components are 
defined. An internal block diagram defines the physical interfaces to the component. Parametric 
diagrams can capture the mathematical relationships between the properties of these 
components. State machines and activity diagrams can express high level operating modes. 
Other behaviors can be expressed in other tools, such as Simulink, but those behavioral model 
interfaces can be captured in SysML.  


Design archetypes form a hierarchy. At the top level is the system being developed, such as a 
ground vehicle. The vehicle is composed of several high level components. These components 
have alternative design patterns, and so represent design choices.  


These archetypes are further defined in the remainder of this section.  


7.3.2.3.1.3 Analysis Archetypes 
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Analysis archetypes capture the processes and methods used by designers. These are not 
currently captured as part of the reference architecture as captured in SysML.  


7.3.2.3.1.4 Test Archetypes 


Test archetypes define a pattern of tests to verify one or more system properties or 
requirements. For example, the acceleration requirement archetype defines the pattern of 
describing the acceleration requirement in various contexts. Figure 7.3-7 shows 
__________________________. 


 


Figure 7.3-7.  Acceleration Requirement Archetype 


The corresponding test archetype defines the system interfaces and test driver behavior needed 
to execute the tests, and to judge whether it passed or failed. The acceleration test (Figure 
7.3-8) requires two interfaces of the design under test (DUT), a speed control (throttle) DUT 
input, and an output indicating the current speed. Properties startSpeed, endSpeed, and 
maxTime are parameterized and filled in from the requirement being tested, as is the Ground 
context component, e.g. pavement with 0% slope or sand with a 5% slope. 


 


Figure 7.3-8.  Acceleration Test Archetype 
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The behavior of the test driver and its interaction with the system is captured in a SysML 
sequence diagram (Figure 7.3-9). It basically sets the throttle to maximum, then monitors the 
current speed until it reaches the target speed, or the time expires, then validates the results. 


 


Figure 7.3-9.  Acceleration Test Sequence Diagram 


These test archetypes are then implemented and populated with the project specific 
requirement parameters, the context, and the design under test to be executed. The results of 
these tests feed the PCC.  


These tests can then be reused across a variety of design variations, given that the DUT 
interface is consistent. This test capability would be used to exercise the same set of test cases 
against all submitted designs as a check or input to PCC calculations.  


7.3.2.3.1.5 Integrating Requirements, Design, and Test Archetypes 


The relationship between requirements, design, and test archetypes is captured in the reference 
architecture and provides significant speedups in development time. As shown in the previous 
three sections, requirement archetypes are connected to the design and to the test archetypes 
that verify them. The test archetypes define required interfaces to the design and to the 
supporting context models. This pre-defined infrastructure allows designers to test and 
communicate their designs quickly and early in the process.  


7.3.2.4 Archetype Development 


Archetypes are stored in the component model library (CML).  Peer-to-peer component 
connections link archetypes, as well as supertype-subtype links that represent decisions points, 
for example wheeled vs. tracked option for vehicle traction.   
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The set of archetypes is easily expandable.  Designers can add new archetype entries to the 
CML.  New components are modeled in SysML; an OWL ontology schema is derived from 
SysML and installed in CML; the new archetype is then added to the CML.  The archetype is 
connected to an archetype hierarchy representing the system breakdown, either as a new 
component attached as a peer to an existing component, or a design alternative to an existing 
archetype.   


New design patterns for components that already exist in the CML, like the powertrain, can be 
added as another design choice.  By making the new archetype a subtype (refinement) of the 
existing powertrain archetype, other designers searching for powertrain options will find the 
option.  By including applicability information (described below), automated reasoners can 
determine the design conditions under which the archetype should be applied. 


7.3.2.4.1 Heuristics for Choosing Design Patterns 


The reference architecture captures design patterns and organizes them into a structure, all 
based on the experience of engineers in creating these components and systems.  We can 
augment the archetypes with additional data that describes the tradeoffs between archetypes, 
and add reasoners to help narrow the design space engineers have to consider, or make 
recommendations.  Thus, SysML provides one option for implementing design exploration 
automation. Including applicability data describing what contextual properties impact the 
decision and capture the range of values for which each option best applies allows such 
reasoners to be independent of any specific system under design or component tradeoffs and is 
general purpose utility that can operate on any system.   


In general, such design exploration reasoners attempt to maximize performance while 
minimizing cost.  Component specific measures determine performance, such as radio range and 
data rate, vehicle speed and acceleration, or engine power, torque, and efficiency.  Cost is 
typically measured by SWAP (size, weight, and power) and financial cost, as well as some 
component specific factors, like heat. 


7.3.2.4.2 Traction Example 


This section describes using the reference architecture, applicability data, and a reasoner within 
the AMIL graph to automatically select the best design pattern for the traction, suspension, 
and steering – a tracked or wheeled pattern.   
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Figure 7.3-10.  Design Archetype Applicability Ranges 


Figure 7.3-10 shows a design model with instances of the top level vehicle components.  A top 
level archetype, SteeringSuspensionTraction, stands in for a design decision yet to be made – 
TrackImplementation vs WheelImplementation, which are shown as subtypes in SysML.  The 
supertype defines a set of critical measures or properties of the vehicle design that affect the 
choice of subtype.  These are captured in the TractionCriticalMeasures block.  The subtypes 
define their applicable ranges of values for these measures – i.e. a wheeled vehicle is better for 
high fuel efficiency and low weight, while tracked is better for high weight and high off-road 
speed.  A pseudo-requirement, ApplicabilityRangesTraction is the root node for the 
applicability data for each sub-archetype.  A RefinementRule dependency connects the pseudo-
requirement to the top level archetype to which it applies.  These applicability ranges are 
stored in SysML the same way property ranges for requirements are captured, in the ARRoW 
dialog box on the instances of the applicability ranges, wheeledRanges and trackedRanges in 
the diagram.  The name property is the return value, indicating the archetype to which the 
ranges apply.   
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Figure 7.3-11.  Ground Vehicle Design Instances 


When a supertype design archetype such as SteeringSuspensionTraction is used on an 
implementation diagram within a vehicle’s design, it is a placeholder for a decision, either one 
of the archetypical subtypes or a new, manual design (see Figure 7.3-11).  The user may right-
click the block and select ARRoW>RefineArchetype to trigger the reasoner to make a 
selection, and add it to the diagram.  The reasoner collects design values or the range of values 
for the property as captured by requirements and ranks the design alternatives.   


The refinement algorithm pattern is data driven and therefore, plug-and-play.  A new 
refinement archetype option, say half-track, can easily be added and included in the reasoning 
by adding its own half-track applicability criteria.   


The refinement reasoner/heuristic algorithm is driven by meta-data.  This means that the 
algorithm components can be easily applied to refinement algorithms for other design 
archetypes.  The ranges and the references to the vehicle properties to which they should be 
compared are stored in AMIL and evaluated by the reasoner.  The same reasoner can be 
configured to select engines or other components or patterns expressed in the reference 
architecture.   


Thus, the reference architecture and the reasoner could become building blocks for a larger 
scale, dynamic design space exploration across multiple design patterns captured in the 
reference architecture as other requirements/design decisions are met. 


7.3.2.4.3 Core Component Relationships 


There are three core relationships between components leveraged throughout the reference 
architecture.   
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The SolidComponent represents a common supertype to all any non-fluid physical components 
in the reference architecture.  Association A1 in Figure 7.3-12 captures the whole-part 
relationship between components.  A component may be made up of multiple parts.  A 
component made up of no parts is an atomic component, like a screw or bolt.  Each part has one 
assembly as its parent component, except for the top level system being developed, which has 
no parent component.   


The Connection association represents the peer-to-peer connection between components.  Each 
connection usually has more information associated with it.  A radio is connected to an antenna, 
but through a cable and connectors that interface the cable with the radio and antenna.   


 


Figure 7.3-12. SolidComponent Block and Core Relationships 


Association A3 describes the refinement relationship between archetypes, abstract components, 
and physical components.  Archetypes like the traction subsystem can be refined into either 
wheeled or tracked implementations.  An abstract engine can be refined to a gas, diesel, or 
electric engine, and then to a physical engine available in the CML. 


7.3.2.5 Abstract Components 


Abstract component is a placeholder for a real component from the component model library. 
The abstract component can be modeled, simulated, and marked with desired property values. 
The property values can then be used to query the CML to find components that match these 
desired values, assisting in the component selection process.  







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language 


 


© BAE Systems 2011. All rights reserved. 15  Refer to cover page for Distribution Statement. 


7.3.2.6 Design Refinement 


The reference architecture defines the subcomponent types and interaction constraints within 
the parent component. Designers can makes instances of these component blocks and link them 
together. For example, when refining the PowerTrain component, the designer uses the 
reference architecture model and creates instances of the engine, transmission, and differential. 
Figure 7.3-13 illustrates this. 


 


Figure 7.3-13.  Power Train Design Instances 


The reference architecture defines connection patterns for transferring mechanical power. 
Users can utilize these in making design choices. Different configurations, such as front wheel, 
rear wheel, and four wheel drive can be created.  


At this point, the designer has created a model of the power train components and connections. 
He can now start assigning values to the block properties, such as engine power, torque, and 
mass, that will be used to understand the design trade-offs. 


7.3.2.6.1 Default Behavioral Models 


The reference architecture includes behavioral models that can be used in early 
simulation/verification. For example, simple behavioral models representing the power, torque, 
and heat curves vs RPM for an engine are shown in Figure 7.3-14. These models accept the 
RPM as input (x) and produce the corresponding output (y), given a lookup table (table). The 
table can be configured with the curves to describe the engine. These models can then be 
combined with other behavioral models to build a full model of the vehicle for use in 
quantitative simulation.  
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Figure 7.3-14.  Behavioral Models 


As the design is refined, behavioral models associated with specific concrete components can 
override the default behavioral models. Or, these curve-models can be re-used by supplying the 
appropriate table data, making it easier to add new components and models to the library. 


The CurveInterpolator is a support class that does simple linear/spline interpolation of a set of 
points. Given curves that correlate the engine RPM to the generated heat, horsepower, and 
torque (Figure 7.3-15), these can be combined to make a low fidelity model of the engine.  


 


Figure 7.3-15.  Example Engine Power and Torque Curves 


7.3.2.6.2 Concrete Component Selection 


Once the key properties of the abstract component are given design values and have been 
analyzed for system level tradeoffs, we need to find a component that matches those 
specifications in the CML. The CML is indexed by an OWL ontology schema, searchable with 
the ARRoW tools. Using the design and/or requirements values for the component, a CML 
query is generated that returns a set of matching CML entries. Selecting a component loads the 
remaining properties from the CML entry into the design, making it possible to analyze the 
side effects of the selection. For example, we can select an engine out of the CML based on 
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required power and torque, then load up the additional mass and thermodynamic properties 
and re-evaluate the design. 


7.3.2.7 Context Components 


Context components are the components that the system interfaces with in the environment. 
Context components are modeled with the same approach as system components. Context 
components are represented by blocks, with properties, interfaces, associations, and behaviors. 
Context components are also reusable across multiple projects and reference architectures for 
different systems.  


7.3.2.8 Viewpoints 


A Viewpoint is a specification of the conventions and rules for constructing and using a view 
for the purpose of addressing a set of stakeholder concerns. They specify the elements expected 
to be represented in the view.  


Viewpoints in the reference architecture tend to line up with domain specific engineering areas, 
such as electrical and radio communication. It is these viewpoints that connect the system 
architecture in SysML with the domain specific tools that engineers use. This connection, 
through AMIL, allows the design to be constantly evaluated for project specific tradeoffs to 
ensure objectives are being met.  


Viewpoints are also reusable – their isolation from the details of the system under development 
and the focus on one subject matter make them reusable in other designs and reference 
architecture. The electrical viewpoint, addressing power consumption, can be used with ground 
vehicle or satellite reference architectures, without any changes.  


Figure 7.3-16 shows the set of viewpoints related to the ground vehicle reference architecture.  
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Figure 7.3-16.  Ground Vehicle Viewpoints 


7.3.2.9 Parametrics 


SysML formalizes the mathematical relationship between block properties using the parametric 
view. For example, the relationship of vehicle mass, engine power, track sprocket size, and 
maximum sustained vehicle speed can be captured in a parametric diagram, including 
equations. The toolset of Magic Draw, Paramagic, and Open Modelica can then be used to 
solve these equations in any direction – computing either target speed or required engine 
power, depending upon what values are filled in.  


Parametrics is used within the reference architecture to maintain and adjust these mathematical 
relationships over the span of designs covered by the design archetype. For example, design 
choices between 2 wheel vs. four wheel drive, electrical vs. gas powered engines, and even two 
engine configurations should be analyzable using parametrics without having to rewrite large 
number of equations.  


7.3.2.10 Relationship with CML 


The reference architecture is closely tied to the component model library (CML). Components 
defined in the reference architecture are converted into an OWL schema and placed in the 
CML. Components of that type can then be added to the CML. In addition, the reference 
architecture components are also CML components and need to be published into and pulled 
from the CML. 
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7.3.2.11 Behavioral Models 


A component may have multiple behavioral models, showing different aspects of its behavior 
and at different levels of fidelity. Behavioral models can be represented in SysML as blocks with 
input and output ports. The actual implementation of the model may be in another language or 
tool, but the interfaces can be captured in SysML.  


Behavioral models of components may be composed to create a model of the larger system. 
These models can then be interfaced with the context models and connected to a test driver to 
execute quantitative tests on the system. Having multiple fine grained component models 
running in parallel under the same test allows the detection of emergent behaviors.  


Connections between the output ports to input ports can support building a co-simulation 
model. Figure 7.3-17 shows behavioral models of an engine connected together. 


 


Figure 7.3-17.  Combining Behavioral Models into a Co-Simulation 


 


7.3.2.12 SysML Usage 


SysML is the Systems Engineering Modeling Language, an Object Management Group 
standard that extends UML notation for software engineering to cover systems engineering 
concepts. This section will describe how SysML is used within the reference architecture.  


The following section describes the parts of SysML that were used in the reference architecture 
and in the design of a vehicle.  


7.3.2.12.1.1 Block Definition Diagrams 


Block definition diagrams (BDDs) capture the components the owning archetype component, 
their properties and relationships. A BDD contains all the blocks that participate in the design 
of the containing component. Blocks instances defined here are used in the design of a 
component.  


7.3.2.12.1.2 Internal Block Diagrams 


Internal block diagrams are used in two ways. First, they define the operational interfaces of a 
component. These are the external connections, including mounting, electrical, gears, gas or 
liquid flows, controls, messages, etc. The ports may also include side effect interfaces, like noise, 
heat, and vibration.  
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Second, IBDs document the interface to behavioral models. Each component in the CML may 
have multiple behavioral models. The models may be at different fidelity levels or consider 
different viewpoints. For example, one model of an engine describes the power and torque 
generated at different RPMs, while another thermal model captures the heat generated by the 
engine, heat carried off by coolant, and heat transmitted to the surrounding components and 
the air. 


The ports on the IBDs serve to define the interfaces of these models. The designer can then 
compose system level tests by combining these blocks by connecting input and output ports.  


7.3.2.12.1.3 Sequence Diagrams 


Sequence diagrams capture the interactions of components over time. Within the reference 
architecture, they are used to document the contract between components and to define test 
cases.  


7.3.2.12.1.4 Requirements Diagrams 


Requirements diagrams capture, graphically, the relationships among requirements. For 
ARRoW, we used requirements diagrams to capture requirement archetype sets – sets of 
related requirements that must often be considered when describing a component’s features. 
For example, a ground vehicle’s mobility requirements address the acceleration, maximum 
sustainable speed, turning radius, and obstacle negotiation under various conditions.  


Requirements are also shown on some BDDs, to show the mapping of the requirements onto 
the blocks which are affected by them.  


For the ARRoW reference architecture, we extend the SysML requirements with additional 
data to allow it to be shared via AMIL.  


7.3.2.12.1.5 Parametric Diagrams 


SysML formalizes the mathematical relationship between block properties using the parametric 
view. Within the reference architecture, parametric diagrams express these relationships and 
allow changes in property values to be propagated, showing their effect on other areas.  


7.3.2.12.1.6 Implementation Diagrams 


Implementation diagrams are used to capture the design of the system, in this project, a 
military ground vehicle. Using the blocks defined in the block definition diagrams of the 
reference architecture, the blocks in the implementation diagram represent instance of the 
elements of the reference architecture. For example, while the BDD defines component types 
such as Engine and its properties, the implementation diagram describes a specific engine, with 
values for power, mass, and volume.  


7.3.2.12.1.7 Use Case Diagrams 


Use case diagrams capture the scenarios that the system or component is involved in. Use cases 
describe a story where the system/component interacts with its environment. The story 
usually captures the preconditions, the trigger that starts the interaction, a summary of the 
interaction, and the post-conditions. Pre- and post- conditions describe the state of the system 
and environment before and after the use case. 
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Use case diagrams then capture the scenarios the system is involved in. Usually, these start 
with a high level, concept of operations. A ground vehicle ConOps use case might to transport 
a squad through cross country terrain, at night, without refueling, with a limited time. This use 
case then derives a series of requirements, such as sustained cross country speed, range, and 
passenger transportation. The use case can also evolve into a system level test case, 
incorporating all the context components with the system design. 


7.3.2.12.1.8 Blocks and Associations 


Blocks in the reference architecture represent types of physical components, such as engines, 
ramps, and wheels. Sometimes the blocks represent software. Within the viewpoints, a block 
may also represent non-physical concepts like a waveform or channel used in radio 
communications.  


Associations in the reference architecture usually indicate a physical connection. The physical 
connection often has its own set of patterns to select from. For example, the throttle control, 
like a gas pedal, may be connected to the engine in a few different ways, by physical wire or by 
sensor and network communications to the engine computer. 


Associations may have additional semantics that are in the description of the model element. 


7.3.2.12.1.9 Combining Viewpoints 


Viewpoints are domain specific models within the reference architecture that are from a certain 
point of view. Viewpoints are usually aligned with the concerns from domain specific 
engineering. A physical component will often participate in multiple views.  


For example, a radio draws power, so it has an electrical view. The radio has physical 
characteristics, size and mass, so it has a structural view. The radio also generates heat, so it 
has a thermodynamic view. Figure 7.3-18 shows a block diagram of these interacting 
viewpoints. 


 


Figure 7.3-18.  Block Diagram Integrating Multiple Viewpoints 
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Using viewpoints, it is easy to examine the vehicle from the electrical perspective to determine 
battery capacity required. All electrical components, their connections and characteristics are 
part of the reference architecture and can be extracted from the model to provide power 
budgeting for different scenarios. Knowing what equipment is needed in each scenario, with 
associated power requirements, then drives the battery requirements, or could result in a 
requirement that the engine be run (if a gas engine) to generate electricity to recharge the 
batteries and run equipment. 


Similarly, the thermodynamic view can address the radio and other electronics within an 
enclosed area and determine the cooling needed to run them within optimal range. 


7.3.2.12.1.10 Interfaces 


Interfaces in the reference architecture are captured in the internal block diagram, using ports 
for the interfaces. Connectors (lines) show the connections between the components.  


7.3.2.12.1.11 Physical Interfaces 


The physical interfaces of a block are captured in an internal block diagram, with each port 
representing a possible connection to other components, including context components. Figure 
7.3-19 shows an example of such physical interfaces. 


 


Figure 7.3-19.  Physical Interfaces of an Engine 


Component interfaces represent contracts that the component and its context must adhere to. 
There are some interfaces that may be added by components that refine a reference architecture 
component. But an interface that is ignored is a possible issue with the design and could be a 
cause of emergent behaviors. For example, if the model fails to address the heat interface of an 
engine, it ignores the fact that an engine generates heat that radiates to the components around 
it. This heat may have unintended consequences.  


7.3.2.12.1.12 Model Interfaces 
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A component’s behavioral models also use the internal block diagrams to document its 
interfaces. The model may be implemented in Matlab, Modelica, or C++ code, but the 
interfaces are captured in SysML to enable composition of these models.  


7.3.2.12.1.13 Properties 


Properties are the characteristics that describe a component. All physical components have 
associated properties such as a bounding box that represents spatial dimensions, mass, and 
material composition. These are all shown in the model as properties. The reference 
architecture captures all the characteristics that can describe the component.  


Ontological technology underlies the reference architecture. Unlike other database 
technologies that require every property to be filled out for every entry, and ontology regards 
properties as optional. While it is true that all engines have a mass, that mass is not always 
known, and the ontology allows the property to be omitted. Of course, this limits the usability 
of the entry, but it is still permitted. 


7.3.2.12.1.14 Constraints 


Constraints are used with the parametric diagrams to capture the mathematical equations that 
constrain the values of properties within a set of block instances. Figure 7.3-20 shows an 
example of such a constraint. 


 


Figure 7.3-20.  Engine Torque Constraint Equation 


The constraint is defined once, as a block with a <<constraint>> stereotype. The block defines 
the parameters and mathematical equation. The constraint handles only one equation per block, 
and can have only one output value.  


 


Figure 7.3-21.  Usage of Engine Torque Constraint Equation 


The constraint is used in parametric diagrams which use the ports and connectors style of 
diagram like the internal block diagrams. Figure 7.3-21 shows an example of this. 


7.3.2.12.1.15 Connector Patterns 
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Many alternatives exist for connecting components together. For example, a driveshaft, belt, or 
chain can transmit mechanical power from an engine to wheels on a motorcycle. Each option 
has applicability and constraints/limitations, and the design context must be evaluated to select 
the best choice. Cost, maintainability, complexity, reliability, and capability drive the pattern 
selection. As with any component, connector patterns can be expressed abstractly in SysML, 
and yet have corresponding models in CAD or other viewpoints.  


Connector patterns also have applicability measures, just like components. A belt is not going 
to be strong enough to move a 20 ton vehicle, while a sufficiently strong chain would have a 
larger space claim than a driveshaft. However, for smaller vehicles, like a bicycle or motorcycle, 
the tradeoffs are different. A driveshaft is less efficient than a belt or chain, but easier to 
maintain.  


The connector pattern is one that occurs throughout the reference architecture. Whenever two 
high level components are connected, there will be a connector pattern and set of options 
between them. The connector pattern also incorporates a set of components that are used to 
connect the high level components together. The pattern then operates recursively, until you 
get down to the nuts-and-bolts level.  


For example, an antenna is connected to the hull of a vehicle. But the antenna does not attach 
directly. A mounting bracket connects the antenna to the hull. The bracket is then connected to 
the hull with nuts and bolts, while it is connected to the antenna with clamp and screws.  


7.3.2.12.2 Language of Design 


7.3.2.12.2.1 Block Instance Diagrams 


Called Implementation Diagrams in Magic Draw, these capture the design of a component 
using instances of reference architecture blocks defined in the component archetype. Links 
between instances correspond to the associations in the reference architecture. The properties 
of instances can be assigned values. These values represent design choices, as the requirements 
values are captured using a custom dialog. Figure 7.3-22 shows an example of this. 
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Figure 7.3-22.  Power Train Design Instances 


7.3.2.12.2.2 Parametric Diagrams 


Parametric diagrams are used to define the mathematical relationships among the properties of 
the design block instances. These relationships are built up by chaining constraint equation 
blocks together and connecting them to input and output properties.  


Once these relationships are defined, values can be assigned to the properties. When enough 
values have been assigned, tools can solve the set of equations for the unassigned properties. 
Used this way, the parametric diagrams can be useful for design space exploration. With some 
additional work, two and three dimensional graphs can be made to better visualize the tradeoffs 
in the design space. Figure 7.3-23 shows a parametric diagram. 
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Figure 7.3-23.  Engine Torque Parametric Diagram 


7.3.2.12.2.3 Block Instances 


Instances are used to capture a specific component and properties within the design. Thus, 
there is a type of combat vehicle called a Bradley, there are many instances of a Bradley. The 
Bradley with serial number 12345 specifies a particular instance of the vehicle. So the SysML 
block represents the type of component, while an instance represents a particular one.  


7.3.2.12.2.4 Property Values 


Properties of block instances can have values assigned to them. Each phase of development 
places different values and views on the properties. In order for the components to support the 
requirements, design, implementation and test phases of development, the language supports 
multiple values for properties, each with a different viewpoint.  


For example, requirements define a desired range of values for a property, possibly under 
certain conditions. For example, a vehicle may have a max speed of 60 mph on flat pavement, 
and a max speed of 23 mph on cross country terrain. The ARRoW tools support setting 
multiple requirements values on a property, one value range per requirement. 


Design values can also be assigned to a property. These are single values rather than the 
ranges captured for requirements. Design values are used with parametric models to determine 
the effects these design decisions have on other properties and components. Multiple design 
values are often applied to properties to evaluate different alternatives. The current tools only 
support one design value at a time. 


In addition, properties will have an ―as built‖ value that describes the final measurable value of 
the property for the built vehicle. This may differ from the design and requirement values. 
Since the scope of the META program covered only through design time, the ―as built‖ value is 
not currently supported.  


The User’s Manual describes how property values are captured in SysML and mapped to the 
AMIL graph.  


7.3.2.12.3 ARRoW SysML Extensions (stereotypes) 
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This section describes the extensions made to the SysML language to support ARRoW. 
UML/SysML provides stereotypes as part of an extension mechanism called a profile. 
Stereotypes change the semantics of the UML/SysML model element to which they are 
applied, and can add tagged data in the form of name-value pairs to the model elements. 


7.3.2.12.3.1 RequirementValues 


The RequirementValues stereotype is applied to both blocks and block instances. It is used to 
capture the impact that requirements have on block properties. Multiple requirements may 
apply to each property, placing different, sometimes conflicting, ranges of values on the 
property.  


The stereotype has a single property, attributeValues. This stereotype tag holds a string 
holding the table of attribute value ranges and the requirements they derive from, in XML 
format. A custom dialog was added to the SysML tool to support the collection of the data 
stored in that string. See the RequirementValues section of the User’s Manual for more 
information. Figure 7.3-24 shows a RequirementValues Stereotype. 


 


Figure 7.3-24.  Requirement Values Stereotype 


7.3.2.12.3.2 ARRoWRequirement 


The ARRoWRequirement stereotype captures additional information associated with a 
requirement.  


PublishedName and PublishedValue tags are published to the AMIL graph. The 
PublishedName becomes the AMIL node name, while the value is an early version of the ranges 
of values now captured in the RequirementValues stereotype. Figure 7.3-25 shows an ARRoW 
requirement. 


 


Figure 7.3-25.  ARRoWRequirement Stereotype 


The other attributes capture details about the requirement or requirement archetype that are 
important to other aspects of systems engineering. AllocationRationale helps capture the 
provenance of what a requirement exists and how it connects with design elements and other 
requirements. Maturity indicates if this requirement is something an organization is familiar 
with or is new and therefore implies higher risk that needs to be managed. Safety and Mission-
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Critical tags assert that there is additional engineering work around the requirement to ensure 
reliability and safety, and indicate that these requirements are likely to significantly affect the 
PCC of the design. 


7.3.2.12.4 Integration With AMIL  


AMIL is the means by which modeling tools share information within ARRoW. Model data 
can either be published into the AMIL graph (pushed) or AMIL can extract (pull) the data from 
the tool when requested by an AMIL client. Whether the data is pushed or pulled is invisible to 
the client requesting the data (except that it might take a bit longer in the pull case).  


7.3.2.12.4.1 Write 


The SysML plug-in to Magic Draw uses the push method to share its data into AMIL.  


Blocks, instances, properties, and requirements are each mapped to their own AMIL node. The 
arc from block to property represents the ownership of the property by a block. Attributes of 
the property, such as type, description etc., are not shown.  


The arcs from requirements to property represent the constraints or desired values of the 
property, and the range expression is mapped to attributes of the arc. Here, the lVal and uVal 
ranges are included on the arcs.  


Design values are assigned to a property and mapped to the AMIL graph using a designValue 
property on the SysML property’s AMIL node. Figure 7.3-26 shows how this would be 
represented in AMIL. 


 


Figure 7.3-26.  AMIL Representation of Requirement Ranges of Values 


7.3.2.12.4.2 Read 


The ARRoW SysML tools support reading back designProperty values back from the AMIL 
graph, allowing tools to exchange design information. Since SysML is the authoritative source 
for requirements in our application of ARRoW, requirement values are not read from AMIL.  


METAF023
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Blocks are not read from the AMIL graph, but this is a possible future enhancement. This 
would allow tools such as ECTo to add components to the design, and communicate those 
blocks back to the SysML viewpoint. The reverse flow could also be supported, allowing 
components to be added in SysML and added to ECTo for 3D visualization and allocation.  


7.3.3 AMIL 


The top level goal of AMIL is to automate in a rigorous fashion the joint use of tools, solvers, 
and reasoners that are specialized for different parts of the design challenge and have very 
different, possibly incompatible, syntax and semantics. To that end, AMIL is less concerned 
with individual models and more about how the models are used by the tools, solvers, and other 
specialized reasoners to accomplish specific tasks in the design and analysis phases. However, 
before one can understand how these models are used one needs to understand what these 
models are. For this reason, AMIL must incorporate some meta-modeling to characterize the 
models and must also incorporate relationships between the models that characterize how the 
models are used.  


7.3.3.1 Uses of AMIL Analysis and Verification  


The point of analysis is to verify that the design can achieve the intended effect, but the effect is 
to be realized in some environment. The relation between the designed component and its 
environment must be captured in the analysis to verify that the component has the desired 
behavior. In Contract Based Design (CBD), this is checking that the contract of a component is 
compatible with its environment [AB11].  Analysis may also be used to verify vertical relations 
such as refinement, where in CBD the contracts are used to check that the implementations of a 
contract also satisfy that of the refined model. One role of AMIL in analysis is to capture these 
relationships. 


7.3.3.2 Design Support 


Design of a complex vehicle will proceed in stages, starting with a high level, abstract, concept 
that get successively refined into a completely defined vehicle. 


This process is captured in the system design artifacts, in which functions get implemented 
with systems and subsystems that themselves get implemented by interconnecting individual 
components. The component model library facilitates this process by establishing a hierarchy of 
abstraction between components and functions. As a system is refined, not only does the 
analysis verify the refinement, but corresponding changes in the setup of the analysis may be 
necessary. AMIL captures this analytical setup through analysis archetypes and provides 
direction on which links in the setup may require updating. 


7.3.3.3 Chaining of Tools 


Consider a mechanical linkage, such as an actuator arm that operates a gate. The system view, 
together with a 3d design can show all the individual components (bars, fasteners articulations, 
ball bearings) and how they are interconnected. Given dynamical models of each of those 
components it is possible to derive a dynamical model of the interconnection by translating the 
system interconnections into dynamical ones. However the dynamical models of each of the 
components will themselves be composite. For example, the bending modes of the links may 
need to be computed individually or jointly, by integrating the corresponding partial 
differential equations in an appropriate tool, before the dynamical model can be executed. This 
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relationship between the models allows computation of bending modes, and the model that 
computes dynamic behavior is not a system relationship, nor can it be easily derived from them. 
However, bending modes are reusable, and can be formalized. 


For example, when computing the dynamic behavior of the vehicle gate, we need to update the 
dynamical model with the mass properties of the gate. Those can be estimated from the shape 
of the door, and the type of armor used, and the type of armor used can be estimated from 
protection requirements. 


 


Figure 7.3-27.  Relationships Among Models and Design Elements 


The existence of such a chaining of tools that can be used to inform the gate dynamics model 
cannot be directly inferred from the system diagram. If sufficient declarative knowledge about 
all the entities involved is available, it is conceivable that we could deduce that the gate 
dynamics need to know the mass properties, that those can be approximated from the gate 
dimensions and the armor model, and that the armor model depends on the protection 
requirements. Finding the right string of tools can be complicated, even with a formal 
definition of each of the models involved.  


An alternative approach is to describe the pattern of links between the analysis components in a 
formal language. AMIL can be used to define the links between the components and indicate 
how the different analysis tools can be interconnected to answer specific analysis questions. In 
Figure 7.3-29 the red links are AMIL links and the green links are system links. In order to 
carry out the analysis (in this case simulate the system behavior) both types of links are needed. 


Consider the example in Figure 7.3-27. The first time it is setup, design engineers will select 
the models necessary to build the analysis construct. Engineers will also create the 
interconnection between the links. The most common type of link would indicate data transfer: 
a value generated by one model should parameterize another; or a signal generated in one 
model is fed to a port in another. However they could indicate simply that one model informs 
the other. 


7.3.3.4 Analysis Reuse 


AMIL is designed to facilitate reuse, not only of analysis components like the ones in the 
example, but most importantly of analysis constructs. 


Once the analysis structure has been built and used for one design, it will get persisted in the 
library of designs. The network of interconnections can then be used as an analysis template. In 
order to build the analysis graph for another similar problem, we start with the auto-generated 
part of the diagram (the green boxes). We then analyze which parts of the graph are still 
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undefined (in this case we find out it is the mass properties). Next we search the library of 
analysis graphs for similar cases in which the corresponding dynamics block had an external 
definition of mass properties. One we retrieve feasible options; we can follow the AMIL links to 
the other elements necessary for the AMIL graph. We expect that in general we will find many 
possible solutions. Selecting the most appropriate one can be done either manually or 
automatically.  


7.3.3.5 Semantics of AMIL 


AMIL records links and dependencies between various model types, to assist the creation of 
analysis packages. The semantics of AMIL links are defined with respect to the particular 
analysis product or process being carried out. By letting the link semantics be polymorphic, we 
create a simple mechanism for the language to be naturally extended as new analysis 
capabilities are introduced. 


The semantics of an AMIL link are defined by the set of inferences that can be made based on 
the link, while executing different analysis or design processes. 


From the Link Semantics we are able to make inferences about the design during the 
development process.  These inferences are based on the existence, type, and data content of the 
links between nodes.  Some of the link types include informs, partOf, refines, isA, instanceOf, and 
uses.  


 One useful inference is to conclude the set of all models on which a test is dependent.  Defining 
certain link types to be transitive allows one to derive the transitive closure of AMIL nodes 
from a node that represents the test.  Similarly, one can trace back from a node representing an 
analysis result to the nodes representing the requirements that are related to this result. 


Substitution of models is a common activity in the development process.  Being able to infer 
new or updated relations between a model and its environment facilitates an automation of the 
overall process.  In Figure 7.3-28, a new Signal link is inferred between the Resistor Power and 
the Power Input of the Dynamic FDA Analysis model.  The inference rule used here is the 
following: 


Action(Substitute) ^ RefinedBy (M1, M2) ^ Temporal(M1, 
SteadyState) ^ Temporal(M2, Dynamic) ^ Interface(M1, I1) ^ 


Interface(M2, I1) ^ Parameter(R, M1.P)   Signal(R, M2.P) 


The predicate Parameter(x, y) represents the existence of an AMIL link between AMIL nodes 
x and y and the type of the link is Parameter.  Similarly,  the RefinedBy(x, y) predicate indicates 
the existence of an AMIL link between AMIL nodes x and y and the type of the link is 
RefinedBy.  The RefinedBy link definition constrains the types of the nodes linked to be nodes 
representing models. 
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Figure 7.3-28. Example of Inferring a Link. 


7.3.3.6 AMIL Syntax 


The underlying structure of AMIL is based on an attributed graph.  The syntax of AMIL is 
designed to edit and manipulate this structure.  The AMIL syntax uses a JSON notation for its 
simplicity and readily available parsers. 


An AMIL Statement is executed by the AMIL interpreter, which responds with a return value 
that is also a JSON formatted string.  The following is the grammar for an AMIL Statement 
and its parts. 


  


AMILStatement =>  
[Action, SequenceOfNodeOrEdge] 
 
Action =>  
{ 
    action : actionName,  
    preConditions : {predicateList},  
    postConditions : {predicateList}  
} 
 


actionName =>   
"createNodes" | "createLinks" | "getNodesRaw" | "getNodes" 
| "getLinks" | "deleteNodes" | "deleteLinks" | 
"updateNodes" | "clearDatabase" 
 
PredicateList => PredicateCall | PredicateCall, 
PredicateList 
 
PradicateCall => predicateName : [parameterList] 
 
ParameterList=> String | String, ParameterList 
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SequenceOfNodeOrEdge=> 
    NodeOrEdge, 
    NodeOrEdge, SequenceOfNodeOrEdge 
 
NodeOrEdge=> 
{ 
        type : nodeOrEdgeType, 
        uniqueId : {nameValueList} 
} 
 
NameValueList=> name : value | name : value, NameValueList 
 
NodeOrEdgeType=> node | edge 


7.3.4  Qualitative Modeling Language  


Our Qualitative Modeling Language, QML, has been designed to describe the topology and 
behavior of composite models with connected sets of components. Simulation of the behavior of 
such models is useful in providing guidance to users in early stages of the design process.  


Four high-level design tasks have been identified:  Description, Synthesis, Simulation, and 
Analysis.  QML supports all four. This section describes the language, how it helps in design, 
and some results we have obtained in using this modeling framework. Later sections exemplify 
the features described. 


Description: Atomic components are the basis for building a systems model. QML has a 
language to describe the interface, and the qualitative behavior of the component.  Component 
behavior is defined through qualitative algebraic and differential equations relating the 
qualitative variables.  


Synthesis: QML has language constructs that describe how to compose these components into 
larger models using named nodes as connection points and specification of the components 
connected to those nodes.  It also describes initial conditions for the components and initial 
modes of behavior.  


Simulation:  The test environment of a composite system is defined in the same way as a 
composite model, with initial conditions that can be imported from a context model. It also 
specifies how the environment behavior can evolve over time through transitions of modes that 
represent system state.  See the description of the IFV Ramp below. 


Analysis: Simulation creates a representation (called an envisionment) of all significantly 
different qualitative states that the system can reach in the test environment.  The states in the 
envisionment can be evaluated with respect to whether they satisfy qualitative versions of 
system requirements.  Paths with failed requirements require attention in more detailed design. 


QML has a relatively small library of atomic component models.  To grow this library, and to 
make it align with a current quantitative modeling language, we have built a translator the 
imports a Modelica library, and converts it to QML. Not all of Modelica constructs can (or 
should) be mapped into QML. For example, algorithms and functions that define behaviors in 
terms of programs rather than equations are not included.   
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7.3.4.1 Qualitative Simulation in Early Design 


Qualitative simulation may be used in a variety of ways by a designer or automated design tool. 
The most common would be to simulate a system through a set of use cases with respect to 
particular requirements. For each use case, the simulation can be used to provide a qualitative 
answer for each requirement in each use case. A qualitative evaluation of a requirement can be 
yes (all choices for numeric parameters will satisfy the requirement), no (no choice of 
parameters values will satisfy the requirement), and maybe (some set of parameters will satisfy 
the requirement). Using qualitative simulation in this manner can focus quantitative reasoning 
on the maybe cases and throw out designs that cannot possible work.  


7.3.4.2 Qualitative Representations 


Qualitative simulation, or envisionment, is the process of projecting forward from an initial 
situation, and a model, all possible states that may occur. Central to qualitative simulation are 
qualitative representations of continuous quantities. Our approach to representing quantities 
begins with the sign algebra. Each quantity and its derivative is represented as one of four 
qualitative values {-, 0, +, ?}, where ? represents an ambiguous value. For example, we could 
say that the voltage across a resistor is + and its derivative is -, to mean that the voltage is 
positive and decreasing. Qualitative simulation would infer in this situation that there is a 
potential transition from positive to zero voltage. Frequently, additional distinctions must be 
made for a given quantity. To account for this knowledge, we use landmarks, i.e., constant 
points of comparison, to introduce intervals for quantity values. For example, the substance is 
between its freezing point and its boiling point. A qualitative state is an assignment of values 
(intervals) to quantities and their derivatives. 


To represent equations, we use qualitative constraints as follows. We represent the 
mathematical relationship for an ideal resistor V=IR as a constraint on the qualitative values of 
V and I. In any situation, the sign of the voltage across the resistor must equal the sign of the 
current through the resistor. We also include algebraic constraints for qualitative addition and 
multiplication. Finally, we have constraints that enforce continuity from calculus. That is, a 
value cannot change from – to + without being 0, unless there is a discrete change in the 
system.   


Suppose the derivative remains positive (+). Then the value will equal 0 for an instant. In 
general, the system's behavior corresponds to an alternating sequence of intervals and instants; 
a situation is the set of qualitative values that state variables take on for each interval/instant. 
During an interval each variable remains within a single qualitative region. The end of one 
interval and the beginning of the next is marked by one or more variables transitioning 


between qualitative regions [BCW84]. Moving from an interval to an instant, a variable's new 
value is predicted by old value plus its derivative; the same is true when moving from the 
instant into a subsequent interval. Discrete changes can happen in the system if a component 
has a mode change. A mode can reset values and change the equations by which a quantity 
evolves. 


7.3.4.3 Specifying Qualitative Models 


We develop a qualitative modeling language (QML) to specify qualitative models. We use 
models of a resistor and a diode shown in Figure 7.3-29 to illustrate the various aspects of 
QML. 
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(defprototype ideal-resistor 


    :external-terminals ((t1 :electrical) (t2 :electrical)) 


    :fixed-parameters ((R)) 


    :variables ((v (voltage t1 t2)) 


                (i (current t1))) 


    :equations ((q= v i)  


                (q= (deriv v 1 t) (deriv i 1 t)) 


                (= v (* R i))) 


Figure 7.3-29.  Definition of an Ideal Resistor including Both Qualitative and 
Quantitative Equations 


Atomic components are required to have external-terminals, variables, and equations. External 
terminals define how the component can be connected to others, variables define quantities of 
importance to the device, and equations relate these quantities to each other. The operator q= 
defines a qualitative equality constraint. In this case, the voltage and current must have the 
same sign. Fixed parameters and = are used to define quantitative equations. 
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(defprototype ideal-diode 


    :external-terminals (t1 t2) 


    :variables 


    ((v (voltage t1 t2) :landmarks (Q OnVoltage)) 


     (i (current t1))) 


    :mode (off :entry ((q= i Q0))  


        :initial () 


        :equations ((q= i Q0) 


                           (q= (deriv i 1) Q0))) 


    :mode (on :entry ((q= v OnVoltage0))  


       :initial () 


       :equations ((q= v OnVoltage0) 


      (q= (deriv v 1) Q0)))) 


Figure 7.3-30.  Defining an ideal diode requires landmarks to divide the quantity space 
into additional intervals, and modes to model discrete transitions. 


Figure 7.3-30 contains an ideal diode that illustrates how discrete transitions and intervals are 
defined. A diode has two landmarks for voltage, Q, which represents the distinction between + 
and – voltage as usual, and OnVoltage, which denotes the voltage at which the diode turns on. 
The instant at which the diode turns on represents a discrete, or discontinuous, change and is 
modeled using modes. Each mode has an entry condition, which is a conjunction of qualitative 
equations that, when satisfied, cause the component to transition into the mode. On entering a 
mode, the initial conditions set values of local variables. As long as the component is in the 
mode, the constraints defined by the mode equations must hold. For example, the entry 
condition for the on mode is satisfied when the voltage is equal to the OnVoltage landmark. If one 
wished to express that the voltage was above the OnVoltage landmark, the equation would be 
(q= v OnVoltage+). This initial and equation statements for this mode ensure that this value for 
voltage is maintained as long as the diode is in the on mode.  
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(defprototype diode-test 


    :internal-nodes ((input :electrical) 


        (n1 :electrical) 


        (n2 :electrical) 


        (ground :electrical)) 


    :components ((D (ideal-diode n2 ground)) 


    (C (ideal-capacitor n1 ground)) 


    (R1 (ideal-resistor input n1)) 


    (R2 (ideal-resistor n1 n2)) 


    (B (ideal-battery input ground))) 


 


 


Figure 7.3-31.  Composition of components in QML defining a system involving a diode 
(shown graphically on the right). 


Figure 7.3-31 illustrates how these components can be synthesized into a design. The topology 
of the system is defined by creating a set of nodes to which the components are connected. 
Nodes have a domain type, e.g., :rotational, :linear, :thermal, :electrical. The 
nodes from each domain are used to calculate constraints resulting from Kirchhoff’s current and 
voltage laws. The list of components names and instantiates models with particular 
connections to nodes. In this example, the only domain is electrical. The first component in the 
list is the diode, which is connected to node n2 and n3. The resistor R2 is also connected to 
n2, and the capacitor and battery are also connected to n3. In the next section, we move away 
from circuits to show how a model can include the environment’s behavior, and illustrate how 
an envisionment of the model can be used in analysis. 


7.3.4.4 Example: Analysis of IFV Door Opening and Closing 


Figure 7.3-32 contains the definition of the system for an IFV ramp door opening and closing 
with a PID controller. The first three components model the output of proportional and 
derivative control as well as their sum (Note: Integral control is ignored as it is not interesting 
qualitatively). Given a control output, a piston produces a torque on the door. The last two 
components are sensors which produce signals concerning the door’s position and velocity 
relative to particular landmarks. Next, the initial conditions of the system are specified. The 
operators == and qIn are used to specify the mode of a component and the interval of a 
quantity. In this case, the initial mode of the system is opening, and the initial mode of the 
velocity sensor is Q, that is, the value of the velocity sensor is determined by the door’s velocity 
measured in respect to the landmark Q or 0 rad/s. The initial position of the door is between 
the Closed and Open landmarks, and the initial velocity of the piston is in the + direction. 
The system has two operating modes, which are used to initialize the mode of the position 
sensor used by the p controller as well as the controller output. In the next section, we describe 
what the resulting envisionment looks like and how it can be used to guide design. 


 


(defprototype sept-demo 


    :internal-nodes ((n1 :variable)(n2 :variable)(n3 :variable) 


                     (pos-sensor-node :variable) (vel-sensor-node :variable) 
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        (r1 :rotational)(r2 :rotational)) 


    :components ((p-control (mod-control-pd-6 pos-sensor-node n1)) 


    (d-control (mod-control-pd-6 vel-sensor-node n2)) 


    (control (mod-adder n1 n2 n3)) 


    (piston (controlled-piston-3 n3 r1 r2)) 


    (door  (IFV-door-slab-3 r1 r2)) 


    (pos-sensor (sensor pos-sensor-node door position (Closed Open)))  


    (vel-sensor (sensor vel-sensor-node door velocity (Q)))) 


    :initial ((== mode opening)  


              (== (mode piston) normal) 


              (== (mode vel-sensor) Q) 


              (qIn (>> theta piston) (Q PistonParallel)) 


              (qIn (>> position door) (Closed Open)) 


              (q= (>> w piston) Q+)) 


    :mode (opening :entry () 


     :initial ((q= (>> out control) Q+) 


                            (q= (>> out p-control) Q+)  


                            (== (mode pos-sensor) Open)) 


     :equations ()) 


    :mode (closing :entry ((q= (>> velocity door) Q0) 


              (q= (>> position door) Open0)) 


     :initial ((== (mode pos-sensor) Closed) 


                            (q= (>> out control) Q-) 


                            (q= (>> out p-control) Q-)) 


     :equations ())) 


Figure 7.3-32.  Composition of components defining a system in which a door is given a 
command to open and close. 


The use case for this simulation states that the door should open and close without 
overshooting and slamming into the ground on open or the vehicle on close. The qualitative 
simulation is performed by specifying success and failure conditions representing the 
requirements. A failure situation is one in which the following logical expression holds (q= 


(>> position door) Closed-) ∨ (q= (>> position door) Open+)), i.e., 
the position of the door is either before the closed landmark or after the open landmark. A 
situation is determined to be a success if the system is in the closing mode and the door is 


stationary at the closed position, (== mode closing) ∧ (q= (>> position door) 
Closed0) ∧ (q= (>> velocity door) Q0). We are in the process of extending the 
specification to include other expressions, like those used in linear temporal logic. 
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Figure 7.3-33.  (left) Directed graph describing the envisionment of the door system 
included for concreteness. (right) A simplified version of the envisionment graph to 
describe the example. 


The envisionment, shown in Figure 7.3-33, is created by taking the door system and initial 
situation specified above, and computing each possible successor situation. The envisionment 
on the left represents all possible trajectories through the qualitative state space. To illustrate 
the important features of this envisionment, we use the simplified graph with labeled nodes on 
the right. Starting in the initial situation, 1, the system will transition to one of two intervals, 2 
and 3, as the door progresses toward open. The next set of situations, 4, 5, 6, and FAIL, 
represents the state at which the door reaches the open position. FAIL is colored as red because 
the position of the door is past the open landmark.  


Each of situations 4, 5, and 6 represents an interval after the mode has been changed from 
opening to closing. Situations 4 and 5 transition into situations 7 and 8, and finally, the 
simulation ends with two more terminal situations, SUCCESS and FAIL. The success situation 
satisfies the condition that the door is in the closed position and stationary; and the fail 
situation is where the door has overshot the closed landmark. 


Analysis of this envisionment provides the following feedback to the designer. First, the design 
may reach a successful situation. Second, we can assess how difficult it will be verify a design 
quantitatively. In this case, each of the requirements may be violated. Therefore, quantitative 
analysis will be needed for each requirement. Alternatively, if one is looking for a quantitative 
estimate for how difficult it will be to verify the design, one could use the ratio of successful 
states to terminal states, in this case 1/3.  


There is a terminal situation, 6, that does not satisfy the success or failure conditions of the 
system. This dead-end state implies the need for additional requirements to guide the designer. 
In this case, this situation results from a kinematic singularity in the piston door connection. 
That is, when the acting angle of the piston is parallel to the angle of the door, the piston 
produces no torque. While this is part of the piston component model, it is only terminal if the 
door is stationary at this point. To identify this risk required simulating the system through 
the use case where the door first opened and then closed. With only individual use cases, one 
for opening the door, and one for closing it, the envisionment would not show this dead-end 
state. 


7.3.4.5 Envisionment and PCC Computation 


In view of how central PCC is to the META program, we did some testing with OSU's 
Uncertainty Propagation code, to see how a numeric PCC might mesh with a Qualitative 
Reasoning approach. The two were not well matched. 
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QR's strength is to rapidly deal with unknowns and approximations early in design space 
exploration, before part selection and sizing. To run specific stochastic inputs through a 
compiled Modelica model and do Taylor series uncertainty propagation on the results, the 
designer must nail down the parts and their tolerances. A great many repeated runs of the 
model are necessary to compute a PCC. The calculation in Matlab was approximately twenty 
minutes. 


The requirement we evaluated was ability to control ramp operation within the specified ten-
second interval, using a progressively lighter and less powerful actuator. In the envisionment 
graph there is a transition from the "opening" interval to successfully open, and another 
transition to a failure state in which the ramp is not at a stationary open position within ten 
seconds. We tried to see if PCC calculations would help a designer to better understand the 
probabilities of taking those transitions. 


Steady state torque needed by the ramp_A03 model to hold the ramp open was 7342 N m, 
which was close to the maximum torque needed during soldier egress. Sizing the motor for a 
nominal 7406 N m leads to output being saturated for 750ms of the opening sequence, so the 
design is right on the edge and has a PCC slightly above zero. A small increase in nominal 
motor size to 7440 Nm reduces the saturation interval to one sixth of a second. If actual max 
torque forms a beta distribution in the range 7350 to 7463 Nm, then PCC for successful ramp 
operation is 98.8%, with larger motors giving even greater assurance of proper operation. 


But in answering the larger question of whether this is an appropriate analytic tool to 
understand the envisionment graph or to size the motor, the answer turned out to be "no". 
Simpler analyses of necessary torque margin, or of saturated output duration, are far more 
productive methods for sizing components. Compute intensive repeated stochastic model runs 
using specific component parameters should be performed a little later in the design process, to 
verify that appropriate margins were used and that they perform in combination as expected.  


7.3.4.6 Modelica to QML Translation 


Modelica is a fully featured modeling and simulation language designed to do numeric 
simulations from models of cyber-physical systems. It provides an object-style inheritance for 
object structure, and specifies behavior using algebraic and ordinary differential equations.  It 
also provides computational capabilities found in standard programming languages such as C.   
QML is a language that provides facilities for describing the qualitative behavior of models, and 
a simulation engine that computes an envisionment of possible alternative behaviors of a 
composite model based on the composition of behaviors of its components.  Component 
behavior has only qualitative values (basically significant ranges of values) and uses qualitative 
linkages between variables, and qualitative analogs of ordinary differential equations. 


For a significant class of constructs, there is a straight-forward mapping from Modelica models 
to QRL models. We have built a translator that will do this mapping so that we can take 
advantage of the large standard library available from, and be able to do qualitative simulations 
of models that were built in Modelica. We have started with the Modelica Analog Basic library. 
At this point we can successfully translate about three quarters of the models in that library.  
For the rest, there are constructs that are not appropriate to translate – for example, 
descriptions that are not model based (support equation based behavior), but instead make use 
of algorithm and function constructs. 
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We have developed a methodology for exploration of the translation process that enables us to 
see where there are issues in our translation. Our strategy for dealing with gaps has four 
prongs: adding capabilities to the translator; extending the Modelica language to include 
constructs needed for qualitative modeling (e.g. explicit modes); rewriting Modelica models to 
in the extended language; and declaring (parts of) some models that need to be hand translated. 


The following pair of models indicates how a basic capacitor in Modelica is translated 
automatically into QML.   


 


Capacitor 


Modelica QML 


model Capacitor “Ideal electrical capacitor” 


  extends Interfaces.OnePort;  


  parameter SI.Capacitance C(start=1); 


equation  


  i = C * der(v); 


end Capacitor; 


(defprototype Capacitor  


 :external-terminals 


   ((p :electrical)  


    (n :electrical))  


 :variables 


    ((v (voltage p n)) 


     (i (current p)))  


 :equations 


    ((q= i (deriv v 1 t)))) 


Figure 7.3-34. Modelica and QML Models of a Capacitor 


There are a number of points that should be noted in Figure 7.3-34 above.  Modelica provides a 
general inheritance mechanism from previously defined classes.  In this case Capacitor inherits 
from the class OnePort.  This inheritance (from OnePort) provides two external interface 
connection points, p and n; it also specifies that associated with these connection points are 
electrical parameters of Voltage and Current.  In the translation, we recognize this particularly 
extends construct, and specially create the electrical external terminals, and define the voltage 
and current parameters locally as they relate to those terminals.  Note the translation of the 
equation, where q= specifies a qualitative equality, and (derive v 1 t) specifies the first (1) 
derivative of v with respect to time.  Note that the numeric parameter C (Capacitance) has been 
dropped since it does not affect the qualitative equation. 


The model below illustrates how Modelica synthesizes models from components, and how we 
translate this to QML. The RLC circuit has 4 components. These components are serially 
connected, from voltage source to resistor to inductor to capacitor and back to voltage source. 
In Modelica, a connection is explicitly declared with a ―connect‖ statement using the internal 
names of the connection points of the connected model. It describes the connection between 
two terminals of (mostly) different components.  


QML’s connection description is different. QML reifies connecting nodes, and creates 
components with explicit links to these nodes. The Modelica model shows the positive pin of 
the voltage source connected to the resistor’s positive pin. In QML, the connection point itself 
is an internal-node, and each component is connected to it. In the QML translation, we see 
voltage source component V1 is instantiated connecting V1p and V1n terminals, while resistor 
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component R1 is instantiated connecting V1p and R1n. These names have been generated based 
on the Modelica model. 


 


Modelica 


model RLC 


Modelica.Electrical.Analog.Sources.RampVoltage V1 (V=5,duration=10.0e-6); 
Modelica.Electrical.Analog.Basic.Resistor R1 (R=3.0); 
Modelica.Electrical.Analog.Basic.Capacitor C1 (C=10.0e-6, v(start=-5)); 
Modelica.Electrical.Analog.Basic.Inductor L1 (L=1.0e-3); 


equation 


connect(V1.n, C1.n);  
connect(V1.p, R1.p);  
connect(R1.n, L1.p);  
connect(L1.n, C1.p); 


end RLC; 


QML 


(defprototype RLC 


:internal-nodes 


((V1n :electrical)  
 (V1p :electrical)  
 (R1n :electrical)  
 (L1n :electrical)) 


:components  


((V1 (voltage-source V1p V1n))  


 (R1 (ideal-resistor V1p R1n))  
 (C1 (ideal-capacitor L1n V1n))  
 (L1 (ideal-inductor R1n L1n))))) 


Figure 7.3-35.Translating RLC Model in Modelica To QML 


Status: We focused on the automatic translation of Modelica models in the 
Modelica.Electrical.Analog library. We correctly translate 75% of those models. Where there 
are differences in the semantics of the two languages, the translator highlights untranslatable 
constructs. For example, QML does not support algorithms and functions; this is a principled 
difference because QML is based on models with ―no function in structure‖ – that is QML 


Modelica


model RLC


Modelica.Electrical.Analog.Sources.RampVoltage V1 (V=5,duration=10.0e-6);


Modelica.Electrical.Analog.Basic.Resistor R1 (R=3.0);


Modelica.Electrical.Analog.Basic.Capacitor C1 (C=10.0e-6, v(start=-5));


Modelica.Electrical.Analog.Basic.Inductor L1 (L=1.0e-3);


equation


connect(V1.n, C1.n);


connect(V1.p, R1.p);


connect(R1.n, L1.p);


connect(L1.n, C1.p);


end RLC;


QML


(defprototype RLC


:internal-nodes


((V1n :electrical) (V1p :electrical) (R1n :electrical) (L1n :electrical)


:components


((V1 (voltage-source V1p V1n))


(R1 (ideal-resistor V1p R1n))


(C1 (ideal-capacitor L1n V1n))


(L1 (ideal-inductor R1n L1n)))))


Above table shows a RLC circuit. This RLC circuit has 4 components. These components are serially


connected, from voltage source to resistor to inductor to capacitor and back to voltage source. In modelica,


connection is explicitly declared as “connect” statement. It describes the connection between two terminals


of (mostly) different compoennts. QML’s connection description is differnt. QML defines components’


3
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models cannot depend on outside contexts.  In addition our translator does not support 
compile-time construction options.  These include declaration clauses with ifUsed <Boolean> 
where the Boolean tells the compiler whether to use the declaration. The translator also does 
not support iterative constructions and arrays.   


As part of our process for bringing quantitative and qualitative modeling together, we have 
been working with the Modelica group to develop some common constructs; the focus has been 
on extending Modelica to incorporate QML mode definition.  


7.3.4.7 Qualitative Simulation Semantics 


A qualitative simulation of a device results in a direct graph of the qualitative states that device 
may exhibit starting with specified initial conditions – the envisionment. A quantitative 
simulation of any assignment of parameters to the device results in a single trajectory that can 
be mapped to one of the qualitative trajectories in the envisionment.  Therefore there is a 
homomorphism from the set of all trajectories of quantitatively specified models and the 
qualitative trajectories computed for the envisionment, as illustrated in the figure. Thus the 
semantics of the envisionment is a projection of the semantics of the quantitative modeling 
system. 
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7.4 Library Requirements 


Model-based systems provide a means of explicitly storing technological knowledge while 
sharing and communicating it between adjacent and parallel work threads. This facilitates 
horizontal integration whereby knowledge becomes accessible independently of time, location, 
and people. This being the overall goal needed with a Component Model Library (CML) and 
the virtual product instantiation of the CML, the Master Model. 


7.4.1 CML Library Goals and Capabilities 


The inherent preconceived notions of what a library should do and its ultimate capabilities 
must be clearly delineated for a successful CML instantiation. Libraries should facilitate the 
following capabilities. 


7.4.1.1 Existing Libraries 


7.4.1.1.1 Hardware Libraries 


Typical libraries should provide access to the large repository of hardware products available 
today. Industrial supply companies like McMaster-Carr, MSC Industrial Direct Co., Inc., Reid 
Supply Company, GSA Advantage, Digi-Key, and Glenair provide hundreds of thousands of 
components for use in everyday products and processes. Linkages and access to this 
information is critical to aligning the large vehicle design to the smallest of component. The 
various levels of abstraction of each component will provide the necessary information at all 
levels of the design process. 


7.4.1.1.2 Simulation Convenience  


Libraries should make model development and construction convenient. Toolkit libraries come 
with modeling and simulation applications that aid in the rapid development of models. For 
example, Matlab/Simulink comes with simulation components that the user can plug into a 
data-flow diagram via a drag-and-drop mechanism. CAD tools such as Pro/E have similar 
toolkit library capabilities for commonly used parts. Figure 7.4-1 is an example of a Simulink 
library interface.  


 


Figure 7.4-1.  Toolkit Library 



file://asdmnfs1/commeng/common/DARPA_META/Component%20Library/McMaster-Carr
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7.4.1.1.3 Accurate Behavioral Specification  


Libraries should accurately portray the functional and behavioral characteristics of the 
components.  Commercial parts libraries contain datasheets and occasionally working models. 
For example, electronic component libraries may contain models written in SPICE to specify 
behavioral operation. Figure 7.4-2 highlights the various types on information available.  


 


Figure 7.4-2.  Parts and Datasheet Library 


7.4.1.1.4 Reuse and Sharing  


A library should not only establish storage of content, but should also promote utilization of 
content.  A repository library is associated mainly with software. The repositories may be 
language specific or they could provide translations of algorithms to a number of different 
languages, such as the Numerical Recipes library (in Fortran, Pacal, C, C++). These can be 
hosted on a file system or a database. Figure 7.4-3 highlights the importance of an online 
library such as CPAN.org. 
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Figure 7.4-3.  Repository library - http://www.cpan.org/ 


7.4.1.1.5 Flexibility and Integration 


A library should not only facilitate the final storage of an article, but should also promote the 
development of content.  A developmental library holds components that are under continuous 
development, potentially for a Master Model.  SourceForge or GitHub are examples of 
distributed repositories for hosting source code. Figure 7.4-4 highlights the SourceForge 
example. 


 


Figure 7.4-4.  Developmental library - http://sourceforge.net/ 


 



http://www.cpan.org/

http://sourceforge.net/
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7.4.1.1.6 Knowledge Source 


A library should contain data and present knowledge by providing organization such that 
searches can be guided or directed more efficiently.  An information library can contain 
organized data corresponding to semantic content. This is the basis for the ontologically 
organized semantic web.  The information site DBpedia is a semantic version of the more free-
form content of Wikipedia. Knowledge sources typically contain reasoners which form the basis 
of a library front-end user interface. Figure 7.4-5 highlights the DBpedia example. 


 


 


Figure 7.4-5.  Information library - http://dbpedia.org 


 


7.4.1.1.7 Uniformity of Reference Method 


A library of libraries is needed to cross-index between available libraries. Instead of a 
Component Model Library, we may need to specify a Component Model Warehouse, which has 
a much bigger scope. The fact is that libraries will need to interoperate, just as traditional 
brick-and-mortar libraries interoperate with other libraries with shared card catalogs and inter-
library loaners. The libraries need to have fundamental uniformity in reference to support 
inter-operation. Figure 7.4-6 illustrates an example of multiple library interaction. 


 



http://dbpedia.org/
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Figure 7.4-6.  Library of Libraries 


7.4.1.1.8 Life-Cycle Management and Curation.  


The library needs to support an LCM process and curation to distinguish the developmental 
components from the mature and utilized ones.  Product Data Management (PDM) libraries 
offered up by vendors such as Windchill can hold enterprise models alongside other 
information. The data tracked usually incorporates the technical specifications of the product, 
specifications for manufacture and development, and the types of materials that will be 
required.  The PDM serves as a central knowledge repository for process and product history, 
and promotes integration and data exchange among all required functions. Figure 7.4-7 
highlights a Windchill example. 


 


Figure 7.4-7.  Product Data Management Library - 
http://www.ptc.com/solutions/windchill-10/ 
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7.4.1.1.9 Dependency Management and Automation 


The library needs to support dependency management with the interacting master models to 
establish out-of-date, up-to-date, and modified components status within the master models.  
To accommodate the huge number of library runtime components that a software application 
may consist of, a library manager such as Artifactory which maintains control of versions, etc is 
necessary.  Specific version control, configuration management, build management, and 
retrieval mechanisms are available for automation, such as GIT, Subversion, RPM, and Maven. 
Maven is a mechanism for dependency tracking and management. Figure 7.4-8 highlights the 
Artifactory example. 


 


 


Figure 7.4-8.  Library Management Automation 


7.4.1.1.10   Dependability and Availability 


Libraries are required to be continuously available. As an example, online libraries have an 
expectation to be dependable mechanisms with permanent availability and fixed reference 
method.  Mirror libraries which contain duplicated archives of libraries, or the recent approach 
known as cloud computing make availability less of a concern. This also provides a mechanism 
for protecting Intellectual Property and Classified information by being able to separate the 
data more effectively. Figure 7.4-9 highlights the Cloud example. 
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Figure 7.4-9.  Library Mirrors 


 


7.4.1.2 Synthesis of Library Capabilities 


Library interaction would extend from the typical parsing of singular requests to inferring the 
query trend from the strings of interaction. Ideally, a desirable library capability would capture 
interaction history and anticipate future needs. This would approach the goal of a tool such as 
Wolfram Alpha, which essentially responds polymorphically to a user’s request for information. 
Thus it can provide context models if the query is one of asking for ―weather data in Chicago 
from 1950 to 1960‖ or it will provide a numerical algorithm in symbolic form if the 
knowledgebase can infer meaning from a math library request. 


Barring being able to accomplish that laudable goal, as an interim solution we have an objective 
to providing as many capabilities as necessary to support the integration of a master model 
from a component model library.   


By building from requirements and an initial population of available components, we can 
establish a process whereby proven components from the master model can be fed back into the 
component model library for later reuse. Refer to Figure 7.4-10 for an example of the process 
flow. Test cases of proven components will also be captured to effectively save time when 
establishing new assemblies. This will enable the concept of crowd sourcing to utilize 
archetypes to easily find and develop products off of similar solutions. This will also encourage 
large organizations to benefit from the crowd-sourced advances.   
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Figure 7.4-10.  Process of incorporating components from a CML and of sharing 
candidate components to the library. 


 


7.4.1.3 Access to Information at Different Levels of Abstraction 


The key to effective reuse from the existing CML lies in being able to reason directly from 
requirements.  This is understood when we consider that the highest level of abstraction in a 
CML element is a component specification. As all components must have some minimal form of 
specification, this information can be used for unique and unambiguous identification of a 
component. Thus we can potentially transform requirements into essential information which 
we can then apply to a component matching process. In other words, we can map requirements 
onto candidate component specifications.  


The authoring of a well-grounded specification will often be extracted from lower level (higher 
fidelity) abstraction models. For instance, a component’s mass may be listed in its specification, 
and that mass may be derived from a solid model of the component. The specification can also 
contain information that is not associated with any underlying model. This sort of information 
can include data describing component maturity, vendor information, government 
classification, lead time, previous use, and general pedigree.  


7.4.1.4 Beyond Specification 


The CML will also connect any number of models associated with this component specification 
or aspects of this specification. For example, a bolt may be specified as ¼-20 hex head cap 
screw. This bolt component could then also have a 3D CAD representation, stress analyses and 
thermal properties associated with it. One essential low level of abstraction for the bolt would 
be the technical drawing that enables a manufacturer to create a bolt that has all the same 
characteristics as its models. A software component may be specified via its inputs, outputs, 
intended usage, and functional definition. Models of the software may include UML or 
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Simulink representations, and at the lowest level the source code used to generate the actual 
software library or executable. 1 


7.4.2 CML Goal Enablers 


The classical approach to library access and retrieval is to apply the concepts of classification, 
information content, and repository.  This architecture enables a divide-and-conquer 
strategy which will allow us to organize and access our content efficiently. The idea of 
ontological classification is to provide uniform, predictable, and consistent long-term 
organizational structure. The informational content provides an indexing scheme that allows 
reasoners to operate with specific information while being more variable and flexible than the 
ontological classification alone.  The repository holds all the information of the library 
including source code, models, and associated artifacts.   


Organization of the library in this way allows us to adopt certain tools and algorithms that 
work well in each of the abstraction level areas as well as across the levels. We broke the 
enabling mechanisms into these categories (Table 7.4-1): reasoning, access, content, and 
maintenance. While the preceding enablers represent the life cycle of information in the CML, 
content is ultimately the primary reason of the CML.  


 


Table 7.4-1.  CML technology enablers concentrate on aspects of the library architecture 


Enablers Ontological Informational Repository 


Reasoning X X  


Access X X X 


Content  X X 


Maintenance  X X 


 


7.4.2.1 Content is King 


The component model library will contain a collection of existing components and models, 
archetypes, historical component usage, and a large variety of other information. These 
repository items are indexed appropriately for fit with the CML flexible structure. This will 
become the overall knowledge base, with ontologically-classified, efficiently indexed knowledge 
acting as a powerful goal enabler for component discovery and reuse.  In other words, the 
content is not contained in the ontology but in instances and assertions classified by that 
ontology. 


The content can contain associated meta-data attributes (related to attributes of design 
elements in the master model).  Methods for fast authoring of information, both in defining and 
populating the content knowledge are needed. For example, adding new artifacts to the 


                                                 


11 The development of good specifications for software is difficult, the Software Hardware Asset 
Reuse Enterprise (SHARE) Repository Framework Final Report: Component Specification and 
Ontology lays out some interesting concepts that could be of assistance in this area. 
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repository by inheriting aspects of archetypal artifacts is a potentially useful mechanism for 
populating a library quickly. 


7.4.2.2 Reasoning 


At the most fundamental level, access to the CML can be constructed based on some 
ontologically classified component data types with semantic views that can be filtered by any 
set of constraints or rules. All access to the CML should have automation hooks available. 


The discovery of component models, collections of views of a component, or archetypes is 
helped by reasoners optimized for searching the CML knowledge base.  A search compatible 
mechanism such as a ―map reduce operation‖ together with a CML structured through 
attributes and relationships, has tremendous advantages over traditional directories and 
hierarchical topologies by increasing efficiency and effectiveness of the search capability. This 
type of action specifically indicates that the reasoners work at the indexing level and not at the 
repository level to preserve the integrity of the actual component model information.   


7.4.2.3 Data-Driven Access 


Applying mechanisms that allow uniform, fast, and unambiguous access to information is 
necessary across the board. Only the information levels of abstraction should change. The 
development process must not be hindered by the amount of time it takes to access data from 
the CML.  A good efficient interface with reasoning behind the scenes keeps developers 
engaged in useful work. However, it was determined that open source tools don’t necessary 
eliminate the need for standard file formats. This indicates that it is imperative to use some 
form of uniform development methodologies while maintaining as much of the original models 
as possible.  


Specifically, for the repository, most models are stored in native format, but other 
representations will become necessary for efficient reuse of components. The combination of 
segmentation of the master model and CML implies that it will be possible to make component 
models available for incorporation into designs and to test designs incorporating these models, 
without making the models themselves public. 


The language section discusses the content implementation language, which obviously derives 
from the ontological scheme chosen. 


7.4.2.4 Maintenance 


Maintenance will be required over the life cycle of the data within the repository and on the 
informational structure to the data.  The data within the CML will evolve with active 
development in many instances and go unchanged in some cases. References to the CML from 
Master Models can become broken links without necessary maintenance.  Enabling the lifecycle 
management and curation within the CML allows the connections between models and the 
CML to be continued.  The invariant characteristics of the ontological classification scheme 
establish a solid reference for the instance knowledge categorized in the CML. 


The mechanism of curation allows systematic design change, i.e replacing or refining a 
particular design element. 
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7.4.3 Library Strategies 


7.4.3.1 Developing Ontologies 


Ontology development requires large collection of information to best represent and capture 
the necessary pieces of a component and its associated models, artifacts, and layers of 
abstraction. Figure 7.4-11 represents a high level view of required fields of a component. The 
classification provides the fundamental structure, but the information can change as needed 
with the CML growth and use.  


 


 


Figure 7.4-11.  Component Hierarchy Schema 


Figure 7.4-12 represents an instance of a ramp in the CML. The overall ontology structure 
remains intact, but the appropriate and available information is accessible along with the proper 
connections that link the data for the various engineering needs.  
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Figure 7.4-12.  Ramp Component Hierarchy Schema 


 


7.4.3.2 Creating Content 


The capture of knowledge is key to establishing the necessary models and artifacts sufficient to 
represent a component. Historically, many of models used to represent components, sub-
systems, and systems are productized and built on demand by the appropriate experienced 
experts. However, the models that are built for a demand can be extended to serve across all 
product development domains. Table 7.4-2 captures the critical engineering functions that will 
need to be served with the appropriate models, artifacts, and data stored in the CML. The list 
following the table is a brief list the types of data that can be necessary in a CML. While not an 
overly exhaustive list, it captures some of the breadth of information needed. 
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Table 7.4-2.  Critical Product Development Functions 


Engineering Functions Provide CML Content 


Controls Human Factors Training 


Schedule Operational Effectiveness Production 


Safety Survivability Structural 


Finance System Integration Software 


Reliability Maintainability Thermal 


System Engineering Design Test 


 


Example Types of CML Data 


 COTS items 


 Fully developed released Pro-E Models 


 Space claim representation for Vendor Controlled Drawings/Altered Vendor 
Controlled Drawings 


 Sizing models (excel – spring design, o-ring; weld size, etc)  


 Component selection templates (motors/actuators; gearboxes; fasteners; dowels; 
retainers; inserts, etc) 


 Materials database 


 Drawing standard notes 


 Heat Treat Notes 


 Coating Notes 


 Problem Records / Lesson learned 


 Name of the tools for results that are in the library 


 Manufacturing processes, cost factors, producibility limitations 


 Supply chain material availability, cost, lead-times 


 Access to rough space claim CAD data based on functional inputs 


 Ready access to existing components for use in design (fasteners, pins, handles, motors, 
etc.).   Search capabilities across the industry. 


 Generic scripts for automation 


 Possibly acceptable posture ranges for human analysis 


 Common Use Case Model  


 As Designed, As Planned and As Supported BOMs  
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7.4.3.3 Organizing for Reuse  


The CML will rely heavily on the ability of one component instance to reuse the effort of 
another component individual in order to realize the 5× improvement needed for META. 
There are four typical ways that this reuse can be accomplished: containment, copy, alias, and 
inheritance. The majority of the reuse will be via containment of other component. In the 
proposed ontology example, Figure 7.4-13, the object properties of hasComponent and its 
inverse ComponentOf would be the mechanism for creating a containment relationship from 
one component to another. 


Component 1
Component 2


Component 3


hasSubComponent


subComponentOf


subComponentOf


hasSubComponent


...


hasSubComponent


subComponentOf


 


Figure 7.4-13.  Component Reuse 


 


The second mechanism is a copy of the component. This does not maintain a relation from one 
component individual to another component individual. This allows a component developer the 
freedom to be able to change the internal structure of the component but has the disadvantage 
that the developer will not get changes if the original is modified. Copying and modifying a 
component is shown in figure 7.4-14. 
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Component 1
Component 3


Feature 1


hasComponent


ComponentOf


FeatureOf


hasFeature


...


hasSomeRrelation


SomeRelationOf


Component 2
Component 3


Feature 2


hasComponent


ComponentOf


FeatureOf


hasFeature


...


hasSomeRrelation


SomeRelationOf


Component 1 copied to make 


Component 2 and Feature 1 was 


changed to Feature 2


 


Figure 7.4-14.  Component Copy and Modify 
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The third type of reuse is to alias one component individual from another component individual 
using a syntax such as sameAs. This type of reuse will not allow the component developer to 
change any of the features or properties from the base component individual. If a change is 
made the result is an inconsistency in the data and there will be two paths that yield different 
results. An example of this type of reuse is found in the figure 7.4-15. 


Component 1
Component 3


Feature 1


hasComponent


ComponentOf


FeatureOf


hasFeature


...


hasSomeRrelation


SomeRelationOf


Component 2


sameAs


 


Figure 7.4-15.  Component Alias 


 


The last form of reuse is the inheritance of one component from another. Inheritance of one 
component individual from another will again need to be done via an object properties defined 
in the Arrow ontology.  All the individuals that the parent has a relation would be aliased so 
that the child could change these aliased individuals and override the values in the parent.  The 
hasChild and ChildOf properties would maintain the tie between parent and child so that 
changes in the parent would be reflected in the child. These changes could be done manually 
but a manual process would be prone to error and lack consistency. The complexity of these 
relations will necessitate that a tool be used to maintain the component individuals.  An 
example of this relationship is in following figure 7.4-16. 
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Component 1
Component 3


Feature 1


hasComponent


ComponentOf


FeatureOf


hasFeature


...


hasSomeRrelation


SomeRalationOf


Component 2
Component 4


Feature 2


hasComponent


ComponentOf


FeatureOf


hasFeature


...


hasSomeRrelation


SomeRelationOf


ChildOf


hasChild


sameAs


sameAs


sameAs


 


Figure 7.4-16.  Component Inheritance 
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7.4.3.4 CML Administration 


7.4.3.4.1 CML Tools 


The difficult task of creating and maintaining the CML will require a robust set of tools. Some 
of the needs for CML tools are addressed with a combination of tools that are currently 
available but there is a need to integrate and augment the capabilities to provide a robust 
solution. These tools will need to enable the curator and users of the CML to create, change 
and remove components while maintaining the integrity of the library. The curation of the 
CML will require that a tool set will provide version control, consistency management, 
dependency tracking, change notification, and maintain the structure of the library. The 
component creators and users will require client tools that ease the task of component creation, 
component selection, interface definition, and component maintenance.  


Version control is not a new concept so there are many available tools, but the CML does have 
some unique challenges that will require some augmentation of the existing tools. Because of 
the high degree of interdependence between specific versions of components there will be 
additional features needed to manage these dependencies and to manage upgrading 
components. When there are multiple dependent components, conflicts may arise when any 
component is upgraded. Warning the user of conflicts and managing these complex 
dependency trees is something that will need to be addressed by the CML tools.  


Another aspect of the high degree of interdependency is maintaining the consistency of the 
components. If the components were administered without the aid of some tools it would be 
easy for components to create circular dependencies. Having tools that maintain the 
dependency tree and alert the user when a circular dependency occurs would prove to be 
invaluable during component design. 


Ease of use for searching for and using components is also a factor that will need to be 
addressed in order for these tools to be accepted in general use. If this is not the case the 5x 
goal will likely not be achievable via the use of components. The users will need to be able to 
find the components and have a high degree of confidence that they are useable and verifiable. 
Tools do not currently exist that can provide this kind of specific information about 
components in the CML.  


7.4.3.4.2 CML Population 


Component owners will populate the component library in order to encourage the use of their 
components.  Oversight will be required to ensure components are accurately represented, 
documented, and controlled since component owners may have a conflict of interest in making 
their components appear as attractive as possible.  Component owners will be responsible for 
entering appropriate information for component models including low fidelity information 
through high fidelity meta information. The government may also be the owner of some 
components making ownership more complicated.  Ultimately, there needs to be moderation of 
the library, a mechanism for component owners to populate the model library, and a process for 
system integrators to solicit the desire for new components.    


7.4.3.4.3 CML Integrity 


Integrity of the library will be controlled by the Library Owner/Moderator who will provide 
the appropriate level of access and control of the library. Some indicators of model usefulness 
could include an incremental TRL-like metric as the indication of quality and/or a certification 
of the model providing traceability and quality control. The Library Owner/Moderator would 
also have the ability to "whitelist‖ or ―blacklist" products, components, technologies, or vendors 
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as more information is collected. This approach facilitates the open/crowd-sourced nature of 
the program, while at the same time providing a filtering mechanism to control the breadth of 
the component space. 


7.4.3.4.4 CML Data Control 


Part of the metadata associated with each model must include data classification level.  The 
database handles for the models themselves may point to different databases for varying levels 
of data protection.  Access to these databases can be controlled per the established procedures 
associated with the data within them.  There will likely be many models to represent each 
component and each of these models may have different classification levels associates with 
them. 


Classified and International Traffic in Arms Regulations (ITAR) considerations:  Applied 
models may contain ITAR-restricted or classified information that may require protection.  
Theoretical models may be well known processes and not be ITAR restricted, or may be 
innovative models and will fall into the category of ITAR restricted/Company Proprietary.  
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List of Symbols, Abbreviations, and Acronyms 


Symbol, 
Abbreviation, 


Acronym 
Definition 


AAE  Army Acquisition Executive  


AMIL ARRoW Model Interconnection Language 


ANSI American National Standards Institute  


AR  Army  


BBIT  Background Built-In Test  


BIT  Built-In Test  


C2  Command and Control  


CCW Counterclockwise  


CFV  Combat Fighting Vehicle  


CML Component Model Library 


CW  Clockwise  


DoD Department of Defense 


DoD  Department of Defense  


DODISS  Department of Defense Index of Specification and Standards  


ECTo Early Concepting Tool 


EIA  Electronic Industries Association  


EW Electronic Warfare 


FIT  Fault Isolation Test  


GFE  Government Furnished Equipment  


IBIT  Interactive Built-In Test  


ICD  Interface Control Document  


IFV Infantry Fighting Vehicle 


ISO  International Standards Organization  


LRU  Line Item Replaceable Unit  


MIL-C- Military Standard C- 


MIL-HDBK- Military Handbook  


MIL-STD- Military Standard  


MMBF  Mean Miles Between Failures  


MOPP-IV  Mission Oriented Protective Posture (IV)  


MTBF Mean Time Between Failures 


NBIT  Non-Interactive Built-In Test  


SA  Situational Awareness  


SAE  Society of Automotive Engineers  


SBIT  Start-Up Built-In Test  
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Symbol, 
Abbreviation, 


Acronym 
Definition 


SysML Systems Modeling Language 


TBD  To be determined  


TBP  To be provided  


TECOM  Test and Evaluation Command  


TOP  Test Operating Procedure  
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7.5 Notional Demo System Application 


7.5.1 September Demo Walkthrough 


We provide here a brief walk through of the demonstration elements as shown during the 
September 2011 META Principal Investigator meeting. The overarching layout of the 
demonstration system includes three primary locally deployed META applications (a SYSML 
editing tool, the Metrics Dashboard, and the Early Concepting Tool (ECTo)) and a variety of 
META Adaptive, Reflective, Robust Workflow (ARRoW) services hosted in a cloud computing 
environment (Figure 7.5-1. (Note: The locally deployed applications are depicted on separate 
screens, but can all be easily managed from a single workstation.) 


Step 1. As our demonstration begins, the customer has pre-configured the design space 
by loading their requirements into SysML using the ARRoW Design 
Archetypes.  The requirements archetypes are design patterns that encompass the 
majority of common combat vehicle requirements. These archetypes provide structure for 
the key parameters that are traditionally embedded in textual requirements, allowing the 
ARRoW tool set to reason over the requirements. The requirements structures are linked 
via the ARRoW Model Interconnection Language (AMIL) to provide built-in 
traceability and synchronization from the requirements to the library of design archetypes 
for high-level vehicle system categories (e.g. tracked vs. wheeled, ground vs. amphibious, 
etc.) and to the test and analysis archetypes for system design evaluation. 


 
Step 2. The designer reviews a challenge problem statement published on the customer’s 


website: 


Design an Infantry Fighting Vehicle (IFV) system such that the total 
solution is optimized to a set of system-level correctness criteria, and is 
conformant to the system requirements. The IFV is a versatile medium 
armored vehicle which provides cross-county mobility dominance, for 
mounted firepower, communications, and protection to a mounted 
mechanized infantry squad, overwatch support for a dismounted infantry 
squad, and deployable anywhere in the world. 


Step 3. The designer manages the requirements in the SysML tool, reviewing and 
making modifications and refinements to the requirements structures, then 
publishing the changes. The designer can use ARRoW functions provided by the 
SysML tool plug-in (in our case, Magic Draw) to create refinements of existing 
archetypes and to publish the requirements changes out to the AMIL graph when complete 
(Figure 7.5-2). 


 
Step 4. The designer uses reasoners within the SysML tool to assist in the selection of a 


Infantry Fighting Vehicle (IFV) design archetype. Due to the weight and 
mobility requirements for this example, the reasoner recommends the Tracked 
Vehicle archetype.  For designers with more advanced SysML skills, reasoning tools 
can be integrated at the SysML level to recommend design archetype choices based on 
automated analysis of the requirements. Our META tool set includes a sample parametric 
solver implemented in Magic Draw that provides a recommendation for selection of 
tracked or wheeled archetypes for the IFV. 
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Step 5. The designer then downloads the META app suite and launches ECTo to begin 


analyzing the problem through design space exploration (Figure 7.5-3).  ECTo 
allows the designer to access the customer requirements, review the required system 
properties, and begin reviewing and customizing the baseline reference designs.   


 


 


Figure 7.5-1.  The META ARRoW Architecture combines cloud-compatible services 
with tailored local apps, including open-source, commercial, and META-specific 


engineering tools. 
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Figure 7.5-2.  The ARRoW Model Interconnection Language (AMIL) Viewer application 
provides a representation of the underlying connections that the META ARRoW system 


uses to synchronize and automate the design process. 


 


Step 6. The designer searches the Component Model Library (CML) for appropriate 
system components then drags them into the design.  ECTo provides 3-D 
visualization for gross sizing and placement analysis, as well as recording the design 
choices by creating AMIL links between models of design components, including 
executable models and simulations that can be used to evaluate ranges of design 
choices.  At any point the designer can run all of the models associated with the 
current design, which updates the design in the cloud. 
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Figure 7.5-3.  The Early Concepting Tool (ECTo) interface provides multiple panels for 
managing the design, reviewing the requirements, and accessing the component model 


library. 


 


Step 7. The designer then launches the metrics dashboard app to review the performance 
of their current design against the requirements.  The metrics engine is an AMIL 
service that uses AMIL links between requirements, metrics equations and evaluation 
tools, and the current system design to evaluate the design and present a dashboard to the 
designer (Figure 7.5-4). 
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Figure 7.5-4. The Metrics Dashboard interface provides reconfigurable panels and a 
variety of display formats for managing the designer’s view of the current system’s 


performance. 


 


Step 8. As the designer views the metrics, they notice that the crew capacity indicator is 
amber. A further check reveals that the requirement is for a 9 man squad, but the 
current design only accommodates 7 men (Figure 7.5-5).  Through the ECTo tool, 
the designer accesses crew space claim models from the CML, then ECTo performs 
automated placement and alignment to reflect the number of people the space can 
accommodate, and displays this in a 3-D simulation view. 
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Figure 7.5-5.  The ECTo tool provides a 3-D graphical representation using CML 
models to assist designers in making rough space claim decisions during early design 


concepting. 


 


Step 9. The designer changes the design in ECTo, expanding the hull to allow a crew 
of 9.  Simultaneously, they use NATO tunnel simulation tools in ECTo to 
keep design within tunnel transportability requirements (Figure 7.5-6). 
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Figure 7.5-6.  The ECTo tool’s 3-D visualization capability can also incorporate space-
limiting requirements components, such as tunnels, to provide visual cues to the 


designer. 


   


Step 10. Another review of the Metrics Dashboard indicates that the new design 
modifications have caused some of the mobility requirements to fail.  A review 
of the design parameters shows that increasing the hull dimensions has 
increased the required engine power.  The metrics dashboard automatically 
computed the required engine power from the estimated weight of the current design 
and the mobility requirements form SysML such as top speed and acceleration.  


 
Step 11. The designer initiates an automated query of the CML database for an engine 


that meets the required power for the current design.  They could then select 
from the returned list of applicable engines, or engage additional solvers to 
assist in the downselect process (Figure 7.5-7).   
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Step 12. A final review of the Metrics Dashboard shows that the current early design 
concept meets the requirements (at this level of abstraction). 


 


 


Figure 7.5-7.  The Early Concepting Tool (ECTo) interface provides tools for querying 
the CML against computed system requirements. 


7.5.2 Application of ARROW to the Communications Domain 


7.5.2.1 Introduction 


There are three essential parts of any communications system, the transmitter, RF channel, and 
receiver.  Understanding the characteristics and parameters of each part allows the Systems 
Engineer to allocate and evaluate requirement compliance against the system design as the 
analysis and trade studies are continuously refined.  The RF link analysis is a key design tool 
that sets up the initial allocation of the transmitter, RF channel and receiver parameters based 
on system requirements.  The Systems Engineer then has the flexibility of reallocating certain 
parameters based on trade study and analysis iterations.  Refinement of the tradeoffs continues 
until the system’s performance is optimized.    Typical challenges that are faced when 
developing, optimizing, and integrating a communications system onto a platform are 
communications coverage, interfaces, electromagnetic compatibility, size, weight, power, 
cooling, and placement of subsystems and components both internally and externally.   


Today’s communications systems are leveraging Software Defined Radios which are capable of 
running a variety of waveforms simultaneously.  A single vehicle can be required to operate 
anywhere from 4 – 8 channels of simultaneous communications.  The requirement for such a 
dense electromagnetic environment within a single vehicle envelope drives the overall 
communication systems design complexity.  System requirements such as communications 
coverage, waveforms, data rate, availability, and size, weight and power (SWaP) initiate 
tradeoffs and analysis in the area of radio selection, antenna types and sitting, co-channel and 
co-site mitigation, and subsystem and component placement in order to optimize 
communication system performance. 
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7.5.2.2 Link Analysis  


The RF link budget analysis is an accounting of all of the gains and losses from the transmitter 
through the RF channel to the receiver in a communications system. It accounts for the 
attenuation of the transmitted signal due to propagation, cables and miscellaneous losses as 
well as the antenna gains.  Randomly varying channel effects such as fading and shadowing are 
taken into account by calculating some margin depending on the anticipated severity of the 
channel.  The quantity of greatest interest in the RF link analysis is the receiving system’s 
carrier-to-noise ratio (C/N) as modeled at the receiver output.  The carrier-to-noise ratio is 
defined as the ratio of the received modulated carrier signal power C to the received noise 
power N.   


Ultimately the link analysis provides the Systems Engineer with a calculated communications 
range based on waveform, transmitter, RF channel model and receiver characteristics.  The 
inputs to the link analysis can be varied during the tradeoff and analysis phase in order to 
optimize the RF link range and communications system performance. 


7.5.2.3 ARROW Support for Communications 


To support the communications domain using ARROW, we first created a reference 
architecture model in SysML.  The reference architecture captures the components, properties, 
and connections within communications.   


The diagram below shows the Communications Reference Architecture.  It captures the main 
components, radios, antennas, and cables, used to construct a radio system. It also captures the 
characteristics of the Radio System design used to determine the link analysis tradeoffs 
between range, data rate, power, and availability.   


 


Figure 7.5-8. Communications Reference Architecture SysML Model 


The Link block represents the RF channel between two antennas, using a base frequency and a 
waveform to communicate.  The link is analyzed using one or more ChannelModels that 
represent the environment, or context, of the link.  Two common link analysis models are 
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Urban and Open & Rolling, named for the characteristics of the terrain included in their 
models.  The LinkCharacteristics block captures the key properties of the link for each channel 
model. 


The reference architecture is used to create a design of a communications system for a 
NewGroundVehicle (NGV), shown below.  The NGV is required to communicate with a 
Bradley vehicle, and a specified range, data rate, and availability, captured in the requirement.  
The design includes the features of the Bradley that affect the comm. link, as well as the NGV 
communication system design.   


Components and their properties can be imported from the Component Model Library (CML).  
The CML provides a selection of off-the-shelf components, such as antennas, radios, and even 
communications waveforms that can be imported into the design.  The CML includes 
constraints, such as which radios use which waveforms.  These constraints can be enforced in 
the design (although this is not yet implemented).    


 


 


Figure 7.5-9. Design View of the Communications Link between NGV and Bradley 
Vehicles 


The communication requirements, design, and property values for gain, attenuation, etc., are 
passed, through AMIL, to a spreadsheet that runs the Link Analysis models.  The results of 
Link Analysis are fed back into the SysML design model and to a Metrics dashboard that 
provides summary feedback on the quality of the design and how well it meets requirements.  
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Size, weight, and power impacts of the selected components are shown on other dashboard 
panels.   


 


Figure 7.5-10. The Communications Dashboard 


The Link Analysis spreadsheet is just one example of how specialized tools that support the 
communications domain can be connected through AMIL.  Other tools in this domain that 
could be connected include FEKO, an electro-magnetic modeling tool that allows mesh models 
of vehicles, antennas, etc. to be imported into the tool.  Once the models are in the tool, antenna 
to antenna isolation and radiation pattern analysis can be performed to help optimize the 
vehicle’s top deck layout of antennas and structures.  The output of this analysis will feed 
directly into the Cosite and Link analysis.   Changes to antenna location made by a mechanical 
engineer would trigger a re-analysis of the communications, providing immediate feedback on 
the change.   


The reference architecture provides a system level starting point for design, and defines the 
interfaces and critical properties for domain engineering groups, such as communications.  The 
interconnectedness of the design, at the top level through the SysML reference architecture, 
and at the tool level with AMIL, allows the impacts of design decisions in other domains and in 
other components to be understood and assessed.    


7.5.3 Electronic Warfare Example 


7.5.3.1 Introduction 


This section provides insights on how the META program approach could be applied to an 
Electronic Warfare (EW) System. The section provides a preliminary generic description of the 
major elements of the EW system and how design elements could be assessed in the future. 


The classical description of an Electronic Warfare is: Military action involving the use of 
electromagnetic energy to determine, exploit, reduce or prevent hostile use of the 
electromagnetic spectrum through damage, destruction and while retaining friendly use of the 
electromagnetic spectrum.  There are three divisions within electronic warfare.  


1. Electronic Attack: That division of electronic warfare involving the use of electromagnetic 
or directed energy to attack personnel, facilities or equipment with the intent of degrading, 
neutralizing or destroying enemy combat capability. This area is also referred to as EA. 


2. Electronic Protection: That division of electronic warfare involving actions taken to protect 
personnel, facilities, and equipment from any effects of friendly or enemy employment of 
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electronic warfare that degrade, neutralize or destroy friendly combat capability. This area 
is also referred to as EP. 


3. Electronic Warfare Support: That division of electronic warfare involving actions taken by 
or under direct control of an operational commander to search for, intercept, identify and 
locate sources of intentional and unintentional radiated electromagnetic energy for the 
purpose of immediate threat recognition. Thus, electronic warfare support provides 
information required for immediate decisions involving electronic warfare operations, 
threat avoidance, targeting and other tactical actions. This area is also referred to as ES.  


 


The section provides a high level overview of an EW system modeled in SysML within the 
context of Model-based Systems Engineering (MBSE). MBSE can be used effectively to 
manage, to reduce cycle time, and to improve communications among the diverse engineering 
disciplines necessary for designing complex systems [SF10], [SF09]. 


The scope of this section is limited to a plausible modeling approach using SysML for an 
illustrative EW system, abstracted by the Archetype blocks shown in 7.5-11. For simplicity, the 
EW system implementation has been narrowed down to a pod for attachment to a host 
platform (Tactical Aircraft or Unmanned Aircraft Vehicle (UAV)). For extensive background 
and theory of operation of Electronic Warfare (EW) systems, reference [DCS99] is 
recommended.  


7.5.3.2 Archetype Summary 


The EW example has identified a preliminary list of Archetypes (see 7.5-11) that could be used 
by an engineer to perform and evaluate system level trades.  


The following items are some key performance areas that influence operational effectiveness of 
the EW system. 


1. EW System constraints: for this example, a pod represents the carrying structure that 
would attach to the host platform and would contain all of the EW sensor electronics and 
associated antennas. The pod size, stowage volume, stowage weight, and available power 
constrain the EW system. The total cost of the EW system should also be considered in 
this example. 


2. EW Intercept Performance: this represents the operational environment in which the EW 
System would operate. For this example, it is assumed that the operational environment has 
an established geographic area of interest (―footprint‖) where the EW System will be 
operating. The EW system has specified response times, scanning rates, probabilities of 
detection and identification, and other parameters defining how it is expected to gain 
intelligence on these threats. 


3. EW Geolocation Performance: a typical use of an EW System is to provide location 
information on enemy threats. Performance settings associated with this location are stated 
in response time, probability of intercept, accuracy, revisit rate, and target motion. 


4. EW Operational Parameters: the EW System must support the specific frequencies, 
bandwidths, modulation types, modes, and number of threats that it will encounter. 


The Archetype figure also shows a generic top level system hierarchy and list of candidate 
components or design features that could be considered by the EW System designer. It is 
anticipated that the Archetype view would enable the designer to manipulate a set of these 
items to review changes and impacts to the EW System. 
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Figure 7.5-11. EW System Abstraction of Archetypes 


For example, increasing the EW Operational Threat Density, may require additional processor 
throughput to meet response times. Increasing the number of processors may require 
additional power, space, and cooling. The Archetype view could highlight the viability of this 
change and allow the designer to immediately assess if the pod power and volume could 
support this. 


Today’s EW System design team uses a loosely coupled collection of special purpose software 
tools, as well as internally developed MATLAB models and spreadsheet analysis methods to 
perform trades like the one described above.  This requires a high level of expertise as well as 
access to tools in several development environments, and can be inefficient and time 
consuming.  Integration of these tools, through reference architecture archetypes and through 
AMIL could speed the design process.   


7.5.4 META Challenge Problem 


To provide context for the IFV systems engineering studies conducted under the META 
program, several challenge problems were addressed. This section provides the Ramp 
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Assembly challenge problem created by the BAE Systems Team.  This challenge problem was 
created to provide examples of complex systems-level vehicle requirements, as well as a multi-
domain (electrical, mechanical, and control systems) challenge to illuminate some of the 
complexities associated with military combat vehicle design. 


The problem materials are packaged in two parts: the challenge problem main body, plus a 
related Combat Fighting Vehicle Performance Specification specifically crafted to feed that 
challenge problem.   


7.5.4.1 Design Space Challenge Problem: Ramp Assembly 


7.5.4.1.1 Challenge Problem Purpose 


Enable the META and META II participants to illustrate key capabilities of the technologies 
and approach they have and/or are developing in the context of a non trivial problem that 
exists in the combat vehicle design space today. 


7.5.4.1.2 Challenge Problem Goals 


This Challenge problem will: 


 Invite alternative solutions for the ramp assembly and its supporting subsystems and/or 


components to enable subsequent selection of solutions for further design exploration 


 Encourage trade-off of multiple inter-related subsystems/component alternatives in order 


to realize an optimal solution for the given set of criteria 


 Enable META/META II participants to showcase their specific toolset capabilities 


without requiring them to showcase all aspects of the challenge problem 


- Encourage teaming of META/META II performers to stretch toward a large-scale 


problem 


 Be achievable by the September Meeting of the META and META II programs (or 


earlier). 


 Invite definition of selection criteria for defining correctness of solution alternatives 


 Invite definition of parametric component properties that relate to selection criteria (e.g., 


if system weight is a criteria, component weight might scale with power output capability) 


7.5.4.1.3 The Design Challenge Problem Statement 


Design a ramp assembly for a Combat Fighting Vehicle (CFV), together with at least one interfacing 
subsystem, using your toolset and/or workflow, such that the total system solution (ramp plus subsystem(s) 
of interest), is optimized to a set of system-level Correctness Criteria, and is additionally conformant to 
the System Requirements referenced herein. 


META II performers can either team to accomplish the total design, or address an area of the total 
problem specific to their initiative.  There are aspects of the ramp design problem pertinent to all 
META/META II Technical Areas:  It is highly scalable, contains contributions from every design 
domain, including cyber-physical subsystems, and is very addressable from an operational context. 


7.5.4.1.4 Ramp Concept of Operations 


Mission:  
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The ramp assembly enables mechanized infantry squad mount/dismount operations with a 
CFV. The ramp assembly is also used to assist in upload/download of supply classes (e.g., 
ammunition, mission equipment, food and water, and spare and failed parts) and 
onload/offload of soldiers requiring evacuation and medical attention. 


General Description: 


The ramp assembly is an automated inclined vehicle egress/ingress pathway that connects 
the CFV squad compartment with the ground surface. 


Ramp Operations Battlefield Context: 


Squad mount/dismount operations occur at decisive and tactical locations on the battlefield 
on a variety of terrain conditions (e.g., at extreme slopes, and on concrete/asphalt, dry, or 
muddy surfaces). Typically the CFV is oriented in the direction of the mission objective to 
maximize protection against hostile fire, direct fires for infantry dismounted assaults, and 
destructive fires against threat vehicles. The CFV will turn-off squad compartment interior 
lighting when the ramp is opened. The ramp assembly will either provide and/or adapt 
ballistic protection against ballistic threats. 


Ramp Operations Activities: 


Ramp operations activities begin when the CFV is at its decisive and/or tactical position on 
the battlefield. The set activities needed to support ramp operations are the same whether 
they be to mount/dismount an infantry squad, or to assist in the upload/download supplies 
or to onload/offload soldiers in need. The set of ramp operations activities includes the 
following:  


 Clear the ramp area for safe operation 


 Command and control of ramp operations for the vehicle commander, squad leader, 


and driver 


 Unlatch/Latch Ramp 


 Lower/Raise Ramp 


 Mount/Dismount an infantry squad 


 Assist in upload/download of supplies and/or evacuation of soldiers in need  


 Stop ramp motion upon operator initiation 


Typical Ramp Operations Sequence: 


The driver clears the ramp area for safe use once the squad leader or the vehicle commander 
orders the squad to prepare to dismount. It should be noted that at any given time the 
presence of soldiers in the vicinity of the ramp area can occur. Once the driver determines 
that the ramp area is safe, the driver lowers the ramp. Squad compartment interior lights will 
be turned off when the ramp initiates opening. Upon the squad leader’s order, the infantry 
squad dismounts up to 2 soldiers abreast with load bearing equipment and assigned 
individual/crew served weapons and sometimes outfitted with Arctic gear. Command and 
Control (C2) of ramp operations involves operator controls and indicators (e.g., ramp safety, 
motion, open/closed positions, and latched/unlatched) for the vehicle commander, driver, and 
squad leader. Once the infantry squad dismounts and clears the ramp area, either the 
dismounted squad leader notifies the driver that the ramp can be closed or the driver 
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determines that the ramp can be safely closed. The driver informs the vehicle commander 
that the vehicle is ready for maneuvers when the ramp is in the closed position. At any given 
time ramp movement can be stopped by the driver. 


Concept Environments:  


The ramp assembly will operate in extreme cold and hot weather conditions (temperature and 
humidity) and restrict the entrance of rain, hail, snow, and water when closed. The ramp 
assembly will handle the shock loads and vibration of vehicle movement on hardened surface 
roads (concrete/asphalt) and cross-country terrain, and the transportation shock loads 
(including rail hump) and vibration associated with sea, rail, truck, and/or air transportation 
modes.  


Maintenance Concept: 


Cleanliness of the ramp assembly will be maintained by either steam or water washing 
equipment. 


7.5.4.1.5 System Requirements 


See the accompanying document ―Ramp Assembly Design Space Challenge Problem Combat 
Fighting Vehicle Performance Specification‖ (Challenge Problem CFV Perf Spec.docx).  Each 
participant is encouraged to 


 Parameterize quantitative constants in these requirements such that tool solutions can 


be easily reused if such quantitative values change. 


 Decompose these System-level (Vehicle-level) requirements to lower level requirements 


(subsystem, assembly, component) as necessary to support design of the ramp assembly 


and any supporting chosen subsystems. 


7.5.4.1.6 Context Elements 


The following are systems or environmental elements that interface with or can affect the 
performance of the ramp assembly: 


 Ground/Terrain (e.g., asphalt, concrete, dirt/mud, gravel, contour)  


 Soldier ( Safety, physical stature, ergonomics) 


 Natural Environment (e.g., temperature, humidity, dust, solar radiation, salt fog, rain, 


hail, snow) 


 Hull  


 Appliqué Armor 


 Electrical/Hydraulic Power Source  


 Crew/Operator Indicators & Controls 


 Software 


 Actuator(s) (e.g., electrical/hydraulic motors) 


 Sensor(s) (e.g., position, limit) 


 Latches and Locks 


7.5.4.1.7 Sample Correctness Criteria 
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Use any of the factors below or an alternative approach of your choosing to evaluate the 
optimal correctness of the total ramp assembly and supporting subsystems/components 
solution(s): 


These factors should be treated as variables rather than constants. 


 Criteria 


- Space 


- Weight 


- Power Consumption 


- Heating/Cooling 


- Cost 


- Human Systems Integration (HSI) 


- Force Protection 


- Survivability 


 Weighting factors for each criterion 


 Utility functions for select or all criteria 


7.5.4.1.8 Sample Analysis of Alternatives (AoA) Approach: 


Consider the following alternatives to be traded: 


 Alternative discrete components 


 Alternative parametric attributes of components 


- Attribute values functions of other traded values 


 Alternative number of component instances 


 Alternative combinations of and interconnectivity of components  


 Alternative location of components within a common constraining envelope 


 Combinations of any and all of the above 


7.5.4.2 Challenge Problem CFV Performance Specification 


This section provides a sample subset of generic Combat Fighting Vehicle performance 
specifications that can be used to drive the requirements for a challenge problem.  This section 
was originally delivered as a separate, independent document. This is reflected in the wording 
and some of the definitions and explanations provided.  These have been left in this form so the 
section can more easily be removed and used to support a challenge problem exercise. 


Some of the specifications included here are specific to the ramp assembly itself, while others 
refer to the vehicle in general, but critically influence the ramp development. These have been 
color-coded to help the reader differentiate the two. 


Specification Highlight Legend: 


Green text – Chassis/Mobility requirements 


Yellow Text – Design constraint and/or ramp-related requirements 


7.5.4.2.1 Challenge Problem Scope 
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7.5.4.2.1.1 Identification 


This document is a typical set of customer requirements of varying degrees of quality that 
could be experienced during the development of a complex cyber-physical system, such as a 
CFV for the DoD. In particular, this document limits its scope to requirements that would 
likely influence the design of the Ramp Assembly portion of such a CFV. A new innovative 
technology and model-based approach for DoD material development must contend with 
customer requirements. 


7.5.4.2.1.2 Program Overview 


The goal of the META program is to reduce the DoD development cycle time by a factor of 5x 
over current cycle time. The META program applies an innovative technology employing a 
model-based approach to revolutionize the design and verification processes currently used by 
the DoD industry. META program objectives include: developing new metrics and flows for 
the innovative model-based material development approach, and defining and developing the 
new infrastructure (tools, models, component/manufacturing data bases) required for the 
industry. 


7.5.4.2.1.3 System Overview 


The CFV is a tracked, medium armored vehicle which provides cross-country mobility, for 
mounted firepower, communications, and protection to a mounted mechanized infantry squad, 
and overwatch support for a dismounted infantry squad. 


7.5.4.2.1.4 Document Overview 


This document is a ―representative set‖ of performance, functional, interfaces, and design 
constraint requirements for a CFV, which upon further decomposition, would influence the 
design of the Ramp Assembly of the CFV. Both mechanized infantry problem and solution 
domains in breadth and depth are stated as requirements. The requirement statements vary in 
maturation and quality due to issues such as: necessity, conciseness, measurability, clarity, 
implementation/design freedom, attainability/feasibility, completeness and stand-alone, 
consistency, verifiability, singularity, uniqueness, proper level, and positivity.  


7.5.4.2.2 Requirements 


7.5.4.2.2.1 Performance Requirements 


Unless otherwise specified, performance requirements in the following paragraphs shall be met 
with the CFV at maximum combat weight, resting on a flat, hard, level surface, and over the 
range of environmental conditions specified herein. Requirements relating to personnel shall 
apply to males in the 5th through 95th percentile in stature wearing Mission Oriented 
Protective Posture (MOPP-IV) gear and Arctic gear.  


7.5.4.2.2.1.1 Operational Profile  


The CFV shall be capable of 24 continuous hours of combat as follows:  


a. Sixteen hours shall consist of:  


35% (5.6 hr) at rated engine idle speed.  


35% (5.6 hr) over cross-country terrain from 2.0 miles per hour (mph) to 
maximum safe speed.  
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20% (3.2 hr) over dirt and gravel roads from 10 mph to maximum safe speed.  


10% (1.6 hr) on hard-surfaced roads at 10 mph to maximum operating speed.  


b. Eight hours shall be at silent watch with electrical equipment operated as needed for 
no more than three continuous hours, depending on ambient temperature, without recharging 
batteries.  


7.5.4.2.2.1.2 Acceleration 


The CFV at combat weight shall accelerate from a standing start with the engine idling to 50 
mph in not more than 25 seconds under nominal conditions. The CFV, at curb weight, shall 
accelerate from 0 to 50 mph in not more than 20 seconds.  


7.5.4.2.2.1.3 Slope Operation 


The CFV shall ascend, descend, and emplace on dry slopes up to 60% either forward or 
backward, and shall maintain at least 15 mph in the forward direction while climbing hard-
surfaced slopes up to 15%. The CFV shall maneuver on dry side slopes up to 45% either 
forward, backward, or emplace. The CFV shall support all ramp operations required herein 
while emplaced per this requirement. 


7.5.4.2.2.1.4 Steering: Pivoting 


The CFV shall pivot 360 deg right or left within a 35-ft diameter circle.  


7.5.4.2.2.1.5 Water Operation: Fording 


Under its own power, the CFV without special preparations shall ford water up to 50-inch deep 
with up to 35% embankment slopes, while retaining full functionality.  


7.5.4.2.2.1.6 Towing 


The CFV, operating either forward or in reverse, shall tow comparable CFVs over cross-
country terrain. In the forward direction, the CFV shall be capable of towing such a CFV cross-
country at up to 5 mph for 10 miles. 


7.5.4.2.2.1.7 Survivability: Armor 


The CFV armor protection shall be as specified in Appendix XXX. The CFV shall provide 
mounting provisions and space claim to mount supplemental armor as described in ICDs XXX. 
The CFV shall provide protection against 14.5 mm machine gun and RPG-7 threats.  


7.5.4.2.2.1.8 Auxiliary Systems 


7.5.4.2.2.1.8.1 Intercom 


The CFV shall accommodate a vehicular intercommunication system with controls at the 
commander’s station and communications ports at each vehicle member station.  


7.5.4.2.2.1.8.2 Rear Ramp  


The time required for the rear ramp to fully open or close with the engine running shall not 
exceed 10 seconds. The ramp shall incorporate a lock/unlock mechanism.  


7.5.4.2.2.1.8.3 Seals 
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Static seals shall prevent Class II and Class III leaks. Dynamic seals shall prevent Class III 
leaks. Class II and Class III leaks are defined in paragraph 6.3.10 herein. 


7.5.4.2.2.1.8.4 Blackout Lighting: Interior Lighting     


All interior lights, except lights for turret control and turret drive power indication, shall 
extinguish automatically when either the rear ramp or the rear door is opened.  


7.5.4.2.2.1.8.5 Driver’s Switches and Indicators 


The CFV shall provide the following operator controls and indicators:  


a. Ramp Up/Down switch and unlocked indicator  


 


7.5.4.2.2.1.9 Emergency Operation 


The CFV shall provide an emergency operation capability in the case of electronics failures. 
Vehicle operations requiring backup include:  


a. Fuel Pump operation 


b. Steering operation  


c. Transmission operation  


d. Ramp up/down 


e. Ramp Lock/unlock 


7.5.4.2.2.2 Physical Characteristics 


7.5.4.2.2.2.1 Weight 


The air shipping weight of the CFV shall not exceed 60,000 pounds. The curb weight shall not 
exceed 100,000 pounds. The maximum combat weight shall not exceed 120,000 pounds.  


7.5.4.2.2.2.2 Dimensions.  


The dimensions when configured for shipping, height shall not exceed 120 inches, width 110 
inches, and length 250 inches.  


7.5.4.2.2.2.3 Angle of Approach/Angle of Departure 


The angle of approach for the CFV, defined as the angle between the ground and a line through 
the forward most part of the hull and track, shall be a minimum of 75 deg. The angle of 
departure, defined as the angle between the ground and the rear-most part of the hull and track 
(excluding the pintle) up to at least 40 inches, shall be a minimum of 50 deg.  


7.5.4.2.2.2.4 Ground Clearance 


The CFV shall have a minimum ground clearance to the bottom of the hull of 18 in at the front 
and 16 in at the rear.  


7.5.4.2.2.2.5 Interior Arrangement: Space Allowance 


Space calculations shall use a 95th percentile (in stature) male wearing Arctic clothing and 
MOPP-IV gear. Space allocation for the squad members, driver, gunner, and commander shall 
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be in accordance with DOD96. Interior stowage space shall be provided for the fighting 
equipment of the squad.  


7.5.4.2.2.2.6 Ramp 


The CFV shall include a ramp at its rear that permits rapid entry and exit of personnel and 
supplies. The ramp shall include a door. The ramp shall satisfy the following requirements:  


a. Incorporates a blackout state position sensor or switch. 


b. Restricts the entrance of water into the CFV during fording. 


c. Has a means of being padlocked from the outside. 


d. Permits side-by-side mount/dismount of two 95th percentile (in stature) males 
wearing Arctic clothing and MOPP-IV gear. 


7.5.4.2.2.3 Environmental Conditions: Storage and Transport 


The CFV shall be capable of being stored and in transit without sustaining damage under the 
climate design types hot, basic, cold, and severe cold, including all daily cycle categories as 
defined in [DOA79} table 2-1; i.e., -60 °F to +160 °F induced air temperature.  


7.5.4.2.2.3.1.1 Storage and Transit Humidity 


The CFV shall be capable of being stored and in transit without sustaining damage under the 
climatic design types hot, basic, cold, and severe cold, including all daily cycle categories as 
defined in [DOA79] table 2-1; i.e., nil to 100% induced relative humidity.  


7.5.4.2.2.3.1.2 Storage 


The CFV shall not require preservation for storage less than 120 days. The CFV shall require 
preservation prior to storage exceeding 120 days.  


7.5.4.2.2.3.1.3 Altitude 


The CFV shall be capable of being stored and in transit up to 40,000 feet above sea level.  


7.5.4.2.2.3.2 Operating Conditions: Climate 


The CFV shall be capable of operating under the conditions specified in DOA79, for the 
climatic categories hot and basic without a cold start aid, and categories cold and severe cold 
with an aid, with the exceptions in paragraph 3.3.2.2.  


7.5.4.2.2.3.3 Steam and Waterjet Cleaning 


The CFV shall demonstrate no performance degradation and show no evidence of damage or 
deformation following a steam and waterjet cleaning process which uses a cleaner conforming 
to P-C-437 Type II, P-D220D, or commercial equivalent. Jet pressure shall be 100 ±10 pounds 
per square inch gage (psig) for steam and 40 ±10 psig for water. The jet shall be applied 
perpendicular to the assembly from a distance of not more than 1 foot for steam and not more 
than 3 feet for water. The assembly shall be subjected to the jet at the rate of not less than 1 
ft2/min.  


7.5.4.2.2.4 Reliability 
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The CFV including Government furnished equipment shall maintain at least 500 Mean Miles 
Between Failures (MMBF) when operated as described in 3.1.1.1. The CFV Mean Time 
Between Failures (MTBF) shall be greater than 120 hours (Threshold) and 168 hours 
(Objective). 


7.5.4.2.2.5 Availability 


The CFV including government furnished equipment shall maintain achieved availability of at 
least 0.80 when operated as described in 3.1.1.1. Achieved availability is defined as the ratio of 
operating time to the total of operating and maintenance time.  


7.5.4.2.2.6 Safety 


The CFV shall ensure the highest degree of safety and health consistent with mission 
requirements throughout its life cycle. 


7.5.4.2.2.7 Logistics/Diagnostics: Self-Test Built-In Test (SBIT) 


SBITs, internal to each subsystem, shall execute automatically upon power up and results shall 
be displayed within 20 seconds of the application of power to the turret electronics.  


7.5.4.2.2.8 Design and Construction: Materials 


All materials, parts, and processes selected for use in the CFV construction shall be compatible 
with the safety, performance, and environmental requirements as specified herein.  


7.5.4.2.2.8.1.1 Fungal Growth 


Materials used in the CFV shall not support fungal growth.  


7.5.4.2.2.8.1.2 Corrosion Resistance 


Metals and alloys used in the construction of the CFV that are exposed to corrosive 
environmental conditions shall be corrosion resistant or shall be coated or metallurgically 
processed to resist corrosion. Except where impractical, dissimilar metal combinations that 
promote corrosion through galvanic action shall be insulated to prevent corrosion.  


7.5.4.2.3 Definitions 


Curb Weight. The CFV is complete with all components and systems, fully serviced with 
liquids and one-fourth full fuel tank, with track pads, driver, no OVE, no weapons installed, no 
other crew or squad aboard, no BII, AAL or ICOEI, no ammunition or water, and no 
supplemental armor tiles.  Items may be simulated by ballast weights located at the appropriate 
center of gravity.  


Combat Weight. The CFV is complete with all components and systems, fully serviced with 
liquids and a full fuel tank, with track pads, all OVE BII, AAL, ICOEI, 25 mm and 7.62 mm 
weapons installed, all ammunition and water, crew and squad, and supplemental armor tiles 
installed. Items, such as crew, ammunition, supplemental armor tiles, etc., may be simulated by 
ballast weights located at the appropriate center of gravity.  


Approximately. As close as reasonable for the intended purpose. In the opinion of the operator 
the item being tested will not cause failure or malfunction of the system, or cause the system to 
not function.  
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Smooth. In the opinion of the operator, the item being tested does not exhibit discernable 
erratic operation, chatter, jump, bind, skip, or does not prevent the operator from properly 
functioning the item being tested.  


Subjectively. An intuitive and conscious consideration by the operator, that the item being 
tested, observed, or checked meets or exceeds the intended function.   


Focus. Clear, without blurriness, objects at a distance of more than 200 m are sharp and clear.  


Subjective Evaluation. This verification is a subjective evaluation of the operation or response 
of the system or component in question. Conclusions of success depend on the interpretations 
of an experienced operator/tester, rather than on numbers derived from instrumentation, bus 
data, or other quantitative results.    


Hardware/Software Test. Specific functions, responses, and other parameters of the system or 
component in question have been measured or determined during Software/Hardware Final 
Qualification Tests, component tests, or subsystem tests. Therefore, quantitative or 
instrumented measurements at the system/CFV level may not be required.  


Previous Tests. Where appropriate, use the procedures and results of tests of other functions 
as evidence that the requirements of this paragraph are met.  


Classification of Leaks. Class I: Fluid seepage is not great enough to form drops, but is shown 
by wetness or color changes. Class II: Fluid leakage is great enough to form drops. Drops do 
not drip from the item being checked or inspected. Class III: Fluid leakage is great enough to 
form drops that fall from the item being checked or inspected. 
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7.6 Advanced Reasoning and Extended Applications of ARRoW 
Technology 


7.6.1 Applying ARRoW to Automation 


7.6.1.1 The Goal of Reducing Complexity 


7.6.1.1.1 ARRoW and the Design Cycle 


The aim of ARRoW is to apply an efficient, concurrent evaluation process to the design, test, 
and diagnose cycle. We broke the reasoning and evaluation capabilities out into general 
categories that cover the design space and test space, and labeled the automated tools that fit 
under these categories as Galileo. In practical terms, Galileo covered the planned set of tools 
that would operate on and reason with ARRoW Model Interconnection Language (AMIL) data 
and library information.  


We further categorized the tools that (1) helped with composition/synthesis, (2) provided co-
analysis, and (3) provided co-simulation support. Figure 7.6-1 shows where these tool 
categories fit within the ARRoW cycle. Since ARRoW defines an adaptive workflow 
development, we pay special attention to composable workflow reasoners and using a set-based 
strategy for maintaining flexibility with regard to product requirements. 


 


The ARRoW automated design cycle


The necessary level of automation that orchestrates and choreographs 
the development and test process (code named Galileo)


Synthesis by
Graph Semantics


Co-Analysis by
Graph Semantics


Behavioral
Co-Simulation T&V


Synthetic Repair
and OptimizationLanguage geared toward synthesis


Language geared toward analysis


Language geared toward simulation


Design Space Exploration Test Space Exploration


 
Figure 7.6-1.  Galileo Reasoning and Evaluation Tool Space 


7.6.1.1.2 Graph and Search 


We took a data-centric approach to tool development and leaned heavily on the strong 
organization principles provided by data modeling languages such as AMIL and the standard 
Resource Description Format (RDF). Two principles that we learn from advances in 
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information technology are the adages that all information is dependent on a graph of some sort 
and that all engineering is based on search principles. In other words, all information is a Graph, 
and all process is Search. 


So when we work Design Space Exploration (DSE) and Test Space Exploration (TSE), we rely 
heavily on deep organization and classification principles, while obviously using computer-
automated search techniques to discover solutions and root out problems. 


As Table 7.6-1 demonstrates, we apply specific search objectives and craft elements into the 
graph that allow for the most efficient solution to a problem. So then Galileo becomes a mix of 
reasoners and solvers that effectively perform a search on a state-space. 


Table 7.6-1.  Enduring Engineering Properties 


 Search Objective Graph Elements 


Co-Analysis Design Space High-Abstraction 


Co-Simulation Test & Verification High-Fidelity 


Logical Reasoning Correct-by-Construction  Assume-Guarantee 


 


Graph. The ARRoW information organization centers on our use of AMIL and RDF. Figure 
7.6-2 demonstrates the significant distinction between AMIL and RDF. A topological view 
reveals that the two graph languages are structurally identical, but that AMIL provides a 
dynamic element which can provide additional active content to the data stores. 


 
Figure 7.6-2.  Graph Technology Used with Galileo 


As indicated in the figure, the RDF and AMIL graphs are equivalent except for potential 
behavioral dynamics of the nodes shown in RED. The node evaluation semantics make this an 
active data store which cannot be duplicated with off-the-shelf triple-store technologies. Only 
by adding an external reasoner can one implement dynamic solutions; with AMIL this is built-
in and used as needed. 


Search. Figure 7.6-3 shows one example of a search problem applied to a vehicle design 
exploration demonstration. The search criteria involved finding optimal values subject to 
possible conflicting constraints. 
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Constraint Satisfaction Approach


All good Marginal
Thickness requirements 


for motor (thickness  weight)


Max


All goodMarginal
Thickness requirements 


for survivability


Min


Pick from Discrete Choices  optimal not always the best approach, 
as generating a solution with a margin leads to better adaptability and robustness 


0.5” 1” 2”


 
Figure 7.6-3.  Search is Used for Solving Constraint Satisfaction Problems 


Can a graph search itself? The key element to facilitating efficient search is to use external 
reasoners to supplant the active content of a language such as AMIL. The set of reasoners and 
solvers referred to as the codename Galileo accounts for this capability. 


To demonstrate the needs, we consider one case that could use the dynamics of AMIL and 
another which we may consider it as overkill. 


A practical case is one where a reusable model contains a dynamic calculation which depends on 
a few other properties of the system. To make the model easy to use, a dynamic calculation is 
embedded into the AMIL node and then saved as code linked to the CML library. When a user 
wishes to evaluate the node, no parameters are needed and the user can simply access that value 
isomorphically as a property. Then the active content of the node gets invoked and returned to 
the user as a value.  


A more complex case can be managed by pairing AMIL with custom reasoners.  Such cases, 
like tracking the meta-information in a large CAD model, can comprise a graph in the form of 
an extended tree, much like that shown in Figure 7.6-2. Design engineers manage an assembly 
as a dynamic object with its mass dependent on what the assembly contains. Therefore an 
aggregated mass calculation on an assembly node is a perfect candidate for an AMIL type of 
dynamic node. Yet, since current specialty engineering tools like CAD/CAM systems often do 
not do this well, we instead use back-chaining reasoners because: 


1. Specificity. The reasoner can be told to calculate the weight of an assembly main 
component, the entire assembly, or the weight of the assembly a number of N levels 
down. An AMIL-like dynamic calculation of assembly weight has no easy way of 
controlling this. 


2. Efficiencies of computation. An external reasoner can readily adopt dynamic 
programming and join tree strategies, which can cut down the search space and the 
number of computations required. 
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3. Greater knowledge. For analysis, all states of the system are known. For example, the 
reasoner does not have to follow a specific path if the valuation of that path is known to 
not have changed (refer to 7.5.1.4.1).  


4. Self-consistency. Side effects caused by a dynamic approach may lead to non-
deterministic solutions. 


5. Unknown data, underspecified or overspecified data. If data is not available the reasoner 
can deal with it. If it is overspecified, the reasoner can provide multiple solutions and an 
explanation for what generated the solutions.  


Combining AMIL with reasoners provides a very practical solution without breaking the 
design tenets of AMIL: the light-weight, adaptive nature that provides the efficiency and broad 
applicability necessary in the heterogeneous environment.  For example, for the problem of 
over-specified data, we can use a reasoner to provide for a comprehensive set-based approach to 
development. In this case, the over-specified data (such as alternate design choices) become part 
of the set of design choices that we can reason against (refer to 7.5.2.2). To leverage AMIL 
directly, we can embed a query into a node that understands how to call a CAD model like 
Pro/E and ask for the mass, realizing that the tool manipulating the vehicle structure can do a 
much better job than in its native environment (refer to AMIL7.5.1.4.1). 


7.6.1.1.3 Organization of Models and CML 


The reasoners we developed interact heavily with the content and classification organization of 
a comprehensive component model library. The library itself, in keeping with the traditional 
approach, will provide several interfaces: (1) a classification system based on data ontologies, (2) 
a meta-information content layer indexed to the ontology [BCW97], and (3) the actual model 
repository. These interfaces are discussed elsewhere but the overall representation is shown in 
Figure 7.6-4. 


Ontologies and CML
TBOX 
(terminological components)
Environmental classification


– SWEET, etc
Process classification


– Workflows and OWL-S
– Archetypes
– Knowledge-based engineering


Design Components
– Parts categorization
– Vehicle architecture 


Metrics 
Models & Theory


– Categorizations of models
META Classification


– Subsumes all of the above


ABOX 
(assertion components)
Environmental Models


– Context Model Library
Reasoners


– Service-aware AMIL 
– ECTo, ESKER, etc
– KBE templates


Component Model Library
– Semantic Web for models 
– Master Model instantiation


Metrics Dashboard
Tool Library


– Available tools
AIDE


– Interface to all of the above


Linked to model repository


“the Dewey Decimal System” “the Card Catalog”


“the Stacks”


 
Figure 7.6-4.  Organization and Consolidation of Models, Towards a Component Model 


Library 
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For our reasoners, we will adopt the strategy of referring to classification or terminological data 
as TBOX and instance or assertion data as ABOX. This is borrowed from the theory of 
description logic [LS09] and is at the heart of ontological languages such as Web Ontology 
Language (OWL) and DARPA Agent Markup Language (DAML). 


7.6.1.1.4 Correctness versus Agility 


To expedite the fast development of models, the co-analysis and co-simulation approaches lean 
heavily on providing coarse graining fidelity appropriate for the problem at hand. This 
approach has long been standard practice on vehicle integration efforts and for large scale 
simulations such as High Level Architecture (HLA) for OneSAF as well as in the Electronic 
Design Automation field. Rationale for using coarse graining of models follows. 


• Needed for systematic evaluation 
o One high fidelity model surrounded in a sea of low-fidelity representations 
o Iterate through set according to importance of evaluation criteria (down-select, 


PCC, etc) 
o Use the ideas of templates and archetypes to switch easily between models 


• Complexity management 
o Integrating a ground vehicle with a mix of components  


 Real and virtual 
 High and low fidelity 


o SAF-like large scale simulations 
 Three levels in SAF-like simulation environments 


o Standard, autonomous, and focused 
• Interactions between entities of different levels of resolution tested 
• Allows users to “dial up” the level of resolution where needed 


• Evaluation performance 
o EDA languages (VHDL) have idea of architecture fidelity built-in to the semantics  


 Uses the semantics of configuration declarations 
 No hope of simulating or proving designs without similar automated 


composability  
o One entity high-fidelity and thousands of others behavioral 
o What general purpose model language offers this? 


 


The level of abstraction needs to be carefully evaluated to avoid problems with leaky 
abstractions (or abstraction leakage).  


The significant aspect of the ARRoW toolset is that it readily adopts the set-based approach to 
extend the plug-and-play philosophy to models of different fidelity representation (i.e. 
alternative design choices are often polymorphically equivalent to alternate fidelity models as 
the interface remains invariant). Like the electronics EDA industry has discovered, a large scale 
simulation effort will fail without this capability. 


7.6.1.1.5 The Conductor’s Role 


Synthesis, co-analysis, and co-simulation tools can be classified according to the “conductor” 
guidance that they require, which could be one of Composition, Orchestration, Choreography, 
and Synthesis. Figure 7.6-5 illustrates the roles that the conductor plays.  
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Figure 7.6-5.  Synthesis, Co-simulation, and Co-analysis Operate Within an Ensemble 


Environment 


The ensemble is both the aggregation of the components that makes up the vehicle and the 
designer crowd that takes part and conducts the development. In a real-world ensemble, 
different roles are adopted during different phases of the development. The crowd is able to 
manipulate the design by using automated tools at each phase and thus assume different 
“directorial” duties. 


1. During composition, we use rule-driven archetypes to create concept ectypes1


2. We then orchestrate the down-selection of potential designs (the ectypes) among 
the conceptual alternatives by systematically reasoning over trade-offs. 


, which 
represent possible implementations of an idealized design. 


3. Once selected, the top ensemble designs are more loosely choreographed to reveal 
emergent behaviors and requirements failures. The reasoner essentially conducts 
the exercise over test space. 


4. The final step is the production, which captures all the knowledge to synthesize the 
design suitable for manufacturing. 


The tooling interface provides a firewall to the knowledge within the library. 


Metrics are used along the path to non-intrusively review and diagnose results2


This is designing engineering tools for resilience, adaptivity, and emergence as we encourage 
the crowd to improve the design by using various reasoners that we supply and that they can 


. For example, 
do individual parts cooperate or compete to accomplish a task? Or are they co-operating but 
competing for scarce resources? We can execute the metrics tools (see Appendix 7.2) to provide 
measures of effectiveness in which to answer these questions. 


                                                 


1 An ectype is defined according to Merriam-Webster as an instance or facsimile of an archetype. 
2 Metrics are also useful as criteria for down-selecting, as in step #2, but in this case play a more passive 
and reactive role, not directly involved with the original design. 
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customize. Customization of templates has been used effectively in the architectural design and 
architectural engineering fields [RK06] with building information modeling products such as 
Gehry Technologies' Digital Project or Autodesk's Revit [GW06]. 


The essential gambit behind our tooling approach is to keep the style open enough in terms of 
languages and reasoners that the crowd can easily adopt the tools. And by the same token, they 
can improve on the tools if they are provided the motivation 


7.6.1.2 Complexity Reducers 


Besides AMIL and the CML, we are merging several technology approaches to help reduce the 
complexity of a cyber-physical design. 


7.6.1.2.1 Knowledgebase Engineering 


The concept of knowledgebase engineering relies on stored tacit design rules and archetypes of 
idealized representations to automatically generate products or artifacts.  The information can 
be described by patterns, templates, or by concrete and abstract prototypes used in such a way 
that we can invoke them from a reasoner, inference engine, or expert system. 


The key insight that we provide is to combine the traditional and state-of-the-practice KBE 
approaches with ontological and semantic web technology. 


7.6.1.2.2 Reasoners and Archetypes 


Following a KBE strategy, we refer to archetypes as tacit information that can be used to 
establish early concepts, established process workflows, and other design rules. The idea of 
aligning archetypes with reasoners leads to the term Generative Ensemble Archetype 
Reasoners (GEAR) to describe these capabilities (Figure 7.6-6). Reasoners, patterns, templates, 
design rules, and archetypes are essentially synonyms for this generic capability. 


Galileo/GEAR  


compose 


 
ECTo 


concept 
 


orchestrate 


 
ESKER 


DSE 
 


choreograph 


 
Co-Simulation 


T&V 
 


synthesize 


 
Master Model 


production 
 


Figure 7.6-6.  Control of Co-analysis, Co-simulation, and Synthesis 


Other reasoners such as the KBE Templates [KDG11] used in design automation tools such as 
Pro/E and Catia and other generative reasoners used in design [AUK10] complement the 
reasoners that we have developed for META.  


7.6.1.2.3 Components 


The reuse of components enables faster and more efficient product development [HDJ08]. The 
general pattern of encapsulating models is shown in Figure 7.6-7.  
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Figure 7.6-7.  Component Encapsulation with Cached and Triggered Updates 


The strength of encapsulating objects was one of the main driving strategies for providing the 
AMIL dynamic behavior. If the behavior of the internal dynamics is simple enough, we can 
simply encapsulate this within a node. 


A prevailing issue is how to find the model we need and unambiguously apply it in the correct 
context and with the correct process workflow. This is essentially a search problem as well. 


7.6.1.2.4 Ontologies and Semantic Constraints 


The application of ontologies to reasoning brings a tremendous advantage to search strategies. 
The constraints associated with strong classification schemes can help narrow in on a solution 
much quicker than a free-form “Google-like” search is capable of. This comes with a caveat that 
narrowing the search limits creative possibilities, but that is only dependent on the amount of 
semantic meaning we can apply to the problem. For example, eventually Controlled Natural 
Language interfaces will be able to infer possibilities that extend beyond the strict classifiers. 


7.6.1.2.5 Declarative Semantics and Logic 


The declarative style corresponds to several useful approaches already accepted in engineering 
development: 


• Mathematical equations as in Modelica [BL08], etc. 
• Finite domain problems (e.g., the set of numbers between 1 and 10) 
• Constraint satisfaction problems  


(e.g., how many ways will these pieces fit into this compartment?) 
• Engineering parametric solvers 


– SysML 
– Inverse kinematics 
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• Declarative and constraint logic domains which can be expressed as 5th generation 
languages (5GL) such as Prolog [PRP94]. 


• Relational database queries via Search and Query Language (SQL) and Simple Protocol 
and RDF Query Language (SPARQL) 


The clearest explanation of the declarative approach is best described by example. Figure 7.6-8 
shows how the declarative approach works in a practical application of accessing a parametric 
knowledgebase with bound and unbound parameters. 


    


• In the parametric design world
– Certain parameters are fixed (bound)
– Other parameters are unbound
– Choice of binding depends on what we are 


interested in down-selecting for 
– Mass may be unknown


• depends on volume and material density
– Thickness may be unknown


• constrained by frontal area and total mass 
requirement


• Parameters organized into domain rules for 
maximum declarative reuse


• Example of an alternate functional approach
– RampMass 


• RampHeight
• RampWidth
• RampThickness
• RampMaterial


– Requires at least 5 functional relationships to fully 
enumerate the possibilities of one unknown


Ramp


Parameters
Material


Thickness


Width


Height


Mass


r amp( ?mat ,  ?t ,  ?w,  ?h,  ?mass)      r et ur n r amp_mass( mat ,  t ,  w,  h)
r et ur n r amp_t hi ckness( mat ,  w,  h,  mass)
…declarative


functional


 


Figure 7.6-8.  Declarative Approach for Constraint Solvers 
 


The functional and data-flow styles also apply to many conventional applications, and we will 
apply those as well, but the declarative style finds particular utility in reasoning. For example, 
the classic SPARQL query for a triple-store data element is declarative and is essentially a subset 
of the declarative query illustrated above. A declarative approach often leads to problem-oriented 
abstractions, and not the solution-oriented strategy that ends up employed in a procedural 
approach.  


7.6.1.2.6 DSM and Influence Diagrams 


For the Design Space Exploration tools (Expert-System Knowledgebase Evaluation Reasoner 
[ESKER] in particular, refer to 7.6.2.2) that we constructed, we incorporated the general 
problem solving strategy of the Design Structure Matrix (DSM). The DSMs are generally 
treated in matrix or spreadsheet form but we extended this to include the concept of influence 
diagrams [JP05]. The general idea is illustrated by the following anecdotal application of a 
DSM search: 


Consider the situation of the popular “build-your-own-computer” from components. We can 
conceivably put any components together that we want (power supplies, CPUs, memories, drives) 
yet some of these will form constraint, incompatibility, or degradation relationships. For one 
specific criterion, we can consider the selection in terms of power draw, and then we put a 
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premium on low power consumption as one selection criteria. This is a typical influence 
relationship. 


As another influence relationship, consider that by bundling a few of the components together one 
can get a huge discount in price – the parts wouldn’t be connected yet they have an influence on 
each other. That would be an example of no direct data flow between the components. 


 


The key is that we will need lots of flexibilities in the rules, while a reasoner or expert system 
conducts the search. A graphical illustration of an influence diagram is shown in Figure 7.6-9.  
This particular example features the factors that go into designing a vehicle egress ramp. 


wgt pwr


surv


Ramp armor thickness


wgt pwr


surv


Ramp motor


influences
Weight of ramp 
sets motor sizing


partially influences
Speed of ramp opening/closing


impacts survivability other diagonal
elements


Influence diagram and Design Structure Matrix


The influence edges are 
specified by AMIL links 
and provide a semantic 
web style of component 
connectivity


Weight, power, and survivability generate the evaluation criteria.
Ramp armor does not consume power but influences motor sizing. 


 


Figure 7.6-9.  Influence Diagrams are More Useful for Showing the Directed 
Interactions than a Design Structure Matrix 


Periodic application of DSM searches accelerates the development of set-based designs. 
Whenever possible the analysis of alternatives will weed out poor performers, and if done 
comprehensively is complete enough to help expose the problems of cross-cutting concerns and 
possible abstraction leakages. The tool ESKER (refer to 7.6.2.2) applies multi-objective criteria 
to utility functions for solving Analysis of Alternative (AoA) problems. In other words, we can 
use ESKER for down-selection and other optimization problems. 


The DSM approach also supports the idea of partially decomposable systems, which is a divide 
and conquer strategy for partitioning a system (Figure 7.6-10). 
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Figure 7.6-10.  Partially Decomposable Systems 


A module is the definition as put forward by H. Simon to describe a decomposable unit. If a 
system design contains a number of components that appears nearly decomposable or partially 
decomposable, then we can try to group the components into modules. Or alternatively, we will 
partially decompose the system of components into modularized sets of components. 


These modules form archetypes as well, in the sense of being close to the ideal and thus provide 
the design team a pattern or a set of alternative patterns from which to build. The process 
workflow then becomes one of selecting the components to go into that archetype. To meet a 
set-based engineering criteria, we can assume we always have alternatives for the components, 
say for example three alternatives per component, leading to the use of an analysis of 
alternatives combinatorial estimate: 


<A> = average archetype influence-set size  
(the number of interacting components per set) 


NA = total number of archetypes for a vehicle 


<M> = average number of alternatives per component 


SearchSize = <M><A>  × NA  


For a reasonable set of sample numbers,  


<A> = 10 


NA = 500 


<M> = 3 
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This draws from a pool of 15,000 components, which is just the three numbers multiplied 
together. Then SearchSize = 3 million on the first pass with a nominal default selection for each 
component.3


In terms of encoding the interaction knowledge, decomposition becomes a divide and conquer 
strategy which tries to minimize the number of interfaces and extracts commonly occurring 
global interfaces as design rules [BC00]. The design rules then provide constraints that reduce 
the complexity of search, trading off the potential for finding interesting combinations with the 
experiential knowledge of previous engineering archetypes. From the formulas above for 
combinatorial complexity, we can eventually determine that: 


 


1. Increasing the number of choices per component increases DSE search time 
2. Increasing the number of constituents per module increases DSE search time 
3. Increase in efficiency from specialized reasoners is ideal (to reduce by exclusion factors 


1 and 2) 


In other words, the rules prevent the DSE from going down paths that yield little 
improvement. A knowledgebase format fits in well with this approach as the tacit knowledge is 
directly coded as logical rules of design. 


A component-based DSM also specifies the physical interactions between elements in a cyber-
physical system architecture. Different types of interactions can be displayed in the DSM and 
the types of interactions will vary from project to project. Some representative interaction 
types are shown in Figure 7.6-11. 


 
Figure 7.6-11.  DSM Application Domains (from Pimler and Eppinger, 1994) 


In this figure, the spatial variant covers finite element analysis techniques for dynamic 
structures, and the matrix could become three-dimensional to match the actual physical 
structure. It also covers the computational arena known as Spatial Computing (covered in the 
section 7.6.4.1).The energy variant of the DSM covers models such as Hybrid Bond Graphs, 
where the transitions obey the laws of energy conservation. The information variant is Design 
Space Exploration (Figure 7.6-12).  


                                                 


3 The Voyager spacecraft designed in the 1960’s consisted of 166 different potential assemblies grouped 
into 51 functional families. When considering the different redundancy implementations, this resulted in 
1021 potential system configurations and its optimization obviously required some computer support. A 
good example is [LEH67] because the Voyager was probably the most durable system ever deployed. 


 


Spatial needs for adjacency or orientation between two elements 
Energy needs for energy transfer/exchange between two elements 
Information needs for data or signal exchange between two elements 
Material needs for material exchange between two elements 


 







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement. 


 
Figure 7.6-12.  Design Structure Matrix for Information -  Utility Functions Trade-off 


Criteria for Different Design Choices 


The material domain covers compartment models (for fluids, etc) and also Markov chains 
(frequently used for reliability analysis). Again these are all graphs and the universal 
computational goal in each of these seeks to reduce the time searching for a solution given the 
physical constraints and laws. 


The idea that these nodes often interact with near-neighbors and therefore may not need 
extensive interconnection implies that local computation schemes might prove useful. A synergy 
exists between all these flavors of local computation, and this is the idea behind the generic 
inferencing architecture described by Pouly and Kohlas [PK11]. To speed up the computations, 
parallel and distributed processes schemes can be applied, while algorithmically, the properties 
of valuation algebras and the application of join trees can further reduce the computational 
load. This is further explored in Spatial Computing (refer to section 7.6.4.2). 


7.6.1.2.7 Models of Computation and Communication 


When we move from analysis to simulation, different considerations come into existence. In 
general, the co-simulation models require that we pay much more attention to interface details 
since they will reside in a heterogeneous environment with potentially cross-cutting multi-
physics domains.  


 
Figure 7.6-13.  Heterogeneous Interfaces 
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The computations can be heterogeneous in terms of behavior content as shown in Figure 
7.6-13 or the communication channels may require different operational time-synchronization 
strategies (refer to section 7.6.3.1). In META parlance, Models of Computation and 
Communication (MOCC) describe the general strategy that one needs to adopt. 


7.6.1.2.8 Contracts and Assume/Guarantee 


Contracts (and the associate assume/guarantee strategy) are generally defined as rules in the 
form of pre-conditions and post-conditions applied to some design functionality, either through 
intended use or upon execution [QGP10]. 


Contracts = controls the use in terms of fitness for purpose 
Assertions = strong controls for compile time or run-time guarantee (software in 
particular) 
Guards = adaptive controls for run-time usage 


In the contract world, we use co-analysis models and apply co-simulation to show that a 
particular design works correctly. This assumes in the best case that we can reach a top-level 
guarantee of 100% correctness. Allowing a probability spread in the model’s parameters  (i.e. 
manufacturing tolerances, etc) or environmental conditions (i.e. temperature, vibration, etc) will 
drop the Probabilistic Certificate of Correctness (PCC) to something below 100%. 


The bottom-line is that if we want to say that we have a PCC of 100%, we require a strong 
condition of an assume-guarantee on that particular model.  The assume part is that all inputs 
are within range and the environment is within operational bounds. The guarantee is that it 
will work correctly over that set of ranges. 


We thus incorporate an assume-guarantee strategy when we evaluate PCC on our co-
simulations (refer to 7.6.3.5). 


7.6.1.2.9 Set-Based Concurrent Engineering 


Also known as the “Toyota Paradox”, the concept of set-based concurrent engineering involves 
a strategy of keeping open design alternatives for as long as feasible [MAP09] through the 
development process. This deferral of commitment to a final design allows the possibility of 
future design adaptability, which becomes a powerful form of design look-ahead.  


We apply the set-based approach via tools such as ESKER and ECTo, which reason on open 
alternatives and then reduce the complexity of a large state by applying design rules and 
constraints as needed (refer to Figure 7.6-14).  


 
Figure 7.6-14.  Set-Based Concurrent Engineering Continuously Tracks Open 


Alternatives While Culling Out Poor Design Choices 
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Set-based concurrent engineering is only a paradox in that it works against intuition that not 
committing to a design early is the best possible strategy. Maintaining a robust and reflective 
process flow through the DSE tools, DSM analysis, and Test & Verification PCC evaluations 
though-out the ARRoW cycle is crucial to making the set-based approach work. 


7.6.1.2.10 Workflow Provenance 


Repeatability and regression of simulations is required to allow for reuse and adaptability. It 
can often become a full-time task to maintain reasoners and their application as the design and 
data environment matures. The process and composable workflow reasoners we have evaluated 
will provide a provenance capability. In the traditional definition, “provenance” means to 
possess knowledge of the origin or history of some object, and the current technology 
definition of provenance is to use automation to guide the process and thus make the history 
repeatable.  This process could then become repeatable or form a regression test for the usage 
of tools and data sources as shown in Figure 7.6-15. 


Design Space Exploration  data


Metrics


Simulation


Developers 
and 


Designers


Integration 
and Test


tuning /
optimizing estimating /


managingDesign Space 
Exploration 


Data


verifying /
diagnosing


predictions /
allocations


 
Figure 7.6-15.  A Provenance Strategy Manages Development Processes that Require 


Multiple Steps 


One specific approach that we highlight uses the process-based OWL-S semantics to attach 
automated services to particular workflow tasks [YGD10]. 


7.6.1.2.11 Test-Driven Development 


Test-Driven Development (TDD) is an agile process geared for software development, but 
when placed in a model-based engineering environment it can provide value during the entire 
cyber-physical system life-cycle.  


The key to applying TDD successfully is to start integrating it into the development process at 
the earliest possible opportunity. This typically corresponds to verifying the first available 
instance of an operating simulation of the system (or on a concrete or abstract representation of 
the system). Instituting qualitative (smoke) or quantitative tests here enables the development 
team to quickly respond to regression failures caused by early design decisions that do not 
emerge until higher fidelity representations become available. The regression failures often 
come about due to leaky abstractions not accounted for by the design or model. It essentially 
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mitigates the risk of not having a “correct by design” system, as the later regression errors have 
a much reduced chance of occurring.  


We assert that this extra level of testing does not impact the development timeline since the 
test plans and test cases get executed in parallel with the conventional modeling development. 
In other words, these do not exist along the critical path but ride alongside it. The benefit 
accrues with time as the model becomes more robust instead of more brittle as the model 
representation starts to grow in scale. The tests only act as the “driver” of the development 
because they provide warning signs if and when process veers off course.  Experience has 
shown that identifying defects as early as possible saves time and money in the long run. 


The comprehensive TDD approach also aids in the continuous verification of requirements. 
The key in this regard is to match use cases (i.e. derived software and system —requirements) 
against test cases. A simple but effective approach is to write use cases with the attitude that 
anyone can also read them as test cases. The test engineer then does not have to spend time 
translating use cases into tests; thus, we can further mitigate the risk of testing from 
bottlenecking the critical process path. 


 
Figure 7.6-16.  Sources of Defects that TDD Aims to Mitigate 


This rigorous attitude to system verification needs to be coupled to a state-of-the-practice 
automated software testing infrastructure. Automation becomes necessary because we typically 
leverage virtual simulations of full vehicle behavior and the scope of the tests quickly scales to 
make any manual testing out of the question.  A comprehensive test infrastructure should 
accommodate the automated launching, monitoring, and test data collection for dozens of 
applications running concurrently within a distributed environment.4


For component-based model development, the critical aspect is to include acceptance tests for 
each of the individual components and configuration manage these items as testware. The 


  


                                                 


4 Historically, the team has used the same declarative mechanisms to specify our distributed launch and 
control as we do in specifying our simulation data and runtime configuration.  


 
  
We build too Faulty a thing – low quality leads to more defects and or lengthy rework 


 
  
We build too Complex a thing – can’t determine if (or when) acceptance criteria will be met  


 
  
We try to build the Impossible – in violation of physical laws or mathematical constraints 


 
  
We build the Wrong thing – product does not meet the customer's actual needs 


? 
  
We build in the Unknown – unexpected issues arise, and we can't adapt to emergent behavior 
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component test cases developed early in the life cycle get reused in future stages of the life-
cycle, such as during product-line integration. Thus, a finished project delivers two products, 
the software and the testware. In META demonstrations, we illustrated how early test 
promotes quality in both verification and isolating leaky abstractions. If we have appropriate 
acceptance tests, the likelihood of encountering leaky abstractions decreases because the client 
understands the context for the use of the components from reading the acceptance tests. 


The criteria needed for objectively (verification) and subjectively (validation) evaluating the 
model’s representation include: non-ambiguity, verifiability, consistency, modifiability/ 
adaptability, traceability, presentability, and completeness. Testing becomes a full life cycle 
process that initiates when the project begins to achieve maximal effectiveness as the customer 
can visualize results immediately. The test-driven development strategy applies to each of the 
phases in the ARRoW process from concepting to final test. 


Although each of these phases accomplishes different objectives and may use different 
development teams, the underlying test and verification environment remains a constant. In 
practice, for each phase of the development branch, there is a concurrent corresponding activity 
on the testing branch.  Putting in place automated tests in the beginning of the product 
development life-cycle allows us to accelerate the process via concurrent activities, helping to 
achieve the 5× speedup desired. Any volatility in requirements is handled by adapting and 
refactoring of software in the virtual environment, where change is timely, cost-effective and 
robust with the help of regression and other tests. 


7.6.1.2.12 Parallel and Distributed Development 


The ARRoW development strategy strongly recommends concurrent development to achieve a 
5× speedup, especially when considered in concert with and augmentation to robust and 
proactive improvements in requirements and system conceptualization.  


 
Figure 7.6-17.  Parallel Development Process Speeds Development 


Contention issues can slow development for as simple a reason as bottlenecked database access 
(refer to Final Report 1A and BBN metrics section). The reasoners employed allow for 
concurrent development as the knowledge is contained on the developers local memory which 
precludes contention problems. Other bottleneck issues are described in the META 1a report. 


7.6.1.2.13 Fidelity and Abstraction Levels 


Simulations used for verification necessarily require details that reflect the properties of the as-
built product. In general, high-levels of abstraction go with lower fidelity. So depth of fidelity 
becomes a consideration for the abstraction level chosen. As earlier we showed how 
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compartmentalization can be used in analysis so to can it be useful for simulations. Co-
simulation will require clever compartmentalization to make the high-fidelity computation 
solutions tractable for the deepest multi-physics problems. 


RLC Circuit applied to ARROW


Systems Engineering
• Concept
• Requirements Specification
• Use Cases


SysML


Design Space Exploration
• Component Type Selection
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Figure 7.6-18.  Abstraction Levels in a Multi-Physics Domain Example 


Abstractions applied to the compartments allow potential for reuse for a semantic CML 
classification scheme (refer to Figure 7.6-18). 


7.6.1.2.14 Sampling and Verification 


For PCC calculations, the time it takes to sufficiently verify test state-spaces can often be 
prohibitive. We incorporated several importance sampling [MD01] techniques and applied the 
ESKER tool to explore the test-case state space and record potential failure points. 


This is best illustrated by an example, whereby a PCC calculation is populated with failure 
scenarios via test case generation and then importance sampled for a probability measure. 


Figure 7.6-19 demonstrates the sampling approach we used on a ground vehicle ramp design 
challenge problem. The PCC calculation on the results histogram detects possible elevated 
drive burnout incidence from frequent sustained high torque requirements.  This was caused by 
soldiers exiting vehicle while the ramp is in motion. Identifying the worst cases provided an 
improved basis for driving redesign.  
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Figure 7.6-19.  Test Space Sampling Generates a Histogram for PCC Evaluation 


7.6.1.2.15 Diagnostics  


As the preceding section pointed out, the most wide-open part of the reasoning strategy 
involves the incorporation of diagnostic aids. Since many of these rely on a variety of statistical 
tools which are fairly mature, we will defer to the Metrics Dashboard section for how these can 
be plugged into the AIDE environment. 


To work the vehicle ramp problem diagnostics, feedback on the PCC results were fed into a 
clustering classification method (K-Means) which uncovered a qualitative failure mode. The 
PCC calculation thus detected assumptions leading to failure and it provides an input to 
redesign. Figure 7.6-20 suggests a storyboard of the diagnostic aid used in a demonstration. 
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Figure 7.6-20.  Diagnostic Aids Used to Discover a Design Problem 


An iterative design is the preferred approach for complex systems and an agile diagnosis and 
learning/redesign is crucial. Diagnosis provides a means to get value from inadequate PCC 
scores, for example by climbing the PCC slope in design space. Or in the case of acceptable 
PCCs, by progressively relaxing assumptions to detect most plausible remaining failure 
scenarios. 


7.6.1.2.16 Probabilistic Context  


The original intent for the ARRoW process was to include qualitative simulation into the 
development tool space. We extended this to not only include qualitative and quantitative 
evaluation through the DSE reasoners, but include stochastic elements as well. These 
stochastic elements could include subjective belief information as well as objective probabilities 
derived from empirical observations and system models.  


Figure 7.6-21 shows the elements of subjectivity and objectivity as applied to a migration from 
co-analysis to co-simulation. The co-simulation will eventually require stochastic models to 
evaluate a PCC, which is the basic premise that a PCC will need a probability as a pre-condition 
in order to propagate uncertainty. 
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Figure 7.6-21.  Paths to Stochastic Formal Verification - 


Stochastic Elements Starting from Co-analysis to Co-simulation 


7.6.1.2.17 Crowd Sourcing 


The eventual strategy is to encourage crowd-sourcing at the level that significant progress can 
be made. In the metrics report, we developed methods for monitoring development progress 
based on empirical observations of algorithm development (refer to the MathWorks contest 
described on page 64 of the Phase 1a final report [META11]). Progress was measured by 
tracking performance and accuracy improvements in algorithm development, accomplished by 
automated evaluation and recording of submissions. When used for parallel directed problem 
solving, this will have benefits, but the key is to measure the asymptotic trends as the law of 
diminishing returns will set in.  


Crowd-sourcing improvements based on spontaneous creativity will always exist and the use of 
archetypes as templates, placeholders, and alternative architectures will help spur creativity. 
Individual improvements will come from the use of ontological search mechanisms and 
performance enhancers such as search caching and parallel computing. 


7.6.1.3 Engineering Domains 


The specific areas that we chose to prototype reasoners include workflows, DSE and 
concepting, synthesis, and testing. As an example, some of the domains we can consider 
include: 


• Component selection (use alternatives to evaluate different combinations) 
• Test evaluation (use ranges to sweep through tests like we sweep through alternatives) 
• Diagnostics (use declarative semantics to isolate problems, working either backwards 


or forewords) 
• Configuring simulations (mix and match alternative fidelity models and essentially 


stitch together a virtual simulation that is executable) 


7.6.1.3.1 Analysis Process and Workflows 


The goal is to speed up the development process by providing data-driven automation, reusable 
components and behaviors, and templates for typical designs. The specific objective is to readily 
create reference architectures and archetypes that could serve as templates for design and 
development activities. The templates provide hooks for various possible implementations and 
components according to the underlying AMIL graph of relations and rules. 
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Figure 7.6-22 illustrates an analytical workflow required for calculating a fly-out trajectory of a 
projectile. The analysis steps are standard enough that an archetypal workflow can be 
converted into a template and a reasoner can suggest certain compositions and ultimately guide 
the execution itself. 


 


 
Figure 7.6-22.  Graph of Analysis Archetype for Projectile Fly-Out Simulation 


As another example, the steps in verifying a fault-tolerant design show how to unify PCC, 
contracts (assume/guarantee), AMIL representation, design synthesis/ composition, and reach 
set or envisionment (qualitative in the sense that we have either a working element or a failed 
element). We want to demonstrate these steps: 


1. Show that a design has a certain PCC given the context of the real-world 
2. Demonstrate how we can apply assume/guarantee 
3. Express the problem in terms of an AMIL graph 
4. Demonstrate a level of synthesis in either an analysis model or design model 
5. Execute look-ahead or exploring failure possibilities implied by reach-sets or an 


envisionment 


To do #1 and #2 in one pass we only need to convince ourselves that computing a PCC is 
dependent on having some level of guarantee on every component of the system. The guarantee 
is that the PCC will be 100% assuming that each component meets each of its pre-conditions. 
The fact that all pre-conditions are not met due to contextual externalities will drop the PCC 
below 100%. This salient point provides the connection between PCC and the 
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assume/guarantee model. We just need to have components that can be modeled as having less 
than 100% guarantee given the right circumstances. 


We also consider points #3 and #4 in combination. As we can reason on AMIL data at the 
most essential “triple-store” graph level and then generate a design model (given some extra 
rules outside of AMIL), means that we can extend what we are doing with design space 
exploration. But the next step is to show how we can do a PCC from that generated design. 
This leads to step #5, which is a way of generating test-cases, which can also come out of a 
synthesis domain. 


The canonical workflow example that we can test this unifying theory against is that of a 
complex fault-tolerant configuration.  


Say that we have a requirement that a subsystem has two distinct operations which have to run 
in conjunction and provisions must be made to handle the case of either of the two operational 
components failing. This can be specified as a graph archetype shown in Figure 7.6-23. 


 
Figure 7.6-23.  Archetypes for Analyzing a Derived Fault-Tolerant Reliability 


Requirement 


Here the top and bottom paths are essentially redundant paths and the path labeled “c” is for 
switching over on failure. Each one of the blocks has some assume/guarantee in terms of a 
reliability value.  


Based on this information, we can easily express this example as an AMIL graph (the diagram 
to the right) and then add some rules to enable generation of an analysis model suitable for 
calculating a PCC.   


We can synthesize the success paths first, such as ab, de, ace, and dcb and the 
failure path as a break in the chain from 1  4. 


From this point we can apply further synthesis rules, and below is the solution graph, which is 
an “envisionment” of all possible failures. 
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Figure 7.6-24.  Auto-Generated Expansion of Reliability Block Diagram 


The left-most state is the initial configuration of all components operational and the state at the 
end is the situation of a critical failure. We can submit this graph to a Markov solver, executing 
it automatically via AMIL, and get a PCC assuming nominal and independent failure rates of 
the components. The nominal failure rates come from AMIL relations of those components 
retrieved from the CML, and we can compute metrics on the complexity of the representation5


This becomes a complete and archetypal example of soup-to-nuts verification of a design. 
Through automated workflow as driven by a reasoner engine this provides an excellent 
example for the generic ARRoW process


. 


6


For reasoning about a detailed cyber-physical design which incorporates temporal and 
probabilistic reach-set analysis refer to the Appendix on the Reactive Model-based 
Programming Language (RMPL section 7.9). This allows solving analysis problems at an 
abstraction level closer to that of plant and controller, yet is complementary to the logical 
planning reasoners and state space expansion approaches outlined here.


. 


7


7.6.1.3.2 Design Space Exploration and Optimization 


  


To understand how reasoning within the context of a knowledgebase works in general, let’s 
take an example from the classic concept of automated Decision Support Systems (DSS). 
Although DSS will never be completely automated due to the human element required, tools 
can help intuition and to predict results, and then use the real results to confirm educated 
guesses. As a result, decision makers use results from the models to develop the next step in the 
thought process so as to gain a deeper insight into the problem.  


Decision Support System: A model-based set of procedures for processing data and judgments to 
assist a manager in his decision-making.  


Construction of models thus becomes an extension of the decision maker’s ability to think about 
and analyze problems, and not as a replacement of these analytical skills. 


                                                 


5 This approach can quickly scale into a large graph 
6 This demonstrates the qualitative aspects exemplified via "working" versus "failed" states. 
7 For example see the REST Modeling language described in [PRP94]. 
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Generally a DSS is defined in terms of three interacting components: a language system, a 
knowledge system, and a problem-processing system. The language system, in this case AMIL 
(which can contain a GUI such as those implemented for AIDE and a visualization graph) 
allows the user of a DSS to interact with the other two components of the support system. The 
knowledge component contains the declarative knowledge contributed by the decision-maker 
or domain expert. This element has become identified as the Knowledge-Based Engineering 
System (KBS) and it really becomes a larger semantic web of information, which will include an 
interface to CML meta-information. The connective problem-processing system represents the 
communication channel between the language system and the knowledge system, referred to as 
an inference engine. This becomes the set of reasoners referred to as GEAR. One can take the 
operational DSS definition another step by considering the data separately from the rules and 
analysis models to help structure the knowledge. This merges into an ontological scheme for 
data classification and storage. 8


A guide to the process of decision-making is outlined in the following steps:  


 


1. Elicitation. Analysis of the decision area to discover applicable elements 
2. Analysis. Location or creation of criteria for evaluation  
3. Knowledge Engineering. Appraisal of the known information pertinent to the 


applicable elements and correction for bias 
4. Scoping. External connectivity and isolation of the unknown factors.  
5. Tuning. Weighting of the pertinent elements, known and unknown, as to relative 


importance  
6. Effectiveness Optimization. Projection of the relative impacts on the objective 
7. Evaluation. Synthesize into a course of action. 


The key is to get to Step 3 as quickly as possible. Unlike a typical software development effort, 
which this process looks like on the surface, we should start formulating rules and constraints 
quickly rather than waiting for a complete specification.  


Elicitation (Step 1) needs the support of all the stakeholders, so it is best to work this out in a 
group or crowd-sourced setting. This should take a single session to decide what to cover 
among power, weight, reliability, cost, etc. 


Analysis (Step 2) is dependent on the availability of sources of information. This can become a 
bottleneck if complete information is not available, so we can use heuristics and placeholders for 
the elements in the elicitation step. For example, external model development can be handled 
here, and placeholders used for these until the external nodes are scoped into Step 4. 


Knowledge engineering (Step 3) is where the subject matter expert and coder get together and 
declare their knowledge in terms of a set of facts and rules and incorporate these as a DSM 
(refer to Figure 7.6-25). This is routinely a massive undertaking for developing a product the 


                                                 


8  DSSs tend to be defined in terms of the system needs and the way that they will be used. The 
definition may not explicitly incorporate the different components of a DSS (KBS, graph database, and 
GUI). Instead, the definition used is more general to include flexibility during the creation of the 
candidate system. A spreadsheet solution could have everything rolled into one file, for example. 
Furthermore, a DSS does not have to generate the complete decision, just enable the support for the 
final decision-making process. This is in keeping with the practice of semi-structured decision making. 
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size of a vehicle but progress can be measured via the usual metric of rule count. When the rule 
count starts leveling off, the rule of diminishing returns starts to set in. 


 
Figure 7.6-25.  Design Structure Matrix Interactions Needed for Knowledge Engineering 


Scoping (Step 4) admits to the fact that we will never complete a comprehensive 
knowledgebase9


Tuning (Step 5) is where we set up optimization criteria. This can be accomplished 
concurrently with Step 3 so that we always have quantitative results to show as the 
knowledgebase matures. This is the latest point at which we can add a GUI before handing the 
expert system to the user for evaluation. 


, and that remaining subjective and objective criteria are either coupled into the 
knowledgebase through external models or left blank as subjective placeholders and simple 
trade-off heuristics. Constraining the set of allowable alternatives is crucial at this point to 
allow optimization to take place in the next step. 


Effectiveness Optimization (Step 6) is where the user can get involved with the evaluation. At 
this point we should have enough sensitivity analysis and optimization algorithms in place so 
that the user can execute queries without having to do any programming. 


Evaluation (Step 7) is where we formally include the results of the optimization into the bigger 
decision support picture. For example, the results together with a narrative description of the 
knowledgebase can be included to justify a decision. 
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7.6.1.3.3 KBE Template Design Synthesis 


Complete synthesis of systems is a challenging proposition. The process toward that goal is 
one of reusing domain knowledge and design rules so we can chip away at the feasible parts. As 
a working definition: 


“KBE templates are intelligent documents or features that aim at storing know-how and 
facilitate its reuse.” 


The knowledge is built up in terms of the 
usual semantic web triplet of (subject, 
predicate, object). If a predicate is “isPartOf” or 
“partOfIs”, depending on the relationship 
between the subject and object, then it 
becomes just a natural part of the 
organization of a component model library. 
For an interface to a component that has 
empty slots on it, we need to describe the 
placeholders for other abstract interfaces. A 
ramp will need a slot for a hinge, for example. 


(ramp, partOfIs, hinge) 


The same goes for “parameter”, which is a 
predicate for some subject that will either go 
to a named object or some property. 


(ramp, parameter, material_steel


 


) 


Figure 7.6-26.  ARRoW’s Template-Based 
Look-Ahead Concept 


Drawing from CML, the approach is to fill in and instantiate the pattern matches. 


• In the CML the partOfIs and parameter are left open or define types as part of an 
archetype. It is a pure reusable utility function arising from the ontological 
classification. 


• In the Master Model the partOfIs and parameter are filled in. In many models, such as a 
Pro/E tree structure you won’t even see this but it does exist, at least implicitly.  


In a Design Space Exploration, the connectivity is defined by the rules and any declarative 
semantics that we can pull out of the knowledgebase. 


Extending this idea, KBE templates can contain suggestion rules. As examples consider the 
following triples: 


A contains B 


and 


A canContain B 


The first is an imperative and says that is the way it is, part of a fixed ontology. The second one 
is closer to the spirit of a design rule hint where someone has established that the two can go 
together but that it is not necessarily fixed. This canContain relation will also have all sorts of 
contingencies based on A and B’s specific properties, which points toward supplemental rules.  


• Template-based ref inement
• Constraint-based reasoning
• Model-based design


Current Design


Possible future designs


Design 
space 


generation


To Qualitative 
Reasoner
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design space 
exploration. 
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Once composed these relationships would show a definite connectivity within the master 
model. 


When PTC describes templates in Pro/E, or Dassault with CATIA, this kind of reasoning 
takes place, but significant amounts of clarity emerge when we tie the KBE template approach 
into ideas such as ontological organization, description logic, set-based engineering concepts, 
and design space exploration algorithms.  


Combining ontological classification with design rules makes the synthesis more solid and 
maintainable. The maintenance issues are addressed by the ontological organization and 
description logic. The freedom from a strict design policy is addressed by a set-based 
methodology and the multi-objective optimization iterations and DSE that we systematically 
apply via the ARRoW process. 


One of the reasons why EDA has worked so well in the commercial industry is that the 
ontology was actually built-in to the libraries. If someone needed an OR gate, they would know 
exactly what to look for, they would just specify an OR gate. That is not the case with general 
engineering design, where the ontological classification can help immensely to navigate 
through the variety of design choices. 


7.6.1.3.4 Requirements-driven Test Archetypes  


We consider several different reasoning strategies: 


1. Controlled natural language conversion of requirements to tests  
2. Requirements analysis archetypes  
3. Verb-based tests, drawing from requirements 
4. Automated testing scaffolds, such as with Maven and Phoenix Integration’s 


ModelCenter. 


The first two cases are discussed in section 7.1. Decomposing requirements is in general a 
difficult problem because of subjectivity and the difficulty in exposing intent or the original 
requirements team. The latter strategies are more amenable to automation in that test cases are 
often more explicit and objective. 


Test cases in the ideal situation are a set of pre-conditions followed by an expected set of post-
conditions. If we set up rules to map the pre-conditions, which could be environmental or 
parametric input, against the variables and sensor inputs found in a master model, then we 
could definitely use a reasoner to find potential matches. The same would be needed for the 
post-condition side, where the mapping would be between the expected value and the 
appropriate sensor output of the model.  


So tests become object-predicate-subject triples on the input side: object-stimulates-subject; and 
then a kind of complement to this on the output side: subject-provides-object. The predicates 
become test-commands or verbs that often derive from the requirements vocabulary. For 
example, if a requirement had an active-tense than the verb describing this tense would become 
part of the test vocabulary as well. 


As finding the right verb for the test situation is time-consuming without automated aids, the 
archetypal rules would entail searching through the master model and the knowledgebase to 
find pieces that match. The initial corpus would be the entire knowledgebase of components, 
test-cases, and context models. This space would get reduced as the state of the design matures. 
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7.6.1.3.5 Test Space Exploration for PCC 


The flip side of design space exploration is test space exploration. The number of design 
choices a development team faces will only be exceeded by the combinatorial number of 
contexts that a tester will have to evaluate. Many approaches, ranging from the practice of 
Design of Experiments, to usage based models can be applied here. 


An example we have used for demonstrating test-space exploration for Test and Verify (T&V) 
is shown in Figure 7.6-27. 


 
Figure 7.6-27.  Test Space Exploration Uses Similar Combinatorial Techniques to 


Search the Test Space as Used for DSE 


The ARRoW process will always have available commercial and open-source tools for testing. 


7.6.1.4 Application of Reasoning Languages 


7.6.1.4.1 AMIL 


ARRoW Model Interconnection Language (AMIL) represents relationships between model 
elements across heterogeneous models. Like the triple store, it is a foundational capability 
designed for growth and extension.  


As a language that describes the connections between models, AMIL can be used as the basic 
structure for building a co-analysis/co-simulation model or master model, as per the “3-view” 
diagram in Figure 7.6-1. At the most fundamental level AMIL will support analysis and 
simulation of a partially or fully dynamic set of interconnected models. 
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Data transfer. For a master model, we do not necessarily need active nodes, because the 
interconnections can be made descriptive and declarative, and we may not need the data to be 
actively transferred in a static representation. However, the analysis and will need data 
exchange. Analysis may require less data throughput because we may only need to evaluate 
discrete modes of the system, such as for design space exploration. Simulation, and specifically 
co-simulation, will often require continuous flow of data between nodes.  


AMIL is capable of supporting both of these situations, although in different ways. 


For co-analysis, AMIL active nodes can be used to represent relationships between model 
elements across heterogeneous models.  The active nodes will re-evaluate depending on the 
latest set of dependencies. As the complexity of the problem grows, AMIL can be augmented 
with mechanisms, such as process workflows, to assist in dealing with scale. For example, there 
could be circular dependencies that will make un-orchestrated or un-choreographed updates a 
challenging proposition. ESKER and ECTo have both been used to orchestrate the evaluation 
of AMIL nodes. 


For co-simulation, AMIL could be used as a routing table information provider. Thus, AMIL 
will not partake in the actual data flow but it will configure the communications links. AMIL 
can model the adaptors required for the tagged signal semantics of heterogeneous co-
simulation. So AMIL acts as a static routing and interconnect configurator and helps with the 
choreography of a co-simulation. 


Process Workflow. Modeling the process is important for analysis and simulation because this 
will guide the flow of data and of the executing process. A workflow model is thus needed to 
avoid the race conditions and recursion problems that could afflict the AMIL active nodes. The 
solution for workflow lies in the analysis archetypes that describe process behavior, exemplified 
by the composable workflows that we have prototyped. These can be knowledge-based in the 
spirit of ESKER, the crowd-sourcing tools can include off-the-shelf approaches such as 
VisTrails and Kepler or commercial tools such as ModelCenter. 


Data Structures. AMIL is essentially a graph and a graph can describe a variety of data 
structures. AMIL’s Neo4J data store is actually more powerful than a triple store, so it can 
easily accommodate Semantic Web type data structures and any kind of directed graph. A 
graph data visualizer in place for AMIL helps to navigate the structure. 


Persistent Storage. When we use AMIL it operates directly with a persistent data store. This 
is useful for both the development of analysis models and even more so for a master model. 
Tools will be required to handle version control and controlled access. 


Demonstration of Ontological Reasoning. As a demonstration of the META language 
toolset, we want to apply a customized archetypal reasoner (GEAR) to help with the down-
select from a set of ECTo design alternatives using AMIL as the knowledge store. 


The pre-condition is that the reasoner needs to know what part of the conceptual model to 
filter on. The user of the ECTo model facilitates this by tagging those elements with a 
“DESIGN_SET” property. This then gets saved into the current graph database as additional 
triples to the individual elements. The “DESIGN_SET” becomes a property of its parent. 







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement. 


The reasoner next accesses the graph database to get all 
the relevant information needed to make a decision. It does 
this by making an HTTP request to the ArrowWebServices 
entry called /arrow/arrowGraphData. The response to this call 
is a JSON text string that contains the representation of 
the internal triple-store data (with the active content 
executed). Figure 7.6-28.  AMIL as a 


Knowledge Store 


The JSON is parsed and then stored in the GEAR reasoner’s local knowledgebase as an 
equivalent set of triples (the active content has been executed so no loss of information occurs 
at this point10 Figure 7.6-29). The predicate logic for doing this is in the code snippet ( ). 


 
Figure 7.6-29.  Code Sample 1: JSON Parser and Store Rules 


This essentially scans the JSON stream, pulling out each of the AMIL data items and saving 
these as (subject, predicate, object) triples. Anything not recognized in this format is discarded 
(such as AMIL create, preconditions, and postconditions).  


                                                 


10 The underlying active semantics of AMIL involves the notion of executing a call to a remote 
application depending on the evaluation of the node.  This happens before we retrieve the AMIL store 
because the JSOM parser can only parse.  


process_triples(_, []). 


process_triples(Subject, [(Pred=Obj)|Rest]) :- 


   assertz(triple(Subject,Pred,Obj)), 


   process_triples(Subject, Rest). 


clean_triples :- retractall(triple(_,_,_)). 


 


scan_amil([]). 


scan_amil([json([A,(B=json(List))]) | Rest]) :- 


   process_triples(B, [A|List]), 


   scan_amil(Rest). 


scan_amil([First | Rest]) :-  %% If we dont understand discard 


   write(user_error, First), nl(user_error), 


   scan_amil(Rest). 


scan_amil(_) :- write(user_error, 'Not in AMIL format\n'). 


 


stream_json(Stream) :- 


   clean_triples,               write(user_error, '% starting to stream\n'), 


   json_read(Stream,Text),      write(user_error, '% finished stream\n'), 


   json_to_prolog(Text,Prolog), write(user_error, '% converting to prolog\n'), 


   scan_amil(Prolog). 


AMIL 


ECTo GEAR 
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At this point, all the information is available locally to do sophisticated reasoning against. A 
snippet of logic queries (Figure 7.6-30), the local knowledgebase for individual elements of a 
“DESIGN_SET”, next reasons about specific derived properties, and then applies a set of 
criteria to those properties. This is essentially a logic+control strategy, with a search through 
the description logic filtered through control predicates.  


For the demo, we keep it simple, with the understanding that this ontological rule can easily be 
changed. For this case, we decide to filter for the design element with the largest value of mass 
density. 


 
Figure 7.6-30.  Code Sample 2: GEAR Reasoner Which Finds the Maximum Density 


from Elements in a Set 


The logic predicates labeled get_design_set polymorphically match to the ontological 
constraints of mass, volume, and density. The mass predicate looks up the mass property 
directly. The volume predicate requires matches for the three dimensions of height, width, and 
length and then computes the volume after successfully binding to values for each property. 
The even higher-level density predicate combines the mass and volume predicates to calculate 
an element density (could easily change this to a power density which is an important design criteria). 


A powerful potential for reuse of rules exists via ontological classification. 


A reusable rule called mazimize_value searches a set of paired tuples for the maximum value 
after the meta-call findall provides a list of potential candidates. 


The top-level rule “find_maximum_density(Subj, Density)” is potentially invoked as a web 
service or as a command line invocation.  


triple_num(Subj, Pred, Obj) :-  % convert atom to number 


   triple(Subj, Pred, O), 


   atom_number(O, Obj). 


 


get_design_set(S, mass, Value) :-     % triple store lookup 


   triple(S, parent, 'DESIGN_SET'), 


   triple_num(S, mass, Value). 


 


get_design_set(S, volume, Value) :-   % lookup with computation 


   triple(S, parent, 'DESIGN_SET'), 


   triple_num(S, height, V1), 


   triple_num(S, width, V2), 


   triple_num(S, length, V3), 


   Value is V1*V2*V3. 


 


get_design_set(S, density, Value) :-   % higher-level rule 


   get_design_set(S, mass, V1), 


   get_design_set(S, volume, V2), 


   Value is V1/V2. 


 


   


    


      


       


    


       


 


   


         


      







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement. 


For example, from this server logic, the HTTP query 
http://localhost:5000/load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport 


will load from the local AMIL server and http://localhost:5000/query will execute the 
find_maximum_density query. 


The reasoner code is high-level enough that knowledge engineers can quickly adapt design 
rules and analysis archetypes as customized GEAR rulebases and store these in CML. 


 
Figure 7.6-31.  Code Sample 3: GEAR Web Server with Handlers Pointing to Rules 


The division between the structural ontological world of AMIL and the inferencing world of 
reasoning is given by a few analogies: 


• AMIL choreographs/suggests/navigates the design 
– Design elements are proposed from the ontologies and archetype available 
– Possible design linkages are made available 


• Reasoners in GEAR orchestrates/directs/steers the design 
– Combinations of design elements that meet requirements and constraints 
– Utility functions that select the most adaptable and robust combination 


server(Port) :- 


   http_server(http_dispatch, [port(Port)]). 


 


:- http_handler(root(home), index_page, []). 


:- http_handler(root(load), load_data, []). 


:- http_handler(root(query), max_density, []). 


 


index_page(_) :- 


   reply_html_page(title('Home'), 


      [ h2(a(href('load?file=JSON_graph.txt'), 'Load data from a file')), 


        h2(a(href('load?amil=http://wcsn262:8001/backup/JSON_graph.txt'), 


                 'Load data from an arbitrary web-served file')), 


        
h2(a(href('load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport'), 


                 'Load data from a local AMIL server')), 


        h2(a(href(query), 'Query data example')) ]). 


 


load_data(Request) :-   %% File name version 


   http_parameters(Request, [file(Name, [ optional(true) ])]), 


   nonvar(Name), 


   load_json(Name), 


   write(user_error, Request), nl(user_error), 


   reply_html_page(title('File loader'), [p(Name), p(' load completed.')]). 


 


load_data(Request) :-   %% URL version 


        


    


      


    


    


         


 


  


     


     


                       


                       


                               


 


     



http://localhost:5000/load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport�

http://localhost:5000/query�
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Again, the combination is that of organization via graph and then a specific search approach for 
reasoning.  


Thus, AMIL is well suited for working in concert with reasoners, readily supports co-analysis, 
and is capable of supporting co-simulation for configuration options (refer to 7.6.3.4) and to 
explore the test-space (refer to 7.6.1.3.5). 


7.6.1.4.2 Ontological Rule-Based Languages 


Many patterns that exist in the engineering process can be expressed as archetypes. These 
archetypal patterns can exist as requirements, analysis process artifacts, design rules, and 
template architectures. We need a standard way of generating the engineering products 
through these archetypes, from accessing the knowledge, reasoning on data and rules, and 
generating instances of the archetypes, i.e. as ectypes. 


The aims for selecting a knowledgebase language suitable for reasoning include: 


• To optimize expression of data and logic (i.e., rules) in the same language 
• To allow graph connectivity to be expressed 
• To allow rules to be integrated smoothly with the graph 
• To allow statements about statements to be made (i.e., meta-logic_) 
• To be as readable, natural, and symmetrical as possible 


We have selected a style of reasoner development which we refer to as Onto-Logical 
Programming (OLP) because it combines ontologies with logic programming. Since an ontological 
schema such as OWL already uses Description Logic (DL) then enhancing this with the more 
general Logic Programming allows quite a bit of flexibility for developing general purpose 
GEAR archetype reasoners [SMV11]. 


The goal is to provide a language environment that allows us to quickly and efficiently develop 
domain-specific reasoners. The data can come from ontological sources such as a dedicated 
semantic web, while the rules come from tacit and declared knowledge culled from domain 
experts. This eventually becomes part of the CML. This merges into DL, which used to 
describe components and their relationships via OWL, a semantic web version of DL. 


The fundamental idea is to express design decisions and synthesis as logic. Design decisions 
have historically been expressed in natural language. Kowalski11


Description Logic by itself is extended propositional logic which has no active semantics (other 
than SWRL), so we depend on the control provided by a logic programming environment


 has stated eloquently that: 
Natural Language = Logic + Control. To meet this need for a logical foundation followed by a 
control element, the constrained expressiveness of Description Logic extended by logic 
programming seemed a natural fit. 


12


                                                 


11 R. Kowalski, “Logic for Problem Solving”, North-Holland, 1979. 


. 


12 To understand the difference between logic and control consider the following declarative pieces of 
information. “Mary likes you if you give her presents and be kind to animals.” That is pure logic, but only top-
down control allows us to solve a problem. Thus a solution combing logic and control “If you want Mary 
to like you then give her presents and be kind to animals.”, which has an active element of control. 
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This combination allows us to mimic the human design decision process: Logically classifying 
and then acting on the info, i.e. applying design rules for composition or synthesis 


As a declarative approach, logic programming works well, as we first evaluated the ESKER 
DSE framework with Prolog alone and then added the ontological component later. The 
declarative syntax is a big plus, as queries in Prolog look like relational SQL or SPARQL, but 
with more flexibility. As SPARQL views and SPARQL queries amount to the same thing in 
Prolog, users can quickly get up to speed without having to learn extra syntax. 


The ontological reuse benefit has shown promise from the start. Historically, critics point out 
that domain knowledge is often encoded in a logic program, making it difficult to reuse13


As another reuse perspective, we see less of a need to re-implement algorithms for searching 
and optimization. We can take advantage of existing expert system frameworks (like ESKER), 
planning systems, theorem provers and design rule checkers, and natural language parsers. 
The latter can be domain-specific, allowing non-programmers potentially easier entry, as we 
can reversibly transform between the onto-logical style and controlled natural language. 


. 
However, patterns used with DL and ontological reasoners are standardized. This makes the 
domain knowledge logic more amenable to reuse and extension. So we see a huge productivity 
advantage in writing archetype-based synthesis tools via this approach. 


Similar reuse advantages for Lisp and other interpreted languages with OWL interfaces, yet 
Prolog contains useful search and query mechanisms out of the box14


Conciseness of programs. As a comparison of an “engine power” query in Lisp, SPARQL, and 
OLP, the OLP is arguably the most concise. The box below features several DL queries 
followed by an inline constraint which rules out under-powered engines. This is all specified 
declaratively with the OWL queries meta-interpreted by automatically identifying name-space 
keywords. 


. Having parsers for JSON 
and libraries available for OWL provides a fast track to solving problems. 


 


                                                 
13 Also we need to assume a closed-world for LP and can only make decisions based on data available. 
Data not available will result in negation as failure. This is simple pragmatism, as we will never have 
complete data and perfect knowledge. 


14 Storrle, H., “A Prolog-based Approach to Representing and Querying Software Engineering 
Models”, In P. T. Cox, A. Fish, and J. Howse, editors, VLL 2007 workshop on Visual Languages and Logic, 
volume 274 of CEUR Workshop Proceedings, pages 71.83. 


%import http://wcsn262:8001/demo/arrow.owl 


%import http://wcsn262:8001/demo/CFV.owl 


%import http://wcsn262:8001/demo/meta.owl 


 


%% Rule to find component with power threshold 


 


find_engine_with_power(Engine, Limit) :- 


   meta:'Engine'(Engine), 
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To query, invoke: 


?-find_engine_with_power(E,12). 
E='CFVEngine2' 
 


In this example, the domain knowledge is contained in the ontological terms, making rules easy 
to write and understand.  


The seamless syntactic construction that distinguishes an ontological namespace query from a 
logical call is quite simple. In the engine example, the ontological predicate is identified by a 
colon (:) separator, indicating the ontological namespace for the predicate. 


• Onto-logical call 


 arrow:hasFeature(Engine, Feature) 


• Logical call 


 hasFeature(Engine, Feature) 


In general we apply logic and control via three schemes, a classifier, a description predicate, and 
a control rule. 


• Classifier 
meta:'Engine'(Engine) 
Find individual Engine which belongs to ontological class meta:'Engine' 


• Description Predicate 
arrow:'hasFeature'(Engine, Feature) 
Pull all features from that Engine, one will be a power rating Feature 


• Control Rule 
Power > Limit 
Cull the Power ratings greater than some value Limit,  
and top level will return the matching Engine 


We can ask: What would the rule look like in a controlled natural language? 


In Figure 7.6-32, the code to the left is Prolog and that to the right is a hypothetical controlled 
natural language. The implications and conjunctions map fairly well and we can use the 
capitalization to indicate the unbound variables quite naturally (Figure 7.6-33). 


[YRG-24] Prolog Original Controlled Natural Language 


 
%import http://wcsn262:8001/demo/arrow.owl 


%import http://wcsn262:8001/demo/CFV.owl 


%import http://wcsn262:8001/demo/meta.owl 


 


find_engine_with_power(Engine, Limit) :- 


   meta:'Engine'(Engine), 


   arrow:'hasFeature'(Engine, Feature), 


   meta:'Power'(Feature), 


   arrow:'hasValue'(Feature, PowerValue), 


 
Import http://wcsn262:8001/demo/arrow.owl 


Import http://wcsn262:8001/demo/CFV.owl 


Import http://wcsn262:8001/demo/meta.owl 


 


Find an Engine with a power Limit if 


 Engine is a meta:Engine and 


 Engine has a feature called Feature and 


 Feature is a meta:Power and 


 Feature has a value called Value and 
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   arrow:'value'(PowerValue, Power), 


   Power > Limit. 


 Value evaluates to Power and 


 Power is greater than Limit. 


Figure 7.6-32.  Difference Between Prolog (left) and a Controlled Natural Language 
(right) 


 


Figure 7.6-33.  An example of a Typical Assisted Editing Environment for Query 
Development 


Much of the context modeling world has adopted an ontological strategy for organizing and 
classifying environmental data. For the case of an analysis archetype for aerodynamics with the 
intent of verifying a PCC, we have a design model of a vehicle hull described by the META 
ontology combined with a wind speed context model which uses SWEET (Semantic Web for 
Earth and Environmental Terminology) for defining the environment ontology [YRG10]. 
These two ontologies are combined in Figure 7.6-34. 


 


      


This is the tuProlog environment which we also 
used for the hosting and development of ESKER 
as a META design space exploration tool. 


ESKER  integrates models via AMIL, OLP will do 
the same with the semantic web ontologies.
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Figure 7.6-34.  Loading META/CFV Ontologies and SWEET Ontologies 


Other GEAR platforms. We have used the open source tuProlog, SWIProlog, GNU Prolog for 
evaluation. Also we have evaluated AllegroLisp which contains an Allegrograph graph database, 
with a query language that uses either Lisp, SPARQL, or a builtin-in Prolog interpreter for 
rule processing. This may be more industrial-scale applicable. Protégé was used for populating 
the ontologies, and an N3 to OWL converter for rapid ontology development. 


Connection to AMIL. AMIL uses JSON syntax to describe relationships instead of RDF. By 
querying the AMIL graph database and parsing the JSON, we can convert that data as triple 
stores and reason with it the same as we can with OWL data. The information structure in 
AMIL is equivalent to a semantic web graph, apart from the behavioral semantics for 
evaluating node data (i.e. the extra semantics with respect to model node evaluation which can’t 
be duplicated by RDF). The external logic programming rules can alternatively take care of the 
dynamic evaluation. 


Use of Meta-Logic. 


With the Description Logic reasoner this meta-query: 


                arrow:'hasFeature'(Engine,Feature) 


gets converted to the DL API call: 


               dl_query(bind_state_of_Engine, ‘arrow:hasFeature’,  bind_state_of_Feature) 


The overhead work that goes into this call involves determining the bindings in the triple-store 
lookups and of parsing down to the namespaces. If the binding of Engine is known then we get 
back Feature matches. If the binding of Feature is known then we get back Engine matches. If 
all three are known it logically returns True or False.  The case of the predicate not being 
known is less useful because this would involve an additional level of indirection that a domain 
reasoner would not have much use for (unless it was searching for predicates that were close to 
the intended predicate, in which case relationships could be used to hone in on the desired 
predicate) . 


In general practice, the three necessary API calls include: 


• dl_query(Subject,Predicate,Object) 


• dl_assert(Subject,Predicate,Object) 


 


  
        


   
 


   
      


Design model (Hull)
– HullShapeClass


• GeometricHullShape
– AeroPropertiesHullShape


» DragFactorOfHull


Context model (Wind speed)
– GeographicalLocation


• LocalWind
– TimeAveragedLocalWind


» RayleighDistributionForLocalWind
• RayleighParameterForMean
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• dl_retract(Subject,Predicate,Object) 


The assert and retract only operate on the in-memory state of the knowledge. If we needed 
overall knowledgebase control 


Then this abstraction: 


%import http://wcsn262:8001/demo/arrow.owl 


transforms to 


dl_load(http://wcsn262:8001/demo/arrow.owl) 


and this complementary call: 


dl_unload(http://wcsn262:8001/demo/arrow.owl) 


7.6.1.4.3 Correct-by-Construction 


Combining ontologies and formal rules merges the ideas of Correct-by-Classification with 
Correct-by-Construction. The general principle is that by applying construction rules, semantic 
definitions, and constraints to a problem domain we can create a Correct-by-Construction 
design that we can categorize for potential re-use. That is the power of an ontological archetype 
in that the built-in classification scheme allows it to be more readily searchable and therefore a 
candidate for reuse. 


To scope out the challenge, we take the ramp design example and look at what paths we can 
take with synthesis, co-analysis, and co-simulation: 


Say the premise is that the ramp has an interlock with a switch to control the drive. Further 
extend this to a constraint such that the ramp can’t open if the interior lights are on and if the 
vehicle is in combat mode. In simplest terms this reduces to some predicate logic based on 
valuations of a remote switch, a hardware sensor reading for the light, and a state machine for 
the system modes. 


To generalize from this scenario, we will require domain specific language to represent these 
rules. We can then extract the essential meaning as a template archetype. 


A complete specification of the ramp model would include the logic, controller and plant as 
shown in the figure below. AMIL would serve to configure the co-simulation component pieces, 
and the T&V thread would monitor the execution if it were running in the context of a PCC 
quantification test.  


One interpretation of the logic specification is shown to 
the right: the ramp opens if commanded to and the 
predicates shown apply. The composition logic would 
need to extract some meaning to indicate when to do 
what. Do we open the ramp if lights are on or off? If 
the lights are on and we are not in combat is it then 
OK? That is essentially what the requirements state. 


 


if InterlockSwitchOff then 


   if CombatMode then 


      if LightsOn then 


         WaitForLightsOut 


         OpenRampDoor 


      else 


         OpenRampDoor 


      endif 


    


       


    


 







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 40 Refer to cover page for Distribution Statement. 


 


Figure 7.6-35.  Correct-By-Construction Application  
Involving a Heterogeneous Multi-physics Interface 


Archetypal Synthesis: Following is an example of an archetype knowledgebase for building a 
ramp co-simulation. 


%%%% Example for Domain-Specific Archetypal Specification 


%% 
%% AMIL fact-base, constructed as Subject-Predicate-Object triples 
%% 
activates(switch, logic).                           % 
controls(controller, ramp).                         % 
requires(logic, state_machine).                     % 
enables(logic, controller).                         % 
overrides(logic, interior_lights).                  % 
stimulates(soldiers, plant_dynamics).               % 
modeled_by(plant_dynamics, 'VL.Motion').            % 
modeled_by(controller, 'Matlab').                   % 
modeled_by(logic, 'Java').                          % 
generates(ramp, plant_dynamics).                    % 
visualizes(renderer, plant_dynamics).               % 
monitors(test_oracle, max_torque_time).             % 
advises(max_torque_time, pass_fail).                %  
produces(controller, max_torque_time).              % 
logs(controller, max_torque_time).                  % 
applies(controller, state_variables).               % 
shares(plant_dynamics, state_variables).            % 


  


%% 
%% Archetypal behavior rulebase for specifying causality 
%% 
+(Subject, Predicate, Object) :- 
           call_with_args(Predicate,Subject,Object), 
           print(Subject),print(' <<'),print(Predicate),print('>> '),print(Object),nl. 


 


Interlock 
Logic


Activate Lights


if InterlockSwitchOff then
if CombatMode then


if LightsOn then
WaitForLightsOut
OpenRampDoor


else
OpenRampDoor


endif
else


OpenRampDoor
endif


endif
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logical_control(System) :- 
                        +(switch, activates, Logic), 
                        +(Logic, modeled_by, Exec), 
                        +(Logic, requires, States), 
                        +(Logic, overrides, Equipmemt), 
                        +(Logic, enables, System). 


  


hinged_slab_dynamics(Data) :- 
                           +(plant_dynamics, modeled_by, Exec), 
                           +(Slab, generates, plant_dynamics), 
                           +(Forces, stimulates, plant_dynamics), 
                           +(Renderer, visualizes, plant_dynamics). 


  


hinged_slab_control(State) :- 
                           logical_control(System), 
                           +(System, modeled_by, Exec), 
                           hinged_slab_dynamics(Data), 
                           +(Plant, shares, Data), 
                           +(System, applies, Data), 
                           +(System, controls, Slab), 
                           +(Logic, enables, System), 
                           +(System, produces, State), 
                           +(System, logs, State). 


  


test_controller(PCC) :- 
                     hinged_slab_control(State), 
                     +(test_oracle, monitors, State), 
                     +(State, advises, PCC). 


Execution example 
  


| ?- test_controller(PCC). 


 
switch <<activates>> logic 
logic <<modeled_by>> Java 
logic <<requires>> state_machine 
logic <<overrides>> interior_lights 
logic <<enables>> controller 
controller <<modeled_by>> Matlab 
plant_dynamics <<modeled_by>> VL.Motion 
ramp <<generates>> plant_dynamics 
soldiers <<stimulates>> plant_dynamics 
renderer <<visualizes>> plant_dynamics 
plant_dynamics <<shares>> state_variables 
controller <<applies>> state_variables 
controller <<controls>> ramp 
logic <<enables>> controller 
controller <<produces>> max_torque_time 
controller <<logs>> max_torque_time 
test_oracle <<monitors>> max_torque_time 
max_torque_time <<advises>> pass_fail 


PCC = pass_fail 


Figure 7.6-36.  Analysis Archetype Rules 


Co-Analysis: It may also be possible to construct dynamic rules in AMIL to execute the 
behavior according to results from other components. 


• MainSwitch -- Activates the ramp driver  
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• InterlockSwitch -- Act like a deadman switch to defeat the opening of the door  
• CombatMode -- A state in the vehicle state diagram  
• LightsOn -- Senses the light in vehicle for survivability, followed by a condition 


variable to hold on until light is off.  


AMIL is a language for interfacing to a graph database – augmentation with higher-level rules 
riding on top of the AMIL layer allows us to construct this logic automatically. 


Co-Simulation: AMIL could provide a routing table to, say, the remote functional response to 
a CombatMode query. In this case AMIL would declare which node the states and modes 
subsystem exists within. When CombatMode is queried the AMIL runtime would execute and 
serialize the necessary call and response to the remote node. 


The question of co-simulation is thus: Do we want to exercise AMIL so that it can make 
decisions based on these kinds of rules and state data, or do we want to defer this logic to the 
Simulink or other controlling simulation? 


• Basic Synthesis: If we defer this to the controlling simulation, we lose the ability to 
compose the model from the design elements since the development will need to be 
done in the language of the controlling simulation (e.g. Java or Simulink).   


• Basic Co-Analysis: If we do this composition using AMIL, then we will need 
mechanisms to stitch the ramp drive, switch, sensor, and state machine together with 
customized dynamic rules, and then verify that it works according to the test criteria. 


• Configured Co-Simulation: The other alternative is to employ AMIL as a 
conventional run-time configuration language and use the AMIL API when we need it 
to call out from the controlling simulation. In this case, the Simulink code would be 
comprised of many external links, one for each of the logic elements. We lose the 
ability to compose but can use AMIL to pull external pieces into the main simulation. 


This argument essentially places AMIL into a specific role for co-simulation - it provides us the 
basic configuration file or a data path for the primary simulation language that engineers can 
use. 


This provides for composition in and integration ofother co-simulation languages, with an 
assortment of composition knowledgebases, one for each language, i.e.  a data-flow composer 
for Simulink, an object-oriented one for Java and so on. This allows the generation of this kind 
of decision logic without having to write the if-then-else rules. 
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7.6.2 Co-Analysis and Exploration 


7.6.2.1 Principles behind GEAR 


The prominent idea behind GEAR is to apply similar rule-based semantics in the context of 
developing archetypes for analysis, design, and implementation. The goal is to extend the 
information laid out in the AMIL and leave it in a symbolic format, suitable for mapping into 
more concrete representations. The symbolic representation thus forms an “archetype” for the 
specified behavior.  


The general concept is to start with a domain model of the behavior that we want to specify. 
The domain model is separated into two classes: (1) fundamental atomic actions or behaviors at 
the low-level and (2) archetypal rules at a higher-level which server to stitch the actions 
together.  The actions at the low-level can be constructed from “subject-predicate-object” 
triples, which denote causal relationships between intent and a symbolic realization.  The 
symbolic realization could be retained as an abstraction or a set of possible alternatives. 


So a typical triple may be represented as: 


 operating_environment <<targets>> destination 
 


Here (operating_environment, targets, destination) illustrates an example of the (subject, predicate, 
object) triplet pattern we have in mind.  Understandably, this relationship by itself is fairly 
meaningless until we place it in the context of a larger-scale behavior. So the archetypal 
behavior starts in motion when several of these individual triples form a conjunction that 
accomplishes a larger task and executes to show self-consistency and correctness. 


The symbology of the subjects and predicates will always represent things that we can build or 
reuse – whether they are software, hardware, or human actors depends on what best the 
ARROW process decide that the symbols eventually map to.  


7.6.2.1.1 GEAR Approach  


We start out with a domain model of some sequence (potentially concurrent) of steps that may 
build into a cyber-physical realization. The main theme for the sequence is that it forms a set of 
behaviors that would typically reproduce a human’s action (automation) or improve on some 
already automated realization. In practice, these sequences draw from typical or archetypal 
behaviors that have stood the test of time. The key is that we do not want to reinvent the wheel 
each time an engineering development needs to implement a behavior. Instead we can extract 
from the repository of behavioral recipes and apply them to a start-up design task thereby 
reducing our development time. 


The need then is for a description that can generate concrete realizations based on the 
behavioral archetypes and requirements. 


Let’s start with an example drawn from a typical need for any vehicle equipped with a 
sophisticated armament system. The need is to create a projectile fly-out model suitable for 
analysis, design, and integration testing. A directed graph of the archetype for accuracy 
analysis is shown earlier inFigure 7.6-22. 
 


On its own, this directed graph provides the developer with a general flow for data and actions 
to accomplish a complete weapons effectiveness analysis. What is missing from it are formal 
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semantics and causal ordering relationships for the arrows. In other words, we have an idea for 
the flow of data but it remains imprecise and open to interpretation, and therefore ambiguous. 


The goal is to take this domain model of fly-out accuracy analysis and create an archetypal 
knowledgebase from it based on AMIL subject-predicate-object triples and higher-order or 
composite rules representing the main stages of the behavior.   


We start by creating a set of triples describing the individual behaviors that we need to 
implement in Figure 7.6-22. Starting from the left side of the diagram, we note that 
(operating_environment, targets, destination) is a reasonable behavior to include. In the text box 
below, we gather these low-level behaviors together with that triple as the first entry. (Note 
that this is realized in a concise syntax, with the predicate leading the triple as a functor of the 
subject and object). This first set forms the AMIL factbase.  


Listed below the factbase, we provide a set of archetypal rules governing how the predicate 
actions fit together. We have three high-level rules corresponding to the three main stages of 
an analysis model – the gun pointing, the projectile trajectory fly-out, and the weapon target 
lethality.  


 


%% 


%% AMIL fact-base, constructed as Subject-Predicate-Object triples 


%% 


targets(operating_environment, destination). 


resides_on(operating_environment, terrain). 


modeled_by(flyout, '3DOF'). 


initialized_by('3DOF', aero_data). 


influenced_by('3DOF', met_data). 


guided_by('3DOF', round_corrections). 


generates('3DOF', aimpoint_accuracy). 


stabilized_by(gun_pointing, stabilization_algorithm). 


starting_on(stabilization_algorithm, terrain). 


points_at(stabilization_algorithm, destination). 


compensating(stabilization_algorithm, drive_model). 


perturbed_by(stabilization_algorithm, moving_vehicle). 


produces(stabilization algorithm, pointing accuracy). 
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Figure 7.6-37.  Behavioral Archetype 


An executable query to test the rules results in the following valid response: 
?- weapon_effect(Effect). 
Effect = lethality+error 


This by itself is not too interesting other than it demonstrates that the set of rules is executable 
and self-consistent. If we wish to add a level of introspection, we can add the following meta-
rule to describe a more natural subject-predicate-object syntax: 


+(Subject, Predicate, Object) :- 
   call_with_args(Predicate,Subject,Object), 
   print(Subject),print(' <<'),print(Predicate),print('>> '),print(Object),nl. 


 


Restructuring our top-level rules with this new approach following a domain-specific syntax: 


%% 


%% Archetypal behavior rulebase for specifying causality 


%% 


pointing_accuracy(Pointing) :- 


                            resides_on(operating_environment, Terrain), 


                            targets(operating_environment, Destination), 


                            stabilized_by(gun_pointing, Alg), 


                            starting_on(Alg, Terrain), 


                            points_at(Alg, Destination), 


                            compensating(Alg, drive_model), 


                            perturbed_by(Alg, moving_vehicle), 


                            produces(Alg, Pointing), 


                            selected(ammo, Caliber), 


                            conditioned_by(Caliber, gun_geometry), 


                            ignites(interior_ballistics_model, Caliber), 


                            dispersed_by(Pointing, interior_ballistics_model). 


 


projectile_flyout(Aimpoint) :- 


                            pointing_accuracy(Pointing), 


                            selected(ammo, Caliber), 


                            initializes(Pointing, Flyout), 


                            modeled by(Flyout, DOF), 
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Figure 7.6-38.  Alternate Rule Layout 


This capability for introspection on the calls allows us to manipulate the triples and do meta-
processing on the causality chain. In this specific case, we are simply reformatting the matching 
of the high-level archetypal behavior to the low-level action, changing the prefix predicate 
notation predicate(subject, object) to a possibly more preferable infix style of (subject, predicate, 
object). 


We can also do more extensive processing, as for example in generating code, in which case an 
execution of the logic will fire predicates that match against instance patterns. 


| ?- weapon_effect(Effect). 


ammo <<selected>> medium_caliber 


medium_caliber <<causes>> lethality 


operating_environment <<resides_on>> terrain 


operating_environment <<targets>> destination 


gun_pointing <<stabilized_by>> stabilization_algorithm 


stabilization_algorithm <<starting_on>> terrain 


stabilization_algorithm <<points_at>> destination 


stabilization_algorithm <<compensating>> drive_model 


stabilization_algorithm <<perturbed_by>> moving_vehicle 


stabilization_algorithm <<produces>> pointing_accuracy 


ammo <<selected>> medium_caliber 


pointing_accuracy(Pointing) :- 


                            +(operating_environment, resides_on, Terrain), 


                            +(operating_environment, targets, Destination), 


                            +(gun_pointing, stabilized_by, Alg), 


                            +(Alg, starting_on, Terrain), 


                            +(Alg, points_at, Destination), 


                            +(Alg, compensating, drive_model), 


                            +(Alg, perturbed_by, moving_vehicle), 


                            +(Alg, produces, Pointing), 


                            +(ammo, selected, Caliber), 


                            +(Caliber, conditioned_by, gun_geometry), 


                            +(interior_ballistics_model, ignites, Caliber), 


                            +(Pointing, dispersed_by, interior_ballistics_model). 


 


projectile_flyout(Aimpoint) :- 


                            pointing_accuracy(Pointing), 


                            +(ammo, selected, Caliber), 


                            +(Pointing, initializes, Flyout), 


                            +(Flyout, modeled_by, DOF), 


                            +(Caliber, provides, Aerodata), 
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medium_caliber <<conditioned_by>> gun_geometry 


interior_ballistics_model <<ignites>> medium_caliber 


pointing_accuracy <<dispersed_by>> interior_ballistics_model 


ammo <<selected>> medium_caliber 


pointing_accuracy <<initializes>> flyout 


flyout <<modeled_by>> 3DOF 


medium_caliber <<provides>> aero_data 


3DOF <<initialized_by>> aero_data 


3DOF <<influenced_by>> met_data 


3DOF <<guided_by>> round_corrections 


3DOF <<generates>> aimpoint_accuracy 


circular_error <<required_by>> aimpoint_accuracy 


aimpoint_accuracy <<derives>> error 


 


Effect = lethality+error 
 


In this flyout example, variants of the trajectory model could encompass the lower fidelity 
3DOF model and a higher fidelity 6DOF model. 


7.6.2.1.2 Applying GEAR to domains 


There are several benefits to using the ontological/AMIL predicate logic approach on domain-
specific problems.  


For one, the archetypal specification of a system is easily understandable –convenient naming 
can be used and the specification is directly executable if something is not understood.  


A single language can be applied for specifying requirements, defining architecture, behavior 
modeling, as well as simulation configuration. This can be extended for specifying testing 
archetypes, which essentially follows the (test_case, stimulate, system) triple paradigm.  


It also meets the desire for simplicity, non-ambiguity, and completeness in a single integrated 
specification. We thus have a support infrastructure that is common between tools and the 
domain language.  


In "Mathematical Models for Computing Science," C.A.R. Hoare states (August 1994): 


• Propositional and predicate logic provide all the basic concepts needed for a systematic 
engineering design methodology. 


• The operation of each component can be described scientifically by a separate predicate. 
• A non-deterministic product is described by the disjunction of predicates describing its 


alternative modes of behavior. 


By using logical constructs instead of the algebraic ones we can greatly simplify the 
architecture specification and model development. Our examples illustrate several practical 
applications of logical constructions leading to causal linkages between chained assumptions 
and guarantees. These are the initial steps to synthesis of models via domain-specific 
archetypes (i.e. a realization of the Galileo functionality for ARROW). 
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The supplemental exercises below provide more in-depth examples and explanation on how 
this archetypal behavior modeling can be applied. The first example borrows from the planning 
realm and describes a reference architecture with details on the predicate logic. The second and 
third example describes a simple assembly tree construction, and suggests the path from 
predicate logic to ontological logic. 


Once accepted, the more elaborate reasoning tools such as ECTo and ESKER will allow quick 
prototyping and automated evaluation to determine a potentially feasible and/or optimal 
assembly. The plan is to apply this approach to a variety of archetypal domains. 


GEAR suite


• AMIL has extra semantics with respect to model node evaluation which can’t be duplicated by RDF
– If that is not required then ESKER becomes a type of OLP, with nodes evaluated by the logic program


• The concepting reasoner  visualizes spatial representations, which is difficult to do in pure logic


Ontological
Reasoner


(with RDF)


Model 
Reasoner


(with AMIL)


Concepting
Reasoner


(with AMIL)


Design Space Exploration, 
Analysis of Alternatives ESKER LP


Vehicle Spatial Layout ECTo


Requirements Allocation OLP


Analysis Composition OLP


Design-rule-based Synthesis OLP


Template Architectures OLP


Test Case Generator OLP


PCC Evaluation ESKER


 
Figure 7.6-39.  Gear Suite 


7.6.2.1.3 #1: Manufacturing Example   


The first example is a simple industrial manufacturing scenario which we use to stretch our 
understanding of how the language can be used.  In this example, we show how a logic-based 
requirements and architecture specification can provide an integrated framework for the 
development and reuse process.15


Application Domain. Our example is set in a manufacturing domain. An abstract 
representation of this manufacturing environment is shown in 


 As an illustration, we will apply typical industrial decisions, 
resource capabilities, and resource sharing (refer to BBN’s work) and allocation to a task 
workflow. 


Figure 7.6-40.  


                                                 


15 Logical specification does not introduce artifacts in the specification, such as complex diagrams and 
symbols, unique node representations, specialized networks, complex database schema representations, 
etc. Instead, it deals directly with the goals, plans, capabilities, and constraints of the application 
domain. The specification does not require information modeling as the first step in developing the 
specifications. Thus, there is no need for object diagrams, DFDs (Data Flow Diagrams), E-Rs (Entity-
Relationship Diagrams), STDs (State Transition Diagrams), etc.  All of these representations are 
implicit in the declarative-style logical specification. 
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Figure 7.6-40.  Abstract Representation of the Operating Environment 


When manufacturing orders are received, they are passed through the scheduling-dispatching 
channel to the shop-control activity. One of the activities that shop control is responsible for is 
'material move' operation. We will assume that the manufacturing plant uses a just-in-time 
approach, where an immediate response to all of the incoming work orders is required. Thus, 
when a move order is received from the shop control specifying a certain material to be moved, 
the work center accepts the order if it has the necessary resources; otherwise the shop control is 
notified that sufficient resources are not available and that the material move order cannot be 
accepted. In the latter case the shop control will try other alternatives. 


Our work center consists of small warehouse, transportation equipment, and transportation 
equipment operators. To keep our illustration simple, only some of the normally available 
resources will be considered.  


Domain Model. A domain model specifies the behavior of the entities making up the problem 
space. As such, the domain model is also the representation of the process, because it describes 
what is taking place in the domain. It considers functions, data, rules, and the various entities 
(objects) and their capabilities and constraints. 


The primary purpose of the domain model is to describe generic problems, which can then be 
represented as archetypal candidates for reuse. Our 'material move' operation can be considered 
in this context, because it can represent a family of 'move' operations that have the same 
generic structure, and therefore are considered archetypal. 


A domain model is logical because it does not assign functions to specific components. It only 
specifies the applicable interface and the information that flows through this interface. 


A domain model can be specified informally (textual description), graphically (diagram 
description), or formally. We started with an informal description of the manufacturing domain, 
Figure 7.6-41 shows a block diagram representation with instance data, and then we will look 
at the formal (logical) representation. 


One immediately sees the classification of the categories Operator, Equipment, and Material 
with several candidate instances associated with these classes. 


 


Orders TaskScheduler TaskDispatcher ShopControl WorkCenter 


Plans {Operators,Material,Equipment} 
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Figure 7.6-41.  Dispatch Work Center 


The next step is to represent the above model formally. The external interface of our work 
center is simple. The top-level domain model for the material move function (work order 
request) can be expressed as: 


          move(Material) 


 


where 'Material' is a parameter that will be specified when the move order is requested.16


Reference architecture. The reference architecture specifies the allocation of tasks needed to 
meet the desired goal. It also supports the development of a family of related systems. Thus, it 
is important to keep it in a generic parameterized form, so that it can be extended, 
reconfigured, and reused. We can also look at the reference architecture as an extension of the 
domain model. Whereas the domain model specifies WHAT is needed, the reference 
architecture specifies HOW to accomplish it. The logical architecture model is potentially 
layered, with each layer providing additional detail and less abstraction. 


  


The reference architecture uses a logical specification. Instead of developing a new architecture 
description language, we will use a conventional logic programming language.17


Prolog is basically a first order logic (FOL) programming language with a number of non-
logical extensions. A Prolog predicate sentence has a head (left side) and a body (right side), 
separated by the symbol ':-' (meaning if). The Prolog declaration, 'p :- q,s.' states that the 
assertion p is true if the assertions q and s are true. From a goal viewpoint we can interpret the 
above assertion as a goal and two subgoals. 


  But before we 
get too far, a few comments about Prolog notations and its unique conventions are necessary. 


                                                 


16 The 'move' function, of course, is only one of the many functions applicable to our work center. Others 
include restocking, acquisition of transportation equipment, etc. 
17 Our choice in this case is Prolog, but another logic programming language could be used as well. 
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In an alternate interpretation, we could consider the goal as a responsibility and the individual 
plans as obligations associated with the specific responsibilities. Yet in another interpretation, 
the goal could be considered to be a strategy18


In the conventional Prolog notation, names starting with a lower-case letter represent 
predicates and constants and those starting with an upper-case letter represent variables (these 
are initially unbound). Lists are enclosed in square brackets. Thus [a,b,c] is a list consisting of 
three elements a, b, and c. The individual elements may represent parts, equipment, etc. Lines 
beginning with a '%' are comments. 


.  


Decomposition of problem. The solution should naturally come out of the problem domain. A 
logical specification can support system decomposition at all levels of representation. Hierarchy 
levels are variable and different parts of the system may not be expanded to the same level. As 
we will note later, there will be both horizontal and vertical decomposition. 


The same decomposition approach also provides the capabilities for including a number of 
alternatives, such as alternate plans, backup tasks, or error recovery actions in the process plan. 
These alternatives are selected if a goal cannot be satisfied using the primary path (normal 
operating procedures). Since pre-conditions and post-conditions are implicit in the declarations, 
special notation is not required. However, any applicable constraints must be declared 
explicitly. 


We can express the relationship between the domain model and the reference architecture as a 
logical predicate: 


move(Material) :-                                    % Implicit Response T/F 


        find_transport(Material,Transport), 


        find_operator(Transport,Operator), 


        make_assignment(Operator,Transport,Material). 


 


The top level goal (or responsibility) is 'move(Material)'. The right hand side of the predicate 
states the specific tasks (or obligations) that need to be performed to determine whether the 
move request can be accepted by the work center. The goal is satisfied if we can find the proper 
transport, locate an available qualified operator, and then make the move assignment (resulting 
in an affirmative response. Note, that these are also the preconditions for a successful material 
move operation. The above expression represents a horizontal composition, with the meaning 
of the individual terms to be defined at the next lower level in the definition hierarchy. 


For example, to determine if the proper transportation means are available, we have to find out 
first what kind of transport is needed to move the requested material and then we have to check 
if that particular transport is available. Similar considerations apply to the selection of an 
operator, where we first have to determine if an operator is available and then have to check if 
that particular operator has the needed operational skills. 


However, if one or more of these requirements are not met, then the work center will need to 
issue a negative response (i.e. an implicit failure). In a full system implementation this message 


                                                 


18 The specific interpretation will normally be application and user environment dependent. 
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would retry and go to ShopControl, where alternate means would have to be found to move the 
needed material to the shop floor. 


move(+Material) :- 


        decline_request(+Material). 


 


In the logical specification resource allocation constraints are defined by the rules that will 
assign an operator and the appropriate transport equipment to the material move operation. 
This assignment will occur only if the resource availability constraints are met. 


The dispatch work center spec is presented below. The write statements are not actually part of 
the specification, but are included for animation and testing purposes.  


% ---------------------- Logical Specification ----------------- 


% Dispatch Work Station Logical Specification 


% move is the responsibility; find_transport, etc. -- are obligations 


 


move(Material) :-                                    % Response T 


        find_transport(Material,Transport), 


        find_operator(Transport,Operator), 


        make_assignment(Operator,Transport,Material),!. 


move(Material) :-                                    % Response F 


        decline_request(Material). 


 


find_transport(Material,Transport) :-                % Response T 


        move_by(Material,Transport), 


        equipment(Transport,available). 


find_operator(Transport,Operator) :-                 % Response F 


        operator(Operator,available), 


        operator_skills(Operator,Skills), 


        have_skill(Transport,Skills). 


make_assignment(Operator,Transport,Material) :-      % Response T 


        assign_operator(Operator), 


        assign_transport(Transport), 


        issue_work_order(Operator,Transport,Material). 


decline_request(Material) :- 


        write('resources are not available to move '), 


        write(Material),nl. 


 


assign_operator(Operator) :- 


        retract(operator(Operator,available)), 


        assert(operator(Operator,busy)). 
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assign_transport(Transport) :- 


        retract(equipment(Transport,available)), 


        assert(equipment(Transport,busy)). 


issue_work_order(Operator,Transport,Material) :- 


        assert(assignment(Operator,Transport,Material)), 


        write(Operator), write(' has been assigned to move '), 


        write(Material),nl. 


 


move_completed(Operator) :- 


        assignment(Operator,Transport,_), 


        release_transport(Transport), 


        release_operator(Operator), 


        assignment_completed(Operator),!. 


release_operator(Operator) :- 


        retract(operator(Operator,busy)), 


        assert(operator(Operator,available)). 


release_transport(Transport) :- 


        retract(equipment(Transport,busy)), 


        assert(equipment(Transport,available)). 


assignment_completed(Operator) :- 


        retract(assignment(Operator,_,_)), 


        write(Operator),write(' has completed move assignment'),nl. 


 


%auxiliary logic (used to find if an operator has the needed skill) 


have_skill(X, [X|_]). 


have_skill(X, [_|Y]) :- have_skill(X,Y). 


 


% -------------------- instance specification -------------------- 


% Sample Dispatch Work Station knowledge base facts, store as triples 


 


% transportation needs (capabilities) 


move_by(storage_tank,crane). 


move_by(stand,truck). 


move_by(parts,cart). 


 


% operator availability status 


operator(carl,available). 


operator(jill,available). 


operator(tom,available). 
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% operator skills (capabilities) 


operator_skills(carl,[truck,cart]).   %% triples with object a list 


operator_skills(jill,[crane,cart]). 


operator_skills(tom,[truck,cart]). 


 


%equipment availability status 


equipment(crane,available).  


equipment(truck,available).  


equipment(cart,available). 


 


% -------------------- test specification ------------------------- 


% a simple behaviour test scenario 


 


test:- 


        move(storage_tank), 


        move(parts), 


        move(stand), 


        move_completed(jill), 


        move(parts). 


 


% --------------------- End of Logical Specification ----------------------- 


 


Figure 7.6-42.  Material Move Specification in Prolog 


We note that the top level specifies the "WHAT" type requirements (responsibilities and 
obligations). The "HOW" details are defined and elaborated at the lower levels in the 
specification. The "WHO" question will answered during the system implementation phase. 


It is important to note the "information hiding" aspects of the logical representation. In our 
example 'move(Material)', declared at the top level, is the only link to the external environment 
and hides the internal operations. 


It is also important to note that all the potential interconnections are part of the hierarchical 
representation. Thus, we see no need for a specialized module interconnect language or 
separate data flow diagrams. 


Our problem representation is an executable specification because it is an operational Prolog 
program. To test it (using the simple 'test' predicate which is defined at the end of the 
specification listing), we can load it and run it under a Prolog interpreter or compiler. For 
example, using the SWI Prolog compiler, we obtain the following results: 


-------------------------------------------------------------------------- 


Welcome to SWI-Prolog (Version 2.5.2) 


Copyright (c) 1993-1996 University of Amsterdam.  All rights reserved. 
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1 ?- [msi7]. 


msi7 compiled, 0.17 sec, 5,624 bytes. 


 


Yes 


2 ?- listing(test). 


 


test :- 


        move(storage_tank), 


        move(parts), 


        move(stand), 


        move_completed(jill), 


        move(parts). 


 


Yes 


3 ?- test. 


jill has been assigned to move storage_tank 


carl has been assigned to move parts 


tom has been assigned to move stand 


jill has completed move assignment 


resources are not available to move parts 


 


Yes 


--------------------------------------------------------------------------- 


Figure 7.6-43.  Testing the Logical Specification 


Examining the results of this test (actually a trace), we note that the first three move requests 
are satisfied, but the fourth fails because all of the needed resources have already been allocated. 
Note that although Jill is available as an operator, the cart is still in use. Thus, the fourth 
request fails. 


A similar approach can be used to specify other manufacturing operations. For example, we 
could develop a specification for a make operation, 'make(Gizmo,Quantity)'. The higher level 
specification, for example, could include a number of make and move operations. Again, the 
individual tasks (goals) will be decomposed as needed. 


Our example illustrated a simple approach to handling constraints and capabilities. The 
constraints considered included the availability of suitable transportation equipment and a 
qualified operation. In a more complex situation, we will need to consider other types of 
resources that may be physical (consumable or permanent) or logical (such as support 
activities). Resources also may be shared by several tasks. In this case the resource model 
contains the specifications and the status of all resources -- material, equipment, as well as their 
current capabilities. 
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In addition to resource and capability constraints, it will be necessary to specify time and 
priority constraints, such as response time to a task request or the task priority level. In some 
situations, response time will be expressed as a function of priority. When developing the 
specifications, we must remember that all of these constraints need to be expressed in a logical 
form. 


Logic described in this fashion leads to architecture reusability. For example, we could modify 
our dispatch example for a different application, such as machine selection. In this situation, we 
would consider machine operators instead of equipment operators. A task in this case would 
denote an operation performed on a machine and the skill list could specify the capabilities 
associated with a specific machine or a machine operator. 


Logical specifications are easily extendable (composable). For example, in our illustrative 
example we did not consider material availability. However, this additional constraint can be 
included by modifying the top level specification as shown below (note the added line #2): 


------------------------------------------------------------- 


move(Material) :- 


        material_available(Material), 


        find_transport(Material,Transport), 


        find_operator(Transport,Operator), 


        make_assignment(Operator,Transport,Material). 


------------------------------------------------------------- 


Figure 7.6-44.  Adding Material Availability Constraint 


and then adding the appropriate expansion for 'material_available(Material)'. 


Implementation Architecture. The logical specification developed above is only a generic 
exemplar. However, it provides the foundation for developing specific applications. The 
applications-level architecture definition provides a precise statement of the specific problem, it 
clearly defines components, their interconnections, specific application constraints, etc. 


Implementations should not appear in the reference architecture definition apart from instance 
data. This approach will permit the same abstract model to serve as a framework for 
implementation in different operating environments using different architectural styles. 


The development of the applications architecture is the last step in the stepwise refinement 
process that starts with the domain model (highly abstract) and ends with a definition (highly 
specific) that is suitable for implementation in components. This example was left in a non-
ontological format so that we can see how the transition to an ontology-based description plays 
out. This is described in the next two examples. 


7.6.2.1.4 #2: Structured Synthesis Archetype 


Another example of an archetype is the structural formulation. The pattern is one of having a 
generic blueprint for how the parts fit together within the context of an assembly tree. The 
AMIL triple, denoted as an assembly, provides the subject-predicate-object low-level actions that 
the higher level construction rules act on. 


What this demonstrates is the concept of a variant. The variant essentially gives a several 
concrete realizations to the abstract basicpart.  
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%%% 


%%% Simple example of a bike assembly tree, with variants included in Prolog. 


%%% 


%%% This is partially decomposable whereby the "variant" functor is left open 


%%% 


%%% to invoke execute: "parts_of(bike, M)?" 


%%% 


%%% This will generate all the possibilities of a bicycle variant 


 


basicpart(rim). 


basicpart(spoke). 


basicpart(rearframe). 


basicpart(handles). 


basicpart(gears). 


basicpart(bolt). 


basicpart(nut). 


basicpart(fork). 


 


assembly(bike,[wheel,wheel,frame]). 


assembly(wheel,[spoke,rim,hub]). 


assembly(frame,[rearframe,frontframe]). 


assembly(frontframe,[fork,handles]). 


assembly(hub,[gears,axle]). 


assembly(axle,[bolt,nut]). 


 


%% basicpart could be defined as assembly(x,[]). 


 


variant(rim, deep_rim). 


variant(rim, shallow_rim). 


variant(spoke, bladed_spokes). 


variant(spoke, circular_spokes). 


variant(rearframe, titanium). 


variant(rearframe, aluminum). 


variant(rearframe, carbon). 


variant(rearframe, steel). 


variant(handles, drop_bar). 


variant(gears, 5-gears). 


variant(gears, 6-gears). 


variant(bolt, steel_bolts). 
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variant(nut, steel_nuts). 


variant(fork, Fork) :- variant(rearframe,F), atom_concat(F, '_fork', Fork). 


 


%%% Rules 


parts_of(X,P) :-  


   parts_cumulative(X,Parts,[]), 


   one_of_each(Parts, P). 


 


parts_cumulative(X,[X|Hole],Hole) :- basicpart(X). 


parts_cumulative(X,P,Hole)        :-  


   assembly(X,Subparts), 


   parts_cumulative_list(Subparts,P,Hole). 


 


parts_cumulative_list([],Hole,Hole). 


parts_cumulative_list([P|Tail],Total,Hole) :- 


   parts_cumulative(P,Total,Hole1), 


   parts_cumulative_list(Tail,Hole1,Hole). 


 


one_of_each([],[]). 


one_of_each([H|T],[H1|Ts]) :- variant(H,H1), one_of_each(T,Ts). 


 


The result of a run will generate a collection of all possibilities of the bike fitted with different 
components. The following query represents only the first few matches for possible assemblies: 


| ?- parts_of(bike,L). 


 


L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,titanium_fork,drop_bar] ? ; 


 


L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,aluminum_fork,drop_bar] ? ; 


 


L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,carbon_fork,drop_bar] ? ; 


 


L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,steel_fork,drop_bar] ? ; 


 


L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,aluminum,titanium_fork,drop_bar] ? ; 
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L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,aluminum,aluminum_fork,drop_bar] ? 


 


7.6.2.1.5 #3: Ontological Synthesis Archetype 


The next step is to merge the above structured archetype into an ontologically structured 
archetype. To do this, we first need a classification scheme which is provided by the following 
OWL N3 declaration: 


@prefix :        <http://localhost:2000/bike.owl#> . 


@prefix owl:     <http://www.w3.org/2002/07/owl#> . 


@prefix rdf:     <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 


@prefix rdfs:    <http://www.w3.org/2000/01/rdf-schema#> . 


@prefix xsd:     <http://www.w3.org/2001/XMLSchema#> . 


 


:  a owl:Ontology . 


:basicpart a owl:Class . 


:structure a owl:Class . 


:assembly a owl:ObjectProperty . 


 


 


:rim  a  :basicpart . 


:spoke  a :basicpart . 


:rearframe a :basicpart . 


:handles a :basicpart . 


:gears  a :basicpart . 


:bolt  a :basicpart . 


:nut  a :basicpart . 


:fork  a :basicpart . 


 


:concept a :structure ; 


 :assembly :wheel , 


   :frame . 


 


:frame  a :structure ; 


 :assembly :rearframe , 


   :frontframe . 


 


:frontframe a :structure ; 


 :assembly :fork , 


   :handles . 
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:wheel  a :structure ; 


 :assembly :spoke , 


   :rim , 


   :hub . 


 


:hub  a :structure ; 


 :assembly :gears , 


   :axle . 


 


:axle  a :structure ; 


 :assembly :bolt , 


   :nut . 


 


Then we can follow this with the declaration of the variant parts: 
:deep_rim  a :rim . 


:shallow_rim  a :rim . 


:bladed_spokes  a :spoke . 


:circular_spokes  a :spoke . 


:titanium   a :rearframe . 


:aluminum   a :rearframe . 


:carbon   a :rearframe . 


:steel    a :rearframe . 


:dropbar   a :handles . 


:five_gears  a :gears . 


:six_gears  a :gears . 


:steel_bolts  a :bolt . 


:titanium_fork  a :fork . 


:aluminum_fork  a :fork . 


:carbon_fork   a :fork . 


:steel_fork   a :fork . 


:steel_nuts  a :nut . 


 


Once the classifiers and instances are defined then we can reason on the parts using an 
ontological logical inference engine. 


%import http://localhost:2000/bike.owl 


%import http://www.w3.org/2002/07/owl 


%import http://www.w3.org/1999/02/22-rdf-syntax-ns 
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parts_of(X, List) :- 


   findall(Parts, part_of(X,Parts), PartsList), 


   one_of_each(PartsList, [], List). 


 


part_of(X, X) :- 


   bike:'basicpart'(X). 


part_of(X, Y) :- 


   bike:'assembly'(X, Subpart), 


   part_of(Subpart, Y). 


 


one_of_each([], List, List). 


one_of_each([Type|Rest], Input, List) :- 


   rdf:'type'(Obj, Type), 


   one_of_each(Rest, [Obj|Input], List). 


 


The intent is the same as the purely structural example, yet the logical code comes out more 
clean and concisely because of the classification structure imposed via the OWL organization 
and instancing approach. There are fewer choices allowed to describe the system according to 
the description logic semantics, so that the logical rules tend to be easier to understand. There 
is also a greater possibility for reuse and less maintenance requirements due to the longevity 
imposed by a good classification scheme. 


7.6.2.2 ESKER 


This section lays out the approach that we applied to building the Expert-System 
Knowledgebase Evaluation Reasoner (ESKER) as a tool for design space exploration. In 
particular, we describe how we have tied together AMIL and logical semantic reasoning to 
facilitate DSE, with ESKER containing the engine that drives the search. The semantic web 
reasoners available use a similar inference engine (Prolog) to that which is described here. 
ESKER also uses a declarative form, making it very compatible with triple-store and 
description logic. 


ESKER evaluates utility criteria for a given set of components selected from a set of variants.  
We initially assume that the model components would fit together; a precursor archetypal 
model actually establishes the specification for components that can get integrated together, 
which is also what ECTo does from vehicle structural design rules.   


7.6.2.2.1 Background 


The approach described in this section provides a reusable pattern to optimizing systems that 
require an evaluation of alternatives and design space exploration, either in terms of concepts 
or of design choices.  


System optimization has historically remained a challenging problem because the complexity 
involved in simply choosing between alternatives of any significant number makes a purely 
quantitative approach prohibitive. Although algorithmic automation approach can alleviate the 
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bookkeeping, several challenges remain, especially in terms of integrating results from a set of 
tools that provide the intermediate decision support. 


Concepting and Design Phases. The general statement of the problem is concisely framed in 
a basic two-dimensional design space. The scenario typically occurs with the design of any 
sufficiently detailed product, such as a ground vehicle or a weapon system and it involves 
selecting alternatives with respect to some set of criteria. Within the first dimension, we have a 
set of concept or design alternatives. Some examples may include: 


• Capacity of vehicle in terms of different count of troops 
• Tracked vs. Wheeled 
• Gun Caliber 
• Engine Type 
• Etc. 


In the second dimension we have a set of optimization criteria, in which we use to arrive at the 
best choice of element alternatives. The criteria can have various requirements and constraints 
associated with their description and typically fall into a set of established categories, such as: 


• Cost 
• Reliability 
• Performance 
• Weight 
• Etc. 


The system engineering puzzle is to choose which alternatives fit best together within a given 
set of criteria. The major difficulty in doing this from a global perspective is that both the 
product and optimization categories cross a broad spectrum of disciplines and we will likely 
have to integrate a number of disciplines and analysis tools together to provide the most 
effective solution. That is the nature of system engineering, and why a cross-disciplinary 
approach is vital. 


The results of this implementation shows that an expert system backed by a dynamic 
knowledge base is well suited for the optimization task. We will explore the basis for this in a 
bit more detail but by simply meeting the following objectives, we can provide a formal 
mechanism to rationalizing the engineering decisions that we make. 


• Declarative Knowledge 
• Structured Decisions 
• Human still in the loop 
• Generate a narrative for explanation and regression (i.e. a provenance capability) 


A search optimization problem. The problem boils down to optimizing among the 
alternatives considering constraints, requirements, and various measures of effectiveness. Most 
of these measures either come about through heuristics, analysis models, or simulation of the 
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alternative being studied. We definitely need an approach that will selectively lock choices to 
prevent explosion of alternatives19


Take the following case under consideration and you can see how important constraining the 
design space becomes: 


.  


• For a given concept vehicle you will have varying sets of design alternatives for every 
system component. 


• Each of these alternatives will have benefits in terms of some established criteria, such 
as accuracy, reliability, cost, … etc. 


• A ground vehicle system can easily have 200 components with an average of 3 design 
alternatives per component. 


• In this case, the number of evaluations required to find a global optimum with respect to 
the summed criteria is 3200 


• This value exceeds the number of atoms in the universe, 4×1078 by many orders of 
magnitude. 


• Bottom-line is that a human is still required in the loop to exercise judgment and to 
prune the computational space. An optimization tool can speed the process in relative 
terms. 


 


Figure 7.6-45 outlines the optimization architecture that we have prototyped as part of this 
effort. 


Originally, the expert system organization was predicated on a two-stage process. The first 
stage included heuristics and straightforward calculations (cost lookup, first-order rules, etc). 
The second stage would feature more elaborate simulations, via connections to external tools. 
The plan was to eventually allow the second stage outcomes to get adopted as first stage 
heuristics as our tacit knowledge matures. 


Maintaining a two-stage process requires a long-term maintenance commitment as the updates 
from the external tools have to be periodically translated manually to heuristics as the basis 
information changes. For that reason, we have elected to consolidate the stages as much as 
possible. The figure shows the external apps that we have integrated at different times, both 
commercial and open source, and in Figure 7.6-46, the figure demonstrates how an external 
tool was hooked up in more detail. 


 


                                                 


19 A spreadsheet-based approach, although table-driven,  is untenable since it lacks : (1) Large-scale 
maintainability, with the “if-then” rules particularly difficult to implement and (2) Customizable 
extensibility to outside tools.  The latter strongly suggests that flexible reasoners could play a vital role. 
Interesting to note that, despite decades of development of decision support systems and methodologies, 
spreadsheets are still popular as primary tools for decision making. 



http://en.wikipedia.org/wiki/Decision_support_system�

http://en.wikipedia.org/wiki/Spreadsheet�
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Figure 7.6-45.  Architecture of the Optimization Shell 


 


 
Figure 7.6-46.  AMIL-like Connections Between the Main Application and Server 
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In general, there is no limit to the number of application servers that one could have running as 
long as they provide a common way of dealing with input and generate a structured format for 
the output data stream. The use of HTTP with XML and delimited data formats makes this 
approach workable. 


The set of servers can be launched with an execution monitoring tool. A logical launching 
specification file can be used to generate the locations and ports of the servers. Since the session 
file uses the same formatting as the rest of the knowledge-base, the specification can be shared 
with the rest of the rules governing the communication paths. This becomes important 
considering that the run location of the external simulations is independent of the domain-
specific rules used to evaluate alternatives. If the information is shared between the launch 
configuration and query execution configuration, it makes the system much easier to maintain 
or to migrate.  


To show the proof of concept, we have generated a suite of optimization problems that run the 
gamut of concepting spaces, from small to large. This suite also exercises many of the external 
tools. 
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Table 7.6-2.  List of Prototype Optimization Problems 


Item Description 
Ground vehicle Generates a random set of heuristics in a large concepting 


space, with 23 criteria and over 150 elements with at least two 
alternatives for each element 


Brigade combat team vehicle A very small model to compare against 
Mountain bike test Consumer application of a buy decision based on component 


selection 
Bradley example w/SCREAMr Tests out SCREAMr as an external tool 
Jeep spare tire example Tests out CARMS as an external tool 
Fire Control NABK example Tests out NABK as an external tool 
Artillery Artquik example Tests out Artquik as an external tool 
Ground Wars example Tests out GroundWars as an external tool 
Matlab Interface example Connects to a generic Matlab executable 


 


Typically, analysis tools such as the NATO Armaments Ballistic Kernel (NABK) can be used as 
interfacing elements where the scope of the knowledgebase is not extensive enough. Where 
enough information is available we can simply declare that in the local knowledgebase. So a 
simultaneous path involves building a knowledgebase to enable system level trades. Queries to 
the knowledgebase will therefore execute specific performance analyses, initially via heuristics, 
and later via external connectivity, but will produce good relative performance metrics in each 
case. The recommendation is to follow the elicitation steps described in Section 7.6.1.3.2. 


7.6.2.2.2 Optimization via Expert Systems 


The goal is to verify that design concept has been through a rigorous and, even better, a formal 
analysis for optimality. The proven way to do this is through a set of first-order logical rules. 
An analyst can accomplish this by carefully considering all the alternatives in his/her mind, but 
the complexity and dimensionality of the decision space usually precludes this, save for the 
simplest case of a handful of rules. By applying good decision engineering practices, one can 
overcome a decision making "complexity ceiling" while maintaining a readable set of rules. 
Parts of the evaluation can remain in terms of abstracted domain alternatives that exist solely 
as empirical rules, heuristics, and other analysis results.  


The key to making the knowledgebase approach easy to work with is in the methodical practice 
of presenting all information declaratively. Thus all facts (i.e., data) and rules have clear 
visibility and rely on symbolic notation. The facts are easily separable from the rules, yet you 
do not need special file reading mechanisms to get started. The only thing that sets a 
knowledge-based approach apart from a database query is that the database lacks rules. 


Performance. Expert systems are usually not compiled. Even though interpreted rules may 
reduce the performance speed, the sophistication of the decision support algorithm selected 
likely has a bigger impact on the speed of the search. An optimization approach such as 
Dynamic Programming is easily accomplished in a shell environment. (Large benefits via such 
simple dynamic programming mechanisms as tabling and partial evaluation.) If we need even 
more speed than Dynamic Programming then the rules can be recompiled as an executable. 
However, compilation is not typically desired since modifying the rules and data is essential for 
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interactive experiments. This is a wash in terms of what constitutes the best approach – pick 
either interpreted for short build cycle or compiled for faster results. 


Robustness. A benefit of a knowledgebase is that the rules and data can combine to perform 
formal type checking, which makes the rules manageable as the set gets larger. In practice, this 
is very easy to specify. In the example below is a set of data and corresponding rules that make 
the type matching very easy to follow as we add the dimensional constraints of horsepower (hp) 
and metric volume (m3): 


engine_volume_per_horsepower('conventional turbo diesel', 0.0006496*m3/hp). 


engine_volume_per_horsepower('AIPS diesel',               0.0003398*m3/hp). 


engine_volume_per_horsepower('turbine',                   0.0*m3/hp). 


engine_volume_per_horsepower(_,                           0.0*m3/hp). 


 


engine_v_func(HP*hp, Powerpack_Type, Volume*m3) :-  


   engine_volume_per_horsepower(Powerpack_Type, Density*m3/hp), 


   Volume is HP*Density. 


 


transmission_volume('conventional turbo diesel', 0.98826*m3). 


transmission_volume('AIPS diesel', 0.98826*m3). 


transmission_volume('turbine', 0.0*m3). 


 


transmission_v_func(HP*hp, Powerpack_Type, GVW*tons, Volume*m3) :- 


   transmission_volume(Powerpack_Type, Base*m3), 


   Volume is 0.75*GVW/60 + 0.25*(HP/1500)*Base. 


 


The declarative pattern matching on the caller and callee sites make it impossible to generate 
an incorrect mixture of dimensions.  


7.6.2.2.3 Specifying the search problem 


Specifying the alternatives. Say that we boil down the problem into a simpler set of data and 
rules for the sake of explanation.  The following is an enumerated set of variants that we wish 
to consider. Each variant (or element) has its own set of alternatives; for example the traction 
on a vehicle could be either wheeled or tracked. 


variant(traction, [wheeled, 


                   tracked]). 


 


variant(number_of_wheels, [6*wheels, 


                           8*wheels, 


                           10*wheels]). 


                            


variant(crew_size, [2*men, 
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                    3*men, 


                    4*men]). 


                     


variant(max_speed, [40*mph, 


                    50*mph, 


                    60*mph]). 


 


variant(engine, [diesel,  


                 hybrid]).  


 


These actually thinly disguised triple stores where the object list is enclosed by brackets [ ], to 
cut down on the verbosity. So the notional triple store is (subject, hasVariant, object). 


Weighing the alternatives. Next, we can specify the outcomes of physical weight for each of 
the alternatives. We have some flexibility here as the weight of the wheels can get rolled up in 
the other rule. The engine rule is expressed as a simple fact. 


 weight(wheeled, W) :-  


   variant(number_of_wheels,L),  


   member(N*wheels,L),  


   W is N*100+100. 


    


weight(tracked, W) :-  


   variant(number_of_wheels,L),  


   member(N*wheels,L),  


   W is N*90+1000.  


weight(N*men, W) :-  


   variant(crew_size, L),  


   member(N*men,L),  


   W is N*100. 


 


weight(_*wheels, 0). 


weight(_*mph, 0).  


weight(diesel, 2000). 


weight(hybrid, 1500). 


 


A similar mix of rules and facts can be assembled for the power evaluation (below). Note that 
the power scales linearly with the maximum speed desired, independent of the engine type. Yet 
the idling power differs for diesel and hybrid. This set of rules can be easily changed so 
the max speed power distinguishes the two correctly. 
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power(wheeled, P) :-  


   weight(wheeled,W),  


   P is W*10. 


 


power(tracked, P) :-  


  weight(tracked,W),  


  P is W*12. 


 


power(N*men, P) :-  


  weight(N*men,W),  


  P is W*5. 


 


power(_*wheels, 0). 


power(N*mph, P) :- P is N*1000.  


power(diesel, 10000). 


power(hybrid, 15000).  
  


Optimizing the alternatives. The final ingredient is to set up some evaluation rules and 
optimization criteria. This is actually a very compact algorithm as the data rules that we have 
declaratively specified accomplishes most of the heavy lifting. The expert system sweeps 
through the set of variants in search of a subset that best meets the optimization criteria we 
have selected. In this case, we want to maximize the combine weight and power according to a 
weighting function. This essentially gives the worst case solution. The best case would involve 
searching for a minimum. The following set of rules is an early version that gives an idea of the 
recursion involved. 
 


:- dynamic(max/2). 


:- dynamic(stored/1). 


 


max(0.0, empty_set). 


 


criteria(W,P,T) :-  


  T is W*1.5+P*1.2. 


 


one_of_each([],[]). 


one_of_each([H|T],[H1|Ts]) :- member(H1,H), one_of_each(T,Ts). 


 


sum_terms(Goal, [],Total,Total). 


sum_terms(Goal, [Item|Rest],Sum,T) :-  
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   call_with_args(Goal, Item, P), 


   Total is Sum+P, 


   sum_terms(Goal, Rest, Total, T). 


 


check_maximum(T, Set) :- 


   max(Total,Current), 


   T > Total, 


   retract(max(Total,Current)),  


   asserta(max(T,Set)). 


 


optimize(_, Set) :- 


   findall(V, variant(_,V), All), 


   one_of_each(All, Set), 


   sum_terms(power, Set, 0.0, P), 


   sum_terms(weight,Set, 0.0, W), 


   criteria(W, P, T), 


   check_maximum(T, Set), 


   fail. 


optimize(Value, Which) :- 


   max(Value, Which). 


 


The rule named optimize recursively evaluates the alternatives by automatically selecting a 
combination of one member from each variant and then evaluating the criteria, and finally 
checking for the maximum to meet the criteria we have established. Once the set is exhausted, 
the alternative optimize rule gets evaluated and it returns the max value and which elements 
of the subset it contains. 


optimize(Value, Which)? 


Value = 125460.0 


Which = [tracked,6*wheels,4*men,60*mph,hybrid] 
 


Or we can constrain one of the outputs (traction = wheeled) and find alternative values from 
the built-in pattern matching. No new programming is required due to the backward-chaining 
nature of the symbolic processing. This result of such a query results in an alternate lower 
value result subject to the new constraint: 


optimize(Value,[wheeled,N,Men,MPH,Engine])? 


Engine = hybrid 


MPH = 60*mph 


Men = 4*men 


N = 6*wheels 
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Value = 110100.0 


This specific example turns out fairly trivial as this set derives from each of the heaviest 
components available. In a real situation, the actual set of rules will become more complex and 
the criteria for setting an optimum configuration will become less obvious to the eye. In certain 
cases, the discrete choices may be expanded along a finite domain. In that case, a Finite Domain 
(FD) solver comes out of the Prolog box and it allows the expert system to prune the search 
space more efficiently. 


7.6.2.2.4 Issues in Optimization 


The looming issue that confronts us is how best to manage the set of concept alternatives.  It's 
a given that to formally prove that you have reached an optimum or maximum with respect to 
some measure, that you have to sweep through all of the alternatives. Techniques exist that can 
seek out local minimum or maximum (via gradient search, etc) yet these do not guarantee a 
global extreme value. Not every problem is convex.  So the options are to either scan 
exhaustively or to search selectively and perhaps stop when some criteria is met20


To provide an example, say that we have 14 variant functionalities which contain 3 alternatives 
each. The process of finding a peak exhaustively amongst this set requires 314=4,782,969 
unique selection to be evaluated (subject to all the values having an independent effect on the 
solution, otherwise this number can be reduced). This rather modest set is perfectly acceptable 
to evaluate on a stock computer. Yet, what path should we take when we provide 20 variants 
instead of 14 and find that the number jumps to 320=3,486,784,399, or if we add an another 
alternative to each of the variants, then it goes to 420 ~ 1 trillion computations? This results in 
excessive computational complexity as the search combinatorially explodes. 


.  


The combinatorial space on the table below is 260 * 314 * 43 = 3.5*1026 for a total of 77 element 
classes. Interesting to consider that two valid options are to either have a feature or not have it. 
This can grow the space greatly even when variants are not considered. 


Element Class Variant 1 Variant 2 Variant 3 Variant 4 


traction tracked wheeled   


wheels 4*4 6*6 8*8 10*10 


power_train mechanical hydraulic hydro_mechanical  


troops 4*soldiers 6*soldiers 8*soldiers 10*soldiers 


turret manned unmanned   


gun gun_a gun_b   


battery lead_acid hybrid_battery   


engine diesel turbo_diesel hybrid_electric  


final_drive 3*ratio 4*ratio   


loader auto_loader manual_loader   


range_device laser_ranger lidar_ranger   


crew 1*crew 2*crew 3*crew  


                                                 


20 The technique of simulated annealing via Monte Carlo sampling is often used for this purpose 
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Element Class Variant 1 Variant 2 Variant 3 Variant 4 


armor armor_a armor_b   


fuel_tank 200*gallons*fuel 300*gallons*fuel   


afes crew_compartment weapons_compartment engine_compartment all_compartments 


width 2.5*m*width 3.0*m*width 3.5*m*width  


height 3.5*m*height 4 4*m*height 5*m*height 


length 7*m*length 8*m*length 9*m*length  


chassis material_1 material_2   


kit optional_kit no_kit   


clearance 0.25*m*clear 0.5*m*clear 1*m*clear  


payload 800*rounds 1000*rounds 1200*rounds  


water bottled synthesized   


vision direct indirect   


hatch manual_hatch no_hatch   


coolant 30*gallons*coolant 40*gallons*coolant 50*gallons*coolant  


voltage 15*v 28*v   


high_voltage 270*vdc 500*vdc   


skirt with_skirt without_skirt   


horsepower 800*hp 1000*hp 1200*hp  


oil_capacity 15*gallons*oil 20*gallons*oil 25*gallons*oil  


fuel_type diesel_fuel jet_fuel   


engine_displacement 15*liters 20*liters 25*liters  


suspension suspension_a suspension_b   


generator primary with_backup   


crew_stations 1*station 2*station   


compartment isolated non_isolated   


ignition laser_ignite other_ignite   


egress easy_out hard_out   


ingress easy_in hard_in   


software 500000*loc 1000000*loc   


firmware firm no_firm   


auxiliary_power_unit primary_apu backup_apu   


drive_by_wire dbw no_dbw   


night_vision night no_night   


secondary 20*caliber 50*caliber   


prognostics onboard offboard   


diagnostics software_diagnostic bit   
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Element Class Variant 1 Variant 2 Variant 3 Variant 4 


gps gps no_gps   


ins ins no_ins   


iru iru no_iru   


fire_control reuse_fire_control custom_fire_control   


powerpack fixed_powerpack removable_powerpack   


pmcs pmcs no_pmcs   


ietm ietm no_ietm   


power_distribution networked_power fixed_power   


periscopes viewer windshield   


crew_position forward_crew aft_crew   


weapon_view weapons_camera no_weapons_camera   


obstacle_avoidance ans no_ans   


gun_stow forward_stow reverse_stow   


route_follow ans_follow guided_follow manual_follow  


methods los blos   


emplacement aided_emplace no_emplace   


planning offboard_plan onboard_plan   


scheduling auto_schedule no_schedule   


local_security crew_assisted_security auto_security   


touch_screens touch bump   


yoke joystick wheel   


noise_suppression noise_suppress no_noise_suppress   


sleeping_provisions sleep no_sleep   


heads_up_display hud no_hud   


resupply_mode auto_resupply manual_resupply pda_resupply  


towing tow_provisions no_tow   


pivot_steer pivot no_pivot   


amphibious amph no_amph   


driver_redundancy driver_backup no_driver_backup   


signature suppression no_suppression   


So the implications for optimization are significant if we can’t control the state space. This also 
holds for sensitivity analysis. In the case of the most rudimentary analysis, the variants should 
include a subset of lower-range, nominal, and upper-range values. This will trend at least 
according to 3N. So that if we combine concept alternatives with sensitivity alternatives the 
sweep volume can grow unmanageable. 


Limiting Scope. The explosion of states has always been the problem with DSE. Clearly we 
can reduce the space by constraining most of the states to nominal values and then varying the 
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rest. The Catch-22 in all this is that if we knew that we could optimize by adjusting one 
variable while keeping all the other variables constant, this would also mean that we actually 
knew what the optimal frontier was before we got started. Yet if we knew the optimal region 
initially, we wouldn't need the assistance to begin with!   In this case, intuition provides all the 
optimization we would ever need, and extra sweeping is overkill.  All we are doing is testing 
the optimization gradient around a minimum or maximum of some criteria. It wouldn't take 
that long to do this by hand. So the issue boils down to whether we think we will ever have 
sufficient intuition to arrive at an efficient optimization frontier without doing at least some 
sweep searching. 


Many of the complex calculations can reduce easily to interpolations over a design space. 
Calculating recoil and the interactions with stroke length and volume displacement is a good 
case in point. Everything about the calculation is deterministic so you may need to do it for a 
number of configurations, and then interpolate as necessary. 


A DSE tool will not always reconcile certain design criteria such as lethality and survivability 
with all the other criteria that are missing, chief among them reliability and cost. Reliability is 
potentially even more challenging than the Newtonian analysis because it consists of 
probabilities, and interpolations don't work for probabilities. And cost can be a subjective 
criteria. So collectively the only way around this is to make the criteria and alternatives fairly 
uniform, and to often keep them mushy at a heuristic level. So we have to essentially normalize 
the rules to promote fair-play. If we ever get a situation that one calculation causes an 
execution bottle-neck on the order of seconds, the total execution time will grow quickly.  


When a logic program generates results or makes calls to external tools, it can selectively 
apply the concepts of Dynamic Programming to avoid spending too much time re-computing 
unnecessarily. This will lay out all the design choices made with respect to some measures of 
optimality, and further allows one to control the complexity and performance constraints of the 
search space. So, if we ever get into a bind where we have to trade-off too much computation 
against the use of mushy heuristics, we will have a path laid out. 


The Role of Heuristics and Partial Calculations. The issue comes up that we may have to 
iterate to determine some optimal criteria, and the times it takes becomes the basis for when to 
use dynamic programming and tabling techniques.  The example given is determining the 
number of wheels needed to support a vehicle weight. Since the wheels themselves will add to 
the weight then you might naively imagine that some iteration needs to be performed to 
calculate the optimal configuration. In fact, this is plain linear algebra that can be worked out 
instead of using some iteration scheme. 


7.6.2.2.5 Prototyping 


For a knowledgebase that consists of 23 criteria and 78 design elements with between 2 and 3 
alternative designs each, we generated about 4,000 rules to test against. That set of data is too 
large to be able to run a full optimization, so for testing we ran in a partial optimization setting 
before it started to execute too slowly. This is always a combinatorial problem so once it hits a 
threshold the slowdown is apparent. 


The majority of the design elements were left fixed, so as an example we take only 10 of the 
elements as unknown alternatives. This query took less than 20 seconds in gprolog to execute in 
an interpreted shell, and less than 10 seconds in a compiled shell. For only 2 or 3 unknowns it 
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runs in well under 1 second. Adding more sophisticated rules won't add much to the running 
time, so unless it invokes external calls, the response time should be tolerable.  


As an illustration of how sensitive the optimization performance is, we used a different expert 
system shell, eclipse, and it returned the same answer for 10 unknown variables but it took 
only 1.5 seconds instead of 18 seconds. With this shell it can optimize for 16 unknowns in 95 
seconds before the combinatorial blow-up occurs. 


Also any constraints and requirements that will eventually be added should shorten the 
running time by pruning the results. The UTRC META team apply constraint pruning as a 
valid approach to reducing the state space. Working smart and dealing with compartmentalized 
sets as described in section 7.6.1.2.6 is the solution to combinatorial problems. 


7.6.2.2.6 Example of Optimization Query input 


We initially prototyped an HTML page for the inputs. Once this was done, the data within the 
page was auto-generated from the knowledge-base so that it does not require extra coding 
besides the HTML boilerplate and some JavaScript and CGI. 


The basic structure for the knowledgebase resides in a "vehicle-kbase.pro" file which consults 
three other files (1) "engine.pro" which contains the inference engine, (2) "vehicle-specs.pro" 
which contains the schema spec for criteria and elements, and (3) "vehicle-rules.pro" which 
contains the set of rules. A "vehicle.xml" main page pulls together the boilerplate form entry 
from an XML stylesheet and specific form elements in "vehicle-form.html". As default, it uses 
a generic web server and gprolog for evaluation.  


The following is an example of an optimization query input form. For each element, a set of 
radio buttons is provided to allow one to select from a list of alternatives. If the ? radio button 
is selected, this is an unbound choice and it will be optimized with respect to the criteria 
represented in Figure 7.6-47. According to the rules in the expert system, all inputs in lower 
case are constraint and capitalized variables are unbound inputs and will generate a query 
output. This form was generated automatically from the knowledgebase specification and an 
XML stylesheet template. 


 
Figure 7.6-47.  Part of the Prototyped HTML ESKER Query Interface 
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7.6.2.2.7 Elicitation Table 


The objective is to come up with an optimal configuration of design elements based on 
objective criteria. These criteria could be constraints, requirements, or quantitative measures of 
effectiveness.  


Fundamentally, there is little difference between a constraint and a requirement. The only 
distinction that matters is that a constraint has a direct connection to the reality of the 
environment around us, whereas a requirement is an artificial gauge of what needs to be done. 
Thus a constraint can be considered an environmental requirement. 


Constraints  


Red Force 


Mission Time  


Terrain 


Soil 


Temperature 


W
ind 


Humidity 


Latitude 


Gap Obstacle 


Pitch 


Roll 


Pressure 


Atmosphere 


Human 
Percentile  


Ford 


Clearance 


Side Slope 


W
all 


Obstacle 


Gun Traverse 


Gun 
Elevation 


Tunnel W
idth 


Air Drop 


Requirements 


Range  


Accuracy Stationary  


Accuracy Moving  


MTBF MSCP  


X - Country Speed  


Highway Speed  


Response Time  


MPG  


Transport  


Survive  


W
eight Curb + Loaded  


Cost  


Remote  


First Shot Out  


MROF  


Deploy  


Un - deploy  


SROF  


Op Temp  


Turn Radius  


Mine  


HP/ W
eight  


Upgrade P3I  


Resupply  


Target Cross Section  


BLOS  


All the quantitative measure of effectiveness need to be aggregated and constrained to the 
requirements. Each design element or part on board the system contributes to some 
effectiveness measure (otherwise it should not be on board the vehicle) and these need to be 
quantitatively evaluated. In certain cases, a qualitative intangible needs to be included. The 
following PartCrit table (Table 7.6-3) serves as a checklist to determine which elements we 
need to include.  


Cells: A part will either be applicable or not-applicable with respect to some optimization 
criteria. So during the elicitation stage of knowledge engineering, we need to place an X in the 
cell if it is measurable. If it is not measurable or doesn't apply, we place a—or N/A. If 
something can be handled by an outside tool, then we can indicate that within a cell by S or 
some other marker. If it is indirectly used by another cell, then I indicates an influence 
relationship. 


Part List: If no credible alternatives exist for a part, then there is no use compiling the measure 
for that part as it is an invariant with respect to the other measures. So we need at least two 
numbered alternatives for every part. It is also possible that the alternative is not to include 
such a part; that would then give the two required alternatives. Qualitatively, if a row is 
completely solid corresponding to a part, then that element is likely very critical across all 
criteria. 


Criteria List: Looking at the criteria, if a column is sparse after analysis, then that particular 
optimization criteria is very narrowly applied to certain design elements. For example, 
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trainability may prove to have a minimal impact on an optimal solution, as it will only draw 
from specific elements.  


This table does not tell the whole story. For example, the causal structure and effects implied 
by how the design elements fit together needs to be taken care of by rules added to the 
knowledgebase. The rules therefore will generate the quantitative measures that we will 
optimize against, and the requirements that we need to comply with. The reason that we do not 
extend this table into a spreadsheet is that the rules are unwieldy if kept to within the confines 
of a cell. The requirements also will cause this table to grow to a third dimension. In other 
words better abstraction mechanisms are available, such as the influence diagrams described in 
7.6.1.2.6. We use this table only for elicitation of optimization criteria. 


Table 7.6-3.  Elicitation Table 


Design Elements with Optimization Criteria  


Part \ Crit 


P
ow


er  


W
eight  


R
eliable  


L
ethal  


Survive  


T
ransport  


Sustain  


C
ost  


Speed  


M
obility  


F
uel  


U
sability  


P
erform


anc
e  


V
olum


e  


Safety  


C
om


plexity  


C
om


m
on  


M
aintain  


L
ogistic  


A
dapt  


T
rain  


A
utom


ate  


Intangible  


Traction  


1. Tracked  


2. Wheeled  


× × × × × × × × × × × × × × × × × × ×   N/A  


Wheels  


1. 4x4  


2. 6x6  


3. 8x8  


4. 10x10  


× × × × × × × × × × × × × × × × × × ×     


Power Train  


1. Mechanical  


2. Hydraulic  


3. Hydro-
Mechanical  


× × × -- × -- × × × × × -- × × × × × × ×     


Troops  


1. 4  


2. 6  


3. 8  


4. 10  


× × -- -- × -- -- × × × × -- × × × -- -- -- --  ×  × 


Turret  


1. Manned  


2. Unmanned  


3. Fore/Aft  


  × S S × -- × × × -- × × × × ×  × ×  ×  
× 


 


Gun  


1. Single  


2. Double  


× × × S S  × × -- -- -- × × × × × × × × × × × × 


Battery  


1. Lead Acid  


2. Hybrid  


× × × -- × -- × × × × × × × × × × × × × × × -- × 
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Engine  


1. Diesel  


2. Hybrid  


× × × × × -- × × × × × × × × × × × × ×  × × × 


Final Drive  


1. 4:1  
 × ×   --  × × × ×   ×     × × -- --  


Loader  


1. Auto  


2. Manual  


× × × × × -- × × × -- -- × × × × × -- × ×  × × × 


Ranging  


• Laser  


• PTS  


   × × -- -- × -- -- -- ×  --  ×  × ×  -- ×  


Guidance  


1. Yes  


2. No  


  × ×  -- ×  -- -- --         ×  ×  


Crew  


1. 1  


2. 2  


3. 3  


× × × × × -- -- × × × × × × × × × -- × × × × × × 


Fuel Tank  


1. 300 gallon  


2. 200 gallon  


× × × × × × × × × × × × × × × × -- × × -- × --  


AFES  


1. Crew  


2. Weapons  


3. Engine  


4. All  


× × × -- × -- × × -- -- -- × -- -- × × × × × -- × ×  


Width  


1. 3 meters  ×  × × ×   × × × × × ×  -- --  × -- -- --  
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Height  


2. 4 meters  
 ×  × × ×   × × × × × ×  -- --  × -- -- --  


Length  


1. 8 meters 


2. 7  


 ×  × × ×   × × × -- × ×  -- --  × -- -- --  


Chassis  


3. Metal 1  


4. Metal 2  


 × × × × × × × × × × -- × × × -- --  ×  -- --  


Kit  


1. Optional  


2. None  


 × ×  × × × × × × × × -- × × × -- × ×  × --  


Clearance  


1. 0.5 meter  
 ×  × × × -- × × × × -- × × × -- -- × ×  -- --  
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Payload  


1. 100 rounds  
 ×  S S × × × × × × -- × × × ×   ×  -- --  


Water  


1. Refilled  


2. Generated  


× × × -- × × × × -- -- × × -- × × ×  × × × × ×  


Vision  


1. Indirect  


2. Direct 


× ×  × × -- -- × × × × × × -- × ×  -- -- × × --  


Hatch  


1. Yes  


2. No  


 × × × × -- -- × × × × × × × × × -- ×  × × -- × 


Coolant  


1. 40 gallons  
 × × -- -- -- × × -- -- × -- -- -- × --  × × -- -- --  


Voltage  


1. 28 VDC  
× × × -- -- -- × × -- -- × -- -- -- × × × × × -- -- ×  


High Voltage  


1. 270 VDC  
× × × -- -- -- × × -- -- × -- -- -- × × × × × -- -- ×  


Skirt  


1. With  


2. Without  


 ×  -- × ×  ×  × × × -- × × -- -- × ×  -- --  


Horsepower  


• 1000 hp  
× × × × × × × × × × × × × × × × × × × -- -- --  


Oil Capacity  


• 20 gallons  
-- × × -- -- -- × × -- -- -- -- -- × × ×  × × -- -- --  


Fuel Type  


1. Diesel  
 ×  × × -- ×  × × × --  -- × -- × --  -- -- -- × 


Displacement  


1. 20 liters  
 × ×  × -- -- × × × × -- × ×    --  -- -- --  


Generator  


1. 1+1  
× × × × × × -- × ×  × ×  × × ×  × ×  -- ×  


Crew stations  


1. 2  


2. 3  


× × × × × -- -- × -- × -- × × × × × -- × × × × × × 


Compartment  


1. Isolated  


2. No iso  


× × × -- × × -- × --  -- ×  × × × -- × × -- -- ×  


Ignition  


1. Laser  
× -- × × × -- -- × -- -- -- × × -- × ×  × × -- -- ×  


Egress  


1. Easy  


2. Hard  


 ×  -- × -- × × -- -- -- ×  × × × -- × × -- × -- × 


Ingress  


1. Easy  


2. Hard  


 ×  -- × -- × × -- -- -- ×  × × × -- × × -- × -- × 


APU  


1. 1  
× × × ×  -- × × × -- × ×  × × ×  × ×  -- ×  
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Intangible  


Drive by wire  


1. Yes  


2. No  


× × × × × -- × × × × × × × -- × ×  × × × × × × 


Night Vision  


1. Yes  


2. No  


× -- × × × -- -- × × × -- × × × × × × ×  × ×   


Secondary  


1. 20 cal  


2. ?  


× × × × × × -- × -- -- × ×  × × × × × ×  × ×  


Prognostics  


1. On-board  


2. Off-board  


× -- × -- × -- × × -- -- -- × × -- × ×  × ×  × ×  


Diagnostics  


1. Software  
× -- × -- × -- × × -- -- -- × -- -- × ×  × ×  × ×  


GPS  


1. Yes  
× × × × × -- × × × × × × × × × × × × × × × ×  


INS  


1. Yes  
× × × × × -- × × -- × × × × × × × × × × × × ×  


IRU  


1. Yes  
× × × × × -- × × -- × × × × × × × × × × × × ×  


Fire Control  


1. Reused  


2. Common  


3. Custom  


× -- × × × -- -- × -- -- -- × × -- × × × × × × × × × 


Powerpack  


1. Fixed  


2. Removab  


× × × -- × × × × × -- × × -- × × × -- × × × -- --  


PMCS  


1. Yes  
× -- × -- × -- × × -- -- -- ×  -- × ×  × ×  × ×  


IETM / EPSS  


1. Yes  
× -- × --  -- × × -- -- -- × -- -- × × × × ×  × ×  


Power Dist  


1. Networked  


2. Fixed  


× × × -- × -- -- × -- -- -- ×  × × × -- × × × -- ×  


Periscopes  


1. Viewer  


2. Windshield  


 × × × × -- -- × × × × × × × × × × × ×  × -- × 


Crew position  


1. Turret  


2. Hull  


 ×  × × × × × × × × × × × × × -- × ×  × -- × 


Weapon View  


1. Camera  


2. None  


× × × -- × -- × × -- -- -- × -- × × × × × × -- × × × 
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Avoidance  


1. Obstacle  


2. ANS  


× -- × -- × -- -- × × × × × × -- × × × × -- × × ×  


Gun lock  


1. Forward  


2. Reverse  


 ×  -- × × -- × × -- × × × × -- --   × -- -- --  


Route Follow  


1. Full ANS  


2. Hints  


3. Manual  


× -- × × × -- × × × × × × × -- × × × -- -- × × × × 


Methods  


1. LOS  


2. BLOS  


   S S -- --   -- --  ×   ×  --  × × ×  


Emplacement  


1. Aided  


2. None  


 -- × × × -- -- × -- -- -- × × -- -- × × -- -- × × × × 
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Planning  


1. Onboard  


2. Offboard  


× -- × ×  -- × × -- -- -- × × -- × × × × -- × × × × 


Scheduling  


1. Auto  


2. None  


× -- × ×  -- × × -- -- -- × × -- × × × × -- × × × × 


Local Security  


1. Crew  


2. Auto  


×  × × × -- × × -- -- -- × × × × × -- × × × × ×  


Touch Screens  


1. Yes  


2. Bump  


× × × × × -- × × -- × -- × × × × × × × × × × × × 


 


7.6.2.2.8 Demo Configuration 


The vehicle ramp design model of Figure 7.6-9 was used as a demonstration. The 
communication between ESKER and external applications is through either web services or 
external AMIL stores. Knowledge is served from local Prolog facts, AMIL immediate stores, or 
through ontological queries. The latter can be extended to web-services via OWL-S, SSWAP, 
or customized services. 


The element set and optimization criteria were kept to a minimum to show the interactions 
most clearly. The term element was used instead of variant for the alternatives, and the criteria 
were equally weighted at the top-level. 


% Set of triple-stores to reason against 


% 
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criteria(power,1). 


criteria(weight,1). 


criteria(survivability,1). 


 


element(ramp_thickness, [0.5*inch,1*inch,2*inch]). 


element(ramp_motor_size, [rating_168, rating_268]). 


 


The rules were then expressed by cross-coupling the individual criteria to the current set of 
alternatives, transcribing the influence diagram of Figure 7.6-9 into logical rules Figure 7.6-1: 
% AMIL Nodes to Model Library 


% --------------------------- 


calculate_weight_of_ramp(Thickness, Weight) :-  


   % Replace this with URL to ProE   


   Weight is Thickness*1000. %% TODO: Placeholder value from model 


 


calculate_survivability_of_ramp(Thickness) :-  


   % Replace this with URL to Armor model  


   Thickness is 4. %% TODO: Placeholder value from model 


 


% Generic Rules 


% ------------- 


constraint(Rule, 1) :- call(Rule), !.    % general constraint rule giving unity weighting if TRUE 


constraint(_, 0).  


 


% Constraints 


% ----------- 


weight_rating(rating_160, 5500).     % Motor rated 160 has a smaller weight handling capability 


weight_rating(rating_260, 11000). 


weight_margin(100).                  % Provide a weight margin for soldiers, too low 1st go round 


                                     % Then up the number for second go round 


 


% Element Rules 


% ------------- 


power(ramp_thickness:_,_:X) :- X is 0.            % example of a don't care, i.e. N.A. 


power(ramp_motor_size:Motor,L:X) :-               % which motor to use for ramp 


   member(T*inch, L),                             % depends on ramp weight selected 


   calculate_weight_of_ramp(T, W), 


   weight_rating(Motor, Weight_Limit), 


   weight_margin(Weight_Margin), 


   constraint(((W + Weight_Margin) < Weight_Limit), X). % Only allow values that meet constraints 


 


weight(ramp_thickness:T*inch,_:X) :-              % Weight of ramp from parametric ProE model 
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   calculate_weight_of_ramp(T, Weight), 


   X is 1/Weight.                                 % For optimizing, reduced weight is increasing  


weight(ramp_motor_size:rating_160,_:1).           % Simple lookups for motor weights 


weight(ramp_motor_size:rating_260,_:0.5). 


 


survivability(ramp_thickness:T*inch,_:X) :-       % Survivability of ramp from armor model 


  calculate_survivability_of_ramp(Thickness), 


  constraint(T > Thickness, X).                   % Only allow values that meet constraints 


survivability(ramp_motor_size:rating_160,_:1).    % The two motors are equally survivable. 


survivability(ramp_motor_size:rating_260,_:1). 


 


The placeholders for external calls were left in place and the initial set was evaluated within a 
web-served engine. 


 
Figure 7.6-48.  Web-Served Version of ESKER Used to Populate the Knowledge Base 


The version of ESKER used for the demonstration was recompiled into a Java server 
executable via the tuProlog Java class library and evaluation data was retrieved through AMIL 
stores, either immediate or externally computed. 


This proved the concept of embedding AMIL into a design space exploration reasoner. The 
conversion to an ontologically-friendly engine is trivial, as the essential data elements are all 
based on triple-stores. 
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DSE in practice. A generic DSE starts from an arbitrary set of top-level design elements that 
we are interested in, along with a few decision criteria and weighting factors. Then an 
automated User Interface (UI) builder pulls out the element variants from CML and generates 
the place-holders for rules. This would be the kick-start for having a limited crowd-source of 
engineers to fill out decision rules that calculate criteria values.21


decision criteria = weighted contracts  


 Eventually, the rules can go 
back into the CML repository as weighted contracts that can get reused.  


Thus, we generate contracts that are not iron-clad but that have weighting attached to them 
that allow components to be evaluated for fitness-of-purpose and down-selecting. 


7.6.2.3 Ontology-based Logic Reasoners 


The ESKER application provides an example of a design space exploration reasoner. The 
general utility of reasoners lies in their applicability to a variety of engineering problem-
solving areas. This section demonstrates several examples of the ontological pattern that we 
initially formulated in Section  7.6.1.4.2. 


The uniform approach we take is illustrated in Figure 7.6-49. The pattern is one of importing a 
set of ontologies, applying a description logic reasoner API to extract the triple-store data, and 
then applying further reasoning through customized Prolog rules. The top meta-layer 
maintains a clean and transparent separation between ontological data and the local knowledge 
contained within the reasoner. 


                                                 


21 This beats a single spreadsheet that is under the control of a single person. 
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GEAR Logical Programming 
Architecture


MetaLayer / Prolog


Prolog Knowledgebase (Rules)


Description Logic Reasoner


OWL/DL Ontologies


load


GEAR
functionality


suite


semantic queries


The MetaLayer consists of interpreted Prolog rules that understands 
interactions with the ontology namespaces and the semantic reasoner.


produces an
Onto-Logical Program


 
Figure 7.6-49.  Ontological Reasoners Follow a Similar Pattern of Encapsulating the 


Deeper Semantic with a Uniform Logical Front-end 


Because of the overall similarity among all of these reasoners, we gather them together as the 
GEAR suite, useful for a knowledge engineering framework.  


7.6.2.3.1 Weight, HorsePower, Speed Example 


This is a more extended example with declarative semantics, i.e. we can calculate whether a 
specific engine with weight and horsepower rating will meet a specific speed criteria. This rule 
embeds aerodynamic drag to first order but could also include rolling resistance 


Figure 7.6-50 shows a mock-up ontology written in N3 and the equivalent knowledgebase that 
would generate. 
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Figure 7.6-50.  N3 Ontology for Engine and the Equivalent “invisible” Triples They 


Represent (To the Right) 


The rules operating on this ontology are shown below. This uses declarative semantics to the 
effect of providing the same interface for querying a horsepower given a speed criteria as for 
querying a speed given a horsepower criteria. 


find_engine_with_criteria(Eng,HP,50.0,1.0,vehicle(8000.0,1.0),context(F,A)). 


find_engine_with_criteria(Eng,80.0,V,1.0,vehicle(8000.0,1.0),context(F,A)). 


 


% c:'Engine'(engine1). 


% c:'Engine'(engine2). 


% c:'Engine'(engine3). 


% c:'Engine'(engine4). 


% c:'hasWeight'(engine1, 1.0). 


% c:'hasWeight'(engine2, 1.1). 


% c:'hasWeight'(engine3, 1.2). 


% c:'hasWeight'(engine4, 1.3). 


% c:'hasHorsePower'(engine1, 1000.0). 


% c:'hasHorsePower'(engine2, 1100.0). 


% c:'hasHorsePower'(engine3, 1200.0). 


% c:'hasHorsePower'(engine4, 1300.0). 


% c:'Chassis'(nominal). 


% c:'hasAero'(nominal, 234.0). 


    
    


 


   


   


  


   


  


   


 


@prefix : <http://wcsn262:8001/backup/c.owl#> . 


@prefix owl: <http://www.w3.org/2002/07/owl#> . 


@prefix rdf: http://www.w3.org/1999/02/22-rdf-
syntax-ns#> . 


@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> . 


@prefix xsd: <http://www.w3.org/2001/XMLSchema#> 
. 


 


:               a       owl:Ontology . 


:Engine         a       owl:Class . 


:hasWeight      a       owl:DataProperty . 


:hasHorsePower  a       owl:DataProperty . 


:Chassis        a       owl:Class . 


:hasAero        a       owl:DataProperty . 


 


 


:engine1        a       :Engine, 


                        owl:NamedIndividual ; 


        :hasWeight      1.0 ; 


        :hasHorsePower  1000.0 . 


 


:engine2        a       :Engine, 


                        owl:NamedIndividual ; 
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Figure 7.6-51.  Weight, Horsepower, Speed Reasoner 


7.6.2.3.2 CML Example 


This example shows interactions with CML ontology. We invoke a query to the CML 
repository to find all models associated with a given component. This uses a built-in rule called 
findall which collects the (component, model) pairs and then prints out the results as a side-
effect. 


If we run the goal query: print_all_components_with_hifi_model? 


This results in the output: 


[cfv,'CFVRamp2'] has a [cfv,'CFVRampSimulinkModel'] 


[cfv,'CFVRamp1'] has a [cfv,'CFVRampSimulinkModel'] 


 


%import http://wcsn262:8001/backup/c.owl 


%import http://wcsn262:8001/backup/sweet.owl 


%%% Query with unknown HP but desired speed, V, or unknown speed but given HP 


% find_engine_with_criteria(Eng,HP,50.0,1.0,vehicle(8000.0,1.0),context(F,A)). 


% find_engine_with_criteria(Eng,80.0,V,1.0,vehicle(8000.0,1.0),context(F,A)). 


 


calculate_horsepower(Speed,EffWind,AeroFactor,Weight,EffG,HorsePower) :- 


   nonvar(Speed), 


   SpeedWithWindDrag is Speed + EffWind, 


   Drag is (SpeedWithWindDrag*AeroFactor)**3.0, 


   HorsePower is (Drag+EffG)*Weight. 


  


calculate_horsepower(Speed,EffWind,AeroFactor,Weight,EffG,HorsePower) :- 


   var(Speed), 


   Drag is HorsePower/Weight - EffG, 


   SpeedWithWindDrag is (Drag ** (1.0/3.0))/AeroFactor, 


   Speed is SpeedWithWindDrag - EffWind. 


 


find_engine_with_criteria(Engine,HorsePower,Speed,Margin,  


                          vehicle(Weight,Aero), context(Region,Time)) :- 


   sweet:'Gravity'(Gravity), 


   sweet:'gravityValue'(Gravity, G), 


   sweet:'Region'(Region), 
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Figure 7.6-52.  CML Query Example 


 


7.6.2.3.3 Parts Repository Example 


The following is an example of a query to a semantic database for information on availability of 
engines from vehicle parts suppliers. We add a constraint that only parts with the certification 
'MIL_Cert' get returned. The print debugging reveals that parts with other certification levels 
are considered but the final result will match only 3 instances. 


%import http://wcsn262:8001/demo/arrow.owl 


%import http://wcsn262:8001/demo/CFV.owl 


%import http://wcsn262:8001/demo/meta.owl 


 


%% Rule to find a component with a hifi model, this searches Meta for possible model  


%% classes and Arrow to make modeling associations to the CFV library   


%% 


hifi(Component,Model) :- 


   meta:'HighFidelityDynamicsModel'(Model),  


   arrow:'hasModel'(Component,Model). 


 


%% Utility to report on all hifi models 


%% 


print_all_components_with_hifi_model :- 


   findall((C,M), hifi(C,M), List), 


    


 


 


  


        


        


     


       


       


    


 



http://wcsn262:8001/demo/arrow.owl�

http://wcsn262:8001/demo/CFV.owl�

http://wcsn262:8001/demo/meta.owl�
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Figure 7.6-53.  Parts Repository 


 


7.6.2.3.4 Environment Example 


The logic code to the left 
demonstrates calls using the 
SWEET ontology. SWEET is 
useful for classifying earth science 
data for vehicle context modeling.  


Figure 7.6-54.  Call to the SWEET Ontology 


 


7.6.2.3.5 Model Classification Example 


%import http://www.kirkman-enterprises.com/sites/kirkman-enterprises.com/files/MSDL/MSDL-
Fullv1.owl 


 


pr(A:B) :-  print(A), print(':'), print(B). 


p(A:B) :-  print(B). 


 


search_for(engines(E),supplier(S),certification(C)) :- 


  'Ontology1236208666':'EnginesAndTurbines'(E), 


  'Ontology1236208666':'hasProductFocus'(S,E), 


  'Ontology1236208666':'hasCertification'(S,C), 


  print('Supplier '),p(S),print(' has '),p(E),print(' with certification '),p(C),nl, 


  C = _:'MIL_Cert'. 


 


% Expected results on print out, but only 3 of these have constraints of MIL_Cert 


% 


% Supplier ThuroMetalProducts has PartsforGoodsOfClassesEngineAndTurbine with certification 
AS9100_Cert 


% Supplier ThuroMetalProducts has PartsforGoodsOfClassesEngineAndTurbine with certification 
ISO9001_2000 


% Supplier WoolfAircraft has DieselEngines with certification ISO9001_2000 


% Supplier WoolfAircraft has DieselEngines with certification MIL_Cert 


% Supplier TXStateMfgCo has DieselEngines with certification ISO9001_2000 


% Supplier TXStateMfgCo has DieselEngines with certification MIL_Cert 


% Supplier BoyerMachine has FuelSystemComponents with certification ISO9001_2008 


% Supplier BoyerMachine has FuelSystemComponents with certification ISO9001_2000 


% Supplier OhioMachinedProducts has FuelSystemComponents with certification ISO9001_2000 


% Supplier InnovativeMetal has Manifolds with certification MIL_Cert 


 


%import http://sweet.jpl.nasa.gov/2.2/sweetAll.owl 


%import http://open-meta.com/process.owl.xml 


 


earth_query(C,M) :- 
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The logic code to the right 
demonstrates a query to 
ontologies of available 
mathematical modeling 
tools. The classification 
returns only those tools 
that provide the capabilities 
indicated by the successive predicates. In this case, the SPIN, UPPAAL, and CBMC tools fit 
these categories. This is a classic SPARQL query as well. 


A more extensive situation using the CML models is shown below. The library is populated 
with meta-information of modeling information related to particular engines (refer to Figure 
7.6-55). Then a query is made to return a set of models associated with a specific engine type 
(refer to Figure 7.6-56). Note that this query will predictably fail if a model from each category 
is not found. Providing default behavior for queries must always be considered since Prolog 
operates under the closed-world assumption, that if it is not available it does not exist. 


%import http://www.irit.fr/~Mounira.Kezadri/Ontologies/VVO.owl 


 


model(A) :- 


  'VVO':'V&V'(A), 


  'VVO':'Analysis'(A), 
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Figure 7.6-55.  Component Model Library N3 


 


@prefix : <http://wcsn262:8001/backup/cml.owl#> . 


@prefix owl: <http://www.w3.org/2002/07/owl#> . 


@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 


@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 


@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 


 


:                               a       owl:Ontology . 


:Engine                         a       owl:Class . 


:has_reliability_model          a       owl:DataProperty . 


:has_maintainability_model      a       owl:DataProperty . 


:has_diagnostics_model          a       owl:DataProperty . 


:has_thermal_model              a       owl:DataProperty . 


:has_logistics_model            a       owl:DataProperty . 


 


 


:engine1                        a       :Engine, 


                                        owl:NamedIndividual ; 


        :has_reliability_model          "engine1_reliability_model"; 


        :has_maintainability_model      "engine1_maintainability_model"; 


        :has_diagnostics_model          "engine1_diagnostics_model"; 


        :has_thermal_model              "engine1_thermal_model"; 


        :has_logistics_model            "engine1_logistics_model". 


 


:engine2                        a       :Engine, 


                                        owl:NamedIndividual ; 


        :has_reliability_model          "engine2_reliability_model"; 


        :has_maintainability_model      "engine2_maintainability_model"; 


        :has_diagnostics_model          "engine2_diagnostics_model"; 


        :has_thermal_model              "engine2_thermal_model"; 


        :has_logistics_model            "engine2_logistics_model". 


 


:engine3                        a       :Engine, 


                                        l N dI di id l  
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Figure 7.6-56.  CML library query 


7.6.2.3.6 Process Workflow Example 


The following are snippets of OWL-S process-service groundings. These are intentionally 
made similar as the process-to-service logic follows a pattern independent of the application. 
That is what makes automation of web-services practical in the sense that if the flow of data is 
predictable and it needs to be in a certain format, then automation can help. 


%import http://wcsn262:8001/backup/cml.owl 


 


%% Example workflow 


% We have a set of engine components that we want to analyze comprehensively. 


% Domain models can be attached to the different components. 


% The domains span a range of Design-For-X considerations. 


 


get_models_for_engine(Engine, [RM,MM,DM,TM,LM]) :- 


   cml:engine(Engine), 


   cml:has_reliability_model(Engine, RM), 


   cml:has_maintainability_model(Engine, MM), 


   cml:has_diagnostics_model(Engine, DM), 


   cml:has_thermal_model(Engine, TM), 


   cml:has_logistics_model(Engine, LM). 
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Figure 7.6-57.  Book Ordering 


The composable query for finding a book (above) is similar to that for looking up a terrain slope 
(below). This similarity and regularity in patterns allow composable workflows to be created. 
The Web Service Composer from http://mindswap.org uses a SWI-Prolog reasoner to 
compose a workflow from base ontologies and then generates the dynamic web service requests 
to execute queries. 


%import http://www.mindswap.org/2004/owl-s/1.1/BookFinder.owl 


 


%% OWL-S is the process-based ontology useful for generating workflows 


 


pr(A:B) :-  print(A), print(':'), print(B). 


p(A:B) :-  print(B). 


 


find_book_process(P,B,I,S,G,A) :- 


   process:'AtomicProcess'(P), 


   process:'hasInput'(P,B), 


   process:'hasOutput'(P,I),  % ObjectProperty 


   process:'Input'(B),        % Just a check 


   service:'describes'(P,S), 


   service:'supports'(S,G), 


   grounding:'hasAtomicProcessGrounding'(G,A), 


   grounding:'WsdlAtomicProcessGrounding'(A), 


   grounding:'owlsProcess'(A,P), 


   print('Applied a '), p(P), print(' to '), p(B), print(' giving '), p(I), nl, 


   print('We can use a '), p(S), print(' to instantiate a '), p(G), print(' using '), p(A), nl. 


 


%%% Expected output for unbound query: 


% 


% Applied a BookFinderProcess to BookName giving BookInfo 


% We can use a BookFinderService to instantiate a BookFinderGrounding using 
BookFinderProcessGrounding 



http://mindswap.org/�
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Figure 7.6-58.  Terrain Querying Similar to Book Ordering 


 


 
Figure 7.6-59.  The Web Service Composer Will String Together a Sequence of Service 
Calls from an Ontology to Allow Flexibility in the Creation of a Composable Workflow  


7.6.2.3.7 Design Deployment Example 


Including adaptable Intelligence, Surveillance, Target Acquisition & Reconnaissance (ISTAR) 
capabilities on vehicles allows matching of mission sensing requirements with available sensor 
technologies [RKT05].  


%import http://www.laits.gmu.edu/geo/ontology/owls/ap/v2/slope_precondition.owl 


 


%% Example of OWL-S used in a context model for finding terrain slopes 


 


pr(A:B) :-  print(A), print(':'), print(B). 


p(A:B) :-  print(B). 


 


find_slope(P,B,I,S,G,A,Ref) :- 


   process:'Process'(P), 


   process:'hasInput'(P,B), 


   process:'hasOutput'(P,I),  % ObjectProperty 


   service:'describes'(P,S), 


   service:'supports'(S,G), 


   grounding:'hasAtomicProcessGrounding'(G,A), 


   grounding:'WsdlAtomicProcessGrounding'(A), 


   grounding:'wsdlOperation'(A,Ref), 
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Figure 7.6-60.  ISTAR Query (from [SMV11]) 


 


7.6.2.3.8 Deep Inference Example 


The reasoning illustrated in this example involves inferring extra information from limited 
meta-data. Consider the problem of estimating the mass of parts with the only information 
available limited to dimensions and properties such as density. 


 


%import http://wcsn262:8000/istar.owl 


 


getConfigurations(T,[P|S]):- 


   deployablePlatform(T,P), 


   extendSolution(T,P,[],S). 


 


deployablePlatform(T,P):- 


   istar:'Platform'(P), 


   not((istar:'requiresOperationalCapability'(T,C), 


   not(istar:'providesCapability'(P,C)))). 


 


extendSolution(T,P,Prev,Next):- 


   requireSensor(T,P,Prev,X), 


   % istar:'mounts'(P,X), 


   A=[X|Prev], 


   extendSolution(T,P,A,Next). 


 


extendSolution(T,P,S,S):- 


   not(requireCapability(T,P,S,_)). 


 


requireSensor(T,P,S,X):- 


   requireCapability(T,P,S,C), 


   istar:'providesCapability'(X,C). 
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Figure 7.6-61.  Ontology for a Set of Components with Properties 


 


Figure 7.6-61 is a N3 OWL ontology for a “comp” hierarchy which consists of components 
with specific properties. 


Figure 7.6-62 is a reasoner which can determine the mass of each of the components, but can 
only get this information indirectly by inferring the mass from other properties available. Thus 
if a component has a length, width, and height specified, then the reasoner assumes it is block 
shaped and computes the mass from the density of the material. If, on the other hand, a radius is 
specified, then a different formula for mass is used. This is an example of deeper reasoning than 
is available from pattern matching. 


@prefix : <http://wcsn262:8001/comp.owl#> . 


@prefix owl: <http://www.w3.org/2002/07/owl#> . 


@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 


@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 


@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 


 


:               a       owl:Ontology . 


:component      a       owl:Class . 


:system         a       owl:Class . 


:isHomogeneous  a       owl:Class . 


:hasLength      a       owl:DataProperty . 


:hasWidth       a       owl:DataProperty . 


:hasRadius      a       owl:DataProperty . 


:hasHeight      a       owl:DataProperty . 


:hasDensity     a       owl:DataProperty . 


:partOf         a       owl:ObjectProperty . 


 


:sys    a               :system. 


 


:a      a               :component, 


                        :isHomogeneous, 


                        owl:NamedIndividual ; 


        :hasLength      1.0 ; 


        :hasWidth       1.0 ; 


        :hasHeight      1.0 ; 


        h D it      1 0  
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Figure 7.6-62.  Reasoner Which Understands How to Derive Mass from Shape 


Properties 


  


%import http://wcsn262:8001/demo/comp.owl 


 


%% Example of an analysis archetype for finding the weight of a colllection 


%% of components comprising a system. 


 


%% Depending on what a component has for sizing dimensions, a different weight 


%% calculation will get invoked. It is polymorphic, but guided by constraints 


 


calc_weight(System, Weight) :-  %% weight for a block 


   comp:'component'(A), 


   comp:'partOf'(A, System), 


   comp:'isHomogeneous'(A), 


   comp:'hasLength'(A, L), 


   comp:'hasWidth'(A, W), 


   comp:'hasHeight'(A, H), 


   comp:'hasDensity'(A, D), 


   print('block '), print(A), nl, 


   Weight is D*L*W*H. 


 


calc_weight(System, Weight) :-  %% weight for a cylinder 


   comp:'component'(A), 


   comp:'partOf'(A, System), 


   comp:'isHomogeneous'(A), 


   comp:'hasLength'(A, L), 


   comp:'hasRadius'(A, R), 


   comp:'hasDensity'(A, D), 


   print('cyl '), print(A), nl, 


   Weight is D*L*3.1415*R*R. 
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7.6.2.4 ECTo 


The Early Concepting Tool (ECTo) guides a vehicle design process by applying abstract 
components that fit together a priori as a result of applying archetypal rules. Any down-select 
process that excludes incompatible components is made possible by doing DSE as a successor 
stage. The ECTo concepting reasoner encodes and visualizes spatial representations, complex 
space claims, and articulations, which are difficult to represent and reason with in pure logic. 


As a system design tool ECTo enables editing of a master model primarily through the 
hierarchical assembly and manipulation of components from the CML. It is focused primarily 
on empowering a designer in the early design phase to be able to incorporate and manipulate 
major design drivers and rapidly assess the qualities of system concepts. The resultant concepts 
can be used as the basis for more detailed design. 


7.6.2.5 Co-Analysis Flow using GEAR 


For the example of a vehicle ramp design, we included automated elements along the control 
flow axis as well as the data flow axis (refer to Figure 7.6-63). The data flow followed from 
ontological sources of data as well as tacit facts stored in a knowledgebase. The control flow is 
orchestrated by reasoners which do design space exploration and the test-space exploration.  


Req


Problem 
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Figure 7.6-63.  Flow of Co-analysis from Initial Requirements Using Automation where 


Possible 
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This sets the stage for the co-simulation required to shake-out and verify the concepts and 
optimized designs.  


 


7.6.3 
To understand the needs of co-simulation and how it differs from co-analysis, consider a typical 
AMIL-based architecture in 


Co-Simulation and T&V  


Figure 7.6-64. The executable models in the analysis are wrapped 
with AMIL-aware plug-ins as needed so that they can communicate with the main graph 
database. 


       


= Model app


= AMIL plugin


= AMIL immediate nodes
= AMIL external nodes


Distributed
co-analysis
boundary


 
Figure 7.6-64.  AMIL Nodes Serve as Plug-Ins Within a Distributed Co-Analysis 


The boundary of the co-analysis includes immediate nodes, external nodes, and whatever 
plugins are required for execution. Structurally, this differs little from the service-oriented 
architecture shown below, which can be used as a pattern for a workflow composed via OWL-S 
and SSWAP elements: 
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= Model app


= Embedded web services
= Predicates


= Service calls


 
Figure 7.6-65.  Composable Workflow Analysis Which is a Loosely-coupled, Service-


Oriented Architecture 


The mechanisms for co-simulation differ in that the models often need to communicate directly 
with one another as opposed to through an intermediary of a graph database (in the case of 
AMIL) or through a reasoner and its knowledgebase (in the case of a composable workflow). A 
real co-simulation architecture will thus align more closely to Figure 7.6-66. 


   


= Model app


= Communication ports
= Configuration nodes


 
Figure 7.6-66.  Typical High-speed Co-simulation Network with Direct Data Paths 


Between Communication Ports 


Note that the nodes are replaced with communication ports and the simulation model 
applications have direct communication links to provide the least amount of latency and the 
highest throughput possible. The links to any part of the graph database or knowledgebase are 
restricted to configuration nodes. The co-simulation has now transformed into more of a 
choreographed exercise than the orchestrated co-analysis.  
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The choreography is evident in that the individual models know what to do because they are 
simulating the actual design execution and the appropriate environmental context, and 
synchronizing these interconnects will happen at the cyber-physical level. This also becomes 
the environment for test and verification, as we move from a highly-abstracted world to a high-
fidelity world. In other words, the orchestrated hand-holding of co-analysis is no longer 
operable, and we need realistic mechanisms to be simulated for determining a PCC. 


This more restrictive architecture is not a limitation to how we apply AMIL. For example, a 
co-simulation model for AMIL can potentially be based on a Distributed Command Pattern 
(DCP) for data communication and synchronization. The DCP is very simple yet powerful in 
that it can generate basic building blocks for Models of Computation and Communication 
(MOCC) in any object-oriented base language (Java, C++, etc.). The significant advantage for 
the ARRoW process is how well it fits in with the AMIL framework, particularly as a routing 
table for distributed nodes. If the throughput of AMIL is insufficient for direct heterogeneous 
and multi-physics computing applications, it will be certainly useful for a DCP application, as 
this requires an intelligent and organized routing configuration, something which AMIL excels 
at providing.  


7.6.3.1 MoCC and Heterogeneous Simulation 


The fact that heterogeneous simulations have an unbelievably rich set of possible interactions 
leads to the META concept known as Models of Computation and Communication (MoCC).  
Referring to this set as MoCC allows us to categorize the ways in which simulations have been 
architected. For a typical cyber-physics problem, each simulation may need to talk to a 
concurrently executing simulation, so that a path toward making the communications as 
uniform or adaptable as possible is a good one to follow. 


 


 
Figure 7.6-67.  MoCC Applied to Modeling of a Drivetrain 


7.6.3.2 Tagged Signal Model 


7.6.3.2.1 AMIL for Co-Simulation 


The language semantics behind AMIL allow a model developer to access the underlying graph 
database, which contains information on the computational nodes comprising an extended 
model, and of the edges/links connecting these nodes. 


When a model tries to emulate the behavior of something as substantial as a complete vehicle 
operation with associated multi-physics, the demands placed on the interconnect language 
grow accordingly. The complete vehicle simulation is difficult enough to construct that the 
simulation developer does not want the interconnect layer to become an additional hindrance. 
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Instead, it should be based on a pattern as simple as writing a procedural call or tapping into a 
data stream. 


So we want a messaging pattern that fits in with the simplicity of AMIL. Let us consider first 
the DCP, which has particular relevance to an interconnected model. The elegance of the 
pattern stems from the conciseness of its use. The typical invocation takes two lines of code: 
 msg Object.Command; 
 DCP.Send(msg); 


 


The first line declares the desired command as a message and the second line sends the 
message. The routing table configuration is opaquely hidden to the client software by the DCP 
dispatching logic (what is referenced within the Send procedure), so that only the problem 
domain is exposed and not the solution domain. 


The routing configuration is simple as well and isolated from the static program code by a 
knowledgebase, or an AMIL graph database. A typical set of routing configuration rules may 
look like the following, where the destination address is given by a logical node number. 
 connection(object:command, 2). 
 host_node(2, ‘192.168.10.1’). 


 


This information is accessed at run-time only, and it essentially instructs the DCP dispatcher to 
send all messages of class object.command to a node logically defined as 2 (which then 
maps onto an IP address in this example). 


The interconnect language is powerful in that it will allow general pattern matching. Thus, if 
we wanted to indicate that all commands owned by object resided on node 2, we would declare 
this: 
 connection(object:_, 2). 


 


The underline (‘_’) character indicates a wild-card match for all messages belonging to this 
object. 


The language can also incorporate sophisticated rules. For example, say that the object needs 
to co-reside on the same node as a specific server object. Then we can declare the rule by the 
predicate logic: 
 connection(object:_, Node)  
  connection(server:_, Node). 


 


This says to pattern match the node number for the object against the node that the server 
resides on. We only need to declare the server elsewhere, as the implication follows a rule: 
 connection(server:_, 4). 


 


Fail-over semantics are accomplished by providing an alternate route should the main 
connection fail: 
 connection(object:_, 2). 
 hot_backup(object:_, 3). 
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In our variation of the DCP the Node labeled 0 has special meaning. It is reserved to indicate 
that a message is routed to a local object. For this reason, all executables are assigned a Node 
number; they then can perform introspection on their own routing behavior and not invoke 
distributed communication unless needed. 


7.6.3.2.2 Tagging for Synchonization 


The DCP message depends on inheritance from a specific base class. A refined message can add 
data elements so that information can be transmitted along with the command. Therefore 
variants of the basic DCP message can include pure commands, queries (i.e., request-replies), 
and status requests (i.e. output only). 


Since the messages can contain extended information, they fit in well with the Tagged Signal 
Model (TSM) advocated by Lee and Sangiovanni-Vincentelli. TSM was introduced to address 
the problems brought on by heterogeneous modeling and co-simulation. The heterogeneous 
environment defined a set of mix and match computational models which can include 
combinations of: 


• Continuous time with discrete time 
• Sequential with concurrent, etc. 


A foundational consideration exists behind TSM. Making heterogeneous simulations work 
efficiently boils down to a need for a general adaptive mechanism to uniformly communicate 
between models. This is related in scope to the DCP strategy, which applies polymorphism of 
data-types to implement message passing between models. As we will demonstrate, message-
passing facilitates not only distributed computing, but the fundamental polymorphism allows 
us to exercise many other TSM-like behaviors, such as synchronization, signaling, re-entrant-
safe data handling, etc.  


 
Figure 7.6-68.  The tagged-signal model allows interoperability of different MOCC. 


The basic entity in the tagged signal model is an event, which is a value/tag pair.  The value is 
essentially the data that a message can contain and the tag establishes the name and unique 
class that the message belongs to. 


Based on their classification, tags can establish ordering relationships in time, and so different 
models of time appear as structure imposed on the intersection between sets of all possible tags. 
Describing a process can then appear as relations between signals as sets of events, for 
example, a synchronized transaction can occur if a condition variable is attached to a tagged 
signal.  


The character of such relations follows from the type of process it describes. The figure below 
represents a categorization of temporal systems that can fall under the TSM umbrella. 
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Figure 7.6-69.  The Tagged-signal Model Encompasses a Family of  


Simulation Behaviors (from Lee and Sangiovanni-Vincentelli). 


According to the categorization, the family of tagged signal models intuitively consist of 
processes that run concurrently, which is what you would expect in a co-simulation. 
Constraints imposed on the shared signals’ set of tags define communication among the 
processes. Tags can represent a broad range of annotated relations, such as total orders in 
timed systems and partial orders in untimed systems.  


Consider a few examples from typical system simulations. In the first case, we may want to 
interface an event-driven base simulation to a continuous time simulation such as what 
Simulink can produce. These data-flow systems typically solve differential equations, so they 
operate on intervals of time, Δt. One could set up the Simulink simulation to generate a step-
wise solution by requesting a result at a Δt interval in advance, or one could advance the clock 
and request a solution for the current time. Even though the time interval is generally small, 
not factoring in the temporal shift and ordering properly can lead to mismatches in expected 
output of a heterogeneous simulation. A tagged signal model can account for this as the hand-
shaking built-in to the connection can adapt to the difference. For that reason, the TSM 
connections can include what are called adaptors. 


Another case involves the modeling of edge detection as would happen in the simulation of 
digital logic systems. Logic gates typically synchronize of rising edges of binary signals, so the 
synchronization of multiple gates in a circuit consisting of clocks and cascading logic is critical. 
The referenced paper describes in detail the semantics of a modeled digital signal which 
effectively emulates that which would be found in a VHDL simulator. [PL07] 


The combination of message-passing and tagged-signals turns out to be very powerful in that 
remote and local variations of synchronization are easy to model.  We thus have no problem 
modeling and simulating the following types of synchronizing behaviors: 


• Read-modify-write 
• Bounded/unbounded buffered FIFO (e.g., mailboxes) 
• Rendezvous  


These kinds of behaviors are the bread-and-butter building blocks for designing cyber-physical 
systems that have any degree of automation. 
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7.6.3.2.3 Merging TSM and DCP 


Importantly, we can unify the separate notions of tagged signals and distributed commands. 
Consider distributed commands as objects which possess a homing instinct based on the unique 
identity of their tag. Thus we can assert several properties of a tagged distributed command: 


• Tagging allows messages to dispatch to their correct destinations 
• Tags can be used as an index to route to computational nodes 
• Tags are built into OOP languages via virtual dispatch tables, i.e., vtables  


This leads to the declaration of a routing configuration table as we described earlier. The 
names declared in the text correspond precisely to the names uniquely defined for the tagged 
signals, with the object dot notation used to define the names.  Combining the tagged DCP 
with the tagged synchronization primitives allows a large diversity in realizations. 


• Different computational models hosted in appropriate threads and processes 
• Synchronization primitives define temporal behaviors 


This approach has been prototyped in a kind of middleware library we refer to as the patterned 
AMIL command environment. This uses the distributed-command pattern as a foundation. All 
messages are tagged with an object identity and contain time ordering slots encapsulated in 
their base class. Messages at the most basic level can refer to signaled events, hence the 
correspondence to the Tagged Signal Model. 


A co-simulation becomes an agent-driven process network with all message-passing and 
synchronization semantics based on passive or active objects derived from tagged types.  A 
wide variety of MoCC systems can be invoked with fundamental tagged patterns. As with the 
basic distributed command pattern above, the patterns at most involve a few lines of code; in 
particular:  


• Concurrency 
• Mailboxes, rendezvous, publish-subscribe, etc. 
• Discrete Event Engine (Degas[LP06])  hybrid cyber-physical systems 


A possible configuration to demonstrate involves AMIL-controlled dispatching to objects 
across remote clusters. The idea is to maintain variants of objects in different clusters 
depending on how we want to experiment with performance, fidelity of representation, or 
design space exploration. In the figure below, we show two possible configurations which each 
connect four active objects. Considering this in the context of a design space exploration, a 
total of 81 combinations are possible via DCP reconfiguring. 
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Tagged Runtime Polymorphism


Select 4 objects (                  ) from 3 groups (A,B,C). Number of combinations = 34 = 81


A B C


A B C


dispatch
path


 
Figure 7.6-70.  Tagged Signal Runtime Polymorphism 


The tagged signal model lies at the heart of  an integrated simulation. As objects refer to a 
message containing a full informational record, it has general expressiveness to capture many 
relevant behaviors. The generality of  the synchronization environment allows various levels of  
behavioral polymorphism, such as dataflow, time-triggered, discrete-event (through DEGAS), 
communicating sequential processing, process networks, and push-pull messaging.  


The connection to AMIL is now very apparent as AMIL allows us to map the connectivity of  a 
co-simulation: 


• The distributed command pattern allows destinations to occur on any node of the 
network.  


• A connection-oriented configuration approach comes along with the pattern.  
• The configuration describes a run-time modifiable routing table.  
• By encoding the configuration to reside within a knowledgebase, we have a set of rules 


to enable sophisticated pattern matching techniques to be employed. 
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Figure 7.6-71.  A Typical Architecture of an Agent-Based Co-Simulation 


The full co-simulation consists of actors or agents that work concurrently and cooperatively, 
which emulates the architecture of a ground vehicle. The combination of an AMIL 
configuration with run-time polymorphism through tagged signals disambiguates intent in 
both information transfers and behaviors initiated. This becomes an ideal heterogeneous 
computing environment for analysis and migration toward a virtual prototype and that can 
support various models of computation.  


A natural extension is to incorporate design space exploration and adaptability into this 
architecture, with very little additional effort. As per Figure 7.6-14, we may need to 
successively investigate a sequence of alternatives and how they may best reduce the 
complexity of the state space. 


As one approach to take, consider that the design-space exploration is really just a concise 
application of a distributed command pattern with supplemental decision rules. This is an 
excellent exercise in demonstrating dynamic CML loading because we can use the command 
pattern dispatching mechanisms to insert the appropriate component in our environment. 
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Figure 7.6-72.  Distributed Command Pattern for Selecting Among Alternative 


Implementations 


As only a few options exist for performing automated design space explorations, the primary 
enabler in this case is to concentrate on components and functionality that work plug-
compatibly and have contract-style interfaces.  As similar connection configuration rules play a 
part in the operation of the DCP architecture, the implication is that design space exploration 
can be analyzed in terms of a heterogeneous simulation, and very late in the game. This has 
significant benefits considering that set-based concurrent engineering and adaptability are 
important factors for META. 


7.6.3.2.4 Evaluation 


7.6.3.2.5 Evaluation 


The co-simulation of a vehicle-scale cyber-physical system will definitely contain complexity, 
but the building blocks benefit from simple patterns. 


• Advanced distributed command-pattern middleware 
• Embedded knowledgebase (AMIL) for distributed communication  
• Heterogeneous tool integration  
• Integrated launching environment 
• Hybrid Discrete Event Simulation and Testing Framework 
• Design-space exploration  
• Advanced 3-D visualization (refer to ECTo) and collision checking  
• Run-time instrumentation and post-processing of artifacts  
• Potential additions such as High-Level Architecture (HLA) integration  


 


By combining the capabilities in different ways, we can accomplish combined goals. For 
example, we can consider design-space exploration as an application of a distributed command 
pattern with a front-end emphasis on expert system reasoning and integration. This also 
demonstrates dynamic Component Model Library loading as we can use the command pattern 
dispatching mechanisms to get to the correct component in our environment. 







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 109 Refer to cover page for Distribution Statement. 


7.6.3.2.6 Patterned AMIL Command Environment  


This section contains a list of adaptors and synchronization primitives that certainly apply to a 
practical distributed co-simulation. The communication problem we want to generalize is to 
provide a rich set of service adaptors for inter-process communication as shown below. 


 


Figure 7.6-73.  The Application of Middleware 


If we were to define a paradigm for how distributed command patterns typically fit together, a 
passable description may be to call the end result a “class-based messaging architecture”. The 
specific variation is to lean on a class-based command pattern, which also has the potential for 
language interoperability (especially with common vtable implementations among open-source 
compilers). Such an essential pattern provides benefits in (1) instrumenting code and (2) 
allowing for other building block patterns to be constructed. What we call the set of PACE 
patterns combines inheritance and class-wide operations on the base message classes. The base 
classes contain time stamps, task IDs, and other identifiers which can be used to trace 
execution. This is the basic architectural pattern that would provide the infrastructure for a 
MOCC co-simulation, intended to support both discrete event simulation and real-time 
simulation. Other patterns evolved based on needs of simulating a real cyber-physical design, 
rich with concurrent constructions.  


The Tagged Signal Model at the heart of the messaging consists of a set of attributes that are 
inherited by all derived messages. These include node numbers (for routing), thread ID’s, 
synchronization and delivery enumerations, and time measures (absolute and relative). More 
attributes can be added to specialize the services, but these are the essential ingredients in 
combining a distributed command pattern with a tagged signal model. 


Description of Patterns. The Apache open source project uses an integration framework 
called Camel. The basic mechanisms are described as a set of Enterprise Integration Patterns. 
They are fairly comprehensive for the application domain of social communication that they 
have targeted, but it falls well short of the intended application domain of tool co-simulation. 
The following provides a set of possible PACE patterns presented is the same fashion as the 
Apache Camel patterns. The code snippets attached to each entry demonstrates the intended 
conciseness of pattern usage, with the icon  representing a tagged signal pattern and  
representing a task or process. 


 Command (or Message) Pattern  



http://camel.apache.org/enterprise-integration-patterns.html�
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Command messages are declared in a module specification, with at least one of the three 
available primitive dispatching operations also specified. The module implementation 
requires the filled-out operational code for the selected primitives.  


type Msg_Name is new Pace.Msg with ...;   // defined in Msg_Name_Module 


procedure Input (Obj : in     Msg_Name);  // optional primitive #1 


procedure Inout (Obj : in out Msg_Name);  // optional primitive #2 


procedure Output(Obj :    out Msg_Name);  // optional primitive #3  


 
In formal terms, the automatically inherited operations include Input, Output, and 
Inout. Depending on the parameter mode desired (whether data is "in", "out" or "in 
out"), one or more of these operations can be declared for each subclass'ed command 
Msg. The command pattern is also mentioned in the “Gang of Four” patterns book, but 
different language can implement it slightly differently, particularly with respect to 
pointer manipulation. On the client side, instancing of command messages is 
straightforward.  


use Msg_Name_Package; 


Msg : Msg_Name;  


 


Input (Msg); 


 
In many cases, a "class-wide" procedure declaration is used in conjunction with a 
command message. The class-wide to primitive operation dispatching allows further 
bulding block utilities to be created from the command pattern. These utilities include 
such patterns as Trace and Proxy.  
In terms of contract-style programming the mutability of the command pattern data 
flow indicates its use.  


“inout” General queries (with potential side effects) 


“input” Commands (state changes) 


“output” Monitoring (no side effects or state change) 


   
The purely functional style is missing from the command pattern. 


 Dispatched Command Pattern  
This pattern is a slight variation of the client-side invocation of the command pattern. 
Instead of calling the primitive operation directly, a class-wide operation is used which 
effectively enables redispatching to the appropriate primitive. The target of the 
indirection can be changed by registering a different class-wide callback.  


Msg : Msg_Name_Package.Msg_Name;  


 


Pace.Dispatching.Input (Msg); 


 
Note that these first two patterns are the essence of the architectural DCP paradigm.  
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 Trace (or Instrumentation) Pattern  
The library contains class-wide utilities which apply to any derivation of Pace.Msg. One 
of these, the class-wide operation called Pace.Log.Trace provides a convenient way to 
instrument the code, as it accepts instances of the class-wide Pace.Msg as its parameter.  


procedure Input (Obj : in Msg_Name) { 


   Pace.Log.Trace (Obj);   


};    


On trace output some of the synchronization semantics can be logged, which may 
include: => simple, >> synch, -> asynch, <> release following SysML notation. 


 Unit Identification Pattern  
This pattern allows one to declare a character string identifier which automatically 
matches the enclosing module name. This is typically declared in a body.  


function ID is new Pace.Log.Unit_ID;    


 
In general, placing character strings in code to identify packages is a poor idea; for 
example if maintenance occurs the strings may need to be updated. This provides an 
automated approach.  
Along the same lines, PACE uses object tags in hash tables to textually associate data 
with messages. This can be demonstrated by combining the Tag Identification Pattern 
and Message Lookup Patterns.  


 Agent (or Task) Identification Pattern  
This pattern allows one to register the name of a task. Use this with the Unit 
Identification pattern. All tasks are released when the default Pace.Log.Agent_ID is 
called from the main procedure.  


function ID is new Pace.Log.Unit_ID; 


 


task Agent { 


   Pace.Log.Agent_ID (ID); 


   ...    


 Tag Identification Pattern  
If the need arises to get the character string representation of a command message, use 
the following pattern:  


procedure Input (Obj : in Msg_Name) { 


   Pace.Log.Put_Line (Pace.Tag (Obj) & " called");  


}    


 Log Exception Pattern  
Log a descriptive string without blocking, allowing a concurrent task to monitor. In 
practice, each task exception handler calls Pace.Log.Ex with an optional text string. 
The monitoring task needs to call the function Pace.Log.Wait_For_Ex to retrieve 
strings placed on the queue.  


exception when E : others => 


   Pace.Log.Ex (E, "extra info");  
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In practice it is useful to log all exceptions, and make sure there is an exception handler 
in every task.  


 Synchronized Message Passing (Rendezvous) Pattern  
Based on C.A.R. Hoare’s communicating sequential processes, if the implementation of 
Input makes a call to a task rendezvous, the transaction is synchronized.  
    


// Agent Task      


// 


task Agent { 


   accept Input (Obj : in Msg_Name) { 


      Pace.Log.Trace (Obj); 


   }; 


   ... 


}; 


 


// Client Task    


// 


procedure Input (Obj : in Msg_Name) { 


   Agent.Input (Obj);                   // Transfer control and data to Agent 


}; 


 
The calling Client must not be the same task context as the Agent, otherwise the 
execution will deadlock. In practice, this does not cause a problem because it is practical 
to detect deadlock through either code inspections or executable tests.  


 Surrogate (Asynchronous) Message Passing Pattern  
This pattern uses a surrogate task to emulate an asynchronous message passing 
protocol, this is also often referred to as "send and forget" semantics. If a dispatching 
operation called Input is declared, then the Asynchronous send pattern can be applied. 
There are two flavors to this pattern, one that uses a dedicated task and one that uses a 
pool of surrogate tasks. Both approaches call the dispatching operation named Input. 
Note that since the asynchronous protocol does not require a return, neither Output 
and Inout calls are applicable since they do
The easiest flavor of the pattern to use is the pooled variation. One task in the task pool 
calls the class-wide operation as determined in the Pace.Surrogates package.  


 expect data back from the called primitive.  


Msg : Msg_Name; 


 


Pace.Surrogates.Input (Msg); 


 
The other variation is to use a dedicated task to manage the handoff from the client to 
the surrogate, who can then asynchronously deliver the message.  


package Async is new Pace.Surrogates.Asynchronous (Msg_Name);   


... 
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Msg : Msg_Name; 


 


Async.Surrogate.Input (Msg); 


 
The recommendation is to always use the pooled version pattern since it requires less 
code. A configuration variable PACE_MAX_SURROGATES controls the number of 
tasks in the pool.  


 Mailbox Pattern  
This pattern pairs up sending and receiver tasks via a command message. Application 
developers typically won't use this pattern directly this but it is needed by the Notify 
pattern. It is thus more of a building block pattern for use by other PACE abstractions.  


package Mailbox is new Pace.Msg_IO (479); // prime number for hash table size 


 


// Server side    


Msg : Msg_Name; 


Mailbox.Await (Msg); 


 


// Client side    


Msg : Msg_Name; 


Mailbox.Send (Msg);  


 Notify Pattern  
This simple but very powerful pattern provides a trigger/suspend pair on a message. 
The message has two pre-built operations (Input and Inout) built up from the Mailbox 
pattern. The inherited Inout primitive will suspend on the subscription message, while 
the inherited Input provides a built-in trigger (or publish) mechanism from a 
concurrently executing task.  


type Msg_Name is new Pace.Notify.Subscription with 


   { 


      Data_Field : ... 


   }; 


 


// Server-task suspend  


task Agent { 


   Msg : Msg_Name; 


 


   Inout (Msg); 


   Msg.Data_Field := ... 


 


// Client-task trigger  


Msg : Msg_Name; 
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Msg.Data_Field := ... 


Input (Msg); 


 
This is useful to allow the task rendezvous mechanism to be extended to regions outside 
the task body.  


 Queue and Guarded Queue Pattern  
The Guarded Queue pattern provides a re-entrant safe mechanism to pass constrained 
data.  


package Q is new Pace.Queue (Item_Type); 


package Guarded is new Q.Guarded; 


    


Guarded.Get (Item);   // Task #1  


 


Guarded.Put (Item);   // Task #2  


 
The queue operations Guarded.Put and Guarded.Get are available.  


 Mutex Pattern  
This pattern protects data from simultaneous access via an automatically scoped 
semaphore object. This is a fairly common textbook mutual exclusion pattern.  


My_Mutex : aliased Mutex; 


 


... 


 


// Lock  


L : Lock (My_Mutex'Access);  // Task #1 access locked data until end of scope 


 


... 


 


// Contend  


L : Lock (My_Mutex'Access);  // Task #2 access locked data until end of scope 


 Pooled Resource Pattern  
This pattern provides a pool of guarded keys that can be used to access task or re-
entrant critical data. Currently, it is used as a building block pattern for other PACE 
abstractions, such as the Pace.Socket module.  


type Pool_Range is range 1 .. 10; 


package Pool is new Pace.Resource (Pool_Range); 


 


Key : Pool_Range; 


 


Key := Pool.Get; 


// access locked data until end of scope 
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Pool.Free (Key); 


 Single Event Wakeup Pattern  
Instance a Pace.Signals.Event protected type in a package body that has access to 
multiple threads of control.  


Evt : Pace.Signals.Event; 


... 


Evt.Suspend;  // Task #1   


... 


Evt.Signal;   // Task #2   which wakes up suspended Task #2 


 


 Multiple Event Wakeup Pattern  
For waking up multiple threads of control. An enumerated type or other ranged scalar 
type can be used to specify the desired signalling states.  


type Colors is (Black, Red, Blue);  


package Evts is new Pace.Signals.Multiple (Colors); 


 
Three variations of multiple signal control exist. The first specifies waiting on a specific


Evts.Await (Black);    // Task #1    


 
enumeration value:  


... 


Evts.Signal (Black);   // Task #2   wakes up suspended Task #1 


 
The second describes waiting on any


Color : Colors; 


 enumeration:  


 


Evts.Await_Any (Color);    // Task #1   


/ post-condition -> Color returns Black 


 


... 


Evts.Signal (Black);       // Task #2  wakes up suspended Task #1 


 
The last variation describes waiting on all


Evts.Await_All;       // Task #1   


 enumerations:  


... 


Evts.Signal (Red);    // Task #X   


... 


Evts.Signal (Blue);   // Task #Y   


... 


Evts.Signal (Black);  // Task #Z   which finally wakes suspended Task #1 


    







META ARRoW Phase 1b Final Report—13 October 2011  Appendix 7.6 - Advanced Reasoning and Extended 
Applications of ARRoW Technology 


© BAE Systems 2011. All rights reserved. 116 Refer to cover page for Distribution Statement. 


 Data Wakeup Pattern  
This is another pattern to use instead of a rendezvous. To use this pattern, first instance 
a Pace.Signals.Shared_Data protected type in an implementation  that has access to 
multiple threads of control.  


Obj : aliased Msg_Name; 


... 


Data : Pace.Signals.Shared_Data (Obj'Access); 


 


task Agent {        // Task #1   


   Msg : Msg_Name; 


 


   Data.Read (Msg);  


exception 


   when Pace.Signals.Data_Mismatch => // Uh-oh, types don't match 


}; 


 


Msg : Msg_Name;     // Task #2   wake up Read by calling Write 


  


Data.Write (Msg);  


Of all the patterns defined so far, this one has the potential for data type mismatches. If 
the reader waits on a message that doesn't match the type of the writer, an exception will 
be raised. Compare this to the Synchronized Message Passing or Notify pattern and you 
can see that the extra complexity of the Shared Data Wakeup pattern makes the type-safe 
rendezvous or notify a much better choice.  


 Task Wakeup Pattern  
This pattern uses built-in task identifiers to associate waiting tasks with triggering 
clients (TID stands for Task ID).  


Id : Pace.Thread;             // Static variable 


... 


task Agent {                  // Task #1   


   Id := Pace.Current;         


   Pace.Signals.Tid.Wait; 


... 


Pace.Signals.Tid.Signal (Id); // Task #2   wakes up suspended Task #1 


 
The Agent Wakeup pattern is used in the Pace.Signals.Buffers service. Each 
subclassed  Msg contains a TID field which is used to pass thread identifiers between 
active objects. This is a direct application of the Tagged Signal Model. 


 Channel (Unconstrained Command) Pattern  
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This pattern allows heterogeneous and unconstrained command messages to be mixed 
in a safe and controlled way. The convenience operator "+" is defined to allow simple 
construction of the "channel" messages.  


Msg : Msg_Name; 


Chan : Pace.Channel_Msg := +Msg; 


... 


Input (+Chan);  // Dispatches to primitive operator 


 
The Channel pattern is used in the Pace.Signals.Buffers service and in the command 
callback pattern.  


 Buffered Command Pattern  
This pattern uses the Channel pattern and the Agent Wakeup pattern to enable 
synchronized passing of heterogeneous/unconstrained data. This is accomplished by 
buffering messages in a protected queued data structure.  


type Msg_Name is new Pace.Msg with 


   { 


     Char : Character; 


   }; 


 


Queue : Pace.Signals.Buffers.Buffer; // Contains Class-wide Queue 


 


task Agent {                  //  


   Item : Pace.Channel_Msg;  // Single Class-wide element 


 


   Pace.Signals.Buffers.Get (Queue, Item); 


   // Convert from class-wide to specific type 


   Pace.Log.Put_Line ("Char = " & Msg_Name (+Item).Char); 


   ... 


Msg : Msg_Name;           // other task   


 


Msg.Char := 'c'; 


Pace.Signals.Buffers.Put (Queue, Msg); 


The Buffered Command pattern is useful for composing Command messages out of 
other Command messages, where the components can be heterogeneously defined. On 
the receiving end, the individual channeled components can be dereferenced and then 
polymorphically dispatched to their primitive command operation.  


 Proxy (Socket) Pattern  
This simple pattern creates a Proxy to enable message sending via a socket. The 
interface is structurally similar to the pooled asynchronous call, but the class-wide 
operation redirects to the socket IPC protocol instead before dispatching at the remote 
site.  


Msg : Msg_Name; 
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... 


Pace.Socket.Send (Msg);  // use the Ack flag if synching is important 


 
The protocol is two-way if the Send_Inout or Send_Out is used and either synchronous 
or asynchronous if the Send operation is used.  
Run-time configuration is provided by the AMIL configuration knowledgebase. Refer to 
the separate section 7.5.3.4 on this topic.  Good use of patterns eliminates the need for 
"wizard" code-generation algorithms. Whereas marshalling of data is a difficult 
problem, a command-based proxy pattern is simple to implement and simple to enforce 
via coding guidelines.  


 Publish-Subscribe (Asynchronous Notify) Pattern  
Publish-Subscribe is effectively a second-order pattern that requires an extra level of 
protocol on top of the basic command Input pattern. The subscription protocol is much 
like the Notify pattern; however an intermediate step for maintaining a subscription list 
is required. To identify the protocol, we subclass a Subscription message from 
Pace.Msg.  


package Status_Pkg .. 


   type Status is new Pace.Msg with  


      {  


         Data : ...; 


      };  


    procedure Input (Obj : in Status);     


-- In the body, implement the subscription list:  


List : Pace.Socket.Publisher.Subscription_List (Max_Subs);  -- Max defaults to 1 


 


procedure Input (Obj : in Status) { 


   Pace.Publisher.Subscribe (List, Obj);  


} 


 


task Agent { 


   Local_Status : Status; 


 


   Local_Status := ...     // update the locally persistent state information. 


   Pace.Publisher.Publish (List, Local_Status);    


 
On the client-side, we must subclass from the server message. This can be done in the 
implementation:  


type My_Status is new Status with null record; 


procedure Input (Obj : in My_Status); 


 


procedure Input (Obj : in My_Status){ 


   // Grab the data 


}; 
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-- To subscribe, create instance of My_Status, but (important!) convert to Status 


Msg : My_Status; 


   Status_Pkg.Input (Status (Msg));  -- Locally subscribe 


 
Only one task is explicitly involved in this pattern, since in the local Agent the task 
itself is responsible for invoking the callback Command message.  
To subscribe the client remotely, replace  the following: 


procedure Subscribe is new Pace.Socket.Observer  


       (Remote => Status_Pkg.Status, -- Needed for remote IPC 


        Local  => My_Status); 


 


Subscribe; -- Remotely subscribe 


 
The communication pattern is reliable in that it uses TCP sockets when interprocess 
exchange occurs. Other than that, use this pattern with careful justification in that it can 
be prone to race conditions if used excessively. The worst-case example of this condition 
is where every object publishes data asynchronously but there is no central level of 
synchronized control. The giveaway for this predicament is the liberal use of delay 
statements to try to mitigate race conditions.  
The publish-subscribe pattern is popular but simpler patterns exist. As an alternative, 
blocking of command pattern events ala the Notify pattern is an easy to code and may 
find more widespread usage.  


 URL Command Pattern  
Sending a text command to the PACE-friendly web server uses the tagged type 
semantics in a novel way to do transparent dispatching. If ASCII encoded data is also 
attached to the text (i.e. URL) message, the protocol pattern is essentially CGI or XML 
RPC (remote procedure call), REST, or SOAP (simple object access protocol) 
programming.  


   // Declare a subclass derived from Pace.Server.Dispatch.Action 


   type Msg_Stimulus is new Pace.Server.Dispatch.Action with null record; 


   procedure Inout (Obj : in out Msg_Stimulus); 


 


   procedure Inout (Obj : in out Msg_Stimulus) { 


      Pace.Log.Put_Line ("Stimulus received : " & +Obj.Set); 


   }; 


 


   // Register through Save_Action either in a task or at the elaboration section 


   Save_Action (Msg_Stimulus'(Pace.Msg with Set => +"OK")); 


 
The internal web server keeps track of all registered action requests. A typical URL 
Action Request looks like:  


http://wcss239:5601/PKG.MSG_STIMULUS?set=OK    
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The bolded part is the salient PACE interpreted URL. Note that whatever package that 
the Msg_Stimulus dispatching primitive is defined in, this name has to prepended to the 
URL. In so doing, the pattern becomes easy to maintain.  
The URL pattern allows a backdoor interface to allow the injection of external sensor 
messages into the executable. In some programming circles, the Save_Action call is 
part of a factory or a registration pattern, since these objects are created in a factory line 
fashion, each one stamped out prior to use. Note that the command pattern in general 
has no such restriction, because by definition they have been registered prior to use by 
the language run-time. However, when external messages are considered, the run-time 
has had no chance to create an object instance before the external tag arrives; thus the 
requirement for the registration process. Moreover, providing this registration allows 
us to set defaults, as in the "OK" example above.  


 Message Lookup (Tag Hash) Pattern  
Provides a lookup (i.e. hash or set) table to Msg tags. The internal tag of a message is 
convertible to an external tag (human readable) through the signal tag utilities. 
Although one can instance this pattern directly, it is used more often in other pattern 
utilities than on its own.  


// Instance a Lookup table with hash size. 


package Hash is new Pace.Lookup (479); -- Prime number is best 


 


Obj : Msg_Name; 


 


// set a value in Lookup table corresponding to a message tag 


Hash.Table.Set (Msg_Name'Class'Tag, +Obj); 


    


// get value and dispatch 


Pace.Dispatching.Input (+Hash.Table.Get (Msg_Name'Class'Tag)); 


 
Note that this uses the Channel Command pattern which manages the memory 
automatically. Use a Mutex pattern if more than one task will access this; refer to 
Pace.Server.Dispatch for a complete example.  


 Callback Command Pattern  
Provides a means to attach a class-wide dispatching callback to a command. The 
callback is contained as a Channel component to the message.  


-- Server 


type Msg_Name is new Pace.Msg with 


    { 


        Callback : Pace.Channel_Msg; 


    }; 


procedure Input (Obj : in Msg_Name); 


 


procedure Input (Obj : in Msg_Name) { 


    Pace.Socket.Send (+Obj.Callback); // respond on callback  
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sg 


Msg : Msg_Name; 


 


Msg.Callback := Pace.To_Callback(CB); 


Pace.Socket.Send (Msg); 


 
Note that no data components can be attached to the callback message because the 
server can only see the anonymous wrapper; the Channel_Msg "+" operator does the 
dereferencing on the response callback. If one wishes to add data or simplify the 
representation, adopt the Notify pattern and think in terms of synchronized "in out" 
message passing. Or use the Publish Subscribe pattern for multiple responses. This 
pattern essentially falls out of the command pattern and no extra library code is 
involved; i.e. it's a freebie.  


 Persistent Command Pattern  
Provides a means to save commands to a persistent storage device, i.e. disk.  


procedure Input (Obj : in Msg_Name) { 


   Copy : Msg_Name; 


 


   Pace.Persistent.Put (Obj);  // Save to the Data Store 


   Pace.Persistent.Get (Copy); // Retrieve from the Data Store 


 


   // Post-Condition : Copy = Obj 


 
The command message is saved in a file which has the same name as the full external 
tag name of the command message.  


 External Stream Representation Pattern  
Sometimes we may want to override the built-in marshalling (via a Streams library) of 
the Proxy pattern. We can either compress the data by using block binary transfer, thus 
overriding the standard byte protocol. Or we can create an ASCII text representation of 
the stream data to interface to external programs, which may not know all the internal 
data representations (such as floating point representation).  


type Status is new Pace.Msg with  


   { 


      Data : ...; 


   };  


procedure Input (Obj : in Status);  


    


package Fast is new Pace.Stream.Binary (Status); 


// Input is inherited.    
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Use the binary pattern with caution since it may not reconstruct controlled elements or 
XDR representations.  The text pattern is more involved but important for language 
interoperability.  


 Configuration Data Pattern  
The guts of this pattern will be covered in detail in a section related to using the Pace to 
AMIL knowledge base, but this gives the basics.  


 Multicast Pattern  
This is based on an unreliable protocol and should only be used for transient data, such 
as video or graphics updates. The Receiver object contains a task that dispatches to the 
correct command destination. The Sender object is a protected object that guards 
against reentrancy.  


// loopback example, both sender and receiver in the same context 


RX : Pace.Socket.Multicast.Receiver  


   := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs")); 


TX : Pace.Socket.Multicast.Sender 


   := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs")); 


 


procedure Send_Update (Obj : in Pace.Msg'Class) { 


   Pace.Socket.Multicast.Send (TX, Obj); 


}; 


 Shared Memory Pattern  
This pattern was developed for UNIX. It effectively demonstrates how a O/S specific 
interface can be abstracted away to look like a simple memory access.  


type Data_Type is 


  { 


     Int : Integer := 0; 


     Flt : Float := 0.0; 


  }; 


type Data_Block is access Data_Type; // A pointer 


 


Pool : Pace.Keyed_Shared_Memory.Block (Key => 700); 


for Data_Block'Storage_Pool use Pool; 


    


// To access memory, dereference the instance 


Value : Data := new Data_Type;   


 
The Key and Size values need to be identical across applications.  


 6DOF Pattern  
A concrete example of a command message used to interface to an external 3D 
visualization tool via the multicast pattern. The tool it was originally used for was ProE 
dvsMockup.  


// Server Side  
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type Position is new Pace.Msg with 


   { 


      Assembly : Str; 


      X, Y, Z : Float; 


      A, B, C : Float; 


   }; 


procedure Input (Obj : in Position); 


// body implements the graphics update 


 


// Client Side       


TX : Pace.Socket.Multicast.Sender  


   := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs")); 


 


Msg : Position; 


 


Msg.Assembly := (Str("gyrator"), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0); 


 


Pace.Socket.Multicast.Send (TX, Msg); 


 


This example gives the flavor of the pattern. Typically, we may abstract the client-side 
send into a library-level service call, since many concurrently executing objects will 
ppdate the graphics server simultaneously.  


 HLA command pattern. 
The FOM representation of messages includes the equivalent of tags. These tags are 
used to dispatch from the appropriate HLA interactions or object to the command 
patterns that these represent. The need for sophisticated HLA code builders is 
substituted for by clever use of the command pattern. 


 Discrete Event Simulation Pattern  
The two PACE timers (relative delay and absolute delay) can be switched to a discrete 
event simulation mode by setting a configuration variable  


Time : Duration = Pace.Now; 


 


Pace.Log.Wait_Until (Time + 100.0);  // Wait 100.0 s after the clock time 


Pace.Log.Wait (10.0);                // Wait 10.0 s from invocation   


 
The call Pace.Now returns the current time in seconds from the start of the simulation. 
For absolute wait, call Wait_Until with time in seconds (starting from start of sim). 
For relative wait, call Wait with time in seconds.  
If the need arises to set up a timer on a thread, use the Timer_Start and 
Timer_Expired services. Like the Wait services these are guaranteed thread reentrant;  


procedure Timer { 


   Expired : Boolean; 
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   Pace.Log.Agent_ID; 


   Pace.Log.Timer_Start (9.0); 


   Pace.Log.Wait (10.0); 


   Expired = Pace.Log.Timer_Expired; 


   -- Post-Condition: Expired = TRUE 


} 


 


Server Instancing. Other container abstractions that can be included in the set of patterns 
include lists, ring buffers, and specialized server task applications. We keep the latter separate 
from the other patterns, in that they are not typically used repeatedly in the code, at least not 
enough to warrant being called a pattern.  


 Web Server Instancing  
Instancing a multi-tasking web server in the main program is needed to use the URL 
Command pattern. The number of reader tasks is configurable.  


Pace.Server.Home.Create (Number_Of_Readers => 3, Storage_Size_Per_Reader => 100_000); 


An embedded web server works very effectively as a stimulator. The URL command 
pattern provides back-door stimulus to code behaviors. The intent is that prototyped 
GUI interface code to the PACE application can then be invoked through a browser.  


 Knowledgebase Instancing and Use  
Co-simulations will likely require local manipulation of the knowledgebase so that other 
applications will not interfere with its operation and leave it in an inconsistent state. 
Further, an AMIL interface needs to be re-entrant safe to allow use as a concurrent API  
(refer to section 7.5.1.4.1). One way to do this is to wrap the data access within a thread 
and then provide synchronized access to the API. This kind of server thread has 
flexibility in that it allows for manipulation of the knowledge locally without requiring 
calls to the global store. This is extended to the inference engine, as per the ESKER 
demo, we used the Java-friendly embedded tuProlog to provide a conduit to AMIL.  
Either query calls to Prolog or the AMIL API can then used to retrieve information 
from the server thread. For example, the direct query  


KB.Query (Name, V); 


 


asks if there are any matching predicates starting with the lower case Name and followed 
by the variable list V. The first argument in the variable list V(1) happens to be bound 
to the value Id. The unbound argument V(2) returns the matched knowledgebase 
value. If a value was not found, then the exception No_Match is raised.  
The complement of a query is an assertion. An assertion can be formulated:  


Fact : String = F("switch", "power"+"off"); // "switch(power, off)." 


 


KB.Assert (Fact). 


 
The Assert call always succeeds. Once a fact is asserted, it can be retrieved through the 
query: 


V : Variables [1..2]; 
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V(1) = +"power"; 


KB.Query ("switch", V);  // converts to "switch (power, V2)?" 


PutLine (+V(2)); 


 


 Logical Node Instance  
Each executable in a co-simulation collection needs a unique identifier so that it can be 
distinguished on a network. A configuration variable called PACE_NODE takes on an 
integer value which is used to distinguish between executing simulations. The nodes are 
typically numbered starting import PACE_NODE=1. The socket-based 
communication patterns use this node numbering scheme to determine routes. If 
PACE_NODE=0, then the executable is stand-alone and it is routed internally. Refer 
to 7.5.3.4 


 


External Application. A typical integration of the PACE patterns with a co-simulated 
application is shown in Figure 7.5-83. This used the S-function external API of Simulink to link 
to the distributed command pattern. The rules for creating an S-function are amenable to 
template-based automation so a reasoner would work well for adapting such external 
applications 
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Figure 7.6-74.  Use of Distributed Pattern in Co-simulated Multi-physics Regime 


7.6.3.3 Multi-Physics and Compartmentalization  


To have a chance of working highly-dimensional applied physics problems, a co-simulation will 
need to be adequately compartmentalized. Without a divide and conquer strategy the 
dimensionality and fine-grained nature of the problem domain will consume time and increase 
complexity. The well-known method of coarse-graining abstraction can help to improve efficient 
computation. One recommendation is to do more with first-order models, lumped parameter 
approximations, and applying principles like energy conservation and entropy maximization.  
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Figure 7.6-75.  Multi-Physics Data Flow and Integration 


Ideally, we should be able to argue for breaking down any multi-physics problem into separable 
pieces.  They either separate because the actual interactions are small, or that the scales are 
significantly different, either in time or physical dimension, so that we can safely encapsulate 
the effects. For multi-scale problems we don’t have many options because the computational 
grids will never overlap across the dynamic range (refer to Figure 7.6-76). 
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Figure 7.6-76.  Multi-Physics Behavior Often Occurs Over Non-overlapping Time 


Intervals, Allowing a Separation of Concerns 


Breaking down these processes into workflows, both concurrent and sequential, is critical.  We 
don’t necessarily have to always solve the problems collectively, but rather organize them into 
computational blocks. The blocks could have interfaces with minimal interactions, annotated 
with rationale explaining why an interaction is minimized.  They form the preconditions or 
assumptions of the assume-guarantee contracts that we will eventually want to employ. 


A good example from the META challenge problem is the Rijke tube RLC problem as a 
partitioned multi-physics exercise, separating out the electrical behavior from the acoustic 
behavior. 


The other strategy is to lay out some other possible approaches that can span domains and do 
multi-physics. One of the potential ways of thinking about the problem is through generalized 
N2 diagrams. The following slide is at least a start in that it categorizes the approaches where 
DSM and N2 are used. When the information aspects get into it the mix, it then becomes a 
cyber-multi-physics problem (c.f. 7.6.4). 
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Figure 7.6-77.  DSM for Compartmentalizing 


AMIL is a strong candidate for a multi-physics configuration and routing description language. 
It matches well to the idea of adaptors and the tagged signal model, where the specifications of 
the data and synchronization are as important as the actual network connectivity.  It then gets 
passed to a run-time for efficient control. AMIL is like the description logic of the Semantic 
Web, it describes, and is extended by an orchestration or choreography layer, which is 
described by the workflow archetypes.  


7.6.3.4 AMIL Configuration and Specification 


The table below indicates configurations in which AMIL can be applied across various co-
simulation and co-analysis modes and contexts.   
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Table 7.6-4. Categorization of Configuration Parameters for Co-simulation and Co-
analysis 


Configuration Mode AMIL parameters 


Static data 
sources  


Co-simulation Master model parameters 
Context model parameters. 
Items like inventories, plans, routes, etc. 
Ground truth information like location, heading, etc. 
Constraints and requirements like max speed, timing 
durations, etc. 
Debug flags, logging declarations 


Co-analysis Decision support rules 
Model invocations 


Run-time 
dynamics 


Launching Necessary environment variables, command line parameters. 
Work directories, executable names. 
Node declarations  
— Numbered and named hosts  
— Numbered ports 
Sequencing and launching order 
— Sequential 
— Parallel groups 
Time scale 
— Run in real time 
— Run as discrete-event simulated time model 
Shutdown and cleanup 


Control Flow Routing 
— Direct or Point-to-point 
— Name-server based 
— HLA messaging patterns 
— Web services 
— Local routing 
Fail-over 
Execution 
— Large-scale simulation is choreography as the primary 
entities have internal dynamics which control execution 
— DSE is orchestration, reasoners such as ESKER make the 
decisions based on valuations. 


Monitoring Health 
Diagnostics 
— Peak 
— Poke 


Automated Test Replicated from the static and run-time configuration 
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testing 
environment 


configuration 


Scripting and 
test criteria 


These were not necessarily based on the same 
knowledgebase because testing is an independent verification 
of the system-under-test. 


In this table, we note that AMIL handles data configuration for co-simulations and co-analysis 
such as DSE.  


For launching applications, the general idea of using AMIL to configure co-simulations is to 
associate applications with logical names and then use those as indexing into the run-time 
configuration requirements. 


 
Figure 7.6-78.  Launching co-simulation apps 


The top-level triple is indicated as: ("logical_name", represents, "application") 


The logical_name-to-application relation provided is enough to be able to index to the rest of 
the application information by navigating the ontological knowledgebase graph. 


We have retrieved an example from previous work where we used a similar configuration 
knowledgebase and launching environment called P4 (P4 is similar in intent to ModelCenter  
and was applied to previous large scale vehicle integration efforts). The idea was to represent 
our distributed applications (i.e. "apps") by logical names, and then at the command line have 
a convenient way to specify computer host names in which the apps resided or were launched in 
(refer to Figure 7.6-47 where it was used to describe an ESKER launch configuration).  


Then a collection of apps were simply launched by this invocation: 


env test=localhost other_test=host2 P4 


 


This is an elegant approach because the apps involved were only the ones explicitly referenced 
at the command line and the connection to the internal triple-store was enabled dynamically 
through environment variable matching. The rest of the semantic information, related to 
launch directories, expanded command line parameters, port routing, etc was represented in a 
more persistent knowledgebase (the equivalent of an AMIL graph). 


The challenge is how best to organize the required app information below the top-level logical 
names/application representation.  We ended up using a rules-based approach that would 
automatically construct secure shell invocations that could then be launched and monitored by 
the P4 environment.  


The box below describes a fragment from a typical session configuration for a vehicle 
simulation used in an interactive environment. 
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Figure 7.6-79.  Logical Triples and Tuple Configuration 


 


The logicals represent the triple mapping from names to applications. The app rules are 
specified by the tuples: 


(envVars, relativeDir, application, commandLineParams, logicalInstance) 


A combination of AMIL lookups and a workflow process reasoner allows us to automate the 
configuration and lauching environment. This approach is nicely aligned with the goals of co-
simulation and T&V in general and having a semantic web information store in particular. 
 


7.6.3.4.1 Collapsing a Co-Simulation  


The META goal is to rapidly create a contextual simulation of a vehicle that a team of 
engineers can reason about and use to work out design issues. This simulation must expand to 
incorporate details that will have real effects on the development direction, but can also 
contract to address top-level requirements constraints. This section describes a Model of 
Computation and Communication (MoCC) pattern to accomplish this goal. 


The concept and dilemma of distributed time. Constructing a large simulation will always 
confront the developers with an interesting dilemma – does the simulation grow to serve the 
purpose of incorporating as many heterogeneous design elements as possible, or does it limit its 
extent to allow quick-turnaround experiments that better answer high-level requirements and 
concept of operations questions? Or is it possible to do both? 


The classic case of the latter is that of a vehicle performance timeline model. A timeline model 
serves as a reference simulation that substantiates that a current design is operating within 
requirements specifications. In a realistic situation this may involve an extended period of 
operation, yet the purpose of the simulation is to generate quick feedback to indicate how well 
the concept works within the intended design. The intended design is thus referred to as the 
reference architecture. This idea also comes up in the EDA world, whereby a large VHDL 
model has to provide complete verification of the digital logic and do that efficiently. 


apps :- 
   logicals("ctdb", "bin/Linux/ctdb_server"), 
   logicals("otf", "bin/Linux/otf"), 
   logicals("nabk", "bin/Linux/obj/nato_abk_server"), 
   logicals("ssom", "cannon_main_inc1"), 
   logicals("test", "cannon_setup.py"), 
   logicals("crew", "cannon.py"), 
   logicals("crew", "../../../bin/Linux/cannon"). 


 


%%---------------- 
%% TEST LAYER 


app(Env, ".", "cannon_setup.py", [""], Instance):- 
   getenv(Instance, Host), 
   Env = ["PYTHONPATH" = "../../Common/ssom/pym/", 
          "LD_LIBRARY_PATH" = "../../Plugin/i686-linux/python-2.6.2/lib", 
          "PATH" = "../../Plugin/i686-linux/python-2.6.2/bin:.", 
          "TEST_DEBUG" = 0, 
          "MODEL_HOST" = Host, 
          "MODEL_PORT" = 5601]. 
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The objective then is to generate a simulation that fully addresses the complexities of the actual 
design, with all the attendant context models and high-fidelity component simulations, while at 
the same time able to compress or contract down to a level of fidelity amenable to quick 
turnaround studies. 


We have documented a simulation approach that enables this kind of “morphability” 22


The Node-0 model. A large simulation when constructed as a heterogeneous mix of 
components will typically get spread around a set of computing nodes. These nodes could 
reside on different computers or as different processes on the same computer.  The nodes are 
usually identified by logical entities, typically by names or numerical addresses dependent on 
communication mechanisms. As the simulation grows, the number of components will likely 
get spread amongst the nodes to relieve processing demand or for architectural reasons (say a 
dedicated server is situated on a certain computing node). 


.  This 
adapts well to the ideas of the ARRoW architecture we have in place, in particular with the 
AMIL structure, and also to the MoCC that is advocated by other META participants. For the 
time being, let us refer to the approach as the Node-0 model.   


Unfortunately, this dispersion of computational or simulation resources makes it difficult to 
execute discrete-event type models that can potentially complete with a quick turnaround time. 
The notable issues have to do with network communication overhead and the lack of an 
efficient distributed simulated clock. 


The solution to this problem is to collect all the distributed nodes into the base node, which we 
call Node-0, and then execute simulations in this more limited and monolithic context. This is 
straightforwardly accomplished through a few elementary architecture patterns – in the past 
we have applied the distributed command pattern to provide the dual simulation approaches. 


 


 
Figure 7.6-80.  The Distributed Simulation is Collapsed into the  


Monolithic Model “Node-0” 


In the most general case, the idea is to reroute communication paths that leave the main 
simulation and instead redirect the destination to objects that reside locally.  In the specific case 


                                                 


22 In the past, the team used an AMIL-similar semantic layer which we called the “rule processor” or 
“KBase” to do model data configuration, model interconnect routing form the distributed command 
pattern, and model launching, monitoring, and shut-down.  So it essentially could choreograph the 
entire distributed simulation from startup to shut-down.  It could also do automated system testing and 
allowed for the Node-0 model. 
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of the distributed command pattern, the utility function send_message that all messages get 
routed through simply has to realize that it is running on the specially-named “Node 0” and 
then the message gets dispatched locally.  A stub or low-fidelity simulation of the destination 
object is all that is required to maintain the model.  


The key to successfully implementing this approach is to assign enough high level system 
coordination logic to certain objects such that the simulation executes real behaviors and 
scenarios. Then when the time comes to expand the simulation to a distributed context, these 
objects remain and they simply exchange information with their higher fidelity representations. 


This could turn into just another potential architectural approach if not for its compatibility 
with the AMIL semantics for defining nodes and edges. The intent of AMIL is to potentially 
not have to call remote nodes if valuations are available locally, either through cached values or 
via a simpler representation. In this case the edge points to a local destination for a resource 
and the distributed overhead disappears. 


Whether we can use this mechanism or alternatively use the AMIL graph database as a 
distributed command pattern routing table, we will get the same architectural benefit, which is 
to straightforwardly reduce our simulation scope to a more compact context. 


This application of the distributed command pattern fits well with the tagged signal model and 
the contract-based components championed by the IBM META-II team.  


7.6.3.5 Probabilistic Certificate of Correctness  


One of the primary objectives of a detailed co-simulation is to provide a basis to calculate a 
PCC, or how to reason about the assume-guarantee contract of a PCC. In one sense, the latter 
is an inverse of the PCC calculation, such that we can use environmental data to describe 
appropriate operating regimes. For the case of vehicle mobility and operational regimes, the 
obvious case is to exclude regions of ridiculous extremes, such as >70 degree slopes. The 
assumption then is to provide that constraint along with a probability distribution of the 
inner/lower range. The verification of drawing from this distribution will then guarantee 
results with a given PCC. 


7.6.3.5.1 Basis for a PCC  


Assume a probability distribution P(x) for some parameter variant x. This parameter is 
exogenously defined and is known to affect the vehicle or system design. To determine its 
impact, draw a sample from P(x), such that x will feed into a parametric design model and thus 
result into a potential degradation in performance or correctness. 


Next, choose a probability level P1 that the design should withstand under expected operating 
conditions and a spread in variant values. After collecting enough samples from P(x) to obtain 
sufficient statistical certainty, determine whether the sampled data P exceeds the threshold set 
by P1. 


If P does not exceed P1 then make the new assumption that the variant cannot exceed a value 
x′. Next redraw from the truncated distribution P′(x) which excludes parameters outside the 
range of x′. Iterate until the sampled data P′ does not exceed P1. This will provide a means of 
generating an assume-guarantee contract with PCC=P1 for the exogenous parameter of 
interest. This is a sufficiently general technique to apply to a number of stochastic variates with 
well-characterized and credibly modeled probability distributions, whether or not they follow 
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normal Gaussian distributions. For multi-variate problems, such as the RLC problem identified 
as a challenge problem, the approach is straightforwardly extended (refer to Figure 7.6-81 
below). 


RLC Circuit characterized by Q Factor
Sensitive to selection of R,L,C component values
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Figure 7.6-81.  A Multivariate PDF Drawn from 3 Normal Distributions and Applied to 
Solving a Quality Factor, Q 


This is similar to how the 95th percentile calculations are done for human factors designs. The 
specifications exclude the top 5% height soldiers as an assumption and then guarantee that the 
design will work with the bottom 95% soldiers with a PCC=1. Making the PCC less than 1 for 
this case will allow a wider range of soldier heights, but with the lower PCC as a caveat. 


7.6.3.5.2 Generic Test Space Exploration 


The general approach to including uncertainty (both aleatory and epistemic) is to sample from 
probability distributions which map to the system under study.  For practical PCC purposes, 
probabilities can only arise in a limited set of ways: 


1. Due to variations of design parameters that are not handled digitally by software. So 
this can include manufacturing variations and quality variations (i.e. why the part is 
cheap) 


2. Due to failure mechanisms in the design which can occur randomly.  
a. Can include wear-and-tear and spontaneous failures 
b. Can include random failures built in by the engineer, and thus covers software flaws 


to a degree. 
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3. Due to excursions in the contextual environment that occur randomly and are outside 
the design envelope. 


4. Due to human operational error, slow reaction times, etc. (which may be the same as #3 
if the human is considered context) 


5. Due to  uncertainties of the epistemic variety arising from poor statistics, etc. 


 


For the ramp challenge problem, we followed these steps: 


• Set up model of environmental stimulus as a disturbance profile 
• Choose samples both nominal and extreme to capture state space 
• Apply model to state space points to establish importance sampling scaling 
• Select Pass/Fail criteria for the subject under test 


– Example:  
– Full Simulink model of drive (control) and ramp (plant) 
– Torque limit on drive establishes Pass/Fail 
– Disturbance profile from state space supplants the plant model 


• Single pass sweep  
– Finds worst case across the stimulus state space  
– While continuously updating the PCC  


7.6.3.5.3 Sampling Approaches for Verification 


The limitation of importance sampling is that it does assume a convex optimization problem 
and the set of situations that this intersects is not comprehensive. In many concave problem 
domains, which can contain many nooks and crannies, significant amounts of computational 
horsepower is required to verify the full ergodic state space, simply because of the 
combinatorics involved. For the ramp problem, we minimized the test space (refer to Figure 
7.6-19) to reveal potential problems. The ESKER tool was used to sample the outcomes of a 
Simulink simulation, injecting different input disturbances for each trial, while at the same time 
keeping track of a Bayesian update of the final PCC (refer to Figure 7.6-82). The disturbances 
were importance sampled based on a prior likelihood of operation occurrence. This is in the 
spirit of the qualitative state plan (QSP) formulated by Hofmann, Robertson, and Williams. 
The QSP is converted to a PCC with the introduction of simulation results and quantitative 
priors for the context model of soldier disturbances. 
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Figure 7.6-82.  Test Space Evaluation Using ESKER to Map Importance Sampled Test 
Cases 


The algorithm contained in the importance sampled Bayesian reasoner is shown below. 


 
Figure 7.6-83.  Bayes Update of PCC Applied During Reasoning 


% general constraint rule giving unity weighting if TRUE 


binary_constraint(Rule, 1) :- call(Rule), !. 


binary_constraint(_, 0).  


 


bayes_update(Rule,Likelihood) :- 


  binary_constraint(Rule, Value), 


  current_pcc(Current, N), 


  M is N + Likelihood, 


  Result is (Current*N + Value*Likelihood)/M, 


  retract(current_pcc(Current,N)), 


  asserta(current_pcc(Result,M)). 


 


%% example:  bayes_update(X<Max,P)? 
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7.6.4 Distributed Computing Speed-Up Potential 


We anticipate that new architectures would be required as the computational space for co-
analysis and co-simulation grows. We consider two views below, with the second placing 
emphasis on the generic and uniform expression of the computations. 


7.6.4.1 Spatial Computing  


Spatial computing defines a network space that takes advantage of near-neighbor topology 
which can conceivably improve computational efficiency for co-analysis and co-simulation. It 
allows a large space of potential human interactions that can affect a vehicle’s design and 
operation to be programmed as a continuous space and compiled to discrete software agents in 
an agent-based simulation. The description of spatial computing within the context of a 
prototyping tool called Proto and a visualization engine called Unity is discussed in another 
apendix This becomes an alternate strategy to the co-simulation approaches.  


7.6.4.2 Generic Inferencing 


Related to the concept of spatial computing, certain problems can be expressed as a network of 
local computations  [PK11]. The network is constructed to meet some objective such as 
solving a problem of near-neighbor interactions, or of computing optimization or performing 
inferences such as occurs in design space exploration. These are particularly well-suited for 
probability formulations, as that is the best way to add uncertainty to an inference problem. 
Figure 7.6-84 represents the ultimate goal of creating a simulation model that can solve 
multiple classes of design and verification problems. 


Heterogeneous 
Behavioral 


Model


Design 
Space 


Exploration


Probability-
based 
Model


Monolithic Aggregate


• PACE belongs to a MoCC referred to as local computation **
• Computational classes called valuation algebras can 


generically work out optimization and inferencing problems. 


** Pouly, Kohlas “Generic 
Inference: A Unifying Theory 
for Automated Reasoning”


 
Figure 7.6-84.  Generic Reasoning Allows Several Different Approaches to Potentially 


Be Unified 


The unified view encompasses the concept of valuation algebras which have an associated 
notion of a solution, best or preferred value with respect to some criteria: 


• In logic, whether a proposition evaluates to true 
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• With constraints, if it satisfies the requirements 
• In optimization, solution leads to maximum or minimum values 
• Under uncertainty, if sufficient margin exists from the worst case to failure 


In terms of a design structure matrix, all interactions or influences take place over edges. 


 
Figure 7.6-85.  Valuation Algebras Used in Generic Inferencing Run the Gamut of 


Decision Theory 


Once certain utility functions are created and normalized to create a multi-objective criteria 
this can support virtually any kind of inferencing, as shown in Figure 7.6-85. 


Using the same approach for incorporating a range of utility functions leads to the notion of a 
generic framework for decision support (DSE) and PCC evaluation. The validity of this concept 
was demonstrated as evaluations for both DSE and PCC evaluation23


  


 were accomplished with 
the same tool: as a combination of AMIL + ESKER suggested that GEAR reasoners can provide 
a generic inference framework. 


                                                 


23 The valuations considered propositions + hard constraints + continuous values + probabilities 
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7.7 BBN Resource Contention 
7.7.1 BBN Metrics and Modeling Language Activities 


This portion of the report covers the BBN activities to support metrics and modeling language 
activities. In particular, we: 


1. Review our phase 1a work on metrics for resource contention complexity and process 
complexity that we use as a basis for our component model language and prototype 
capability to host and evaluate metrics. 


2. Define a component model language. 
3. Develop a prototype capability to host and evaluate metrics. 


The component model language and prototype capability to host and evaluate metrics are 
alternate approaches to the BAE metric framework.  These alternative approaches were 
explored to investigate additional considerations for future work in these areas based on a 
semantic approach to utility analysis. 


7.7.1.1 Metrics Definition 


In this section we review our Phase 1a notions of resource contention complexity and process 
complexity inspired and informed by prior work to define a utility metric for Quality of Service 
(QoS) maintenance. This work forms the basis of our component model language and our 
General Adaptable Metric Execution Tool and Environment (GAMETE) software we 
developed under Phase 1b. 


7.7.1.2 Resource Contention Complexity Metric 


The contention complexity of a system can be decomposed based on resources.  I.e., the 
contention of one resource does not directly impact the contention of a different resource.  
Hence, we define each resource to have its own resource complexity measure. We codify these 
and other motivating hypotheses of contention complexity as follows: 


1. Entities/subsystems/components in a system use multiple resources.  Entities have 
varying levels of criticality for using specific resources. 


2. Contention complexity is a function of the potential for contention due more requests 
from entities to use limited resources. 


3. Contention complexity can be decomposed and expressed for specific resources.  
Contention complexity is the sum of the contention complexities of resources.  The 
contention complexity of a resource is a function of the potential for contention of that 
resource from entities to use that resource. 


4. Contention complexity of a resource is a function of: 
a. The number of entities that could request that resource.  (A resource with more 


users leads to more contention complexity.) 
b. The level of usage required for use of the resource.  This is measured in terms of % 


usage level * amount of time per usage.  (Higher usage level means more 
contention, more time per usage means longer queues and more contention.)  The 
higher this product is, the higher likelihood of contention. 


c. More critical uses of limited resources implies more contention complexity. 


We define our contention complexity metric as the sum of contention complexities for specific 
resources. 
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We then define the contention complexity of a resource as: 


 


To reason about these tradeoffs and the impact they have on contention complexity, we define 
the following variables which are used in the above definitions: 


• %𝑙𝑒𝑣𝑒𝑙 represents the percentage commitment for a resource by a consumer.  For 
instance, if 20 watts are needed, but entities request 30, then there is an over-
commitment of 10 watts, resulting in a 50% over-commitment. 


• 𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛(𝑟) represents all entities that depend on a resource r. 
• 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑒𝑛𝑡𝑖𝑡𝑦) represents the criticality of an entity. We assume criticality is on 


the scale between 0 and 1. 


7.7.1.3 Process Complexity Metric 


Process complexity is important to measure because unknown delays in tasks in a process can 
lead to problems and perturbations in a system’s design or operation. The propensity of tasks in 
a process to be delayed can depend on various measurable task properties including difficulty, 
quality requirements, schedule requirements, etc. These measures can be difficult measure until 
tasks are joined together to form a process and can vary for tasks between processes 


We codify our hypotheses that inspire our process complexity definition as the follows: 
1. A process depends on multiple, possibly repeated tasks.  Some tasks cannot be started 


until the completion of prior tasks.  We call these relationships as logical dependencies.  
A schematic of task dependencies for a process can be seen in Figure 7.7-1 where a 
process has several initial tasks, a single final task and multiple dependencies shown as 
arrows. 


2. Each task has its own complexity, called task complexity.  Task complexity is a function 
of several variables including difficulty, process maturity, schedule and quality, among 
others.  Difficulty represents the amount of skill and resources required to complete a 
task.  Process maturity represents how mature the process is to accomplish a given task.  
Schedule represents the likelihood of being able to accomplish a task before its deadline.  
Quality represents the needed quality of work required to accomplish tasks successfully 
for a given process. 


3. Process complexity is directly proportional to the complexity of the processes’ tasks and 
the number of dependency relationships.  As the complexity of tasks increases, the 
complexity of a process increases.  As the number of dependencies increase, the 
complexity of a process increases. 
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We define our process complexity metric by first defining a task complexity metric.  We define 
our process complexity metric as a summation of task complexity where the form of 
summations depends on the structure of the dependency relationships. 


Process complexity is a function of task complexity and the dependency structure of tasks 
within a process.  Consequently, we define process complexity iteratively with respect to the 
weighted accumulation of task complexities in a process.  More specifically, we define the 
process complexity at every task in a process as the sum of the task complexity and the 
complexity of all tasks it immediately depends on.  We define process complexity as the process 
complexity of the final task. 


To express this definition of process complexity with respect to a task, we use the expression 
( )iP  to represent all parents of a task i.  In our example, dependency schematic in Figure 7.7-1, 


Task 6 has Tasks 3 and 4 as parent tasks.  We define the process complexity of a task I as 
follows: 


( ) ( )
( )
∑
∈


+=
iPj


i jPCTCiPC  


We define task complexity as a function of the difficulty and maturity of processes used to 
complete a task and the schedule and quality requirements imposed by the process on the task.  
It is important to note that various processes can be used to complete a task, and process 
selection involves engineering tradeoffs that impact the ability to complete tasks on schedule 
and with a given quality. 


To reason about these tradeoffs and the impact they have on process complexity, we define the 
following variables: 


• D(t): difficulty of task t – Measured by number Full Time Equivalents(FTEs), for 
example 


• M(t): maturity of task t – Measured by number of years, for example 


• Q(t): quality requirement of task t – Measured on scale of 1-100%.  This is a user-
defined parameter. Could represent importance of high quality or how much 
functionality is provided if task fails 


• S(t): schedule pressure of task t – Measured by schedule slack in days, for example.  
(This could also be a stochastic measure.) 


The exact equation for ( )⋅⋅⋅⋅ ,,,TC  will vary based on application, but a good initial candidate is: 


( )
( ) ( ) ( )tStQtM


tDTC
**


=  
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Note that when our iterative definition of process complexity is expanded to be an expression 
of just task complexities, so tasks are weighted more heavily than others if there are many tasks 
that are dependent on them.  This is by design as our intuition is that process complexity 
should be heavily weighted by the complexity of more dependent tasks.  We use this approach 
to compute process complexity as a weighted sum of task complexities.  As such, we can expand 
the complexity definition for implementation as follows in a tool where the weight on any task 
complexity is the number of sink-source paths from the task to the final task: 


∑=
j


jjTCwPC  


Our intention is to develop tools that compute task complexities during design time based on 
either estimates, simulations, or evaluations of the task complexity data (difficulty, maturity, 
quality, schedule.)  The accuracy of the task complexity computations depends on the accuracy 
of these estimates. 


An issue with this metric is that some of its useful applications can be difficult due to the need 
to quantify task complexity. For example, a task in a vehicle design process that depends on 
humans (i.e., the design of user interface aspects or human-in-the-loop operations) may be 
highly variable due to the skill of the humans involved. The risk mitigation is that the metric 
does not have to capture everything about how to measure task complexity, simply that the 
process complexity measure changes with task properties and requirements. 


7.7.1.4 Component Model Language 


In this section we introduce a component model language to capture shared resource 
interactions.  In particular, we describe a Web Ontology Language (OWL) ontology we 
designed to describe resource sharing scenarios and how general metrics are assessed in these 
scenarios.  This resource sharing ontology and its context-specific extensions are used to build 
composed models of systems components that interact both through directed communications 
and implicit and explicit resource sharing.  Our intention is that this ontology should be 
modifiable and extensible for scenarios describing resource sharing metrics, allocation and 
consumption algorithms, consumption models and so forth. 


After we outline general resource sharing concepts, we identify general categories of attributes 
of shared resource languages that should be captured in the ontology.  We describe the 
ontology and discuss ontology extensions for specific resource sharing scenarios such as the 
assessment of resource sharing complexity.  We provide several examples of using the 
ontology to model applications, such as an RLC circuit and the preliminary approach for the 
assessment of the complexity of maintenance resource sharing over the lifetime of a hybrid 
vehicle. 


7.7.1.5 Resource Sharing Concept 


Our general shared resource concept is informed by our perception that systems (whether 
cyber, physical, cyber-physical, or otherwise) are comprised of resources and system actors that 
interact with and through the resources.  This interaction can affect the efficacy and efficiency 
of the system and therefore must be considered in the design, development, and testing phases 
of system creation. When interactions are not considered early in system creation, e.g., during 
the design phase, then they must be tested for during the system verification and validation 
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phase, which is costlier, or there is a risk that they will be discovered after system deployment, 
where unanticipated resource interactions and contention that affect the system operation or 
performance can lead to even more costly system failure or retrofitting. One of the goals of the 
META program, and the ARRoW project, is to incorporate aspects like resource contention 
earlier in the system design, to reduce the cost of later phases of system development, testing, 
and maintenance. In this section we describe the various entities that should be incorporated in 
developing a shared resource modeling language.  These entities are formalized in our shared 
resource ontology that we describe below. 


Resources may include, for example, engine power, fuel, communication bandwidth and cooling 
capacity.  System actors include resource consumers, resource providers and resource 
allocators.  Resource consumers use resources – for example an internal combustion engine 
consumes fuel, or network cards use bandwidth.  Note that we consider that resources may be 
transformed and disappear due to consumption (such as fuel), or resources may be used, but not 
disappear due to use (such as bandwidth.) Resource providers generate resources that are 
consumed, e.g., an alternator attached to an engine generates electrical energy or a sensor may 
provide information about object detections.  Resource allocators decide which resources are used 
by which consumers.  For example, an engine control module determines the rate of fuel flow 
to an engine and a Transmission Control Protocol (TCP) implementation determines the use of 
bandwidth used by nodes communicating on an intranet. 


Various measurements can be made of system behavior, including the behavior of resources and 
actors.  Those measurements can be used to assess various aspects of system performance.  
These assessments may be used by the system actors to alter their behavior, or by users to 
assess system health.  For example, a resource allocator such as an engine control module uses 
measurements including engine speed, temperature, and atmospheric density to assess engine 
performance and allocate fuel to an engine.  Similarly, TCP uses measurements of packet 
sequence numbers to assess congestion.  In the example we discuss below, we assess a metric 
called resource sharing complexity over various measurements to assess the propensity for 
resource contention. 


The system actors, measurements, and assessments do not necessarily operate continuously 
like a centrifugal governor operating on a steam engine.  Most often system actors, 
measurements, and assessments are implemented digitally and update either on a clock cycle or 
when driven by external events.  As such, system interactions, measurements and assessments 
need to be modeled and coordinated with respect to event occurrences which may include clock 
ticks. 


7.7.2 Categories and Attributes 


Depending on the application, system actors (such as resource consumers, resource providers, 
and resource allocators) primarily interact through more than shared resources.  Components 
could interact through directed communication, but these kinds of engineered/designed 
interactions are implemented through resource sharing interactions such as the use of 
communication buses.  Our insights in this document are driven primarily by experience and 
published reports on developing and using resource sharing models to architect component 
interactions in information management systems.  Based on our experience, (explicit or 
implicit) shared resource interactions are difficult to capture and express. We see the need for a 
resource sharing interaction language that would be extensible and compatible with component 
modeling languages.  
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Selecting the attributes for a component model language for shared resources requires the 
selection of an appropriate level of abstraction.  Although users of modeling languages may 
sometimes want or need to understand the inner operations of components, it is often sufficient 
to exclusively model aspects of component interactions, even when these interactions do not 
occur through explicitly specified interfaces.  Furthermore, it is necessary to abstract from 
many of the details of the inner operations in order to reduce and manage the complexity 
involved in system modeling, design, and development. Since components at a given level of 
abstraction interact explicitly and implicitly through shared resources, a component model 
language for shared resources needs to capture the relevant properties of resource interactions.  
We focus on resource interactions because many component interactions can be described as 
interactions by the components through shared resources.   


In this section, we describe the primary functional attributes and categories of attributes that 
should be captured in a shared resource modeling language. These primary attributes are 
formalized in our shared resource ontology that we describe below. 


We identify four general categories of attributes for shared resource model languages: 
Resource Provisioning, Resource Availability, Resource Consumption Models, and Resource 
Usage Assessment.  In the section immediately following we motivate and provide an overview 
of these selections of attribute categories.  For each of these categories of attributes, we discuss 
several attributes with examples that should be included in component model languages for 
shared resources.   


We should note that the attributes and categories we discuss are intended to be representative, 
and are by no means exhaustive or exclusive.  We intend for our taxonomy of attributes and 
the attribute language schema to be a guide that is further customized for specific applications 
and systems.  The attribute categories we discuss are: 


1. Resource provisioning attributes: these attributes cover how the resources are allocated. 
2. Resource availability attributes: these attributes cover how the availability of the 


resources may change after provisioning. 
3. Resource consumption attributes: these attributes cover how the resources are 


consumed by component operation. 
4. Resource assessment attributes: these attributes cover how the consumption of the 


resources are typically evaluated. 


All of the attribute categories we list include some aspect of resource constraints.  In fact, most 
of the attributes describe some aspect of constraints on the behavior and use of the resources 
that need to be expressed in the resource models.  These constraints limit the behaviors that 
need to be accounted for in composing model components through resource interactions. 


7.7.2.1 Resource Provisioning 


The resource provisioning attribute category contains attributes that describe how resources 
are allocated.  These attributes include: 


1. Resource Shared: This attribute captures whether the resource is shared or private. 
2. Allocation Decider:  This attribute captures who decides on the allocation of resources.  


Possible values include the system designer, system user, or the system for 
autoconfiguring systems. 
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3. Allocation Mechanism: This attribute captures how the allocation is decided, whether 
by directed allocation from a human-in-the-loop (such as a designer or user), a 
supervisory controller, or a collaborative resource allocation system in peer-to-peer 
environments. 


4. Allocation Dynamism: This attribute captures whether the allocation is performed only 
once, or whether reallocation occurs during runtime. 


5. Reallocation Trigger: When resource allocations are dynamic, this attribute captures 
how reallocation is triggered – whether from a clock tick, a feedback control 
mechanism, or driven by an external event like changes in missions. 


7.7.2.2 Resource Availability 


The resource availability attribute category contains attributes that describe how resource 
availability changes over time and how resource consumers and allocators observe those 
changes in availability.  These attributes include: 


1. Resource longevity: This attribute captures whether the resource has permanence (like 
physical space), it is consumed constantly (like time), or its consumption is a function of 
usage properties (like how fuel is consumed based on performance demands.) 


2. Resource availability observability: This attribute captures whether the resource 
availability is directly observable, partially observable, or unobservable to various 
entities including consumers, providers and allocators. 


7.7.2.3 Resource Consumption 


The resource consumption attribute category contains attributes that describe how resource 
consumption occurs. These attributes include: 


1. Resource consumption predictability for consumer: This attribute captures how 
predictable resource consumption is for consumers – whether it is schedulable (such as 
fuel availability due to consumption), partially schedulable (such as ammunition for 
weapons), or un-schedulable (such as armor plating.) 


2. Resource consumption predictability for allocator: This attribute captures how 
predictable resource consumption is for allocators. 


3. Resource consumption controllability:  This attribute captures whether the resource 
consumption is fully controlled (like fuel usage), partially controlled (like heat 
dissipation capability), or uncontrollable (like time.) 


4. Resource usage correlation: This attribute identifies when consumption of particular 
subsets of resources are positively or negatively correlated. 


7.7.2.4 Assessment of Resource Usage 


The resource assessment attribute category contains attributes that describe how resource 
consumers and allocators observe both the consumption and need for additional resources. 
These attributes include: 
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1. Uses for online resource usage feedback:  This attribute identifies the resource 
consumption assessments that are useful for runtime reallocation and tuning.  These 
assessments include performance utility, control error terms, safety margins, etc. 


2. Uses for design-time assessment:  This attribute identifies resource attributes to be 
considered during design-time.  These assessments include resource complexity, etc. 


7.7.3 Shared Resource Ontology 


We have designed an ontology to capture the above attributes and categories of attributes of a 
shared resource language.  We followed general ontology design principles to make the 
ontology as simple as possible so that it is as extensible as possible and widely applicable. 


We call this ontology the shared resource ontology and assigned it the following Uniform 
Resource Identifier (URI): 


http://meta.bbn.com/ont/2011/04/shared-resource-ont.owl 


The ontology incorporates the system entities such as resources, system actors, measurements 
and performance assessments.  These entities and several others are represented as classes in 
the ontology.  The ontology also incorporates object and data properties that represent the 
attributes and attribute categories we discussed above. 


7.7.3.1 Shared Resource Ontology Classes 


A schematic of the ontology class hierarchy can be seen in Figure 7.7-1. 


 
Figure 7.7-1.  A Tree Representation of the Ontology Class Hierarchy 
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There are several main classes of entities in the ontology – Resource, SystemActor, 
Measurement, PerformanceAssessment, Equation, and Event. 


The Resource class represents resources.  We define two subclasses – ExclusiveResource and 
SharedResource to represent resources that are used exclusively by one consumer or multiple 
consumers, respectively.  We expect that shared resources will be prevalent in applications that 
use this ontology, but that representations of exclusive resources will be necessary for scenarios 
where some resources are exclusive assigned to safety-critical systems, such as life support in 
pressurized-cabin air-vehicles. 


The SystemActor class represents the system actors.  Subclasses include ResourceAllocator, 
ResourceConsumer and ResourceProvider that represent, respectively, actors that allocate, 
consume, and provide resources as discussed above.  Subclasses of ResourceAllocator include 
Controller, SystemDesigner, SystemInfrastructure, and SystemUser.  Subclasses of 
ResourceConsumer include SystemInfrastructure and SystemUser.  SystemInfrastructure is 
also a sub-class of ResourceProvider.  Controller represents resource allocation controllers 
such as the engine control module discussed above.  SystemDesigner is the system designer 
and is used when the system designer allocates resources.  For example, a designer may decide 
that some engine designs have a restricted fuel flow to limit power output and increase 
longevity.  SystemUser represents possibly multiple system users which both allocate resources 
through command decisions and consume resources.  For example, the driver of an automobile 
consumes engine power by accelerating the vehicle.  The driver also allocates fuel resources to 
the engine by adjusting the throttle.  SystemInfrastructure represents the system which 
inherently allocates provides, and consumes resources.  For example, modern computer 
motherboards allocate and provide electrical power to chip components, while also consuming 
electrical power. 


The Measurement, PerformanceAssessment, and Equation classes have no subclasses.  Although not 
introduced earlier, Equation represents mathematical expressions that are used by 
PerformanceAssessment objects, among others. 


The Event class represents discrete points in time that may drive the taking of measurements, 
running performance assessments, changing allocations and so on.  These events may be 
repeated or not, hence the RepeatedEvent and NonRepeatedEvent classes.  Events could occur 
at clock ticks (repeated or not), or when a measured value or assessment passes some threshold, 
as is usually the case when using a performance assessment to decide when to perform a 
resource allocation – when the expected benefit of a reallocation surpasses the expected benefit 
of not changing a resource allocation, a controller should use this threshold passing to decide to 
perform a reallocation of resources. 


7.7.3.2 Shared Resource Ontology Object Properties 


A schematic of the ontology object property hierarchy can be seen in Figure 7.7-2. 
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Figure 7.7-2.  A Tree Representation of the Ontology Object Property Hierarchy. 


The identification of the property relationships should be fairly self-explanatory because of the 
naming conventions we used.  As such, we only describe a subset of these properties.  Note that 
the object properties are generally broken into pairs to represent inverse relationships.  For 
example, consumes is used to identify which resources a consumer consumes, while isConsumedBy 
is used to identify which consumers consume a resource. 


A high-level sketch of object property relationship between entities can be seen in Figure 7.7-3.  
To simplify Figure 7.7-3 and make it more informative and less confusing, we do not show 
inverse properties whose use can be easily inferred from naming conventions.  For example, 
allocates is an inverse property of isAllocatedBy.  We also do not show some subclass entities 
whose specialized property usage can be easily inferred from naming conventions and the 
properties of superclasses.  For example, exclusivelyConsumes is a subProperty of consumes which 
is used with ExclusiveResource objects instead of normal Resource objects. 
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Figure 7.7-3.  Class and Object Property Relationships. 


We do not have many subProperty relationships in the shared resource object property 
hierarchy.  Most of these object properties are used to identify resource consumptions and 
availabilities with special exclusivity and observability properties.  For example, a monitor 
connected to a video card frequently exclusively consumes the information flowing from the 
card.  Similarly, in a ground vehicle such as a HMMWV, the engine control unit has the 
exclusive ability to observe atmospheric pressure in order to regulate the air-fuel mixture into 
the engine. 


We defined the sharesResourceWith property and its subproperties to identify resource 
consumers that share resources.  This sharing may be implicit, explicit or coordinated, so we 
defined subclasses to capture these scenarios. 


We defined hasTrigger properties to identify events which trigger when events are allocated or 
consumed, or when performance is assessed. 


7.7.3.3 Shared Resource Ontology Data Properties 


A schematic of the ontology data property hierarchy can be seen in Figure 7.7-4. 
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Figure 7.7-4.  A Tree Representation of the Ontology Data Property Hierarchy 


The identification of the property relationships should be fairly self-explanatory because of the 
naming conventions we used.  Most of the data properties represent either times, or they 
represent strings to describe objects.  The time properties include time and period which 
respectively represent a time when an event occurs and the amount of time between events.  
The description string properties include resourceDescription, resourceDynamism and most others. 


7.7.4 Extending the Shared Resource Ontology for Contention Complexity 


As a demonstration of the extensibility of our shared resource ontology, we now discuss an 
extension of this ontology for an ontology we call the contention complexity ontology.  We 
gave this ontology the following URI: 


http://meta.bbn.com/ont/2011/04/contention-complexity-ont.owl# 


Contention Complexity is a metric that assesses the propensity for a resource to experience 
contention.  We define each resource to have its own resource complexity measure. We codify 
these and other motivating hypotheses of contention complexity as follows: 


1. Entities/subsystems/components in a system use multiple resources.  Entities have 
varying levels of criticality for using specific resources. 


2. Contention complexity is a function of the potential for contention due to more 
requests from entities to use resources than can be accommodated by the limited 
resources. 


3. Contention complexity can be decomposed and expressed for specific resources.  
Contention complexity is the sum of the contention complexities of resources.  The 
contention complexity of a resource is a function of the potential for contention of that 
resource from entities to use that resource. 


4. Contention complexity of a resource is a function of: 


  The number of entities that could request that resource.  (A resource with more 
consumers leads to more contention complexity.) 


  The level of usage required for use of the resource.  This is measured in terms of 
% usage level * amount of time per usage.  (Higher usage level means more contention, more 
time per usage means longer queues and more contention.)  The higher this product is, the 
higher likelihood of contention. 
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  More critical uses of limited resources imply more contention complexity. 


This metric is expressed as the following equation: 


 


We extended the shared resource ontology by defining a subclass of PerformanceAssessment 
called ContentionComplexity.  We then defined three subclasses of Measurement: 
VariancePercentResourceUsage, ExpectedPercentResourceUsage and Criticality.  We defined a 
new object property forResource that associates ContentionComplexity objects with specific 
resources.  Finally, we define a single individual, ContentionComplexityEquation that 
expresses the above equation for contention complexity. 


With this very small set of changes, we were able to adapt our general shared resource 
ontology to a much more specific and still useful ontology for a specific metric that can be 
further refined. 


7.7.5 Example Applications of the Shared Resource Ontology Extended to Contention 
Complexity 


We now explore the use and usefulness of the extended Contention Complexity ontology with 
two specific examples: a toy RLC circuit problem and a hybrid battery problem. 


7.7.5.1 RLC Toy Problem 


We now consider the application of our contention complexity ontology to the RLC circuit in 
Figure 7.7-5. 


 
Figure 7.7-5.  RLC circuit 


In this circuit, the voltage source (VS) is a resource provider and provides a resource of 
electrical energy.  The RLC circuit (without the power source) is both a resource consumer and 
an allocator.  The RLC circuit consumes some energy and determines how much energy at each 
frequency to transfer to any consumer connected at the VO output port.  Anything that 
connects to the output port VO is both a resource consumer and an allocator because it can 
influence how the power output of VS is allocated across the frequency domain and hence 
consumed by the RLC circuit.  To follow normal electrical engineering convention, associated 
with VS is a time-varying current IS(s) that represents the current flowing from the voltage 
source to the resistor.  When the VO output port is not open, the current that flows through the 
output port from the resistor to the capacitor, parallel to the inductor is denoted as Io(s). 
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We designed an application-specific ontology for this example that imports the contention 
complexity ontology.  We call this application-specific ontology the RLC-contention-
complexity ontology and gave it the following URI: 


http://meta.bbn.com/ont/2011/04/RLC-contention-complexity-ont.owl# 


The amount of resource provided at a given frequency s is a function of the voltage VS(s) and 
the current through the voltage source IS(s).  This provided electrical energy is allocated by the 
system designer to the RLC components and an output port which provides a voltage VO(s) and 
a variable current IO(s) that is a function of the systems connected to the output port.  We 
assume that the voltage source has some max power output Wmax.  The power output at a 
given frequency is VO(s)*IO(s) and the integral of this product over the frequencies from 0 to 
infinity is the total power output. 


With this analysis, we designed the application-specific RLC ontology by adding just a few 
individuals to the imported contention complexity ontology.  We added: 


• The SourcePowerContention individual which is of type ContentionComplexity.  This 
individual uses measurements of the source voltages and currents, the output voltages 
and currents, and the RLC circuit parameters to compute contention complexity. 


• The SourcePowerOutput individual is of type Resource.  It is the resource consumed by 
the RLC circuit and any other consumer attached to the VO port. 


• The VoltageSource individual is of type Resource Provider.  It provides the 
SourcePowerOutput resource. 


• The RLCCircuit and RLCOutput individuals which are of types ResourceAllocator and 
ResourceConsumer.  The RLCCircuit individual has associated data on the RLC values. 


• The VS, IS, VO, IO measurements which are used to computed the resource 
consumptions. 


Based on parameterizations of RLCCircuit, VS, RLCOutput, VO, or IO, the RLC-Contention-
Complexity ontology can be used to automate the assessment of the contention complexity in 
the toy circuit. 


7.7.5.2 Preliminary Ontology for Hybrid Vehicle Battery Use and Maintenance Analysis 


Similar to our extension of the Contention Complexity ontology to the RLC application 
domain, we can apply similar techniques to more complicated cyber-physical systems such as an 
example of the complexity introduced into the hybrid vehicle lifecycle due to the contention for 
resources needed to maintain a particular choice of battery.  For this problem, the more often a 
battery needs to be replaced, the more resources it will use (e.g., manpower and money) that 
could be used to maintain other systems. We want to use this metric to select a battery and 
battery configuration (i.e., the depth of discharge used in the hybrid vehicle’s charge/discharge 
control algorithm) to minimize the maintenance resources needed by the battery over a 
vehicle’s lifecycle for a variety of vehicles based on parameterizations of vehicle weight, battery 
capacity, the battery charging control, and the vehicle use patterns. 


Note that this example is simplified. It does not include other factors that would be involved in 
the selection of a battery, such as the battery’s weight, power density, disposal costs, and safety.  
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To compute the metric for this example, we need an expected value for the level of demand for 
the resource (which in this case is the cost to replace the battery) and the variability of that 
demand. For this example, the depth of discharge has an effect on the demand for the resource. 
A battery has to be replaced (i.e., demands the resource) after a certain number of charging 
cycles. A deeper discharge minimizes the number of charging cycles but a shallower discharge 
enables more cycles before the battery needs to be replaced. 


For this scenario, we define two individuals which are of type Resource: PowerStoredInBattery 
and MaintenanceResources.  These individuals respectively capture the ability of the resource 
to recharge over real or simulated terrains and the requirements for resources for battery 
maintenance. 


There are two individuals of type ResourceProvider that provide the PowerStoredInBattery 
resources: EnginePower, Battery and RegenerativeBraking.  Because maintenance resources 
are part of the nominal system infrastructure and must be provided for vehicle use, we consider 
maintenance to be provided finite and provided by the system infrastructure for the purposes of 
our analysis.  Larger analysis might include multiple vehicles of various types to analyze 
maintenance requirements. 


There are two individuals of ResourceConsumer type: Battery and VehicleDrive.  The battery 
has multiple properties associated with it including the cycle capacity for a given depth of 
discharge which is represented as a PerformanceAssessment individual.  Each battery is 
associated with BatteryType and PowerCapacity properties.  Vehicle drive is parameterized 
with performance requirements. 


The BatteryController individual is of type ResourceAllocator and allocates power for either 
the discharging or recharging of the battery. 


They are multiple events that are used to control the allocation of resources based on whether 
the engine turns on or off, whether the vehicle is drawing power from the battery, and whether 
the vehicle needs motive power or not.  These measurements are used by the battery charger to 
decide when to charge the battery.  The control operation is ultimately measured by a 
Measurement individual for the battery: the number of recharging cycles experienced by the 
battery. 


The battery control algorithm is based on a straightforward Energy Transfer Model. Basically, 
going up a hill at a particular speed uses a certain amount of energy (potentially provided by 
discharging the battery) and going down a hill transforms potential energy into kinetic energy 
that can be regeneratively stored in the battery as electro-chemical energy. We designed our 
simple control algorithm so that the battery will be used for motive power until it is fully 
discharged (to its prescribed depth of discharge), then it would charge until it is fully charged – 
either by the engine or regenerative charging system. 


Our intention is that this ontology we are sketching for hybrid vehicle battery maintenance is 
used to analyze the maintenance requirements for individual vehicles or fleets of vehicles.  We 
see it being used to compute the lifecycle replacement cost for batteries’ replacement.  We used 
an early version of this ontology to run simulations for multiple batteries at 10 different depth 
of discharge levels (10% through 100%), with each simulation run covering 10,000 hours of 
vehicle operation, and kept track of how many charging cycles occurred over the 10,000 hours 
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of operation.  The graph in Figure 7.7-6 shows preliminary results of the computed metric 
graphed for each battery and depth of discharge on a logarithmic scale. 


 
Figure 7.7-6.  Chart Showing Contention Complexity for Multiple Battery Types and 


Depths of Discharge 


We should be careful to note that as currently designed, assessments using the ontology will 
always admit some error because, for reasons of tractability and abstraction to simplify 
analysis, the ontology does not include all the factors that should go into the battery choice. 
For example, our approach does not account for safety concerns.  (Li-ion battery are known to 
be explosive when engulfed in flames.)  But in this simplified example, the computation of the 
metric would show that the choice of the Lithium Ion battery with a depth of discharge 
between 30% and 50% provides the minimal resource contention complexity (informally, the 
minimal maintenance cost over the battery’s lifetime).  Interestingly to us is that these 
preliminary results align well with real-world results that we discovered from automakers after 
performing these experiments. 


7.7.6 Prototype Toolchain for Metric Evaluation 
 
We now describe our General Adaptable Metric Execution Tool and Environment (GAMETE) 
to host and evaluate metrics.  We developed GAMETE during META Phase 1 to evaluate 
general classes of metrics as part of the design and Verification and Validation (V&V) of 
complex engineered systems.  GAMETE identifies system designs that are less complex, more 
efficient, less likely to fail, less costly, and that have higher performance, and evaluates the 
behavior of designs during experimentation or simulation for V&V. We have demonstrated 
GAMETE with complexity metrics of our own design and from several general classes of 
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metrics provided to us by other META and META II performers.  By design, GAMETE is 
easily integrated with larger design toolchains.  We have already integrated GAMETE into 
the BAE Systems ARRoW toolchain as part of META.  The benefits of GAMETE include: 


• Great increases in the scale and breadth of metrics and experimental data sets supported 
through the GAMETE evaluation infrastructure. 


• Improved interactive capabilities of GAMETE by supporting automated online data 
ingest and online metric evaluation as experiments are run. 


• Aiding the identification of primary and secondary impacts of design alternatives by 
automating the evaluation of metrics over design alternatives. 


7.7.6.1 GAMETE Executable Framework 


A diagram of  the GAMETE architecture and design tool interface is shown in Figure 7.7-7. 


GAMETE enables the META design and V&V toolchain vision by supporting the evaluation 
of  general classes of  user-selected metrics on user-selected design variations and user-selected 
data.  GAMETE is highly-extensible and adaptable to many larger tool chains because its 
metrics, coverage, and experiments are specified as pluggable components so they can be added 
and managed orthogonally to metric evaluation and analysis.  The evaluations are output to the 
user or other consumers in external toolchains as part of  either design or V&V activities. 
 


 
Figure 7.7-7.  GAMETE Architecture Design and Toolchain Interface 


Key benefits of  the GAMETE approach not seen in other solutions for metric evaluation 
include (1) our unified data representation design to enable the evaluation of  metrics over large 
and diverse classes of  data, and (2) support in our analysis engine to evaluate similarly large 
and diverse classes of  metrics.  Although GAMETE is a prototype, we have demonstrated the 
unified data representation and metrics library capabilities on a variety of  data from the META 
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and META-II programs and have integrated GAMETE with the BAE Systems ARRoW 
toolchain. 


7.7.6.2 Unified Data Representation 


A central part of  GAMETE capabilities and extensibility derives from the only assumption we 
make on experimentation/simulation engines – that they are generic processes that can commit 
data directly to a consumer such as GAMETE or directly to a consumer after persisting the 
data in a datastore.  An example experimentation/simulation engine is shown in Figure 7.7-8 
that hosts these data sources.  The experimentation/simulation engines supported by 
GAMETE include engineered systems that generate data directly from (i) sensors such as those 
that might monitor aspects of  system behavior during testing or that gather information 
during design, (ii) simulations that might generate data over multiple runs, (iii) deterministic 
evaluations of  possibly coupled equations, and (iv) model representations, such as graph models 
or equations.  GAMETE is designed to semi-automate the collection of  data as needed from all 
of  these either online or offline data sources. 


 


 
Figure 7.7-8.   The Experiment/Simulation Engine feeds data from diverse sources for 


online or offline processing. 
 


The distinguishing factor of  our GAMETE approach is our Unified Data Representation 
(UDR). The UDR models the reporting/storing of  experimental/simulation and model data 
that enables the pluggable metrics and experiments to be developed in the execution 
framework. Recognizing that experimental data is collected from a number of  different 
methods, using different tools with varying frameworks and languages, the UDR provides an 
easily-supported framework to interface the analysis engine with experiments and simulations 
over which metrics are evaluated. Refer to Figure 7.7-9. 
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Figure 7.7-9.  Measurement storage format in the Unified Data Representation. 


 


The UDR is developed around a measurement as sketched in Figure 7.7-10 which shows the 
recording of  a value (e.g., 9 volts) of  some Observable component (e.g., a battery) at a given 
time.  Solid blue arrows represent inheritance relations, dotted purple lines show composition. 


Figure 7.7-10 shows the usefulness of  the UDR for resource-consumer problems as graphs, 
and graph nodes/edges as signals, thus maximizing the applicability of  implemented metrics. 
The key insight in the UDR is that the data types that need to be stored for the META metrics 
application domains are hierarchically ordered.  This insight allows metrics to be applied in 
interesting new ways such as representing resource-consumer relationships in graphs and 
applying graph-based behavioral metrics to analyze the complexity of  resource-consumer 
relationships. 
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Figure 7.7-10.  Representing signals, graphs, and resource-consumption in the UDR 


maximizes the applicability of implemented metrics. 
 


7.7.6.3 Metrics Supported by GAMETE 


We have successfully demonstrated GAMETE with metric libraries as part of META Phase 1.  
We demonstrated GAMETE with complexity metrics of our own design and from several 
general classes of metrics provided to us by other META and META II performers. 


An example metric we defined and implemented with GAMETE is resource contention complexity.  
This metric assesses the propensity of processes to become resource starved and focuses on the 
interaction of dynamic components in complex engineered systems over time.  The intuition is 
that vehicle designs in which there is greater propensity for resource contention are more 
complex and costly over their lifecycle than designs in which there is less propensity for 
contention. Few designs capture all the potential for resource contention, which can include 
obvious contention for resources like power or processor time and less obvious ones, such as 
heat dissipation, maintenance resources, and physical space. We developed simulation models in 
Python of battery maintenance in hybrid powertrain military vehicles and used GAMETE to 
evaluate resource contention complexity over our custom simulation environment. 


We implemented metrics designed by other META and META II performers, including signal 
complexity metrics from the BAE META team and behavioral metrics from the PARC META 
2 team.  We evaluated these metrics over Simulink and graph model outputs, respectively, of 
the ramp example developed by BAE for META to assess the complexity of several designs.   
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7.7.6.4 Metric Evaluation Demonstration 


As a demonstration example for using GAMETE to evaluate signal complexity, we considered 
the control signal output by two different control designs for the BAE ramp model.  The 
control signal in the ramp model controls the amount of torque output by the ramp motor.  
One control design corresponds to a low-gain controllers and another control design 
corresponds to a high-gain controller. Figure 7.7.11 shows the two control signals from these 
two different controllers.  The low-gain controllers has a nearly constant output at steady-state 
while the high-gain controller has a periodic output even at steady state because its high-gain 
control signal causes the controlled system to overshoot its desired operating point before the 
system can converge. We used the two control signals in Figure 7.7-11 as input to GAMETE 
and we evaluated the signal complexity metric for these two signals. The control signal from 
the low-gain controller has a signal complexity 40% lower than the control signal from the 
high gain controller.  This makes intuitive sense because the high gain controller generates a 
periodic actuator input signal rather than constant steady-state signal which requires lower-
cost control circuitry and maintenance. 


 
Figure 7.7-11.  Two control signals, one from a high-gain controller with periodic 


steady-state behavior and one from a low-gain controller with DC steady-state behavior. 


The hierarchical relationship we impose through the UDR of resource-consumers, graphs, and 
signals allows for metrics to be applied in GAMETE in useful and interesting new ways.  For 
example, since resource-consumer relationships are represented in graphs, the graph-based 
behavioral metrics can be computed to analyze the complexity of resource-consumer 
relationships.  Furthermore, since the graph nodes and edges represent signals, signal metrics 
can be applied to each edge and node of the corresponding graph.  This capability is partially 
why GAMETE is a best-of-breed technology that has the effectiveness, general 
applbosticability and promise for continued cost-effective improvement in the META 
Maturation Phase. 
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7.7.6.5 Integration of GAMETE with Toolchains 


Besides the UDR, the GAMETE architecture uses thin data interfaces between the GAMETE 
analysis engine and the data sources, which makes GAMETE easily integrated with larger 
design frameworks and toolchains.  As part of our META activity with the BAE META team, 
we designed the thin data interfaces to easily “plug-and-play” new data sources into GAMETE 
so that the new data can be ingested through the UDR.  Besides the ARRoW activity, we have 
also ingested PARC META 2 electrical system data.  Our testing, demonstration, and 
evaluations have shown that GAMETE has promise for being an important part of a vehicle 
and CPS design toolchain, further investment to mature and integrate the prototype system 
would enable this promise to become a reality. In the next section, we describe some areas for 
focus under the META Maturation Phase that we propose to do. 


7.7.7 Conclusion 


Taken together, our metrics definition, component language and GAMETE metric evaluation 
framework work provide a key aspect of an end-to-end design tool chain.  The metrics 
definition identify aspects used for the verification and analysis of complex military system 
design.  The component language is used to design systems from sub-systems and propagate 
the complexity analyses.  The GAMETE evaluation framework makes these advances real and 
usable by design engineers. 


By design, GAMETE is easily integrated with larger design toolchains. We have already 
integrated and incorporated GAMETE functionality into an integrated META tool-chain, 
providing complexity management features necessary for AVM design goals.  We will expand 
upon this activity during the maturation phase to mature GAMETE and integrate with other 
providers’ toolchains. 
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7.8 Spatial Design Space Exploration 


During META, we have produced a prototype of Lightweight Agent Simulation Specifications 
(LASS), a design-space exploration tool that radically reduces the cost of incorporating 
capability requirements into the early design process.  The capability requirements for every 
vehicle include its interactions with humans in its environment (e.g., deployment of passengers 
under fire, coordinated operations with dismounted infantry, navigation of populated areas). 
These can significantly influence the lifecycle viability, maintenance, and cost of a system, 
because users can interact with a system in a wide range of unanticipated ways (such as soldiers 
exiting a vehicle before its ramp is fully deployed), but these have traditionally been extremely 
hard to evaluate in early design phases, before a physical prototype exists, due to lack of cost-
effective simulation tools to accurately model the large range and unpredictability of human 
interactions.   


LASS fills this necessary gap in cyber-physical and vehicle system design using two state-of-
the-art technologies. Spatial computing allows the large space of potential human interactions 
that can affect a vehicle’s design and operation to be programmed as a continuous space and 
compiled to discrete software agents in an agent-based simulation. The result is that LASS will 
radically reduce the cost of constructing agent-based simulations and including simulations of 
human-interaction in design-space exploration. These simulations are a key part of a vehicle 
design tool-chain, making it easier to detect potential problems early and avoid costly redesigns 
in the later stages of design and deployment.  LASS combines our unique and open-source 
Proto spatial computing language for specifying scalable and adaptive agent-based simulations, 
with commercially available physics simulation, game-based simulation, and scenario authoring 
tools.  Because Proto simulation specifications are scalable and adaptive, a capability test 
scenario can evaluate a wide range of variable vehicle designs without any further intervention 
from a simulation engineer.   


Our key achievements during META are: 


 Development of the LASS concept and use case scenarios. 


 Proof-of-concept demonstration of importing a vehicle design specified in terms of rigid 
bodies and joints, and use of differently scaled versions of this design in a use case 
scenario. 


 Development of a prototype LASS system that connects Proto with the Unity 
simulation engine, and uses the combination to create proof-of-concept scalable and 
adaptive capability test scenarios. 


7.8.1 Motivation: Design Space Exploration 


In response to a 2011 congressional request to evaluate the challenges confronting the fielding 
of ground combat vehicles [KLS11], The RAND Corporation stated, ―Current efforts to keep 
up with rapidly changing requirements on the battlefield are struggling.‖ Without a method for 
incorporating battlefield requirement exploration into the design process, identification of 
potential issues is often left to soldiers in the field, resulting in a lengthy and costly redesign 
process. 


Design changes become radically more expensive in later stages of development.  Coarse-
grained simulation of emerging operational scenarios is vital for achieving fast and effective 
design space exploration, allowing design options to be evaluated against an array of potential 
scenarios early in the design process.  While it is now becoming common practice to include 
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environmental model simulations in the design cycle (e.g., various weather conditions and 
terrain types), these models still ignore the human-vehicle interaction that is a critical 
component of any successful combat vehicle.  One key reason for this failure to include human-
vehicle interaction is the prohibitive cost and difficulty of creating and maintaining scenarios 
with conventional agent-based simulation authoring tools.  


Any effective vehicle design process needs to incorporate lightweight agent simulations, 
which allow human-vehicle interaction scenarios to be created inexpensively and then used to 
evaluate a wide range of vehicle design options without any need for human adjustment of the 
simulation.  An evolving vehicle design can then be evaluated against the operational 
constraints of soldiers and civilians, identifying both potentially fatal issues and possible design 
tradeoffs long before the first vehicle reaches the battlefield.  If these simulations are 
lightweight, in the sense that they are simple to construct and can self-adapt to many types of 
design changes, then they can be used early and throughout the process (refer to Figure 7.8-1), 
enabling designers to maintain a clear connection, throughout the design process, between 
their design decisions and the required field capabilities. 


 


 


Figure 7.8-1.  By using LASS in design space exploration, potential environment-specific 
human-vehicle interaction issues can be addressed earlier in the design process. 


The addition of lightweight agent-based design-space exploration to a design tool-chain can: 


 Improve the overall design process through iterative design-evaluate cycles. 


 Reduce costly downstream changes by identifying potential human-vehicle interaction 
issues earlier in the design life cycle. 


 Streamline tool-chain evaluation through automatic adaptation of interaction scenarios 
and parameters. 
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7.8.2 META Accomplishments: Lightweight Agent Simulation Specifications (LASS) 


We view the problem of human-vehicle interactions through the lens of agent-based 
simulation. A potentially complex simulation can be decomposed into a network of interacting 
agents where each simulated human in the vehicle’s environment may be represented by an 
agent, which attempts to act in accordance with its orders and own interests. 


There are three key ideas in our approach, which we call Lightweight Agent Simulation 
Specifications (LASS): 


 Refine capability requirements instead of setting physical requirements. 
Historically, high-level capability requirements (e.g., ―deploy quickly and safely under 
fire‖) are refined into detailed physical requirements (e.g., ramp/gate drive 
specifications). These physical specifications may conflict with the design of alternate 
solutions. Under the LASS approach, wherever possible, capability requirements are 
refined to simulations with metrics independent of the physical realization of the design. 
This provides much more flexibility in how a design is realized, as well as the possibility 
of a holistic evaluation of design decisions. 


 Integration of agent-based simulations within the design framework. Manually 
evaluating how agents interact within the physical design is likely to be infeasible for 
the human design team. By integrating the construction of capability simulations with 
the vehicle design process, the system will be able to provide meaningful capability 
feedback during each iteration of the design loop.  


 Spatial computing creates simple, adaptable simulations of agent interactions. 
When a simulation is viewed as a network of agents, many interactions happen between 
agents that are physically near one another. For example, disembarking soldiers may 
physically get in one another’s way, and within a vehicle heat and vibration spread 
through local interactions. We may thus view such a network of interacting agents as a 
spatial computer. Our spatial computing technology allows agents to be programmed as 
a scalable aggregate, rather than as a collection of individuals, allowing simulations to 
be specified simply and to automatically adapt to many classes of design change. 


 The LASS approach exploits these ideas to extend simulation-in-the-loop design to 
incorporate high-level capability requirements for the interaction of a design with 
humans in its environment. Fast, lightweight simulation will allow enhanced design 
exploration. For a human designer or automated design tools, LASS exposes trade-offs 
that are otherwise difficult or impossible to detect due to information lost when 
capability requirements are reduced to physical design constraints. At a higher level of 
decision-making, project managers could use LASS to evaluate the sensitivity of a 
design to proposed changes in capability requirements. 
 


7.8.2.1 Spatial Computing enables LASS 


Our LASS approach is founded on spatial computing, and is enabled by the Proto spatial 
computing language and simulator. In this section, we present a brief introduction to spatial 
computing and Proto; for a more detailed introduction, see [BB06, BBM10] . 


When a simulation is viewed as a network of agents, it is often the case that most interactions 
happen only between nearby agents. We may thus view such a network of interacting agents as 
a spatial computer—a collection of devices embedded in a (usually physical) space such that 
interactions between devices are mostly local in space [BS10, DGG07]. 
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Viewing the system in such a way allows us to apply the scalable aggregate programming 
techniques that have been developed in the Proto spatial computing language [BB06, BBM10]. 
The key insight enabling Proto’s continuous spatial approach is the recognition that there are 
many systems where the focus is best placed not on the devices that make up the system, but 
rather on the space through which the devices are distributed. Sensor networks are a 
prototypical example: e.g., the point of a target-tracking network is to monitor the movement 
of entities through an area. The fact that this involves observations made by and at particular 
devices is only of interest so far as it contributes toward that goal. Multi-robot systems and ad-
hoc mobile networking are good examples as well, e.g., the point of a robot coverage algorithm 
is to examine all points in a space of interest, and the point of an ad-hoc routing algorithm is to 
move information across space to where it is needed. These latter systems are closely related to 
agent-based simulation of interaction between a vehicle and humans in its environment. 


If devices interact primarily over short distances, then the aggregate structure of the agent 
interaction network forms a discrete approximation of the structure of the space of interest. 
Combining these two observations allows us to view the network using an abstraction that we 
call the amorphous medium [JB04]. An amorphous medium is a Riemannian manifold1 with a 
computational device at every point, where every device knows the recent past state of all other 
devices in a local neighborhood (Figure 7.8-2). A network of locally communicating devices can 
thus be viewed as a discrete approximation of an amorphous medium, with each device 
representing a small region of nearby space and messages sent between nearby devices 
implementing the information flow through neighborhoods. 


 


Figure 7.8-2.  Proto uses the amorphous medium abstraction, in which a discrete 
network (right) is viewed as an approximation of a continuous space (left), allowing 


simpler distributed system programming, greater robustness, and increased scalability. 


                                                 


1  A manifold is a mathematical object that looks like Euclidean space locally, but globally may be 
different. For example, the surface of the Earth is a 2-dimensional manifold: locally it looks flat, but if 
you keep going in a straight line, you will return to your starting location. A Riemannian manifold also 
guarantees the availability of other key geometric building blocks such as angle, distance, area and 
volume, curvature, and gradients (generalized derivatives). For a good introductory text, see 


[MPC92]. 
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With carefully chosen computational primitives and a means of combining those primitives, 
such as those provided by Proto [BB06, JL02], it is possible to maintain a tight relationship 
between an abstract computation specified for a Riemannian manifold and an actual 
computation being carried out on a real network that is distributed through that space, so that 
a program written to execute over continuous space can be approximated on real devices. 


Applying this approach to capability simulations for design space exploration, we see a number 
of potential advantages: 


 Proto makes it simple to create agent-based simulations. The continuous aggregate 
model used by Proto means that much of the details of constructing distributed software 
programs, such as interacting agent models in an agent-based simulation, is implicit. 
This means that complex agent control patterns can often be implemented with only a 
few simple lines of code.  


 Continuous-abstraction simulations can self-adjust for many design changes. The 
amorphous medium abstraction means that Proto programs are typically formulated in 
terms of geometric operations and information flows through regions of space. When 
done correctly, this produces extremely flexible and scalable programs: changes in 
number or distribution of devices are reflected simply as changes in the manifold on 
which the program is being executed, which implicitly adjusts the result of geometric 
operations, automatically causing a program to self-adjust for its changed environment. 
This is discussed in detail in [BS10]. In the design space exploration context, this 
capability can be used to create simulations that adapt to changes in design without a 
need for human intervention. 


 Agent-based simulations are generally parallelizable. An agent-based simulation 
models the world as a network of independent devices that interact through a well-
defined set of messaging or physical interfaces. As a result, it is typically relatively 
straightforward to parallelize agent-based simulations for faster execution.  


We thus see that a spatial computing approach to capability simulation, implemented with 
Proto, is likely to give us the lightweight agent simulations that we desire for evaluating 
capability specifications of a vehicle’s interaction with humans in its environment. 


With cheap, self-adaptive, and parallelizable simulation of vehicle capabilities, we are also given 
the possibility for automated design look-ahead. It is valuable for a designer to know not just 
how good a particular design variant is, but whether the changes being made are increasing the 
fragility of the design to further changes. One evaluation method approach is to take the 
current design and its previous version, then parameterize them to create a linear function for 
blending from one to the other. The system could then evaluate the design at a number of 
intermediate points, as well as continuing beyond the current design in an extrapolation of 
what might happen if the design continues to be varied in the same way. In this way, the 
sensitivity of a capability to design change might be evaluated, with a warning given if the 
capability slope near the current design is significantly more negative than the slope near the 
previous version. 
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7.8.2.2 Illustration of Design Import into Use-Case Scenario 


For our initial investigation of the LASS concept, we began by applying it to the design of an 
Infantry Fighting Vehicle (IFV) rear ramp/gate, with an aim to demonstrate integration of a 
mechanical design model with a Proto-driven use-case scenario. We chose the ramp/gate 
scenario, of the three main examples that were then under discussion in the ARRoW project, 
because it has a capability specification that engages directly with warfighters using the vehicle 
and other humans in the surrounding environment. 


We have focused on egress of passengers through the ramp/gate (Figure 7.8-3). In particular, 
our mock-up scenario has: 


 An IFV with a rear ramp/gate 


 A number of warfighters inside waiting to disembark 


 Optional enemies scattered around outside, intending to shoot disembarking 
warfighters. 


 


Figure 7.8-3.  Example use-case scenario for LASS: egress through an IFV rear 
ramp/gate (right) similar to that of a Bradley IFV (left) 


Each simulation was specified with two components: a scenario and an agent model. The 
scenario is contained in an XML file that specifies the current IFV design (including the 
ramp/gate structure), the distribution of warfighters within the IFV, and the distribution of 
enemies (if any) outside of the IFV. The agent model is a Proto program that specifies a 
controller for the design and the agents that will interact with it. In this case, the design 
controller opens the ramp/gate, the warfighters try to protect themselves from enemy fire 
while dispersing outward, and the enemy fires suppression fire at the area of the IFV 
ramp/gate. 


In this mock-up system, this was implemented by means of a plug-in for the MIT Proto 
simulator. This plug-in extended the existing free software plug-in for running Ordinary 
Differential Equations (ODE) simulations in MIT Proto, in order to be able to support scenario 
scripting, models of combat interactions, virtual sensors needed by the controller, and 
computation of design performance metrics. The whole system can be invoked with a set of 
command-line options to the MIT Proto simulator, and runs either in interactive mode for 
exploration and debugging or in a batch mode for distributed bulk computation of performance 
and design sensitivity metrics. Figure 7.8-3 shows a screen shot of a ramp/gate design in our 
mock-up system.  Note that this system has since been superseded by the Unity LASS 
implementation described below. 
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Once constructed, a scenario allows direct (simulated) measurement of the high-level mission 
capabilities of the design. We are currently considering two metrics in a mock-up egress 
scenario: 


 Number of seconds for all passengers to complete egress 


 Number of casualties (when under enemy fire) 


Each of these metrics would be measured on many instances of the simulation, so that 
stochastics of the simulation do not have an undue impact. We currently envision measuring 
mean and variance of performance over a batch of 20 simulations. Measuring variance can also 
help in determining when the simulation can meaningfully aid in distinguishing between 
proposed designs. 


Once a LASS simulation has been set up, design variants can be easily evaluated, to within the 
accuracy of the simulation. In our mock-up system, we have been exploring this concept by 
developing two examples of design change: changing the size of the IFV passenger bay and 
changing the design of the ramp/gate. 


Changing the size of the IFV passenger bay changes the number of warfighters that can be 
aboard as passengers (Figure 7.8-4). Such a change might be caused by an overall change of the 
vehicle size, or by space reallocation between the passenger bay and other adjacent components 
of the IFV design. Whatever the cause, when the bay changes in size, it changes the number of 
warfighter agents that need to egress, and therefore may change the time it takes for egress. 
Changing the size of the ramp/gate may also change its size and effective profile or its opening 
time, and therefore the vulnerability of warfighters as they deploy. 


 


Figure 7.8-4.  Example of design change evaluation in LASS: as the passenger bat 
changes size (down to 4 passengers on right, up to 16 passengers on left), the number of 


warfighter agents needing to egress can automatically adjust, along with the agent 
program controlling them. 


Changing the size of the IFV passenger bay changes the number of warfighters that can be 
aboard as passengers (Figure 7.8-4). Such a change might be caused by an overall change of the 
vehicle size, or by space reallocation between the passenger bay and other adjacent components 
of the IFV design. Whatever the cause, when the bay changes in size, it changes the number of 
warfighter agents that need to egress, and therefore may change the time it takes for egress. 
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Changing the size of the ramp/gate may also change its size and effective profile or its opening 
time, and therefore the vulnerability of warfighters as they deploy. 


A LASS simulation that fills the passenger bay with a given density of warfighter agents will 
automatically adjust to these changes in design, increasing or decreasing the number of 
warfighter agents as the size of the passenger bay changes, thereby allowing exploration and 
evaluation of design alternatives without any cost in simulator adjustment. 


Some types of design change, however, will require modification of the simulation. An example 
would be changing the design of the ramp/gate from a single rectangular piece that swings 
downward to a trapezoid that swings downward and two ―wings‖ that swing sideways instead 
to provide better cover for egressing warfighters (Figure 7.8-5). This possible variant trades 
increased ramp/gate complexity for a possible improvement in egress safety. Besides the 
obvious change to the IFV design model, investigating this design change may also require 
changes to the controller for the ramp/gate, if the ―wings‖ are to open on a different schedule 
than the main ramp/gate section. The simulation then allows a rough quantification of the 
benefit that the additional cover would provide for the high-level capability requirement for 
safe egress. 


 


Figure 7.8-5.  Example of design change evaluation in LASS: a more complex door 
structure (right) intended to provide better cover to egressing warfighters than the 


standard door structure (left).  Agent-based simulation can provide a rough 
quantification of the benefit in safe deployment. 


7.8.2.3 3D Game-Engine Based Simulation 


When simulating the human-vehicle interaction, the addition of physics models into the 
evaluation is essential to ascertain the effectiveness of the design. Without the ability to detect 
collisions, analyze the effects of gravity or determine how the rigid body dynamics of the 
vehicle alter the interaction, the results of the simulation would be meaningless.  


To include high-quality physics models without the high barrier of developing a Newtonian 
physics model [JL02] to achieve this level of detail, we have chosen to use a 3D game-engine 
as part of our simulation environment. By leveraging an off-the-shelf game engine, we can 
reduce the complexity of the simulations, allowing the game engine to handle the low-level 
physics details associated with movement and interaction in a simulated world context. In 
addition to a robust physics model, leveraging a game engine also provides us with: 
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 Geo-Typical terrain models. Leveraging the ability to execute the simulation in terrain 
similar to the deployed environment, the simulator can determine the effects of the physical 
environment on the complete interaction. If the vehicle design results in an exit door not 
fully opening due to rugged terrain, a chokepoint could result, compromising the safety of 
disembarking soldiers. By including terrain based simulations into the design cycle, 
potential issues typically not observed until deployment, can be identified and addressed 
early in the process.   


 Robust Application Programming Interface (API) for environment interaction. 
Modern 3D game environments come packaged with a set of authoring tools and 
programming interfaces for working with the environment. These APIs include 
functionality such as line of sight, and distance calculations that are essential components of 
the agent-based simulation.  By leveraging the APIs provided, a designer can focus on 
analyzing the design and not on implementing the interactions between the vehicle and the 
environment. 


7.8.3 Proto/Unity Integration 


As part of the META project, we integrated Proto into the off-the-shelf game engine Unity 3D.  
By linking Proto with the game engine, we were able to blend the benefits of LASS with the 
rich physics model, geo-typical environment and authoring toolkit provided by the game 
engine.  


Through a combination of game-engine scripting and a native-library bridge, we were able to 
develop a framework for conducting human-vehicle evaluations within a game-based simulation 
environment (Figure 7.8-6).  With the inclusion of spatial computing to the game engine 
environment, we can quickly alter the troop size and tactics of the AI characters in the 
simulation, allowing for a range of evaluations to occur on a design with minimal modification 
to the tool-chain. 


 


Figure 7.8-6.  LASS combines the realistic physics and interactive terrain modeling of 
game engines with Proto’s robust and scalable agent control in a rich simulation 
environment. 
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Through the use of the Unity GUI framework, we were able to quickly insert various 2D 
displays for controlling various aspects of the scenario, including the insertion and modification 
of different Proto programs in realtime. 


7.8.4 Deliverables 


 To demonstrate how Proto and Unity can work together creating a simulation environment 
for evaluating human-design interactions, we developed a sample application containing 30 
Proto controlled agents randomly placed within a geo-typical scene. The agents are situated 
around an MRAP (Mine Resistant Ambush Protected) vehicle, and are controlled via the 
provided Proto program.  


In this demonstration application, the user is free to control various aspects of the simulation 
such as camera angles, camera position and agent network visualizations. The demonstration 
tool also provides controls for redistributing the agents within the scene and also the ability to 
change / modify the Proto code controlling the agents. 
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7.9 Reactive Model-based Programming Language (RMPL)  


In this appendix we begin with an overview of the Reactive Model-based Programming 
Language (RMPL) modeling language including a historical perspective.  We then describe the 
specific changes that were made to the RMPL language in support of Meta including the 
interface with the reachset analysis system. 


RMPL is a general modeling language that permits the definition of automata, the connections 
between components in a complex system and the constraints placed on the system both in 
terms of the state variables of the models of the components and temporal constraints. 
Additionally, as a result of the extensions added for Meta we are able to specify constraints on 
the (hybrid) dynamics of the modeled components as well.   


RMPL models can be broadly divided into two categories, the plant models that describe the 
capabilities of a plant and the control program that models the way in which the plant is driven 
through its states. 


RMPL works with a number of back-end solvers that include technology for using the models 
described in RMPL to perform useful functions.  Some of these solvers include temporal 
planners (Kirk), some involve Mixed Integer Linear Programming Solver (MILP)/ Dynamic 
Linear Programming (DLP) solvers (Sulu), some involve diagnosing the state of a plant and 
generating sequences of commands that will get the plant into a desired state and keep it there 
for a period of time (Titan) and the list continues to grow.  In support of these uses of RMPL as 
a modeling language there are a variety of internal automata representations that are brought 
into play -- some of these solvers and representations are mentioned in this appendix. 


For Meta the key changes have been the extension of the RMPL modeling language to include 
dynamics equations, the ability to represent hybrid constraints (instead of discrete state 
constraints), and the connection of RMPL to the reachset analysis capability and later to the 
OPSAT solver in support of design space exploration.   


7.9.1 Introduction and Overview 


Numerous highly-autonomous aerospace systems, such as NASA's Deep Space One (DS1) 
spacecraft, the next generation of space telescopes, and various Mars Rover prototypes, are 
being deployed that leverage many of the fruits of Artificial Intelligence research in automated 
reasoning: planning and scheduling, task decomposition execution, model-based reasoning and 
constraint satisfaction. Yet a likely show stopper to widely deploying this level of autonomy is 
the myriad of languages employed for the numerous software tasks running on a spacecraft 
processor. 


These tasks include sequencing, system monitoring, system reconfiguration, planning, and low-
level control. 


As a solution to this problem, we introduce the Reactive Model-based Programming Language 
(RMPL), which combines probabilistic, constraint-based modeling with reactive programming 
constructs, and offers a simple semantics in terms of partially observable Markov decision 
processes (POMDPs). RMPL can express a rich set of mixed hardware and software behaviors, 
and thus will provide a foundation for developing a unified model-based framework for 
autonomous robot/spacecraft control, providing integrated sequencing, monitoring and fault 
protection capabilities. 
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RMPL represents a significant evolution from the Model-based Programming Language 
(MPL) used in the Livingstone mode estimation and reconfiguration system flown as part of 
the Remote Agent (RA) on DS-1. RMPL is an object-oriented language that, like MPL, 
describes co-temporal interactions between subsystems (constraints), and the evolution of these 
interactions over time. Like MPL, it provides a language for specifying, at a commonsense 
level, the behavior of complex embedded systems that react to external and internal stimuli. 
Using RMPL, plant models can be described both in terms of their nominal behavior, and their 
behavior under failure. 


In addition to allowing specification of plant models, RMPL provides a suite of reactive 
programming constructs, similar to those in Esterel, or the Executive Support Language (ESL) 
used to develop the RA Smart Executive. These constructs can be used to write control 
programs, which are specifications of the desired system behavior, and which operate directly 
on the hidden plant states described in the plant model. A model-based program is executed by 
automatically generating a control sequence that moves the physical plant to the states 
specified by the control program. 


7.9.2 Basic Structure of an RMPL file 


An RMPL file is a sequence of class definitions rather like a Java program is.   


class Name1 { 


… 


} 


class Name2 { 


… 


} 


… 


class Namen { 


… 


} 


 


A class has a domain of values over which it ranges, a set of callable methods that may change 
the value of the class instance and related/connected instances, and a set of un-commanded 
transitions. The body of a class definition consists of, in no particular order, field, mode, 
method, constructor, and transition, definitions. Value definitions define values that instances of 
the class can take on.  Fields provide the ability for the component to have state and to refer to 
other components.  Constructor definitions allow components to be connected together by 
assignment, transitions define how a method can autonomously transition to new values and 
methods define primitive commands supported by the component and non-primitive methods 
for controlling the process of achieving a desired new value. The start definition supports to 
describe general probability distribution of start modes. 


class MyClass { 


  value definitions    


  field definitions 


  method definitions 
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  transition definitions 


  constructor definitions 


  start definitions 


} 


By convention class names start with an upper case letter.  Field and Value names begin with a 
lower case letter and constructors must be the same name as the class (and thus begin with an 
upper case letter).  These are just conventions to aid in readability and the language does not 
enforce them. 


7.9.3 RMPL for Plant Models 


A plant is a collection of components connected together to make the system which is the plant.  
In RMPL each component is represented by an instance of a class.  An RMPL class therefore 
represents a class of components that can be instantiated and used in a plant definition.  The 
class instances can be connected together by using a constructor method.  A class can define 
fields that can refer to other class instances. A class defines what values the component can 
have and how it can transition between those values.  A switch component could for example 
have values ‗On‘ and ‗Off‘.  We would represent such a switch object as follows: 


 1: class DigitalValues { value high; value low; } 


 2: 


 3: class Switch { 


 4:   DigitalValues output; 


 5:   initial value off =(output==low); 


 6:   value on =(output==high); 


 7: } 


 


The first class defines a set of values (high and low in this case).  These values can be assigned 
to a field of type DigitalValues.  The second class Switch introduces a component with state.  It 
has a single field called output whose type is DigitalValues.  It in turn defines a value ‗off‘ that 
is true if the ‗output‘ field is ‗low‘.  The prefix ‗initial‘ in the value definition says that the switch 
is initially in the ‗off‘ state in which the field ‗output‘ has the value ‗low‘.  


A second value definition defines a value ‗on,‘ which is true if the output field has the value 
‗high‘.  The switch therefore defines two values that it can take on, ‗off‘ and ‗on‘.  These values 
are defined by constraints over the values of fields in the component.   


The above example introduces class definitions, value definitions, and field declarations.  A field 
can  take on any of the values that are defined in that class so in the above example fields of 
type DigitalValues can take on ‗high‘ or ‗low‘ and fields of type Switch can take on values of ‗off‘ 
and ‗on‘.  The DigitalValues class defines a simple set of values whereas the Switch class also 
defines two values (‗on‘ and ‗off‘) but in the case of the switch these values constrain the state of 
fields within Switch by virtue of the constraints specified in the value definitions.  Value 
definitions can take modifiers.  So far we have seen the ‗initial‘ modifier.  The ‗initial‘ modifier 
indicates the starting value of the Switch.  A class can have at most one value modified by 
‗initial‘. 
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So far our switch is not very useful because it is either on or off and there is no way for it to 
change its value.  Given that its initial value is off, it will always be off because we have 
specified no way for it to change its value.  


A component can change its value in two ways.  It may be commanded to change its value by 
invoking some primitive method on that class or it may simply change state autonomously, that 
is, without commanding.  Imagine a switch that sometimes falls into the off state for no 
particular reason. 


We can specify methods and transitions that govern how the switch changes state. In the 
following example we expand the definition of switch to support explicit ‗turnOn‘ and ‗turnOff‘ 
methods, whereby the switch can be commanded to change its value.  We also introduce a new 
failure value for the Switch.  Our switch will operate normally when commanded, except 
occasionally, when it will take on the ‗fail‘ value (autonomously).  


 1: class Switch                 // The Switch component type 


 2: { 


 3:   DigitalValues output;      // Output pin value – field  


 4:                              // representing output value 


 6:   // The OFF value.  If the Switch is OFF, the output pin is low. 


 7:   initial value off = (output==low) { 


 8:      primitive method turnOn () => on; 


 9:   } 


11:   // The ON value. If the Switch is ON, the output pin is high. 


12:   value on = (output==high); 


13:   primitive method turnOff () on => off; 


15:   //  This is the fault value that occurs when the observations do  


16:   //  not satisfy the new state constraints anticipated from the  


17:   //  commanded transition. 


18:   failure value broken = True;  // Unconstrained 


19:   


20:   transition fail True => broken with probability: 0.005;  


21: } 


 


Line 8 adds a method for turning on the switch when it is off.  The method definition is 
preceded by the modifier ‗primitive,‘ which indicates that the method is a primitive capability of 
the switch component and is not defined by a method body.  The trunOn method takes no 
arguments and causes the switch to take on the value ‗on‘.  The syntax ‗=> on‘ says that the 
result of executing the turnOn method is that the switch takes on the value ‗on‘.  The starting 
value of switch when the turnOn method is invoked must be ‗off‘.  This is indicated by placing 
the turnOn method in the body of the value ‗off‘ definition.  This says that the ‗from‘ value of 
the switch must be ‗off‘‘ in order for the turnOn() method to cause the switch to take on the 
value ‗on‘.   


In the following subsections we discuss each major element of a class definition in detail. 


7.9.3.1 Field Definitions 


From inside class Camera, power_in can be referred to as power_in.  As an example of external 
reference, consider a variable my_camera of type Camera, which has been initialized to an 
instance of Camera. The power_in field of my_camera can be accessed as my_camera.power_in, 
as long as power_in has been declared to be public. 


class Power { 


  … 
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} 


class Camera { 


  Power power_in; 


  Shutter shutter; 


  … 


} 


 


If a field is declared as private, then it can‘t be externally accessed. If the access (public or 
private) is not specified for a field, then it defaults to private. 


private Aclass aField;   [default] 


Aclass aField;           [same as above] 


public Aclass aField; 


 


7.9.3.1.1 Variables 


When a field is declared in a class, it represents an object instance of the declared class. Each 
field, which is either input by the constructor or created new, is a variable used in state 
constraints or transition guards. 


7.9.3.1.2 Flexible Templates 


For convenience, a special type of fields is introduced. Using ―String‖ field and constructor, it is 
allowed to declare the constraints dynamically, in other words, the state constraints or 
transition guards in the same class can be different depending on input of its constructor. For 
example, ―zone‖ is a special field which is connected to the input argument of ―Worker‖. In 
―Main‖ class, we can initial two objects with different state constraint by inputting different 
arguments ―zone1‖ or ―zone2‖.  


class WorkerLocation { value zone1; value zone2; } 


 


class Worker { 


 WorkerLocation location; 


 String zone; 


  


 Worker(String zone) { 


  zone = zone; 


 } 


  


 value off = (location != zone);  


 value on = (location == zone); 


  


 transition t1 off => on; 


 transition t2 on => off; 


} 


 


class Main{ 


 Worker worker1; 


 Worker worker2; 


   


 observable{ 


  worker1.location; 


  worker2.location; 


 } 


  


 Main(){ 
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  worker1 = new Worker("zone1"); 


  worker2 = new Worker("zone2"); 


 } 


} 


7.9.3.2 Value Definitions 


In order for Mode Estimation (ME) to estimate the likelihood that a component has a given 
value, a value must have a constraint associated with it.  The example below associates a 
constraint with the value ccc.  The constraint is expressed as a logical formula,, called a well-
formed formula (WFF); its syntax is described below. 


value ccc = ((camera == off) &&  


             (radar == off) &&  


             (brake != failed)); 


7.9.3.2.1 Hierarchical  


In PCCA, a value definition in a class represents a mode of a component. Each component 
contains several modes, and all modes are only a symbol indicating the status of the component.  
However in PHCA, hierarchical structure is allowed. A component contains several modes, and 
one of these modes may be also a component containing its modes. The following example 
shows how to encode hierarchical plant models. Specially, ―power‖ is a mode of the component 
―Camera‖, but ―power‖ is also a component ―Power‖ with its modes ―off‖ and ―on‖. 
   class Power {  


 value off;  


 value on;  


 


 … 


} 


 


class Camera { 


 … 


  


 value off = True { 


  primitive method turnOn () => power; 


 } 


 value broken = True; 


 initial value unknown = True; 


 value Power power = (switch == on); 


} 


7.9.3.3 Well Formed Formula 


Well formed formulae allow is to build propositions that must be true for different modes of a 
component.    Simple well-formed formulae are simple identifiers indicating a value, True, 
False, and an equality formula: 


7.9.3.3.1 Simple WFF’s 


True 


False 


fred 


foo==bar 
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More complex propositions can by constructed by composing simple WFFs using conjunction 
(&&) disjunction (||) negation (not of !) and parenthesized expressions. 


7.9.3.3.2 Composed WFF’s 


not wff, !wff, foo != bar 


(wff && wff && …) 


(wff || wff || …) 


(wff -> wff) 


 


7.9.3.3.3 Enhanced (variable == variable) 


A general WFF equality in RMPL allows a variable as the left side and a value as the right 
side. For convenience, current RMPL allows the equality with variables on both left side and 
right side. The PHCA compiler will translate it into corresponding constraints.  


class Valve { 


 Flow outflow; 


 Flow inflow; 


 


 value open = (inflow == outflow); 


 … 


} 


7.9.3.4 Method Definitions 


The methods of a class describe the commanded transitions that instances of the class can 
make. 


The signature of a method describes when the method is applicable, as well as the effect that 
the method has on the class instance and related instances. Method signatures have the 
following attributes: 


1. Precondition: state that must be true for the method to be applicable. (default: True) 


2. Postcondition: state that will be accomplished by the end of the method's execution. 


(default: True) 


3. Invariant: state that must hold throughout the execution of the method. The 


precondition must imply the invariant. (default: True) 


4. Arguments: the types of arguments that are passed to the method, and the classes that 


the arguments must be instances of. 


A method definition may be preceded by a qualifier that modifies the method definition. 


The qualifier if present may be one of the following: 


primitive 


public private protected 


controllable uncontrollable 


 


Notes:  Public, private and protected are mutually exclusive (default is private). Controllable 
and uncontrollable are mutually exclusive (default is controllable). 
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A primitive method has no body and is implemented by the component primitively.  Primitive 
methods are associated with commands.  Public, private, and protected methods may be 
referred to, respectively, from outside the class, from inside the class only, and from within 
subclasses of the class, as well as the class. 


A user-defined method supplies a method body, in addition to the method signature. The 
results of a successful execution of the method body should imply the method's postcondition. 


The reason to write a user-defined method is to enforce a particular strategy to achieve the 
postcondition, rather than letting mode reconfiguration / planning attempt to achieve the 
postcondition unfettered. This ability to override mode reconfiguration is called adjustable 
autonomy, it allows the modeler to spell out specific steps in some cases, while leaving other, 
potentially unanticipated cases to be solved by mode reconfiguration. 


There is a small number of control constructs that make up a user-defined method body; these 
are described in the section on control programs. 


7.9.3.4.1 Control Variables 


In RMPL, control variables are encoded as primitive methods. 


 primitive method turnOn(); 


 


 initial value off = True; 


 value on = True; 


 


transition t1 off => on with guard: turnOn(); 


 


There is another alternative style: 
initial value off = True { 


  primitive method turnOn () => on; 


 } 


 value on = True; 


7.9.3.5 Transition Definitions 


7.9.3.5.1 Simple Transitions 


Uncommanded transitions have a name, a precondition, and a postcondition, similar to those of 
methods. The probability given for the postcondition is the likelihood that the transition is 
invoked at each time step. Uncommanded transitions are introduced with the transition 
keyword. The following declaration specifies that the transition named ―fail‖ may occur with 
.1% probability at each time step from ―on‖ to ―failed‖ mode. 


transition fail on => failed with guard: True,  


 probability: .001; 


 


There are two styles to specify transitions. The 1st style of transition specifies a source with a 
guard, multiple branches from the source to a set of targets with a probability respectively. It is 
called ―And-Or Tree‖. The 2nd style of transition specifies a source with a probability, multiple 
branches from the source to a set of targets with a guard respectively. It is called ―Or-And 
Tree‖. The simple transition can be compiled as an And-Or Tree. 
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7.9.3.5.2 And-Or Tree 


And-Or Tree specifies a source with a guard, multiple branches from the source to a set of 
targets with a probability respectively. It is mainly used in PCCA. 


transition t1 broken => { 


  off with probability: 0.8; 


  power with probability: 0.2; 


 } with guard: (switch == off); 


7.9.3.5.3 Or-And Tree 


Or-And Tree specifies a source with a probability, multiple branches from the source to a set of 
targets with a guard respectively. It is mainly used in PHCA. 


transition t1 off => { 


  broken with guard: (switch == off); 


  power with guard: (switch == on); 


 } with probability: 0.8; 


7.9.3.6 Constructor Definitions 


A constructor method is a method that is invoked once, only when an instance of the class is 
created.  The constructor may only contain assignments to fields of the class and instantiations 
of other classes.  A constructor may not contain method invocations.  Constructors are the way 
in which components are connected together, in order to make a system.  The constructor 
name must be the same name as the class that it is a constructor for. 


The example below implements a simple two input OR gate.  Each input and output can be a 
DigitalValue.  The class supports two values, nominal, in which the OR gate operates in 
accordance with OR gate semantics, and broken.  With a low probability the gate may fail 
autonomously.  Most of the time the gate can be returned to nominal operation by issuing a 
reset command. 


OrGate Example 


class OrGate 


{ 


  // Inputs  


  DigitalValues input1; // input pin 1 


  DigitalValues input2; // input pin 2 


   


  // Outputs    


  DigitalValues output; // Observed output pin 


  // The nominal value. If both input pins are low, 


  // the or-gate output pin is low and if either  


  // input pin is high, the output pin is high. 


  initial value nominal =  


                ((((input1==high)||(input2==high)) 


                  &&(output==high)) || 


                 (output==low)); 


  // This is the fault value that occurs when the  


  // observations do not satisfy the state  


  // constraints of the or-gate. 


  failure value broken = True;  


     


  primitive method reset() broken => off  


              with probability .99; 
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  transition fail True => broken  


              with probability: 0.001;  


} 


 


The example below builds a simple system using two switches and an Or gate.  A constructor is 
used to connect together the components of the systems. 


Simple Circuit 


class SimpleCircuit 


{ 


  Switch switch1; 


  Switch switch2; 


  OrGate orGate; 


  SimpleCircuit () 


  { 


    switch1 = new Switch(); 
    switch2 = new Switch(); 
    orGate = new OrGate(switch1, switch2); 
  } 


} 


class Main  // The main class specifies the root. 


{ 


  SimpleCircuit ourCircuit; 


  Main () 


  { 


    ourCircuit = new SimpleCircuit(); 
  } 


} 


7.9.3.7 Examples 


class Switch {  


 value off;  


 value on; 


} 


 


class Power {  


 value off;  


 value on;  


 


 transition t1 off => on with guard: True, probability: 0.7; 


 transition t2 on => off; 


} 


 


class Camera { 


 Switch switch; 


  


 initial {off} with probability: 0.9; 


 initial {broken} with probability: 0.1; 


  


 value off = True { 


  primitive method turnOn () => power; 


 } 


 value broken = True; 


 initial value unknown = True; 


 value Power power = (switch == on); 
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} 


 


class Main{ 


  


 Camera camera; 


  


 Main(){ 


  camera = new Camera(); 


 } 


} 


7.9.4 RMPL for Control Programs/Temporal Plans/QSPs and Kirk 


The simplest statement is a method call.  A call to a method that is defined in the same 
component is performed simply by using the name of the method, followed by parameters, if 
any, separated by commas in parentheses. This is just like Java: 


method1(1, foo); 


 


If the method is defined in another component, the method can be invoked using dotted 
notation, just like in Java: 


otherComponent.method2(3, bar); 


 


Statements can be composed using one of the combinators described below. 


7.9.4.1 RMPL Combinators 


The following RMPL combinators are based on the paper - B. C. Williams, et al., "Mode 
Estimation of Model-based Programs: Monitoring Systems with Complex Behavior," 


7.9.4.1.1 Sequence 


 


The simplest way to compose statements is to combine them into a sequence.  There are two 
syntactic ways of constructing a sequence: 


sequence {A1; A2; … }  


 


creates a sequence that consists of A1, A2, etc.  Since a sequence is such a common expression, 
the following abbreviation is supported: 


{ A1; A2; … }  


 


Below is an example of a sequence that is contained  in a method: 


class Main { 


  FOO foo; 


  


  method run () { 


   sequence { 


  foo.action1(); 


  foo.action2(); 
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  foo.action3(); 


 } 


  }  


} 


 


class FOO { 


 method action1() { 


 } 


  


 method action2() { 


 } 


  


 method action3() { 


 } 


} 


7.9.4.1.2 Parallel 


 
A parallel composition follows a similar syntactic pattern:  


parallel { A1; A2; … }  


 


Parallel also has an abbreviated syntactic form:  


|{A1; A2; … }| 


 


Below is an example of a parallel construct, contained in a method: 


class Main { 


  FOO foo; 


  


  method run () { 


   parallel { 


  foo.action1(); 


  foo.action2(); 


  foo.action3(); 


 } 


  }  


} 


 


class FOO { 


 method action1() { 


 } 


  


 method action2() { 


 } 


  


 method action3() { 


 } 


} 
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7.9.4.1.3 Achieve 


 


The program asserts that constraint is true at the initial instant of time. For example: 


class Status { 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 


 method run () { 


  (status == On);  


 } 


} 


7.9.4.1.4 If  (…else…) 


 


If the wff evaluates to true, the process statement will be executed. For example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  if (status == On) {foo.action1();} else {foo.action2();} 


 } 


} 


 


class FOO { 


 method action1() { 


    go1(); 


   } 


    


   method action2() { 


    go2(); 


   } 


} 
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7.9.4.1.5 Unless 


If the wff evaluates to false, the process statement will be executed. For example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  unless (status == On) {foo.action1();} 


 } 


} 


 


class FOO { 


 method action1() { 


    go1(); 


   } 


    


   method action2() { 


    go2(); 


   } 


} 


7.9.4.1.6 When 


 


At the first time step in which the wff evaluates to True, the given process statement is 
executed in parallel with the enclosing process. The when clause is activated at most once (i.e. 
the first time the wff evaluates to true) during the lifetime of the enclosing process statement, 
for example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  when (status == On) {foo.action();}  


 } 


} 


 


class FOO { 


 method action() { 
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    go(); 


   } 


} 


7.9.5 Whenever 


 


The wff is evaluated at every time step, and whenever it evaluates to true, the given process- 
statement is spawned in parallel, if it is not already active. For example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  whenever (status == On) {foo.action();}  


 } 


} 


 


class FOO { 


 method action() { 


    go(); 


   } 


} 


7.9.5.1 Always 


 


For example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  repeat {foo.action();} 


 } 


} 
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class FOO { 


 method action() { 


  go(); 


 } 


} 


7.9.5.2 Repeat 


 


Repeat is like ‗Always‘ except that ‗A‘ is only executed sequentially and no multiple markings 
can occur as a result of using ‗repeat‘.  ‗Always‘ spawns ‗A‘ on every clock cycle and causes 
multiple markings. 


For example: 


class Status 


{ 


 value On; 


 value Off; 


} 


 


class Main { 


 Status status; 


 FOO foo; 


 


 method run () { 


  repeat {foo.action();} 


 } 


} 


 


class FOO { 


 method action() { 


  go(); 


 } 


} 


7.9.5.3 Choose 


Sometimes we want a statement to be selected by the program executive so as to maximize 
reward or minimize cost.  Sometimes choices are made autonomously, for example, by the 
physical environment, based upon a probability assignment. The Choose construct implements 
this. 


Choose allows costs, rewards, and probabilities to be specified (but at most one).  This is a bug, 
it should allow any combination of cost, reward, and probability to be specified. 


Below is a mixed example that illustrates the ways in which a choice can be made: 


choose { 


    with reward: 45 { … }; // specify a reward 


    with cost: 34 { … };   // specify a cost 


    with probability: 0.3 { … }; // specify prob. 


    with choice: { … };    // no guidance. 


A 
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} 


 


For example (specifying costs): 


class Main { 


  FOO foo; 


  


  method run () { 


   choose { 


  with cost: 10 [0,1] foo.action1(); 


  with cost: 15 [1,2] foo.action2(); 


  with cost: 20 [2,2] foo.action3(); 


 } 


  }  


} 


 


class FOO { 


 method action1() { 


 } 


  


 method action2() { 


 } 


  


 method action3() { 


 } 


} 


 


For example (specifying probabilities): 


class Main { 


  FOO foo; 


  


  method run () { 


   choose { 


  with probability: 0.1 [0,1] foo.action1(); 


  with probability: 0.3 [1,2] foo.action2(); 


  with probability: 0.6 [2,2] foo.action3(); 


 } 


  }  


} 


 


class FOO { 


 method action1() { 


 } 


  


 method action2() { 


 } 


  


 method action3() { 


 } 


} 


7.9.5.4 Temporal Bound 


Any statement, primitive or composed, can be given an optional temporal constraint, by 
preceding it with a temporal bound, specified within square brackets, like this: 


[0, 7] method1(1, foo); 
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A temporal bound specifies the lower and upper bound on the time for method1 to complete.  In 
the above example, method1 can take between 0 and 7 time units to complete. 


A bound without a following statement, means do nothing; for example: 


[0, 7]; 


7.9.5.4.1 Derived Constructs 


Each of the following constructs can be considered ―syntactic sugar‖ for combinations of 
existing RMPL constructs. 


1. do within {A1; A2; … An }  


2. slack sequence {A1; A2; … An } 


3. slack parallel {A1; A2; … An  } 


4. optional { A } 


5. soft sequence { A1; A2; … An } 


6. soft parallel {A1; A2; … An } 


We will consider each of the above in turn, by looking at their 
expansion.  We group them into two classes:  slack constructs 
(1-3) and soft constructs (4-6). 


Execution of Expressions with Slack in Execution Time 


In the expressions discussed thus far, one subexpression begins 
as soon as the preceding expression ends.  For many 
applications there exists temporal slack in the execution time of 
activities; the program executive can then choose to execute 
these activities at the time with greatest utility.  For example, a 
time window may be specified in which an expression must be 
executed, but the executive may choose to sit idle before 
starting the expression, as long as the time to completion is 
satisfied.  Likewise it might be best to idle after the expression, 
or between successive expressions, as long as the time to 
completion is satisfied.  To model this behavior we introduce 
three constructs: do within, slack sequence and slack parallel. 


7.9.5.5 do within { A } 


The statement do within allocates a time window, and specifies 
that an expression A must be started and completed sometime 
within that window.  The do within expression completes at the 
end of the window.  In particular, the expression: 


[lb, ub] do within { A } 


 


is equivalent to: 


parallel { 
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[lb,ub] noop();  


   sequence {  


      [0, inf] noop();  


      A;  


      [0, inf] noop(); 


} 


} 


 


An example of its use is as follows, which mean do A somewhere within the temporal bounds 
[lb, ub] allowing slack on either side of A. Consider the following example: 


class main { 


Rover foto; 


  


method run () { 


[0,10] do within { 


       [0,1] foto.move1(); 


       [1,2] foto.move2(); 


     } 


   }  


   … 


} 


 


In this example, foto.move1 and foto.move2 can occur anywhere within the interval [0, 10], 
Note, however, that move1 and move2 cannot have a gap between them.   







META ARRoW Phase 1b Final Report—13 October 2011                                                 Appendix 7.9 – RMPL 


© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement. 


7.9.5.6 slack sequence { A1; A2; …}  


Executes a sequence of activities, while permitting optional gaps 
between successive activities.  The expression: 


[l, u] slack sequence { A1; A2; …} 


 


is equivalent to: 


[l, u] sequence { 


[0, inf] do within {A1}; 


   [0, inf] do within {A2};  


   … 


} 


 


This expression means that successive activities Ai and Ai+1 can be 
separated by an arbitrary gap within [l, u].  


Below is an example, along with its graphical depiction to the right. 


class main { 


Rover foto; 


  


method run () { 


[0,10] slack sequence { 


       [0,1] foto.move1(); 


       [1,2] foto.move2(); 


     } 


}  


} 
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7.9.5.7 slack  parallel {A1; A2; …} 


Slack parallel is the analogue of slack sequence, but for parallel composition.  In particular, 
slack parallel is similar to parallel, but permits idle time both before and after each of the 
parallel activities, while enforcing the constraint that all activities complete within the time 
bound of the slack parallel expression.  


In particular, an expression of the form: 


[lb, ub] slack parallel {A1; A2; …} 


 


is equivalent to: 


parallel { 


[lb, ub] do within { A1 }; 


[lb, ub] do within { A2 }; … 


} 


 


An example application of slack parallel is 
shown below, together with its graphical 
depiction, which means that A1 and A2 which 
are executed in parallel are each allowed to vary 
within their specified temporal window. 


class main { 


Rover foto; 


  


method run () {  


[0,10] slack parallel { 


       [0,1] foto.move1(); 


       [1,2] foto.move2(); 


     } 


   }  


} 
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Execution of “Soft” Expressions, Containing Optional 
Activities 


Above we introduced constructs that exploit temporal slack within 
a system.  Conversely, for many applications, the set of activities 
specified to be performed is overly optimistic; however, completion 
of many of these activities may not be essential to mission success.  
In this case we would like the executive to drop activities, in order 
to ensure overall mission success; we refer to these as soft activities.  
To model this behavior we introduce three constructs: optional, 
soft sequence and soft parallel. 


7.9.5.8 optional {A}  


specifies that the execution of A is optional.  This is equivalent to: 


choose { 


with choice {[0,0]};  


   with choice{ A }; 


} 


 


and means to either do A or continue on immediately.  


The following is an example of the use of optional. 


class main { 


Rover foto; 


  


method run () { 


optional { 


       [0, 1] foto.move1() 


    } 


   }  


   … 


} 


7.9.5.8.1 soft sequence {A1; A2; …} 
Soft sequence is similar to sequence, but permits any number of 
activities in the sequence to be dropped; for example, in order to 
ensure that the sequence terminates within its time-bound.  An 
expression of the form: 


[l, u] soft sequence {A1; A2; …} 


 


is equivalent to: 


[l, u] sequence { 


optional {A1}; 


   optional {A2}; 


 … 


} 


 


The following is an example of the application of soft sequence, 
together with its graphical depiction to the right, which means that 
either or both of A1 and A2 may be dropped (goal shedding) in 
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order to meet the temporal constraints. If rewards are provided for the activities, the planner 
will select what to drop on the basis of total reward. 


class main { 


Rover foto; 


  


method run () { 


[0,10] soft sequence { 


       [0,1] foto.move1(); 


       [1,2] foto.move2(); 


     } 


   }  


7.9.5.9 soft parallel {A1; A2; …} 


Soft parallel is the analogue of soft sequence, but for parallel composition.  In particular, soft 
parallel is similar to parallel, but permits any number of activities in the parallel to be dropped; 
for example, in order to ensure that each parallel activity terminates within the time-bound of 
the slack parallel. 


In particular, the expression:  


[lb,ub] soft parallel { A1; A2; … } 


 


is equivalent to: 


[lb,ub] soft parallel { 


optional { A1 };  


optional { A2 }; 


…  


} 


 


The following is an example of the use of soft 
parallel, together with its graphical depiction 
to the right, which means that the activities 
are executed in parallel but either or both of 
them may be dropped in order to meet 
temporal constraints. 


class main { 


Rover foto; 


  


method run () { 


[0,10] soft parallel { 


       [0,1] foto.move1(); 


       [1,2] foto.move2(); 


     } 


   }  


} 


7.9.5.10 Temporal Constraints between 
Subexpressions 


It is often sufficient to specify temporal 
constraints in terms of bounds on the 
execution time of an expression.  However, in 
many important applications, we need to 
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specify temporal constraints between the start and end times of the subexpressions that appear 
within some expression.  We accommodate this need through the introduction of ―constrained‖ 
expressions.   


A constrained expression augments the expressions, defined above, with a set of temporal 
constraints.  A constrained expression allows the start and end events of its subexpressions to 
be labeled.  A set of temporal constraints between the start and end times of these 
subexpressions is then specified, in terms of these labels.     


In particular, two special operators, startof and endof, are introduced to refer to the start and 
end events of any labeled subexpression.  Constraints are then specified as inequalities between 
any two labeled events within the constrained expression.   


For a given constrained expression, all labeled subexpressions whose labels appear in temporal 
constraints of the constrained expression must appear within the constrained expression.  Note, 
however, that the label may appear at any nesting level. In addition, any subexpression may be 
labeled.   


A special syntax allows gaps to be constrained.  ―startof(name3) - endof(name2) in [lb, ub]‖ 
means that the activity name2 must end no less than ―lb‖ after activity name3 begins and no 
longer than ―ub‖ after name3 begins. 


Examples: 


constrained parallel {  


name2: [ 0, 5 ] parallel {  


      lab1: foo();  


            lab2: baz(); 


} 


   name3: [ 0, 10 ] sequence {  


            lab3: bar();  


   } 


} 


(startof(lab1)<endof(lab3), 


 endof(name3)>endof(name2), 


 startof(name3)-endof(name2) in [lb, ub]) 
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7.9.6 Supporting Reachset Analysis with RMPL 


In order to support the use of RMPL models by the reachset analysis code it was necessary to 
do two things.  First, it was necessary to build a new back end for the RMPL compiler that 
would target (emit) the models in Matlab, and second it was necessary to extend the RMPL 
modeling language to support hybrid models.   


The extension of RMPL to support hybrid was done in a manner consistent with the overall 
goals of the language as a general modeling language.  This permits models to be exported to a 
variety of solver back ends beyond the immediate need of Reachset Analysis.  In particular it 
has allowed us to integrate RMPL with OPSAT in order to experiment with design space 
exploration. 


7.9.6.1 Basic Goals for the Hybrid Language Extensions 


We wished to extend the RMPL language to support hybrid models.  Our goals included some 
that were specific to Reachset Analysis and some that were more general.  


Goals:   


1. We wished to enable the encoding within a full plant/control model all parameters and 
values that were handled through a separate file.  for example, in Sulu we augment the 
RMPL model with a separate file that contains parameters. We wished to be able to 
support all such needs within a common linguistic framework. There is still a role for 
parameter files because one doesn't always want to encode the values in the model – but 
often we do. 


2. The Matlab code implementing reachset analysis used external tools that required the 
dynamics equations to be represented in the for Ax+By+C where A, B, and C are 
matrices.  While this is a requirement for the reachset analysis code it is also a common 
requirement.  Since RMPL is not a matrix based language it would have been a strange 
departure from regular RMPL syntax to directly incorporate the matrix notation into 
RMPL.  Instead, as shown below, we opted to extend RMPL to represent dynamics 
equations in a normal RMPL-like equation syntax and have the RMPL compiler 
construct the matrix reformulation of the equations.  


3. It has been the practice of RMPL users to build a single file that contains the plant 
model as well as the control program, or Qualitative State Plan (QSP).  this has long 
been an annoyance because ideally one would  like to have a collection of separate 
RMPL plant models representing a library of parts and to have the control 
program/QSP include the parts that it wanted.  This would enable new QSP's to be 
generated automatically that simply referred to the plant models that it used and it 
would facilitate the interchange of plant models such as when replacing one part, say a 
solenoid, with another part with slightly different properties such as we might want to 
do with design exploration.  To support this need we introduced the simple notion of an 
include file such as is familiar to C++ programmers. 


4. Model variables can be divided into several categories, broadly we can characterize the 
variables and endogenous variables having no connection outside the model and 
exogenous variables that represent the inputs and outputs to the model.  Some earlier 
versions of RMPL had maintained the distinction explicate in the syntax whereas the 
current incantation of RMPL has offered no support in the syntax to distinguish them.  
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We found the need to re-introduce syntax into RMPL to allow state variables to be 
annotated as exogenous or endogenous so that the compiler could  use this information 
in generating the Ax+By+C formulation of the dynamics equations for the reachset 
analysis.   


5. Reachset analysis as implemented by the MIT code base requires that the dynamics 
models be linear.  While we wouldn't want to impose that restriction on RMPL in 
general it is important that RMPL be able to impose that constraint so as to provide 
useful feedback to the RMPL user that his model has strayed out of the bounds of what 
the solver will support.  


7.9.6.2 Brief Overview of Modes in RMPL 


A  plant in RMPL has modes and each mode specifies a proposition that is true in that mode.  A 
plant has state variables that may be either boolean or a defined discrete value type. 


For example: 


 1: class DigitalValues { value high; value low; } 


 2: 


 3: class Switch { 


 4:   DigitalValues output; 


 5:   initial value off =(output==low); 


 6:   value on =(output==high); 


 7: } 


 


On line 1 we define a discrete type DigitalValues that can take on the values 'high' or 'low'.  
The switch, defined from line 3 to line 7, has an initial value of 'off' defined as output==low and 
a value on defined as output==high.   


 


For hybrid models, we extended the value types that RMPL supports as follows: 


 


1. Built-in support for numeric types. 


2. Numeric inequalities. 


3. Full equation syntax (same as Java). 


4. Full support for computing the value of constant expressions. 


5. Support for representing ODE's 


6. Support for representing linear programming (LP) models. 


7. A compile time arithmetic expression interpreter to fold constant expressions. 


 


For numeric datatypes, initially we have implemented Real, and Integer. At some later time we 
may need to add Complex. 
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A location contains a set of differential and algebraic equations and one invariant that defines 
continuous behaviors while the automaton is executing in the location.  One goal is to support 
the use of LP solvers such as in Sulu.  For an LP solver we need to be able to express the model 
in terms of linear equations and constraints.  An LP solution requires that the model be 
compiled into a set of variables representing values at different time points.  A recurrence 
relation representation is ideal for such compilation. 


 


A differential equation has the form:  


 


              


 


 ẋ  is understood as the first derivative of x with respect to time. 


 


Our new syntax uses the differential(x)= <formula> to represent the differential equation. 


 


An algebraic equation has the form: 


 


             


 


 


Here the simple syntax x = <formula> is sufficient. 


 


The invariant is a proposition, as is presently the case, but with the addition of a full inequality 
syntax over real and integer values. 


 


The main addition here is the ability to specify an equation that models the evolution of the 
variable value over time.  If such an equation is not provided, the value is assumed to be 


constant while the automaton is at that location. That is, the equation    = 0 is assumed for 
every such variable.  For each location, we have to ensure that the set of algebraic equations has 
a uniquely well-defined solution. This is guaranteed by requiring that the variable dependency 
relation for algebraic equations is not circular.  


 


Instead of representing system dynamics as an Ordinary Differential Equations (ODE) it is 
often convenient to express them as recurrence relations.  We added t his syntax to support 
recurrence relations as follows: 
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Example:  recurrence position[+] = position[.]+dt*velocity[.] 


 


The keyword recurrence introduces a recurrence relation over state variables.  Within a 


recurrence relation state variables are followed by either [+] or [.].  [+] means the value at 


the next time step and [.] means the value at the current time step.  Additionally a pseudo 


variable dt is added to quantify the time step. 


Here is an example taken from one of our recent demos of this new capability the new syntax is 
shown in bold. 


 


State variables are introduced as before but they may now be qualified with either 
endogenous, exogenous, input, or output.  Unqualified state variables are assumed to 
be endogenous.  input and output qualifiers both indicate exogenous. 


 


The RMPL version of the current demo would look like this: 


 


// Plant Model 


 


class Ramp 


{ 


  // Constants 


  constant real g=9.81; 


  constant real m=1000; 


  constant real rcg=3; 


  constant real Ir = 1; 


  constant real Kr = 1; // what value is required here? 


 


  // State variables 


  state real position;  // angular position 


  state real velocity;  // angular velocity 


 


  // Input Variables 


  input real torque; 


 


  // Output Variables 


  output real outp; 


 


  real initPosMin; 
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  real initPosMax; 


  real initVelMin; 


  real initVelMax; 


  real goalPosMin; 


  real goalPosMax; 


  real goalVelMin; 


  real goalVelMax; 


  real torqueMin; 


  real torqueMax; 


 


  // Initializing the Ramp 


  // This involves calculating and setting the input constraints 


  Ramp (real theta_nom) 


  { 


    torqueMin = -1000; 


    torqueMax = 1000; 


  } 


 


  run (real initMinPos, real initMaxPos, real initMinVel, real initMaxVel,  


       real goalMinPos, real goalMaxPos, real goalMinVel, real goalMaxVel) 


  { 


    initPosMin=initMinPos; 


    initPosMax=initMaxPos; 


    initVelMin=initMinVel; 


    initVelMax=initMaxVel; 


    goalPosMin=goalMinPos; 


    goalPosMax=goalMaxPos; 


    goalVelMin=goalMinVel; 


    goalVelMax=goalMaxVel; 


  } 


 


  // Ramp modes 


  value stopped=(velocity==0);  


 


  initial value moving={  


    recurrence position[+] = position[.]+dt*velocity[.], 


    recurrence velocity[+] = -dt*g*m*rcg*sin(theta_nom)*position[.]/Ir - 
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                             Kr*velocity[.] + dt*torque[.]/Ir- 


                   dt*g*m*rcg*cos(theta_nom)/Ir + 


                             dt*g*m*rcg*sin(theta_nom)*theta_nom/Ir, 


                             velocity>0  


  }; 


} 


 


In order to support the separation of plant models from QSP's we introduced the include 
syntax that works much as it does in C++.  Here is an example of a QSP that refers to the plant 
model by using an include: 


 


 


// Control Plan (QSP) 


 


#include "C:/meta/RMPLRampMeta/ExampleRampGeneratePlantv1.rmpl2" 


 


class Main 


{ 


  Ramp Activity79; 


  Ramp Activity215; 


  Ramp Activity261; 


 


  Main () 


  { 


    Activity79 = new Ramp(0.0); 


    Activity215 = new Ramp(0.25); 


    Activity261 = new Ramp(1.5); 


  } 


 


  method run () 


  { 


    sequence { 


      [4.0, 6.0] Activity79.run(-5.0, 5.0, -5.0, 5.0, 0.15, 0.35, 0.07, 


0.13); 


      [9.0, 11.0] Activity215.run(-4.75, 5.25, -4.9, 5.1, 1.15, 1.35, 0.07, 


0.13); 


      [4.0, 6.0] Activity261.run(-3.75, 6.25, -4.9, 5.1, 1.4, 1.6, -0.03, 


0.03); 
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    } 


  } 


} 


 


// End of generated QSP 


 


The include statement includes the plant model shown before.  The QSP shown above was 
generated automatically from an envisionment from Parc along with a magic number file that 
provided all of the necessary numbers that are not present in the Parc generated envisionment. 


 


The compilation of the above generates the following output files for use with the matlab based 
reachset-analysis described elsewhere: 


 


Here is the command line output from the run: 


 


Including file: C:/meta/RMPLRampMeta/ExampleRampGeneratePlantv1.rmpl2 


Exiting include file 


Compiling RMPL 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2'. 


Generating XML 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2.xml'. 


RMPL read in as XML... 


Compiling RMPL 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2' to Matlab... 


Done! 


Generating Matlab file 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_events.m 


Generating Matlab file 


'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_plantmodels.m 


Generating Matlab file 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_pm.m 
Generating Matlab file 
'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_qsp.m 


 


We will look at the last two generated files here (shown in bold above). 
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First the QSP file: 


 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


% Automatically Generated and emitted from RMPL Compiler  


% Source file: C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


 


function [qsp_set] = ExampleRampGenerateQSPv1_qsp() 


 


Ramp_g = 9.81; 


Ramp_m = 1000; 


Ramp_rcg = 3; 


Ramp_Ir = 1; 


Ramp_Kr = 1; 


 


% State variables for this model: 


% [Ramp_position, Ramp_velocity] 


 


% Input variables for this model: 


% [Ramp_torque] 


 


% Output variables for this model: 


% [Ramp_outp] 


 


% Activity 1 parameters: 


parameters.theta_nom = 0.0; 


activity_1 = ExampleRampGenerateQSPv1_Activity([4.0, 6.0], [-5.0, 5.0], [-5.0, 5.0], [0.15, 
0.35], [0.07, 0.13], parameters); 


 


% Activity 2 parameters: 


parameters.theta_nom = 0.25; 


activity_2 = ExampleRampGenerateQSPv1_Activity([9.0, 11.0], [-4.75, 5.25], [-4.9, 5.1], 
[1.15, 1.35], [0.07, 0.13], parameters); 
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% Activity 3 parameters: 


parameters.theta_nom = 1.5; 


activity_3 = ExampleRampGenerateQSPv1_Activity([4.0, 6.0], [-3.75, 6.25], [-4.9, 5.1], [1.4, 
1.6], [-0.03, 0.03], parameters); 


 


% Insert activities into QSP 


qsp.plant_vector(1).activities(1) = activity_1; 


qsp.plant_vector(2).activities(1) = activity_2; 


qsp.plant_vector(3).activities(1) = activity_3; 


 


% Events 


[qsp.events, qsp.temporal_constraints] = ExampleRampGenerateQSPv1_events(3); 


 


qsp_set = [qsp]; 


Next the plant model file: 


 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


% Automatically Generated and emitted from RMPL Compiler  


% Source file: C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


 


function [sysStruct, probStruct] =  


    ExampleRampGenerateQSPv1_pm(delta_t, inputbounds, probbound, qsp, 


index_plant) 


 


Ramp_g = 9.81; 


Ramp_m = 1000; 


Ramp_rcg = 3; 


Ramp_Ir = 1; 


Ramp_Kr = 1; 


 


 


% State variables for this model: 


% [Ramp_position, Ramp_velocity] 


 


% Input variables for this model: 
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% [Ramp_torque] 


 


% Output variables for this model: 


% [Ramp_outp] 


 


% Modes and Dynamics Equations: 


 


Ramp_stopped_Mode = 0 


Ramp_moving_Mode = 1 


 


Ramp_Mode = Ramp_moving_Mode; 


 


parameters = qsp.plant_vector(index_plant).activities(1).parameters; 


Ramp_theta_nom = parameters.theta_nom; 


 


Ramp_stopped_DYNAMICSA = [1, 0; 0, 1]; 


Ramp_stopped_DYNAMICSB = [0; 0]; 


Ramp_stopped_DYNAMICSf = [0; 0]; 


 


Ramp_moving_DYNAMICSA = 


         [1, delta_t; -


delta_t*Ramp_g*Ramp_m*Ramp_rcg*sin(Ramp_theta_nom)/Ramp_Ir, -Ramp_Kr]; 


Ramp_moving_DYNAMICSB = [0; delta_t/Ramp_Ir]; 


Ramp_moving_DYNAMICSf = 


        [0; 


delta_t*Ramp_g*Ramp_m*Ramp_rcg*sin(Ramp_theta_nom)*Ramp_theta_nom/Ramp_Ir- 


             delta_t*Ramp_g*Ramp_m*Ramp_rcg*cos(Ramp_theta_nom)/Ramp_Ir]; 


 


sysStruct.A = Ramp_moving_DYNAMICSA; 


sysStruct.B = Ramp_moving_DYNAMICSB; 


sysStruct.C = eye(2); 


sysStruct.D = zeros(2, 1); 


sysStruct.f = Ramp_moving_DYNAMICSf; 


 


% WHERE DOES THIS COME FROM 


 


inputbounds.umax = inputbounds.umax-probbound; 


inputbounds.umin = -inputbounds.umax; 
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sysStruct.ymin = [-1000000; -1000000]; 


sysStruct.ymax = [1000000; 1000000]; 


sysStruct.umin = [inputbounds.umin]; 


sysStruct.umax = [inputbounds.umax]; 


 


% WHERE DOES THIS COME FROM 


 


input_cost_weight = 0.01; 


probStruct.Q = zeros(2, 2); 


probStruct.R = eye(1) * input_cost_weight; 


probStruct.norm = 2; 


probStruct.subopt_lev = 0; 


probStruct.tracking = 0; 


 


The dynamics equations are shown in bold for the stopped and moving modes of the system in 
Ax+By+c form as matrices. 


 


Several other files are also generated that involve hooking the QSP and plant models into the 
reachset analysis system but we have not included them here because they are only intelligible 
by someone with a deep understanding of the reachset analysis code. 
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7.10 Verification using Hybrid Models with State and Temporal Flexibility 
7.10.1 Executive Summary 


For this project, MIT has developed capabilities in two areas: design verification, and design 
optimization. Additionally, we have advanced and adapted the RMPL (Reactive Model-based 
Programming Language) for use in these capabilities. 


Design Verification  


We have developed a verification capability for the design of dynamic electro-mechanical 
systems, such as vehicles. This capability combines recent advances in qualitative simulation, 
reach set analysis, optimization, and hybrid systems modeling. In particular, we have developed 
hybrid models that appropriately capture the state and temporal limits of the mechanism being 
designed, as well as the flexibility limits on tasks they are required to perform. This provides a 
powerful foundation for analysis of a design’s performance. 


Our system is intended primarily for use during the requirements analysis/conceptual design 
phases of a project. This is where the most important decisions are made. Also these phases 
often take more time and effort than the detailed design and implementation; the Bradley 
fighting vehicle project is one example of this. Detailed design typically requires specialized 
tools, such as CAD systems and detailed nonlinear simulations, which are beyond the scope of 
our system. Further, good tools for detailed design already exist, but tools for requirements 
analysis are less well developed. Therefore, most of the opportunity for improvement is in the 
upstream phases of a project. Our focus is in line with the overall META goal of resolving 
important decisions early in the design process, thereby dramatically shortening project time. 


A key feature of our approach is the ability to evaluate a design of an electro-mechanical system 
based on the physical design limits, independently of design of a control policy. This is in 
contrast with standard existing techniques that use randomized forward simulations, which 
require implementation of both a model of the design, as well as a control policy. This is 
problematic for two reasons. First, designers may want to defer control policy implementation 
decisions and focus on the electro-mechanical design. Second, by introducing the control aspect, 
the design optimization problem becomes more complicated, as both electro-mechanical design 
and control policy are being optimized simultaneously. By using novel, recently developed 
reach set analysis technology, we are able to decouple electro-mechanical design optimization 
from control policy design optimization. 


A second key feature of our approach is a specialized abstraction of quantitative model 
information into qualitative models. This abstraction is crucial in that it allows for fast 
verification, but maintains sufficient quantitative information, represented as qualitative 
regions, to allow for meaningful analysis. It is our experience that qualitative simulations that 
are devoid of quantitative information are not useful for design verification. In particular, due 
to the complex interplay between discrete and continuous constraints in typical designs, the 
omission of quantitative information results in an in-sensitivity to design parameters. The 
result is that the qualitative simulations are always the same; they have the same outcome for 
different design parameter settings. Our system avoids this by keeping sufficient quantitative 
information, abstracted into qualitative regions. 


A third key feature of our approach is minimizing the information that users have to specify in 
test cases for the design. For example, the user shouldn’t have to specify the details of plant 
models and detailed task goals for each test case. By maintaining much of this information in 
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the hybrid model, which is shared by all test cases, the need for repetitious and needless 
specification of "‘magic numbers"’ and other information in test cases is minimized. 


Design Space Analysis and Optimization 


When building a design, one is frequently faced with the challenge that the problem is over 
constrained and that as stated there is no way to achieve the requirements. To resolve this 
impasse it is necessary to relax some of the constraints (requirements). Our goal with design 
space exploration is to provide a tool that enables designers to explore the space of constraint 
relaxations and the impact that they have upon requirements. The approach hinges upon two 
key capabilities: (a) an explanation capability; and (b) a means of representing conditional 
preferences for the requirements. 


The explanation capability produces an abstraction of a diagnosis of the failure to produce a 
solution as a set of diagnosis kernels that implicate a collection of conflicts that in turn suggest 
relaxations of the requirements. In order for the tool to be useful to a team of design engineers 
it is necessary to be able to suggest, in order of preference, relaxations that would yield a 
design solution. To support this, the designers provide a conditional preference representation.  


Our work in this area leverages previous work in our lab on design optimization, combinatory 
optimization, and mixed logic linear programming. We have previously developed an 
optimization solver called OPSAT, which we have used to optimize hybrid discrete/continuous 
designs. The focus of our work in this area for this project was integration of RMPL with 
OPSAT, to provide a more convenient method for specifying problems.  


Language Support  


We have developed two back-ends for the RMPL language that produce output compatible 
with the Matlab reachSet analysis code and the other that produces models in the OPSAT 
solver format for use in design space exploration. The RMPL backend for OPSAT is a first step 
towards the Design Space Analysis capability by bringing RMPL modeling to the OPSAT 
solver and explanation capabilities. 


The following sections provide more details on our work in all of these areas. 


7.10.2 Motivating Examples 


Before going into the details of the verification system, we introduce a set of motivating 
examples, some of which will be used later to illustrate concepts. 
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7.10.2.1 Automatic Transmission Vehicle 


Figure 7.10-1 shows a mode transition diagram for a vehicle with an automatic transmission. 
The modes correspond to the gear that the vehicle is in. Transitions between modes are 
achieved through a combination of input commands, and satisfaction of guard conditions. In 
this case, transitions between modes 1, N, and R are determined solely by input commands. 
Transitions between modes 1, 2, and 3 are determined by the guard conditions on vehicle 
velocity, v. 


 
Figure 7.10-1.  Mode transition diagram for vehicle with automatic transmission. 
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For example, suppose that the vehicle is in mode 2 (2nd gear). Transition to mode 3 occurs 
when v>25, and transition to mode 1 occurs when v<4. Thus, allowable speeds in mode 2 range 
from 4 to 25. The evolution of position and velocity state in mode 2 is determined by the 
dynamics associated with the mode, and by limits on the acceleration control input. These 
constraints impose limits on how a guard can be achieved, and they implicitly define the valid 
state trajectories for achieving the guard. As we will see, reach set analysis techniques can be 
used to determine valid state trajectories that end in a guard state being satisfied. The result is 
an explicit representation of the valid state trajectories, called a flow tube. These flow tubes only 
have to be computed once, for the model, rather than for each of possibly many use cases, 
because they don’t depend upon the user provided use case. These flow tubes compile out the 
limits of what the plant with its constraints is capable of doing (independent of any particular 
use case). Models like this can also incorporate probabilistic transitions and noise models. 


In order to verify that a design will work, a set of use cases must be specified against which the 
design model will be tested. Figure 7.10-2 shows how a form of qualitative simulation can 
generate detailed use cases given a user specified high level case. We can enumerate these in an 
interesting way such as in order of simplicity (number of mode changes) and we can abandon a 
use case as soon as we know during its elaboration that it has no solutions.  


 


Figure 7.10-2.  Use cases for automatic transmission example. 


At the top of Figure 7.10-2 is a requirement that specifies in just enough detail what the user is 
trying to achieve including constraints on time, speeds, etc. This is the high level use case. 
Many detailed use cases can be enumerated from the model, but this should be done 
automatically. In this example, out of the 4 cases enumerated only one is viable given the user 
requirements.  


Case 1 uses a single gear in a saw tooth approach. Case 2 involves a single gear for a 
trapezoidal model. Case 3 uses two gears, and case 4 uses three gears. Case 1 is not feasible, 
based on the model constraints, because the top speed will be 5 mph (in gear 1), so the vehicle 
will not reach 20 miles in the allotted 40 minutes. Case 2 fails for the same reasons. Case 3 fails 
too because even at the maximum speed of 25 mph for the entire route we can only get a 16 2/3 
miles in 40 minutes. Case 4 can work as long as we can get to third gear long enough and keep 
it there long enough to get our average speed up to 30 mph or higher. The temporal bounds of 
the modes and the bounds on inputs for the modes can be extracted from bounding 
computations on the composition of the flow tubes. 
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7.10.2.2 Hill Climbing Vehicle 
We can extend the automatic transmission vehicle model to include dynamics associated with 
going up and down hills. Hybrid discrete and continuous model aspects for this are shown in 
Figure 7.10-3. 


 


Figure 7.10-3.  Hybrid model representing vehicle that goes up and down hills. 


An example user-specified use case is shown in Figure 7.10-4. This use case specifies a set of 
intervals with different hill grades. Temporal constraints on overall completion time, or on 
times for individual intervals, could also be specified. 
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Figure 7.10-4.  Use case representing vehicle that goes up and down hills. 


7.10.2.3 Elevator 
Consider the operation of an elevator door. This can be modeled using four discrete modes: 
door shut, door open, door shutting, door opening, as shown in Figure 7.10-5. 


 


Figure 7.10-5.  Simple elevator door example with upper temporal bound on Door Open 
mode. 
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In general, there are interesting interactions between actuation limits, plant dynamics, and 
temporal constraints. Consider the door open mode. For simplicity, we assume a first-order 
model, where the state, x, is door position, the input, v, is door velocity, and there are 
constraints on the input (there is a minimum and maximum velocity). 


Most real elevator doors close after a particular, specified duration. This can be accomplished 
by adding a temporal upper bound, u


2
, to the mode specification for the Door Open mode. This 


is a constraint imposed by the designer, which is combined with constraints imposed by the 
plant. 


7.10.2.4 Infantry Fighting Vehicle Ramp 
The Bradley Infantry Fighting Vehicle has a door at the back that opens to allow entry and exit 
of troops. When the door opens, it folds down, forming a ramp down which the soldiers can 
run. A simple, linear equation of motion for the ramp is given by the following torque balance 
equation: 


 I
R
̈Θ=−g m


R
 r


cg
+τ


R
  (1) 


where I
R
 is the (scalar) inertia of the ramp, Θ is the ramp angle, g is gravitational acceleration, 


m
R
 is the mass of the ramp, r


cg
 is the center of mass of the ramp, and τ


R
 is the actuator torque 


exerted on the ramp about its hinge. A key assumption here, made to make the system linear, is 
that Θ will be small. If this is not true, then a more complex model, with piecewise linearization 
and more QSP activities should be used (see subsequent sections). Force disturbance terms, due 
to loading from footsteps, can be added to the above formulation. 


A use case for opening the ramp would consist of three activities. The first corresponds to 
acceleration of the ramp angular velocity to its maximum value. The goal region for this 
activity should be some range around the target velocity, and possibly, also some goal region 
for angular position. The second activity corresponds to movement at a steady angular 
velocity. A goal region about the reference angular velocity could also be included. The third 
activity corresponds to deceleration of the ramp angular velocity to zero. The goal region for 
this activity should be some (small) range about 0 for angular velocity, and some (small) range 
about the final target position. 


7.10.3 Verification Process Overview 


The MERS MIT component of the DARPA META project involves development of a 
verification capability for the requirements and preliminary designs of electro-mechanical 
systems. Current approaches to this type of verification involve the development of custom 
spreadsheets. Thus, the goal of this project is to develop a superior capability that is focused on 
requirements and preliminary design verification, but not on verification of detailed designs. 
This focus is important because requirements analysis phases of large projects typically 
consume a significant portion of the time and resources. Therefore, capabilities that improve 
the requirements analysis process and make it more efficient have high impact. Furthermore, 
mistakes made during requirements analysis (for example, not recognizing that the 
requirements pose an infeasible problem) result in expensive wasted design and development 
time, until the mistake is recognized and addressed. 
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A key requirement for this capability is that it be able to verify designs based on the physical 
limits of the electro-mechanical design, without requiring the user to also design and develop a 
control policy. This rules out the use of a monte-carlo forward simulation methods, since these 
require both a plant model and a control policy to run a simulation. For this reason, we use 
reach set analysis to compute families of state trajectories that the electro-mechanical design 
can achieve, based on a plant model alone. These are then tested against use cases representing 
the requirements. 


In order to verify a design, we use the plant model, and associated reach set analysis, as a basis 
for Qualitative Simulations [WK91]. Each Qualitative Simulation produces a trajectory of 
Qualitative States, which are an abstraction of the full quantitative state trajectory, but which 
nevertheless have sufficient information content to allow for checking whether a use case 
requirement is satisfied. This approach supports fast verification of a design with respect to a 
potentially large and diverse set of use cases. 


The following discussion first gives an overview of the verification process. After this, we 
describe the design of a Hybrid Model, based on Probabilistic Concurrent Constraint Automata 
(PCCAs) [MWI05], for use in verification applications. Key distinguishing features of this 
model are that it incorporates concepts of temporal flexibility into transitions, and that it uses 
flow tubes to represent the relation between state, input, and temporal constraints. Note that 
the focus here is on a model. The model information is used by the qualitative simulation to 
generate trajectories consistent with the use case requirements. 


After definition of the plant model, we describe use case representation, as a partially specified 
Qualitative State Plan (QSP) [HW06]. Subsequently, the process of Qualitative Simulation 
based on the plant model, and satisfying the use cases, is described. 


7.10.3.1 Use of Hybrid Model in Verification Process 
Figure 7.10-6 shows the data structures and operations of the verification process. There are 
three inputs: 1) the Hybrid Timed PCCA (Hybrid Model), 2) the Mode Specification, and 3) the 
Partial QSP. There is one output: a set of Qualitative State Trajectories. 


The Hybrid Model represents the capabilities and limitations of the plant. The plant is the 
electro-mechanical device being controlled. Limitations may include temporal constraints, and 
also dynamic constraints on state evolution due to saturation limits on control inputs like 
velocity or acceleration. The Mode Specification contains additional temporal and state space 
constraints that are not inherent in the plant, but rather, are imposed by the designer on the 
model. These specifications are general to the model; they are not specific to particular use 
cases. The Partial QSP (Partial Qualitative State Plan) represents a use case specified by the 
designer. It must include at least a specification of the initial and goal qualitative states for valid 
Qualitative State Trajectories. It may also include temporal and state space constraints, as well 
as required partial trajectories. 
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Figure 7.10-6.  Verification Process 


The verification process consists of two distinct operations: model compilation, and qualitative 
simulation. The model compilation process combines the constraints from the HTPCCA and 
the Mode Specification, and generates qualitative abstractions of the quantitative dynamics 
information, resulting in a compiled model. These qualitative abstractions are based on reach set 
analysis, which is used to construct flow tubes [HW06] representing families of valid 
trajectories. The compilation process also combines and compiles temporal constraints, so that 
the compiled model becomes an efficient basis for qualitative simulation. 


The qualitative simulation uses the compiled model to generate trajectories. It performs an 
efficient search to find trajectories that satisfy the Partial QSP use case requirements, and to 
quickly prune out ones that do not. 


The next section presents a simple example of a Hybrid Model, which will be used throughout 
the discussion. Subsequent sections describe the data structures and operations of the 
verification process in more detail. 


7.10.4 Simple Example of Hybrid Model 


Consider the operation of an elevator door. This can be modeled using four discrete modes: 
door shut, door open, door shutting, door opening, as shown in Figure 7.10-7. 
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Figure 7.10-7.  Simple Elevator Door Example 


In general, there are interesting interactions between actuation limits, plant dynamics, and 
temporal constraints. Consider the door open mode in the figure. For simplicity, we assume a 
first-order model, where the state, x, is door position, the input, v, is door velocity, and there 
are constraints on the input (there is a minimum and maximum velocity. 


A flow tube for this mode is shown in Figure 7.10-8. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification 
 


© BAE Systems 2011.  All rights reserved.                               11                        Refer to cover page for Distribution Statement. 


 


Figure 7.10-8.  Flow tube for door open. 


Cross sections for three durations, d1, d2, and d3, are shown in gray. The green region to the 
right is the goal region; the small range of positions for which the elevator door is considered 
open. Because the dynamics are simple, the flow tube can be easily computed analytically: 


   


x
max


 ( )d =max ( )x
goal


−v
min


d


x
min


 ( )d =min ( )x
goal


−v
max


d  (2) 


Suppose that we now impose an additional constraint: that the mode must begin with the door 
in a closed position. Figure 7.10-9 depicts this situation. The red line on the x axis shows x


init
, 


the small range of positions for which the elevator door is considered closed. The pink 
rectangular region shows the valid initial states and durations for this mode. Note that a 
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duration less than d
1
 is not possible, because the initial region does not fully overlap a cross 


section with a shorter duration. This is because there is a maximum permitted velocity. Note 
also that a duration greater than d


2
 is not possible, for the same reason. This is because there is 


a minimum permitted velocity. Thus, d
3
 is not a possible duration. 


 


Figure 7.10-9.  Flow tube for door open, with door closed initial constraint. 


This simple example shows how the interaction of actuation limits, plant dynamics, and initial 
and goal region requirements can result in temporal constraints. The interactions are more 
complex with higher order systems, but the basic principle is the same. (Think about transition 
sequence fragments in the automaton, and how these can be used to impose constraints on 
QSPs.) 


Consider, next, another elevator related example, shown in Figure 7.10-10. This shows a 
hybrid model representing movement of the elevator between three floors. In this model, the 
modes going up and going down have multiple exit transitions. Flow tubes are used to derive 
temporal constraints that are different for the different exit transitions. 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification 
 


© BAE Systems 2011.  All rights reserved.                               13                        Refer to cover page for Distribution Statement. 


 


Figure 7.10-10.  Model of elevator movement between three floors. 


We assume, again, simple dynamics. In this case, the state variable is vertical position of the 
elevator, and the input is the vertical speed. The going up mode has an exit transition at the 
second floor, and one at the third floor. The guard conditions for these exits include goal 
regions for vertical position. Given that the initial region for the going up mode is the first 
floor, then the dynamics impose different temporal constraints on the second and third floor 
exit transitions. This is because it takes longer to go from the first to the third floor, than from 
the first to the second floor. 


7.10.5 Formal Specification of Hybrid Timed PCCA 


7.10.5.1 PCCA 
A Hybrid Timed Probabilistic Concurrent Constraint Automaton is based on a Probabilistic 
Concurrent Constraint Automaton (PCCA). We define the latter first, and then extend this to 
achieve a complete specification of the former. 


A PCCA [MWI05] consists of a set of automata, where an automaton for component 
"‘a"’ is defined by the tuple:  


A
a
= < > ∏


a
 ,M


a
,T


a
,P


T
a
,Pτ


a
. 


∏
a


 = ∏ m
a
∪ ∏ r


a
 is a finite set of discrete variables for component "‘a"’, where each 


variable π
a
∈ ∏


a
  ranges over a finite domain D ( )πa


. ∏ m
a
 is a singleton set containing mode 


variable x
a
, whose domain D ( )x


a
, is the finite set of discrete modes in A


a
. Attribute variables 


∏ r
a
 include inputs, outputs, and any dependent variables used to specify behavior. 
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M
a
 maps each mode assignment (x


a
=v


a
) to a finite domain constraint c


a
 ( )x


a
=v


a
. 


T
a
 is a set of transition functions. Given a current mode assignment (x


a
=v


a
) and guard 


g
a
, each transition function τ


a
 ( )x


a
=v


a
,g


a
 specifies a target mode assignment that the automaton 


could transition into in the next time step. 


P
T


a
 is a transition probability distribution. For each mode variable assignment and 


guard, there is a probability distribution across all transitions into target modes defined by the 
set of transition functions. 


An entire system (plant) is modeled by composing such automata, resulting in a PCCA model. 


7.10.5.2 Extension to Hybrid 
The extension of a PCCA automaton to be hybrid is accomplished through the introduction of 
continuous variables and constraints. The constraints can include both numerical equalities and 
inequalities. The constraints can be used to express differential, as well as algebraic relations. 
We assume that the constraints are all linear. Further, for any particular mode assignment, we 
assume that the numerical constraints are convex. 


In order to make a PCCA automaton hybrid, we associate with each mode assignment, (x
a
=v


a
), 


a set of continuous variables, c. These include state variables, x, input variables, u, and output 
variables, y.  Additionally, we associate with the mode assignment a set of initial constraints, a 
set of goal constraints, and a set of operating constraints. The initial constraints represent 
guards, over c, that must be satisfied in order to make a transition into the associated mod. 
Thus, the initial constraints are entry constraints for the mode. The goal constraints represent 
guards, over c, that must be satisfied in order to make a transition out of the associated mode 
into a new mode. Thus, the goal constraints are exit constraints for the mode; they become part 
of the transition function, τ


a
 ( )x


a
=v


a
,g


a
, defined for PCCAs, where they augment the discrete 


domain guard conditions g
a
. The operating constraints represent requirements, over c, that 


must be satisfied in order for the associated mode to be marked. If the operating constraints are 
not satisfied, the automaton exits out of the associated mode immediately, usually to an error 
mode. 


The initial and goal constraints are linear algebraic equality and inequality constraints of the 
form 


f ( )c =c
1


g ( )c ≤c
2
  (3) 


where c
1
 and c


2
 are vectors of constants. It is assumed that the initial and goal constraint sets 


are each convex. 


The operating constraints are also of the form of (4), and are convex. In addition, operating 
constraints can include dynamic constraints in the form of linear difference equation 
constraints. Specifically, these constraints are expressed as 


x ( )k+1 =Ax ( )k +Bu ( )k y ( )k =Cx ( )k +Du ( )k  (4) 
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where A,B,C,D are matrices of appropriate dimensions. 


Difference engine constraints represent the dynamic state evolution over time, and can be used 
to compute constraints on this state evolution. For example, suppose that the state vector, x, 
consists of position and speed of a car moving on a straight line. Suppose, further, that the 
control input vector, u, consists of the acceleration, which has limits. The limit on the input, 
combined with the dynamic constraints, results in limits on the evolution of the position and 
velocity state. If the maximum acceleration is 1m/s2


This also shows the relationship between dynamic constraints on state evolution, and temporal 
constraints on duration of a mode. In the above example, if a guard condition requires the state 
to be in a certain region (at position 10m, for example), then the dynamic constraints may 
impose limits on how long it takes to get there. 


, then the car can’t go from 0 to 10m/s in 
one second. It also can’t go from position 0m, velocity 0m/s to position 10m in one second. 


7.10.5.3 Extension to Timed 
As discussed in the previous subsection, dynamic constraints may result in implicit temporal 
constraints on mode duration. We now extend the model to also allow for explicit temporal 
constraints, provided by the user. For example, the upper temporal bound u


2
 in Figure 7 is a 


specified bound on the maximum time the elevator door can remain open before it starts to 
close. 


The extension of a PCCA automaton to include explicit temporal constraints is accomplished 
through the introduction of explicit lower and upper bounds on duration. Thus, we associate 
with each mode assignment, (x


a
=v


a
), a temporal bound [ ]l,u


As will be discussed subsequently, the interaction of implicit and explicit temporal bounds is of 
great interest in verification, and is an important contribution of this work. 


, where l specifies the minimum 
feasible duration for the mode, and u specifies the maximum. 


7.10.6 Mode Specifications 


Mode specifications are temporal and state space constraints imposed by the designer for 
modes in a Hybrid Timed PCCA. They represent additional constraints, beyond the ones 
inherent in the plant being modeled. This results in a tightening of constraints in the combined 
system. The temporal and state space constraints in the Mode Specifications have the same 
form as corresponding constraints in the Hybrid Timed PCCA. 


Consider the simple elevator door example in Fig. 7. As shown in the Figure, the door can 
remain open for an infinite duration (according to the plant model). Most real elevator doors 
close after a particular, specified duration. This can be accomplished by adding a temporal 
upper bound, u


2
, to the mode specification for the Door Open mode. This is a constraint 


imposed by the designer. When combined with the plant model, the following automaton 
representing both plant model and mode specifications can be inferred. 


7.10.7 Verification through Qualitative Simulation using Hybrid Timed PCCA 


A Hybrid Timed PCCA can be used to generate a qualitative simulation of the possible state 
evolution trajectories. In this case, the inputs to the qualitative simulator component are the 
compiled Hybrid Timed PCCA, and a partial QSP representing use case requirements, as shown 
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in Figure 7.10-11. At a minimum, the partial QSP must specify initial and goal qualitative 
states, but it may also specify intermediate qualitative states and activities that lead from the 
initial to goal states. The output of such a simulation is a sequence of mode assignments 
(qualitative states), with associated duration ranges for each mode. An additional byproduct of 
the forward simulation is a probability indicating the likelihood of the trajectory. 


 


 
Figure 7.10-11.  Simple elevator door example with upper temporal bound on Door Open 


mode. 


A key advantage of this qualitative simulation approach, versus a full forward simulation with 
full continuous dynamics, is that it caches continuous dynamics information in flow tubes, so 
that this doesn’t have to be repeated. This flow tube abstraction is not sufficient to compute 
individual trajectories the way a full continuous dynamics simulation would. However, the flow 
tube information does define the boundaries of valid trajectory sets, which is sufficient for 
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verification. A second key advantage of this qualitative simulation approach versus full forward 
simulations is that the latter require the user to provide a control policy, while the former (our 
approach) does not. This is significant, especially during the requirements and early design 
phases of an electro-mechanical system. The analysts and designers working during these 
phases are primarily concerned with the capabilities and limits of the electro-mechanical design, 
and do not want to have to worry about a control policy in addition to this. Our approach 
allows such users to specify limits of the design, such as maximum speed, maximum actuation 
force, etc., and to base verification analysis on these limits alone, without having to also develop 
a control policy. 


7.10.7.1 Qualitative Simulation Problem Definition 
In order to define the qualitative simulation problem more formally, consider again Figure 
7-10-6, which shows the data structures and operations of the verification process. There are 
three inputs: 1) the Hybrid Timed PCCA (Hybrid Model), 2) the Mode Specification, and 3) the 
Partial QSP. There is one output: a set of Qualitative State Trajectories. Each such trajectory is 
represented as a sequence of HTPCCA modes, with associated durations. 


It is important to note two important aspects of this output. First, unlike typical qualitative 
simulations, which are simply mode sequences, this output incorporates metric time, 
represented as the associated durations. This is crucial for meaningful verification. Second, the 
modes in the sequence have associated quantitative information: the compiled flow tubes in the 
HTPCCA modes, which represent an abstraction of the system dynamics. Inclusion of this 
(abstracted) quantitative information is also crucial for meaningful verification. 


The HTPCCA forms a graph where the nodes are modes, and the edges are transitions. The 
qualitative simulation problem, and the verification process itself, is defined as one of searching 
this graph to produce a mode sequence (Qualitative State Trajectory) that satisfies the Partial 
QSP. The qualitative simulation is accomplished by deciding mode transitions, and duration in 
each mode. Thus, qualitative simulation amounts to assignments to two kinds of discrete 
decision variables (mode, and duration), subject to logical (discrete) and numeric (continuous) 
constraints. Note that a discrete time approach is used in modeling the continuous dynamics. 
This is consistent with commonly used standard controller synthesis and verification analysis 
approaches. 


Before describing the algorithm that performs the verification process, it is useful to gain 
understanding through a series of simple examples that illustrate the key concepts. 


After these examples, we describe the algorithms of the verification process. As described 
previously in the overview section, the verification process has two main steps: model 
compilation, and qualitative simulation. We begin the algorithm description with a discussion 
of the model compilation process. This is followed by a discussion of the algorithms for 
qualitative simulation. As will be explained in more detail, the qualitative simulation uses a 
generate and test search, where a candidate mode sequence and duration schedule is generated, 
and then checked to determine whether all qualitative and temporal constraints are satisfied. 
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7.10.7.2 Qualitative Simulation Examples 


7.10.7.2.1 Qualitative Simulation Example 1 


The first example uses a simple model and partial QSP, as shown in Figure 7.10-12. In this 
case, the use case partial QSP is actually fully specified. It represents going from Start to Finish 
within duration bounds [l,u]. 


The qualitative simulation process begins at a mode in the model that satisfies the initial mode 
requirements of the partial QSP. Recall that the partial QSP, even if it isn’t fully specified, must 
specify the initial and final state. In this example, the initial mode for the partial QSP is 
"‘Start"’, and this matches the mode "‘A"’ in the model. 


The search process investigates possible exit transitions out of the initial mode. For this 
example, there is one exit transition in the model: to the mode "‘Move"’. This matches the 
"‘Move"’ mode in the QSP. 


To achieve a match, it is typically necessary to attempt to adjust the flow tube computed for the 
model so that it satisfies the requirements of the use case QSP. This is because the model 
provides a template description of dynamic behavior in each mode, which can be adapted during 
Qualitative Simulation to a wide range of possible use cases. This adjustment must be made in 
such a way that the inherent dynamic information in the flow tube is not altered. 


Flow tube adjustment requires parameterized flow tubes, which are discussed in more detail in 
Section 7.4.1. A simple adjustment, which can always be accomplished easily, is a shifting of a 
flow tube in position. This type of adjustment will be used extensively in the following 
examples. 


Use of parameterized flow tubes in this way supports the key concept of computing flow tubes 
once for the model, and then re-using them extensively in the qualitative simulation to 
determine possible trajectories. This avoids needless re-computation of flow tubes, especially 
when there is a large set of complex use cases. 
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Figure 7.10-12.  Simple velocity limited system for getting from one position to another. 
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For the model in this simple example, the flow tube representing the movement is computed 
based on the velocity limits. Problems with more complex dynamics, such as acceleration 
limited dynamics, require a more sophisticated flow tube computation, as will be discussed 
further in Section 7.3.1. The simple velocity-limited flow tube computation is used here for 
illustrative purposes, though it can also be usefully applied to a wide variety of problems. 
Suppose that the nominal goal in the model is x


g
=[x


gmin
,x


gmax
]=[−2,2] , where x


g
 is the 


goal position. Suppose that the velocity limits are in the range v
lim


=[v
min


,v
max


]=[1,2] . The 
flow tube, as a function of duration back from the goal can be expressed as 


x
max


=x
gmax


−v
min


d


x
min


=x
gmin


−v
max


d (5) 


Here, d corresponds to duration. For a discrete time system, d is a multiple of the time 
increment, δt. Assuming a time increment of δt=1, the flow tube cross sections for each d are as 
shown below. 


 


x
max


 x
min


 d 


2 -2 0 


1 -4 1 


0 -6 2 


-1 -8 3 


-2 -10 4 


-3 -12 5 


-4 -14 6 


-5 -16 7 


-6 -18 8 


  


We assume in this example that the maximum duration specified in the model is 8. 


Suppose, now, that the goal in the QSP is specified to be x
gqsp


=[x
gqspmin


,x
gqspmax


]=[8,12] . 
Shifting the model flow tube by 10 causes the goal range in the shifted model flow tube to 
match the goal in the QSP: x


g
+10=x


gqsp
. Thus, the shifted flow tube cross sections are 
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x
max


 x
min


 d 


12 8 0 


11 6 1 


10 4 2 


9 2 3 


8 0 4 


7 -2 5 


6 -4 6 


5 -6 7 


4 -8 8 


  


This simple example shows how a flow tube in the model is adjusted to meet the requirements 
of the QSP. When this can be done, then the transition out of the mode in the model is valid, 
and the qualitative simulation search can proceed along that branch. 


Once a transition has been established, the next step is to check whether state constraints cause 
a tightening of the duration range. In the model and shifted flow tubes, the duration range is 
[0,8]. Suppose now that the initial position range specified in the QSP is 
x


initqsp
=[x


initqspmin
,x


initqspmax
]=[5,7] . Checking against the shifted flow tube cross sections, 


this means that durations of 2, 3, 4, and 5 are valid. A duration of 1 doesn’t work if the initial 
position state is 5. A duration of 6 doesn’t work if the initial position state is 7. Thus, the 
tightened duration range is [2,5], which is less than the original duration range of [0,8]. Note 
that this tightening can result in a duration range that is empty. For example, if 
x


initqsp
=[15,17] , then none of the shifted flow tube cross sections match, and the tightened 


duration range is empty. This implies that the transition actually can’t be accomplished, and 
that the search branch should be pruned. 


At this point, we have a qualitative simulation trajectory that matches the state requirements of 
the QSP. The final step is to check temporal constraints, to make sure that the tightened 
temporal constraints in the qualitative simulation trajectory are consistent with temporal 
constraints specified in the QSP. This is generally accomplished using STN analysis techniques 
(see thesis, Stedl). In this simple example, suppose that the QSP temporal constraint is 
[l,u]=[1,4]. Combining this with the tightened temporal constraint from the flow tube results 
in an overall temporal constraint of [2,4] for the "‘move"’ mode in the qualitative simulation. 
This is a further tightening, resulting from the user specified temporal constraint in the QSP. 
In this case, the duration is non-empty, so the qualitative simulation trajectory is valid. If the 
QSP temporal constraint is [l,u]=[6,8], then the tightened duration range is empty, and the 
qualitative simulation trajectory is not valid. 
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In this example, the goal range of the model flow tube perfectly covered the goal requirement 
specified in the QSP. This will not always be the case. For example, if the goal range of the 
model flow tube were [−1,1] instead of [−2,2], then the model flow tube cross sections are too 
small; they constrain the trajectory set too tightly. This may result in failure to cover the initial 
region constraint. If, on the other hand, the goal range of the model flow tube were [−3,3], 
then the model flow tube cross sections would be too large; they do not sufficiently constrain 
the trajectory set. This may result in admission of infeasible trajectories. 


We address this problem in two ways: adjustment, and relaxation. Just as the goal position was 
shifted in the previous example, it is often possible to efficiently adjust the model flow tube so 
that its goal range matches that of the QSP. This is always possible for position goal range, 
even with higher-order flow tubes. 


In some cases, it is prohibitively expensive to adjust the model flow tube adequately. In this 
case, a relaxation of the problem is first solved to obtain a preliminary qualitative simulation 
trajectory. If this trajectory is feasible, further analysis is performed to solve the full (un-
relaxed) problem. The relaxation is obtained by finding a model flow tube (possibly through 
efficient adjustment) that represents an "‘outer"’ approximation. In the previous example, this is 
the model flow tube with goal range [−3,3], resulting in flow tube cross sections that are too 
large. The representation is therefore complete, but not sound; it will admit some infeasible 
trajectories (that is why it is a relaxation). If the qualitative simulation trajectory resulting 
from this relaxed flow tube is not feasible, then the corresponding search branch can be pruned 
and need not be investigated further. If the trajectory is feasible, further analysis is needed to 
confirm that the un-relaxed problem requirements are also satisfied by the trajectory. This 
analysis amounts to a full re-computation of the trajectory flow tubes, based on goal ranges 
that match the QSP requirement exactly. This full re-computation is what we originally did for 
META. The point is that the relaxation filter should prune out the majority of branches so that 
a full flow tube re-computation is only rarely necessary. Use of relaxations is a well known 
approach in the solution of complex problems. Our use of it in this case is an interesting and 
novel application of this technique. 


This issue is complex, and is introduced in summary here first. See Appendix x for further 
details on flow tube adjustment through use of parameterized flow tubes. Further details of the 
relaxation approach will be presented subsequently. 


7.10.7.2.2 Qualitative Simulation Example 2 


In the next example, shown in Figure 7.10-13, the QSP is slightly more complicated; an 
intermediate waypoint (WP1) has been added before the goal. Note, however, that the model 
stays the same. This is a key concept: many different QSP’s, representing many different use 
cases, can share the same model, and thus, the flow tubes in the model. This allows for 
evaluating a design (as described by the model), for a large number of use case. This allows for 
the evaluation to be both thorough and time efficient. 


Suppose that the goal in the QSP for WP1 is specified to be x
gqsp


=[8,12] , and the goal to 
finish is x


gqsp
=[16,20] . Working backwards from the finish goal, the shifted flow tube for 


Move 2 has cross sections 
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x
max


 x
min


 d 


20 16 0 


19 14 1 


18 12 2 


17 10 3 


16 8 4 


15 6 5 


14 4 6 


13 2 7 


12 0 8 


 


 
Figure 7.10-13.  Simple velocity limited system for getting from one position to another. 
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The goal for WP1 becomes the initial region for mode Move 2. Checking against the shifted 
flow tube cross sections, this means that durations in the range [4,8] are valid. The shifted 
flow tube for Move 1 is the same as the one for Move in the previous example. Thus, we have 
possible durations of [2,5] and [4,8] for Move 1 and Move 2 respectively. The possible 
duration range for the sequence is therefore [6,13]. Suppose that the QSP temporal constraint 
is [l,u]=[4,10]. The tightened temporal range is then [6,10], which is non-empty, so the 
trajectory is feasible. 


This example could be extended with many more waypoints, and the same approach, with the 
same model, would be used. This shows how flow tubes computed for the model are used 
repeatedly in evaluation of the use case. 


7.10.7.2.3 Qualitative Simulation Example 3 


In the next example, shown in Figure 7.10-14, the model provides two paths to the finish. The 
discrete mode variable "‘Gear"’ has value 1 in mode "‘Move 1"’, and has value 2 in mode "‘Move 
2"’. These two modes have different velocity constraints (second gear has higher minimum and 
maximum velocities than first gear). 


Two use case QSP’s are shown. One specifies that the "‘Move 1"’ path should be used 
(indicating that the movement should be in first gear). The other specifies that the "‘Move 2"’ 
path should be used (indicating second gear). Thus, in this case, the discrete mode variable 
"‘Gear"’ is fully specified. 


Suppose that the velocity limits are v
lim


=[v
min


,v
max


]=[1,2]  for "‘Move 1"’, and 
v


lim
=[v


min
,v


max
]=[2,4] . The cross sections of the model flow tube for "‘Move 1"’ have been 


shown previously. The cross sections of the model flow tube for "‘Move 2"’ are  
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Figure 7.10-14.  Simple velocity limited system for getting from one position to another. 
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x
max


 x
min


 d 


2 -2 0 


0 -6 1 


-2 -10 2 


-4 -14 3 


-6 -18 4 


-8 -22 5 


-10 -26 6 


-12 -30 7 


-14 -34 8 


  


Suppose, now, that the goal in both QSP’s is specified to be x
gqsp


=[x
gqspmin


,x
gqspmax


]=[8,12] , 
and that the initial range in both QSP’s is x


initqsp
=[x


initqspmin
,x


initqspmax
]=[5,7] , as was the 


case in Example 1. The shifted flow tube for "‘Move 1"’ is as was shown in Example 1, and the 
valid duration (from the valid cross sections) is [2,5], as before. The cross sections for the 
shifted flow tube for "‘Move 2"’ are 


x
max


 x
min


 d 


12 8 0 


10 4 1 


8 0 2 


6 -4 3 


4 -8 4 


2 -12 5 


0 -16 6 


-2 -20 7 


-4 -24 8 
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Valid durations are 1 and 2, so the valid duration range is [1,2]. The duration ranges may then 
be further tightened based on the [l,u] specification in the QSPs. 


7.10.7.3 Compilation of Hybrid Timed PCCA 


There are two major steps in this compilation process. In the first step, a flow tube is computed 
for each mode. This computation is based on the initial, goal, and operating constraints for the 
mode. The resulting flow tube is a representation of the allowed state evolution of the 
continuous state of the mode over time. In the second step, temporal constraints implied by the 
flow tubes are combined with explicitly specified temporal constraints, resulting in an overall 
tightening of mode duration constraints. The compilation process results in flow tubes, and 
tightened temporal constraints, both of which are useful for performing qualitative simulations, 
and other kinds of analysis. 


7.10.7.3.1 Flow Tube Compilation 


The flow tube is an abstraction, and a relaxation, in that it replaces the dynamics (difference 
equation constraints, actuation limits), which imply state evolution, with an explicit 
representation of the envelope of state evolution over time. Thus, for each time increment in 
the duration of a mode, the flow tube contains a convex set of feasible points in the continuous 
state space. The flow tube does not, however, provide detailed trajectory information about 
how a particular point in state space evolves, as specified by the difference equations.  


Flow tubes can be used to determine whether a set of initial, goal, and operating constraints for 
a mode is consistent, and to establish duration bounds for the mode implied by the dynamics. In 
particular, flow tubes represent durations for which the initial, goal, and operating constraints 
are feasible. They are thus very useful for a variety of verification tasks.  


A flow tube consists of a set of cross sections, where each cross section represents the feasible set 
of states at a particular duration increment. Each cross section is represented by a convex 
polytope of the form 


Hx≤K


The initial and goal regions of a mode are specified in this form as well. The algebraic portion 
of the operating constraints is also specified in this form. 


 (6) 


Pseudocode for an algorithm for computing a sequence of cross sections, using backward reach 
set analysis is shown below. 
 
ComputeModeFlowTubes(mode M) { 
 for each goal region, g, in a M's transition function { 
   ComputeGoalFlowTube(g, M); 
 } 
} 
 
ComputeGoalFlowTube(g, M) { 
 flow_tube = {}; 
 p1 = g; 
 kmax = increment index corresponding to u(M); 
 l_implicit = -1; 
 u_implicit = -1; 
 for k = 1 to kmax { 
   p1 = ComputeOneStepBackwardReachSet(p1, dynamics(M)); 
   insert {k, p1} into flow_tube 
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   if (l_implicit < 0) {  // Hasn't been set yet 
    if (intersection(p1, init(M) == init(M)) {   // if p1 covers M completely 
     // The duration is valid 
     l_implicit = k; 
    } 
   } 
    
   if (not(l_implicit < 0) and u_implicit < 0) {   // l_implicit set, but 
u_implicit not set 
    if (not (intersection(p1, init(M) == init(M))) { 
     // The duration is not valid 
     u_implict = k - 1; 
    } 
   } 
 } 
  
 // Result to be cached for g is flow_tube, l_implicit, and u_implicit 
} 
 
ComputeOneStepBackwardReachSet(p1, dynamics, M) { 
  extreme_inputs = ExtremeInputCombinations(M); 
  backward_vertices = {}; 
   
  for each extreme_input, inp, in extreme_inputs { 
   for each vertex, v, in p1 { 
    backward_vertex = OneStepBackwardDynamics(v, inp, dynamics); 
    insert backward_vertex into backward_vertices; 
   } 
  } 
   
  p_ret = ConvexHull(bacward_vertices); 
  return p_ret; 
} 
 


The function ComputeModeFlowTubes computes a flow tube, and implicit temporal bounds, 
for each goal region associated with an exit transition of the mode. ComputeModeFlowTube 
computes the flow tube for a particular goal. It accomplishes this by stepping through the 
discrete durations, limited by u(M), the explicit bound on maximum duration for the mode. For 
each such duration, starting with 1, it computes the previous reach set (cross section) from the 
current one. Initially, the current reach set is the goal region. It checks if the duration is valid 
based on whether the reach set fully covers init(M), the initial region for the mode. It then uses 
this information to set the implicit lower and upper bounds (l implicit, u implicit). It is assumed 
that there are no gaps in this interval where the duration is not valid. 


The function ComputeOneStepBackwardReachSet computes the reach set in the backward 
direction, from a current reach set, and the dynamics of M. ExtremeInputCombinations returns 
the (cached) set of all possible combinations of extreme inputs (inputs where constraints are 
active for all elements). For each vertex in the current (specified) reach set, and for each input 
combination, it computes the backward vertex. It then takes the convex hull of all the backward 
vertices and returns that. 


The function OneStepBackwardDynamics computes the backward vertex. Starting from the 
forward dynamics: 
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x ( )k+1 =Ax ( )k +Bu ( )k


Then the backward dynamics are: 


 (7) 


x ( )k =A−1 ( )x ( )k+1 −Bu ( )k


This is used by OneStepBackwardDynamics to compute a state at increment k, given a state at 
increment k + 1, and a control input at k. 


 (8) 


A problem with the above algorithm is that the polytopes grow exponentially in complexity as 
duration increases. This is because all combinations of input extreme values is exponential in 
the number of input elements. One way to circumvent this problem is to choose a fixed set of 
vertex directions for the polytopes. This limits the complexity of the polytopes, but the 
approximations will not be complete, and may miss significant regions of state space. This can 
be mitigated by using a large set of directions. 


Suppose that we have decided on a set of directions: { }r
1
,r


2
,...r


m
. Each direction is a unit 


vector in ℜn


Computation of the scalars is accomplished using an addition at the end of 
OneStepBackwardDynamics. The convex hull computed by OneStepBackwardDynamics is 
represented by  


. Using this approach, a flow tube cross section is the set of scalar values associated 
with each direction. The set of vertices for the cross section are { }s


1
r


1
,s


2
r


2
,...s


m
r


m
, where s


i
 is 


the scalar for direction i. 


Hx≤K


The problem formulation then involves maximizing each scalar s
i
 subject to the constraints 


 (9) 


x=s
i
r


i


Hx≤K
 (10) 


or 


Hr
i
s
i
≤K (11) 


Each row of this is solved separately for s
i
 as if the inequality were an equality (to get the 


maximum), and then the minimum of these solutions is used as the value of s
i
. 


After the scalars for each direction have been computed, all vertices of the reach set are known, 
and this is returned. 


7.10.7.3.2 Temporal Constraint Compilation 


There are two points in the validation process where temporal constraint compilation is 
performed. The first is for the model, independently of any use cases. For this, the compilation 
is very simple. Because the model represents possible transitions, but not the actual transition 
sequence for an entire plan, the most that can be done here is to tighten the temporal bounds 
specified in the model based on the temporal bounds implied by the flow tubes. 


The second point where temporal constraint compilation is performed is during the qualitative 
simulation process, when the model is used to generate a mode sequence that satisfies a use 
case. When a candidate mode sequence is generated, temporal bounds from both the model and 
the use case have to be applied. This can imply a further tightening of temporal constraints for 
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each mode duration. To make this implied tightening explicit, we use a temporal constraint 
compilation technique based on Simple Temporal Networks (STN) [MMT98, HOF05]. This is a 
fast compilation technique that provides explicit tightest bounds on all mode durations. This 
allows the qualitative simulation to efficiently determine feasible duration schedules. 


7.10.7.4 Qualitative Simulation of a Compiled Hybrid Timed PCCA 


After the model is compiled, the compiled HTPCCA is used go generate a qualitative 
simulation of the possible state evolution trajectories. As described previously, the inputs to the 
qualitative simulator component are the compiled HTPCCA, and a partial QSP representing 
use case requirements, as shown in Figure 7.10-6. The output is a sequence of mode 
assignments (qualitative states), with associated duration ranges for each mode. An additional 
byproduct of the forward simulation is a probability indicating the likelihood of the trajectory. 


The qualitative simulation is accomplished by deciding mode transitions, and duration in each 
mode. Thus, qualitative simulation amounts to assignments to two kinds of discrete decision 
variables (duration index, transition index), subject to logical (discrete) and numeric 
(continuous) constraints. Valid mode transitions are determined by the guard (exit) conditions, 
which include the continuous goal regions. Valid mode durations are constrained by the 
tightened lower and upper temporal bounds for each mode.  


Pseudocode for the qualitative simulation algorithm is shown below. 
 
QualSim(HTPCCA model, QSP useCase) { 
  // model is the compiled HTPCCA model. 
  // useCase is a QSP representing use case requirements. 
     
  Boolean satisfied = false; 
  InitializeCandidateGenerator(); 
  while ((not satisfied) & (candidate = GenerateCandidateTrajectory(model, 
useCase)) { 
    satisfied = CheckCandidateTrajectory(candidate, model, useCase); 
  } 
   
  if satisfied 
    return candidate;  // Return successful candidate, if one exists. 
  else 
    return failure; 
} 
 


 


 


InitializeCandidateGenerator() { 


  InitializeModelGraphSearch(); 


} 


 


 


CandidateTrajectory candidate = GenerateCandidateTrajectory(HTPCCA model, QSP 
useCase) { 


 


 // This uses two data structures that are maintained statically within this 
function 
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 // to represent the current state of the search.   


 // The two data structures are currentModeSequence, which represents the 
state of the 


 // search through the model's mode graph, and currentSchedule, which 
represents the state 


 // of the search through the possible schedules for the mode sequence 
represented by 


 // currentModeSequence. 


 


  if ((currentModeSequence) & (MoreSchedules currentSchedule)) { 


   candidate.modeSequence = currentModeSequence; 


   candidate.schedule = GetNextSchedule(); 


   return candidate; 


  } else if (MoreModeSequences) { 


   candidate.modeSequence = GetNextModeSequence(); 


   ApplyTemporalConstraints(candidate, useCase);   // Apply additional 
temporal constraints from use case. 


   candidate.schedule = GetFirstSchedule(); 


   return candidate; 


  } else { 


    return empty;   // No more candidates 


  } 


} 


 


 


Boolean satisfied = CheckCandidateTrajectory(CandidateTrajectory candidate, 
HTPCCA model, QSP useCase) { 


  for mode in candidate.modeSequence { 


    as nextMode = GetNextModeInSequence(mode, candidate.modeSequence); 


    as transition = GetTransition(mode, nextMode); 


    as ft = transition.flowTube; 


    as rInit = nextMode.initialRegion; 


    as rGoal = ft.goalRegion; 


    FormulateLinearConstraint(rGoal subset of rInit); 


     


    // Incorporate constraints from useCase 


    if ((activity = GetActivityInUseCase(mode)) exists) { 


     activityInit = activity.initialRegion; 


     activityGoal = activity.goalRegion; 


      


     if (activityInit exists) { 


       FormulateLinearConstraint(rInit subset of activityInit); 


     } 


      


     if (activityGoal exists) { 


       FormulateLinearConstraint(rGoal subset of activityGoal); 
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     } 


    } 


  } 


   


  return CheckLinearConstraints(); 


} 
 


The current implementation of the algorithm uses a relatively simple, brute-force candidate 
generator. A more sophisticated approach, which would likely yield more efficient generation of 
good candidates, is to use the candidate generation algorithm in Conflict-directed A* [WR03]. 


The following sub-sections provide detailed information on two important aspects of the 
verification problem: 1) adaptation of model flow tubes to use case requirements; and 2) 
determination of probabilistic certificates of validation. 


7.10.7.4.1 Adapting Model Flow Tubes to Use Case 


As introduced previously in Section 7.2.1, flow tubes in a model provide a template or 
prototype of the model’s dynamic behavior. The use case requirements typically do not match 
the template exactly. Therefore, an attempt is made to achieve a match by adjusting the model 
flow tubes (template) so that they satisfy the use case requirements. Such adjustment must not 
compromise the dynamic behavior expressed by the flow tube. 


In the example in Section 7.2.1, the model specifies distance limits between points A and B, 
based on the dynamics and temporal limits. Suppose that in the model template, A is set to the 
origin. In this case, B can be thought of as representing the distance that can be achieved, not 
an absolute point. The use case QSP in this example has initial region requirements that are not 
at the origin, and goal region requirements that do not include point B. However, through a 
simple shift of position of the model flow tube, a match is achieved without compromising the 
dynamic constraints expressed in the flow tube. 


A full discussion of parameterized flow tubes is beyond the scope of this document. However, 
we will describe a specific type of parameterization, position shifting, which can always be used, 
and which is useful for many types of problems. Position shifting was introduced in the 
example of Section 7.2.1 for simple velocity-limited flow tubes, but it can be extended to 
general polytope flow tube representations. 


In order to understand how position shifting is accomplished for general flow tubes, consider 
the previous pseudocode for the function CheckCandidateTrajectory. It involves formulating a 
set of linear constraints, and then checking them. The formulations are for subset relationships 
between polytopes. Suppose that we have two polytopes, P


1
, and P


2
, and we wish to formulate 


linear constraints that require P
1
⊂P


2
. The two polytopes are represented by sets of linear 


constraints of the form 


H
1
x≤K


1


H
2
x≤K


2
 (12) 


Let v
1
=v


11
,v


12
...v


1p
 be the vertex set for P


1
. Then, the subset check for P


1
⊂P


2
 is formulated as 
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H
2
v


11
≤K


2


H
2
v


12
≤K


2


...H
2
v


1n
≤K


2


 (13) 


The first of these constraints is expanded as 


H
2
(1;1)v


11
(1)+H


2
(1;2)v


11
(2)+...+H


2
(1;n)v


11
(n)≤K


2
(1)


H
2
(2;1)v


11
(1)+H


2
(2;2)v


11
(2)+...+H


2
(2;n)v


11
(n)≤K


2
(2)


...
H


2
(m;1)v


11
(1)+H


2
(m;2)v


11
(2)+...+H


2
(m;n)v


11
(n)≤K


2
(m)


 (14) 


Now, suppose that we want to allow P
1
 to shift in position in order to achieve the subset 


condition. We accomplish this by introducing a shift variable, s, into 14, where s is associated 
with the coefficients corresponding to position (in this case, the first column of H


2
). 


H
2
(1;1)s+H


2
(1;1)v


11
(1)+H


2
(1;2)v


11
(2)+...+H


2
(1;n)v


11
(n)≤K


2
(1)


H
2
(2;1)s+H


2
(2;1)v


11
(1)+H


2
(2;2)v


11
(2)+...+H


2
(2;n)v


11
(n)≤K


2
(2)


...
H


2
(m;1)s+H


2
(m;1)v


11
(1)+H


2
(m;2)v


11
(2)+...+H


2
(m;n)v


11
(n)≤K


2
(m)


  (15) 


This can be expressed as 


 


H
2
(:;1)s≤C


2 


where C
2
 is the vector K


2
−H


2
v


11
. Similar constraints are formulated for the other vertices in 16. 


In this way, constraints are formulated that can then be checked to validate whether the flow 
tube constraints are satisfied. The constraint formulation makes use of the position shifting 
flexibility, but the dynamic constraint information in the flow tubes is preserved. 


7.10.7.4.2 Obtaining a Probabilistic Certificate of Validation 


In order to compute a probabilistic certificate of validation using reach set analysis, we take 
probability distributions representing uncertain variables, and we set-bound them. This 
converts a probabilistic problem into a deterministic one. Uncertainty is propagated by 
propagating the set bounds according to the dynamics model. For example, a set bound on 
inputs implies set bounds on state according to the dynamics model. This approach is based on 
previous related research on reach set analysis incorporating uncertainty [APLS08, RLML06]. 


 


Our dynamic models are represented as linear difference equations. 


x ( )k+1 =Ax ( )k +Bu ( )k


We introduce uncertainty in two places, corresponding to the right-hand side of (17). First, we 
model disturbances in the inputs by adding a probabilistic component to the input vector u. 
Thus, each element of u becomes a random variable with some probability distribution. For 
purposes of analysis, we replace the distribution with a set bound, which is easier to propagate. 


 (17) 
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For a typical vehicle model, inputs correspond to forces acting on the vehicle, such as torque 
exerted by the engine on the wheels, wind gusts blowing against the vehicle, and bumps over 
which the vehicle rolls. 


When there are multiple inputs, each may have its own probability distribution. Thus, a row in 
(17) is 


x ( )k+1 =a
11


x
1
 ( )k +a


12
x


2
 ( )k +...+a


1n
x


n
 ( )k +b


11
u


1
 ( )k +b


12
u


2
 ( )k +...+b


1p
u


p
 ( )k    (18) 


Here, A has n columns, and B has p columns. Each element of u is given a set bound that covers 
some percentage of its probability distribution. This percentage of probability corresponds to 
the "‘success"’ contribution of that variable. In other words, it is a necessary condition for the 
variable to be within its set bounds for the plan to succeed. The probability of being within the 
set bounds is the percentage of the probability distribution that is covered. We refer to this 
individual success probability as p


s
 ( )u


i
. Figure 7.10-15 shows a block diagram of the input 


noise model, and how set bounds are used to cover a percentage of the probability distribution. 


Figure 7.10-16 shows how set bounds on noise are translated into safety bounds on the input. 


Since each of the input variables must be within its set bounds, the overall probability of 
success is the product of the individual probabilities. 


p
s
= ∏


i=1


p
 p


s
 ( )u


i
 (19) 


This assumes that each input element is independent of the others (don’t need joint probability 
distributions). This is not always true. 


The success probability given by (18) is really just the success probability for a single time 
increment in an activity. Expanding over all time increments requires multiplying the 
probabilities for each time increment. 


p
s
= ∏


k=1


K
  












 ∏
i=1


p
 p


s
 ( )u


i
 (20) 
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Figure 7.10-15.  Set bounds cover a percentage of the noise distribution. 


 


 







META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification 
 


© BAE Systems 2011.  All rights reserved.                               36                        Refer to cover page for Distribution Statement. 


 
Figure 7.10-16.  Set bounds on noise are translated to safety bounds on the input. 


 
Figure 7.10-17 shows an example flow tube sequence corresponding to two successive 
activities. It is assumed, for this figure, that there are no disturbances, so there is no input 
uncertainty. The goal region is shown in red, the green cross sections are for the second 
activity, and the light blue cross sections are for the first.  


Figure 7.10-18 shows an example flow tube sequence where there is uncertainty due to input 
disturbances. The figure on the left shows the flow tube sequence without uncertainty, as 
before, and then, superimposed, shows the more conservative cross sections in dark blue. The 
cross sections are computed to guarantee a 0.95 chance of success. The figure on the right is 
similar, but with a 0.68 chance of success. The conservative cross sections are shown in purple. 
Note that these are bigger than the ones for the 0.95 success case, because more failure is 
allowed. 
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(a) Flow tube set with no uncertainty, view 1. 


 


(b) Flow tube set with no uncertainty, view 2. 


 


Figure 7.10-17.  Flow tube set for two successive activities, assuming no disturbances. 
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(a) Flow tube set with uncertainty, probability of success = 0.95. 


 


 
 


(b) Flow tube set with uncertainty, probability of success = 0.68. 


Figure 7.10-18.  Flow tube set for two successive activities, with input disturbances. 
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The formulation can easily be extended to handle model disturbances. These correspond to 
some level of uncertainty in the elements of A and B. Thus, each element has its own 
probability distribution, which may be computed using the uncertainty propagation techniques 
in the papers that Johan sent. This overall approach is analogous to that used in Kalman 
filtering, and in Lars Blackmore’s work. 


As with the input elements, the parameters are converted into random variables. The difference 
here is that the state variables are not probabilistic; there is only one true state. This is a little 
trickier than the input case. For the input case, the set bounds are on the input variables, not 
the coefficients of B. For the model disturbances, the probability is associated with the 
coefficients of A, and possibly also of B. 


The simplest way to model this is with one or more additional random variables added at the 
end of (18). These are then set bound, resulting in a success probability for each one. These 
probabilities are then multiplied, as before, to get an overall probability. 
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7.11 Programmatic Summary 


7.11.1 Financial Data  


The financial data below reflects the data available as of September 30, 2011. The data for 
Phase 1a (CLIN 0001) and 1b (CLIN 0002) is included for convenience; however, the scope of 
this report is Phase 1b (CLIN 0002) only.  
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7.11.2 Schedule 


 


The schedule above indicates the date that each of the milestones on the chart, depicted as 
small blue triangles with a date in the lower right corner, were achieved. All milestones (which 
reflect reviews and product deliveries) and the deliverables required along with them 
(presentation material, demonstrations, and software) were completed and delivered on time. 
Bi-weekly review meetings with DARPA program management were held from October 2010 
through April 2011. At the Principal Investigator Meeting in May 2011, Paul Eremenko 
informed the META community that the bi-weekly review meetings would be replaced with 
meetings between the Principal Investigator of each of the META program teams and DARPA 
program management, to be scheduled at the discretion of DARPA program management.  
Dr. Steven Bankes met with Paul Eremenko on June 21, 2011 to discuss various topics, and 
again on August 9th, 2011 to discuss the overall technical approach formulated by the 
BAE Systems team.  
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