
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P.

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

Table of Contents
1. Summary ... 1

1.1 Task Objectives .. 2

1.2 Technical Challenges .. 2

1.3 General Methodology .. 3

1.4 Technical Results .. 3

1.5 Important Findings and Conclusions ... 5

1.6 Significant Hardware Development .. 6

1.7 Special Comments.. 6

1.8 Implications for Further Research .. 6

2. Introduction.. 7

3. Methods, Assumptions, and Procedures .. 8

3.1 Achieving Program Goals ... 8

3.2 Simulation’s Role in IFV Analysis ... 9

3.2.1 Illustrative Example .. 12

3.2.2 Enabling Infrastructure .. 13

4. Results and Discussion ... 14

4.1 ARRoW Tool Chain/Workflow Overview .. 17

4.2 Stages in an ARRoW Facilitated Design Process .. 18

4.2.1 Requirements Ingestion .. 18

4.2.2 Initial Decomposition .. 19

4.2.3 Initial Test Case Generation ... 20

4.2.4 Initial Requirements Reasoning ... 20

4.2.5 System Conceptualization .. 21

4.2.6 System Composition .. 22

4.2.7 Mixed Initiative Design Exploration .. 23

4.2.8 System Detail Engineering Design ... 25

4.2.9 System Operational Assessment ... 26

4.3 ARRoW Foundation Infrastructure .. 27

4.3.1 AMIL – ARRoW Model Interconnection Language .. 27

4.3.2 Component Model Library .. 28

4.3.3 Verification Methods ... 29

4.3.4 Metrics .. 29

4.4 Notional Demo System Application ... 31

5. Conclusions .. 32

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

6. Recommendations .. 32

6.1 Integration of Additional Tools .. 32

6.2 Application to Other Domains .. 35

6.3 Achieving Industry Reform and a 5x Compression in System Development Time 35

6.4 The Hybrid Approach to Democratizing Design ... 36

7. Appendices ... 37

7.1 System Engineering and Architecture .. 37

7.2 Tool Design ... 37

7.3 Modeling Language ... 37

7.4 Library Requirements ... 37

7.5 System Demonstration .. 37

7.6 Advanced Reasoning and Applications of ARRoW Technology 37

7.7 Metrics Developed by Team Member (BBN) .. 37

7.8 Spatial Design Exploration (BBN) ... 37

7.9 RMPL (MIT) ... 37

7.10 Verification (MIT) .. 37

7.11 Programmatics .. 37

List of Figures
Figure 1. Elements of the ARRoW Tool Chain .. 5
Figure 2. Tool&Model Abstraction Levels, Integration, and Verification Relationships 10
Figure 3. Structural Dynamics Supports Mobility Analysis ... 13
Figure 4. ARRoW Tool Chain – From Requirements to Manufacture .. 17
Figure 5. ECTo ... 22
Figure 6. Tool Flexibility in Early Design Phases .. 25
Figure 7. ―Heavyweight‖ Analysis Tools with Potential ―Lightweight‖ Alternatives 26
Figure 8. Example Dashboard Configuration ... 31
Figure 9. Multiphysics Levels of Difficulty/Maturity and Relevance to IFV Development 33
Figure 10. Overlap Among Multiphysics Modeling and Analysis Topics 35

List of Tables
Table 1. The Components of ARRoW .. 14

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms

Symbol,
Abbreviation,

Acronym
Definition

AIDE ARRoW Integrated Development Environment

AMIL ARRoW Model Interconnection Language

ARRoW Adaptive Reflexive Robust Workflow

CAD Computer-Aided Design

CML Component Model Library

CONOPS Concept of Operations

DSE Design Space Exploration

ECTo Early Concepting Tool

ESKER Expert-System Knowledgebase Evaluation Reasoner

IFV Infantry Fighting Vehicle

ITAR International Traffic in Arms Regulations

MBE Model Based Engineering

MM Master Model

NRMM NATO Reference Mobility Model

PCC Probabilistic Certificate of Correctness

PoC Probability of Correctness

QML Qualitative Modeling Language

RAS Requirement Archetype Sets

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

1. Summary
ARRoW (Adaptive Reflexive Robust Workflow) is a software infrastructure, which facilitates
the design of complex cyber-physical systems by supporting computational exploration of
alternative designs with continuous test and verification using:

 Multiple models at various level of abstraction

 Integrated heterogeneous specialized reasoners

 Libraries of components, design patterns, and workflows

Developed for DARPA’s META program intended to accelerate the development process of
Combat Vehicle Systems by a factor of 5, ARRoW includes models, reasoners, and libraries for
the design of Infantry Fighting Vehicles (IFVs). However, the infrastructure is readily
extensible to other design problems by providing content appropriate for the specific cyber-
physical system being addressed. The ARRoW infrastructure facilitates more aggressive use of
computation, reducing the workload on engineers while allowing for mixed initiative
exploration for good solutions. Where existing model based engineering approaches are often
constrained by the use of isolated computational models, ARRoW allows these isolated models
to be joined, greatly enhancing their value.

ARRoW supports distributed collaboration, allowing not only the use of geographically
distributed information and computational resources, but also collaboration among engineers,
extensible to a crowd-based development paradigm. This allows for the verification of early
design concepts to accelerate the design process while providing for early detection of problems
where they can be addressed at reduced cost. This same capability could provide for improved
interactions between customers and performers, illuminating design tradeoffs, allowing
customers to more clearly understand their options, and avoiding many of the problems
currently associated with communication through requirements. In providing mechanisms to
automate routine tasks currently performed by engineers, ARRoW facilitates the utilization of
engineering resources where they are most valuable, promotes faster completion of design
tasks, and has the potential to promote the democratization of design.

The following sections summarize our approach and results. The remainder of this summary
covers task objectives, technical challenges, general methodology, technical results, important
findings and conclusions, and implications for future research. An introduction to the main
body of the report is followed by sections on:

 Methods, Assumptions, and Procedures

 Results and Discussion

 Conclusions, and

 Recommendations.

Accompanying this report is a series of appendices that provide greater technical detail:

1. ARRoW System Engineering and Architecture
2. Tool Design
3. Modeling Language
4. Library Requirements
5. System Demonstration
6. Advanced Reasoning and Applications of ARRoW Technology

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

7. Metrics Developed by Team Member BBN
8. Spatial Design Exploration (BBN)
9. RMPL (MIT)
10. Verification (MIT)
11. Programmatics

1.1 Task Objectives

The Phase 1b task objectives were:

1. Develop a detailed design for ARRoW’s integrated system design, verification and
validation toolset.

2. Develop syntax for the modeling language and requirements for the structure and
content of the model library, which is accessed by the ARRoW toolset.

3. Implement the ARRoW software toolset.
4. Demonstrate ARRoW's suitability for synthesizing a notional vehicle and providing

traceability from the development process to the program objectives regarding
schedule.

These objectives all serve the overall program goal of achieving a 5-fold reduction in the time
to design complex cyber-physical systems.

1.2 Technical Challenges

Designing and producing today’s complex aerospace and defense vehicle systems requires
engineering a labyrinth of complex systems, each with numerous states, many subsystems, and
thousands of unique components, resulting in a multitude of subsystem interactions, myriad
lines of software code, and large numbers of requirements and metrics at tension with one
another. This problem is challenging, not only due to the number of components that make up
an infantry fighting vehicle, but in the number of different aspects to the performance of a given
design that must be analyzed in order to assess design options in order to ultimately execute an
efficient development process to create a successful, producible, and militarily relevant weapon
system.

Thus, the primary technical challenge that must be met to achieve the goals of the META
program is to jointly utilize that diversity of problem aspects, modeling formalisms, tools, and
specialized reasoners that are involved in the design process and avail this system to an
extended community of system developers. The existing state of the practice of model based
engineering (MBE) is to use high fidelity and high value models and tools when they are
available, and to rely on highly skilled engineering personnel manage the design process using
these tools. This can result in islands of computational modeling connected by human-mediated
process. These high–fidelity, specialized reasoners (for example tools that compute design
details) and solvers (tools that compute behavior from properties expressed as a model) are
critical to achieving high quality and successful designs, especially when the use of physical
prototyping and testing must be limited. Replacing the high value specialized tools with
homogeneous modeling environments would greatly reduce the quality and even more
significantly increase the development and production risk of the designs produced.
Consequently, improving upon existing practice requires relieving engineers of routine tasks,
using computational evaluations of alternatives to enhance human design expertise, and
facilitating communication where the need for joint decisions slows existing processes. This

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

means in particular that automation must bridge across model-based computational islands by
enabling joint use of heterogeneous computational resources.

1.3 General Methodology

Phase 1b of the META project was focused on implementing the notional ARROW
Architecture that emerged from Phase 1a via a spiral development process. We proceeded by
implementing key software components, and testing and demonstrating the utility of the
overall system concept. We demonstrated our results at the bi-monthly PI meetings starting in
January and reviewed them with the DARPA program management team.

Specifically, at the January PI meeting we presented our concept of the ARRoW System for
initial review; at the March PI meeting we presented the ARRoW Concept of Operations on
the design of a Ramp for an IFV. At the May PI meeting we presented an end to end version of
the ARRoW System that instantiated all key technologies used to implement the ARRoW
architecture including key underlying technologies of the ARRoW Architecture - and
demonstrated the ARRoW System on the design and verification of key use-cases of an IFV
Ramp. At the July PI meeting we presented the entire ARRoW Toolset, reviewed the Tool
Design, Modeling Language and Library requirements, and demonstrated the use of the
ARRoW toolset in designing an IFV ramp. Finally, in September we presented a full version of
the ARRoW and demonstrated its use in developing a concept for an entire IFV.

In summary, in seeking a design for ARRoW, we assessed the state of engineering and
development practice, along with our extensive experience base, for combat vehicles to derive
requirements for primary ARRoW functionality. We then implemented theoretically inspired
concepts founded on these proven practices. These implementations were then iteratively
tested on a series of challenge problems drawn from the design of infantry fighting vehicles.
The resulting approach combines advanced concepts from computer science with insights and
experience of the systems and domain expert engineering community.

1.4 Technical Results

In order to reduce development times for complex cyber-physical systems by a factor of 5,
ARRoW encodes the expertise and methods of professional systems engineers and domain
experts and provides a capability to:

a. Support multiple, asynchronous workflows
b. Enable continuous design evaluation
c. And provide for integrated data using a heterogeneity of tools.

Our approach is built upon a software infrastructure using a collection of repositories and
services such that the overall system is extensible, evolvable, and can be applied to a wide range
of design problems by populating the libraries appropriately. ARRoW can be deployed across a
distributed computing environment (including publicly accessible services supported by cloud
computing), allowing multiple independent designers to invoke design and verification tools
and make choices that lead to correct by construction designs ready for manufacture. As
illustrated in Figure 1, the major components in this tool chain are listed below.

 Robust, holistic Model-Based Systems Engineering environment—Capture

requirements analysis, categorization, and decomposition through Use and Test cases to

establish complete traceability across engineering domains. Facilitate integration of

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

automated requirements decomposition, test case generation, and architecture and

topology design mechanisms.

 Transactional Master Model— Contains a version tree of designs, including an

evolving root or baseline design, alternative designs being explored, models of design

performance at multiple abstraction levels or domains of performance, and an audit trail

of design changes leading to the current state.

 Design Exploration Tools—Components that algorithmically search across design

space. Some contain interfaces for human designers allowing them to efficiently and

effectively explore design alternatives.

 Verification Tools—Readily extensible verification approaches, including both general

and customized methods, are used to assess design choices. These are invoked where

appropriate, using Test Cases and resources in the master model to calculate metrics

and probability of correctness of design options.

 Patterns and Workflow Archetypes—Multiple collections of established system

engineering knowledge in the form of design and analysis patterns or workflows. In

order to be applicable to a wide range of tools, models, levels of abstraction, and

designs, these patterns and workflows are expressed as archetypes – networks of

constraints and requirements that must be satisfied for an instance of a pattern or

workflow to be useful.

 Component Model Library (CML)—Repository of versioned artifacts including

functional design and specific component models; design and validation environment

models; design patterns, and analytic archetypes organized and implemented so as to

facilitate the design process. The CML can contain the product of previous design

efforts using ARRoW to design systems, sub-systems, or components, as well as

archetypes captured from experience with past design efforts.

 Metrics Library—An extensible, continuously maintained collection of metrics deployed

in a dynamic, tightly integrated framework. Attributes associated with metrics facilitate

the automated matching of metrics to test cases.

 Interconnection Infrastructure—Repository of relationships among all of the tools,

models, and design elements active in the system at any point in time. This repository is

expressed in ARRoW Model Interconnection Language (AMIL).

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

Figure 1. Elements of the ARRoW Tool Chain

1.5 Important Findings and Conclusions

There are a number of elements of existing systems engineering and development practice that
can potentially have significant impact on the cost and schedule for combat vehicle
development. Much of the current processes and mechanisms lack automation, requiring a
high level of touch labor. Still other areas are currently only effectively managed by a
relatively small handful of experts, much of whose knowledge is not recorded and is passed on
only through personal interaction. Because great expertise of this type is developed over time
and extensive experience, the holders of such knowledge tend to develop processes and employ
specialized tools, which can make the introduction of new tools, systems, or processes a difficult
and costly endeavor for development organizations. One of the tenets of the META program
is that development processes can be successful without relying so heavily on these small
pockets of deep knowledge by leveraging much larger bodies of broader knowledge through
crowd sourcing, open source tools, and extensive use of model-based engineering and model re-
use.

Finally, it is known that a primary cause for extended system development time is the result of
weak and often conflicting source requirements. This, especially when combined with weak
conceptualization analysis, results in system development with a high risk of late-discovery

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

issues, where they cause the most significant cost and schedule impact. Proactive and
intelligent requirements analysis and negotiation, combined with system conceptualization
capable of extended design look-ahead mitigates risk to ensure successful system development
and provide acceleration.

Technologies developed for the ARRoW system provide an infrastructure facilitating
computational exploration of designs with continuous test and verification using multiple
models, multiple specialized reasoners, libraries of components, design patterns, and workflows.
A foundational element of ARRoW, AMIL provides an executable graphical database that
supports relationship maintenance among diverse models, designs, reasoners, patterns, and
workflows, allowing either local or distributed execution of computations. The innovation of
archetypes, allowing design patterns and workflows to be applied across a broad range of
designs and stages in the design process, provides an improved means of capturing and
automating engineering practice in order to join previously isolated MBE islands and support
much more robust early requirements and concept analysis.

This infrastructure facilitates more aggressive use of computation, while reducing the workload
on experts, allowing for mixed initiative exploration for good solutions. It provides an
extensible basis for automation, allowing new models and tools to be incrementally introduced,
and existing tools to be replaced as better alternatives emerge. The resulting infrastructure
provides the means to achieve the acceleration in the design of complex systems. And by both
enabling distributed design and automating where possible existing systems engineering
knowledge, ARRoW provides an opportunity to democratize design, allowing a wider range of
individuals contribute their creative insights.

1.6 Significant Hardware Development

None.

1.7 Special Comments

None.

1.8 Implications for Further Research

Complex system design problems have general features across broad ranges of engineering
domains, from integrated circuits to complex cyber-mechanical systems. These general features
include:

 The centrality of key abstractions results in a stack of abstraction layers across which

the design process must operate.

 Design exploration is conducted using models of relatively high abstraction.

 Design verification is conducted using high fidelity models, often specialized for aspects

of the design problem.

 Design refinement requires the ability to add details to an abstract design consistent

with abstract properties.

 The use of multiple specialized tools is driven by the need to address multiple aspects of
design challenges.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

ARRoW has pioneered an approach and a suite of tools that address these general properties of
complex systems design; the tools have been demonstrated on a series of challenges drawn
from the design of IFVs. However, these tools have not yet been used to support an actual
design process with users who can provide feedback on needed improvements. Similarly, the
system architecture is library centric, allowing for use across a wide range of design challenges.
At this point there has not been an application outside of IFV design that would allow
assessing the level of challenge in applying ARRoW to alternate design domains. Opportunity
to assess ARRoW in the context of live design problems with users not associated with its
development and for novel design domains would provide improved understanding of ARRoW
utility and identify areas for further development.

Additionally, some aspects of the ARRoW tool set have been shown to be feasible, but require
further development to be readily applicable across a wide range of problems. Notable in this
regard is the innovation of the analytic archetype where further technology is needed to allow a
broad range of archetypes to be automatically instantiated into workflows appropriate and
applicable to specific design states, and available tools, reasoners, and models. In particular,
automated integration of very high fidelity models is possible, but presents increasing levels of
substantive and software integration challenge. As the modeling tools become increasingly
specialized, the volume and format eccentricity of data increases significantly. Replacing labor
of skilled engineers is achievable with AMIL and Archetypes, but will require extension of
currently implemented software methods.

2. Introduction

The goal of the META program was to reduce the development cycle time for complex cyber-
physical systems (particularly aerospace and defense systems such as aircraft, rotorcraft, and
ground vehicles) by a factor of 5 over current cycle times. In order to achieve the >5x metric, a
new model-based methodology—Adaptive, Reflective, Robust Workflow (ARRoW)—was
implemented based on a novel concurrent design, testing, and validation workflow.

The approach we have taken in developing ARRoW features an architecture designed to allow
for flexible interoperation of heterogeneous tools. This data driven infrastructure provides for
flexible configuration of the systems as needed for specific purposes. In particular, alternate
libraries can allow for International Traffic in Arms Regulations (ITAR) controlled,
proprietary, or open versions of the development system. Further, novel models and tools can
be incrementally incorporated, and application to new design domains can be accomplished by
introducing alternative libraries.

This architecture is built for extensibility by allowing manipulation and enhancement of
collections of:

 Component Models

 Design Patterns

 Analytic Workflows

 Metrics

 Specialized Design Tools

 Verification Tools

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

These libraries and archetypes not only capture system design patterns and architectures, but
also capture industry experience and expertise, facilitating both greater automation in service
of a 5x reduction in development times, and potentially the democratization of design.

In the remainder of this document, we analyze the characteristics of the IFV design problem,
describe each of the elements of the ARRoW system, and discuss the infrastructure that
supports their use.

3. Methods, Assumptions, and Procedures

3.1 Achieving Program Goals

An analysis of industry performance in developing complex cyber-physical systems suggests
that there are three main ways that advanced technology could provide speed-ups:

 The early conceptual stages of the design process require a significant amount of
communications between customers and engineers, and between engineers with
different backgrounds and disciplines. Conceptual design work can involve significant
face-to-face meetings and is often characterized by multiple false starts and roll-backs
until a concept satisfactory to all interests is finally discovered.

 Problems at a systemic level (emerging ―from the seams‖ between subsystems or
engineering/analytic domains) are often not detected until late in the design and
development process, when addressing them is most costly in both dollars and schedule
impact.

 Many different computational tools are needed to address all aspects of the design
problem. Significant skilled labor is invested in migrating results between these tools.
The manual execution of these analytic workflows slows the latter stages of design.

The approach taken in creating ARRoW explicitly addresses all three of these opportunities by
providing the following:

 Explicit support for models and design elements across a range of levels of abstraction.
Combined with direct support for design refinement, this allows ARRoW to utilize
abstract functional models and design patterns to support conceptual design. (See in
particular the description of the ECTo tool, Section 4.2.5 below.) Conceptual designs
provide a scaffolding (i.e. derived constraints such as space and weight claims by sub-
system) that allow designers to move to increasingly detailed design work without
leaving ARRoW.

 Support for continuous testing from abstract through detailed design. Continuous
testing provides for detection of problems and their correction much earlier than would
otherwise be true. This includes the analysis of requirements, conceptual design at high
abstraction levels, as well as integrating the data of the high fidelity multi-domain
design environment.

 Capture of the workflow patterns that connect design tools to produce system level
tests, diagnosis, and analysis. ARRoW supports workflow capture that can automate
routine tasks that otherwise slow design progress and distract expert resources from
higher valued tasks. Analytic workflows are abstracted to produce analytic archetypes that
can be compiled to create an instance appropriate for a given stage of the design process.
This allows the resulting system level tests to be consistently available throughout the
design process.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

Additionally, the ARRoW infrastructure organically supports geographically distributed
design. By facilitating interoperation between the many aspects of the design environment,
these mechanisms allow elements of the system to be located anywhere accessible via the
internet (see description of AMIL, Section 4.3.1 below). Thus, computational resources, models,
data, tools, designers and analysts can all interoperate from distributed locations, providing
significant potential efficiencies.

3.2 Simulation’s Role in IFV Analysis

Many different models addressing multiple domains of physics and varying levels of abstraction
are needed in the designing Infantry Fighting Vehicles (IFVs). High fidelity simulation models
capture multiphysics effects that can be missed in more abstract representations and are critical
to mitigating development risk and ensuring a design will achieve its requirements. But very
high fidelity models can have extreme computational requirements (i.e. multiple supercomputer
days per case) which together with the high dimensionality of their input and parameter spaces
prohibit their use for design exploration or stochastic estimation of the implications of
uncertainties. Models at varying levels of abstraction must be used jointly: abstract models
achieve the benefits of rapid design exploration and stochastic verification while high fidelity
simulations provide the ability to check for abstraction leakage (problems arising due to effects
not seen at abstract levels of representation) and effects due to the interaction of multiple
domains of physics. High fidelity simulations at specific design points are used to check for
constraint violations and to recalibrate abstract models.

Verification requires the use of high-fidelity, specialty analysis tools. High fidelity models are
especially crucial in a paradigm of reduced physical testing. These high-fidelity analyses verify
that the design produced is sound and, at the same time, verify that the abstractions in higher
levels are correct and accurate. However, in order to produce a balanced design and to capture
as much domain and abstraction leakage as possible, system-level co-analysis and co-simulation
is necessary, as well. This is critical to support a ―continuous validation‖ development
paradigm. Multiphysics/multi-domain system-level analysis and simulation is simplest, most
readily achievable, maintainable and executable (for continuous validation) at higher levels of
abstraction. It becomes computationally expensive and has diminishing returns at lower levels
of abstraction (higher fidelity).

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Figure 2. Tool&Model Abstraction Levels, Integration, and Verification Relationships

Figure 2 illustrates the relationships across abstraction levels and the flows of information
during analysis. Design refinement descends to increasing levels of detail, while the results of
detailed simulation flow back up to abstract levels. Even though designs are refined to
increasing detail allowing higher fidelity analysis, abstract models remain useful throughout
the design process.

The nature of simulation based design work, and the utility of specific tools, varies significantly
at different levels of abstraction:

 Relatively abstract multiphysics co-analysis/co-simulation occurs in integrated,
homogeneous environments like Matlab, Modelica, Amesim, etc. In the ARRoW
system, AMIL provides the system, context, and test case data, and a very simple
internal analytic archetype provides the ―wiring‖ connecting models of this type.
Multiphysics tool integration is accomplished within the native environment.

METAFR014

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

 At moderately greater levels of detail, higher fidelity models are required. They can be
supported by comprehensive modeling environments, but must be augmented with
domain specific and extended capability tools. Supporting the integration of data, tool,
and workflow is more complicated here, but readily attainable through development of
archetypes and AMIL mapping capabilities.

 Automated integration of very high fidelity models is possible, but presents increasing
levels of substantive and software integration challenge. As the modeling tools become
increasingly specialized, the volume and format eccentricity of data increases
significantly. Replacing labor of skilled engineers is still achievable with AMIL and
Archetypes, but requires extension of currently implemented software methods.

Abstract models represent a layer of fidelity that supports system conceptualization and early
design refinement. Due to their low to moderate level of fidelity, these models can be
represented in a homogeneous language (such as Modelica), and yet cover a significant breadth
of design space and domains. As a result of the common, model-based language deployment, the
models are readily integrated and contracts can be monitored to lend automation to their
integration. When the design progresses past the applicability of these abstract models,
requiring domain-specific technologies, methodologies, and high-fidelity required to support
detailed design and analysis, the abstract models are retained and maintained to support
ongoing system level trades and analyses where the long runtimes of the deep models prove
prohibitive. Additionally, these models are retained to support high-level interfaces to and data
manipulation from the higher fidelity analysis tools.

The validation of design alternatives also requires models and tools across a range of
abstraction levels:

 Static System Operational Analysis employs primarily requirements data and abstract
sizing models to answer questions like ―how many rounds must this system carry to win
this battle‖ and ―a system with these general capabilities has this probability of mission
success in this type of scenario‖. This type of analysis generally presents no need for
high fidelity modeling.

 Dynamic System Operational Analysis employs some low fidelity models, but mostly
moderate levels of abstraction and domain specialty models. Customized high-fidelity
models are required for design-challenged and/or high-risk areas. This environment
requires explicit Computer-Aided Design (CAD)-defined system design, prototype or
tactical control and software systems, and a time-managed runtime environment.

- One of the most crucial applications of these environments is to support and validate
warfighter-centric design. Capturing and designing for humans to operate and
survive within the system is one of the most challenging but critical design aspects
of an IFV.

Addressing the full range of multiphysics problems via a small set of models or tools is not
possible in part because the phenomena of interest span a wide range of spatial and temporal
scales (including frequency ranges) which generally prohibits using a single numerical solver.
Regardless of representational approaches, accurate simulation across a thorough range of
scales is computationally intractable. When multiple physics with diverse ranges of dynamics
are simulated in a single model, abstraction must be used, even in high fidelity models. The
extent of abstraction necessary to combine all domains and physics required for the
development of an IFV into a single or a small number of solvers is directly in conflict with the
level of verification and validation (correct by construction) required to develop these systems

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

with a minimum of physical prototyping and testing. Thus, for different problems, different
abstractions are useful and necessary, implying the need for multiple models, tools, and solvers.
Similarly, for co-simulation, different adapters between models of computation are appropriate
for different uses. Regardless, no universal modeling framework capable of solving all aspects
of IFV design can be expected soon.

3.2.1 Illustrative Example

To provide an example of the use of high fidelity simulation, Figure 3 diagrams the levels of
analysis for mission rated mobility and obstacle crossing. For this problem, powerplant and
drivetrain performance is tightly coupled with mission rated speed for traversing terrains and
the crossing of discrete obstacles. The coupling identifies the power-limited speed crossing
relatively smooth terrains and discovers the balance between power-limits and driver-limits for
moderate to severe terrains. Simulations capturing the coupling between these domains can
suffice to determine power-limited and driver-limited speeds. By extending those multiphysics
integrations to include the structural domain, further goals and requirements can be evaluated.
This is achieved by the coupling of the mobility loads to the structural models.

A domain oriented view of this coupling for mobility dynamic analysis is illustrated in Figure
3. Within the dynamic analysis domain, two general levels of fidelity tools are illustrated. The
NATO Reference Mobility Model (NRMM) provides a relatively abstract representation of
mobility as a function of terrain and vehicle design. It provides support for concept exploration
and trade studies, without requiring detailed 3-D geometry. Given this lower fidelity tool’s
level of abstraction, load extraction for structural performance is not possible. Consequently, a
higher fidelity tool is necessary, and that higher fidelity tool facilitates the coupling to other
domains. These various levels of abstraction complement each other in the design process.
Preliminary design choices made based on NRMM are embodied as moderately detailed design,
facilitating higher resolution modeling, whose results both provide a higher fidelity check of
performance and a basis for adjusting NRMM to incorporate the detailed modeling results. As
design refinement proceeds, increasingly detailed structural models provide a basis for high
fidelity simulation, while the more abstract model provides a context for other analyses, further
trade studies, probabilistic verification against uncertainties, and other services.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Figure 3. Structural Dynamics Supports Mobility Analysis

3.2.2 Enabling Infrastructure

Current practice solves IFV design problems by using multiple models and multiple modeling
tools. Skilled engineers perform chains of analysis, moving data between these formalisms.
Thus, a useful approach for solving the pervasive and multivariate multiphysics problems that
arise in an IFV design is to capture and systematize the expert engineering knowledge of how
to perform chains of analysis like those described above. The captured engineering patterns and
workflows inform and constrain data transport and computation, enabling intelligently focused
(and thereby computationally tractable) multiphysics calculations. There are multiple ways of
viewing the innovations in such an approach, but one that we find illuminating is that this
approach tractably computes multiphysics by dynamically and intelligently introducing the
necessary abstractions for a given multiphysics analysis. We in effect augment co-simulation
with co-analysis, providing a flexible means for capturing important coupled effects. That is, we
solve the multiphysics problem by capturing work and data flows between heterogeneous
specialty tools. Each of these tools captures specific domains and phenomena for multiphysics
coupled simulation. The resulting combination of tools is used to address the systemic
requirements constraining IFV design.

ARRoW provides the means to optimize the employment of these powerful specialized tools to
realize significant acceleration of the development process. Data is centrally contained within
the Master Model and distributed between tools based on relationships described as an AMIL
graph. Complex and cooperative engineering analysis processes are captured in Analytic
Archetypes. These archetypes facilitate the automated distribution of data, work, and tool flow
to minimize engineer labor, accelerate design processes, and eliminate wasted or duplicated
effort. This support for analysis tool application takes an objective, forms initial conditions,
applies boundary conditions, and executes an analytic process in order to assess a design in
terms of one or more metrics. System operational assessment takes processes and relaxes some
of the unnecessarily (or unnaturally) rigid boundary conditions to form tests closer to the
anticipated use.

Dynamic Analysis

Design
Requirements,

Use Cases

Controls

Conceptual Model(s) Master Model

Primary Tools

NRMM: 2-D Force Balance Model

•Inputs: 2-D Geometry, Planar Mass

Properties, 2-D Suspension

•Outputs: Traf f icability Metrics, Mission Rated

Speeds, Obstacle Crossing Assessments, Ride

Quality Performance

DADS: 3-D Multi-body Dynamic Model, Couples to Other

Software

•Inputs: Physical Architecture Topology, ProE Geometry, Usage,

Powertrain, Suspension Details, 3-D Mass Properties, Terrains

•Outputs: Vehicle Performance, Discrete Obstacle Crossing, Terrain Ride Quality,

Structural Loads and Boundary Conditions, Fatigue Transient Loadings, Event

Occupant Loading, Powertrain States, Articulated System States (Controls)

PrototypeDetailed Model

NRMM

DADS/VL.Motion

Structural Analysis

Survivability

Propulsion/Power Management

Structural Optimization

Coupled

Integration

D
a
ta

A
li

g
n

m
e
n

t

Coupled

Integration

Coupling

D
a
ta

A
li

g
n

m
e
n

t

Fatigue

Disciplines

Physical Test

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

Combining these various techniques provides the means for probabilistic verification.
Stochastic methods applied to models at suitable levels of abstraction can produce probabilistic
estimates of constraint violation where more efficient formal verification techniques cannot be
applied. As detailed designs are created, increasingly higher fidelity models can be used to
assess the accuracy of, and as necessary, recalibrate more abstract models. Specification of the
appropriate analytic workflows is captured in Analytic Archetypes, which provide a basis for
automating data transport and co-simulation.

ARRoW provides the software architecture that enables these concepts. Software development
principles that have guided the development of the architecture and the prototype
implementation of ARRoW include:

 A totally data-driven approach, with no logic specific to the IFV design example
contained in any of the tools
o This requires that data repositories be crafted to ARRoW-specific internal structure,

and access methods that facilitate use by ARRoW

 Concealing implementation details within tool boundaries, exposing only the minimal
information necessary at the interfaces

 Definitions of tools and services that provide for distributed and parallel design and
testing processes, especially ones that facilitate parallel work among geographically
distributed designers.

The following section provides detailed descriptions of all the components of ARRoW. Further
depth and representative examples can be found in the appendices accompanying this report.

4. Results and Discussion

This section describes the various components of ARRoW in terms of both their design and
how they operate together to support the design of complex systems. Table 1 lists the major
components, together with the function they provide, their underlying technology, and the
dates of the Principal Investigator meetings where they were demonstrated.

Table 1. The Components of ARRoW

Tool
Component Function Provided Underlying Technology

Demos
(2011)

ARRoW
Integrated
Development
Environment
(AIDE) Interface
and Dashboard

Designer’s graphical interface,
providing means to make design
choices, invoke design and
verification tools, and visualize
properties of design alternatives.

Eclipse/SpringHTML, Maven,
Subversion, Tomcat, Java

Jan, Mar,
May, Jul,
Sep

Metrics Library An extensible set of metrics than
can be incorporated in test sets,
displayed in AIDE, be the subject
of constraints on acceptable
designs, or targets design
exploration tools can attempt to
optimize.

AMIL (also see metrics
documentation)

Jan, Mar,
May, Jul,
Sep

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

Tool
Component Function Provided Underlying Technology

Demos
(2011)

CAD
(Pro/Engineer
plug-in)

Provide interface and access
between ARRoW tools and
Pro/Engineer

Pro/Engineer API, C++ Mar, May

AMIL Heterogeneous model and tool
interconnect

Neo4j, Java/Prolog/C++ API,
persistence and caching control. Has
associated AMIL graph viewer.

May, Jul

Galileo Test
&Verification
Tools

Collection of specialized design
and verification tools.
Responsible for computing
Probabilistic Certificate of
Correctness and other
Diagnostics.

Monte Carlo and Importance
Sampling, Context Models, PDF’s
and Ratio distributions, Reach-set
Analysis (MIT), K-means clustering,
Expert systems

May, Jul

ESKER Look-ahead and Design Space
Exploration, Adaptability via set-
based concurrent engineering,
Levels of Abstraction, Language

Expert system state expansion and
search, Rule-based design structure
matrix, AMIL-aware, variable fidelity
modeling, partial decomposition,
subjective/qualitative rankings

May, Jul

Envisioner Qualitative Simulation. Can be
used either for design exploration
or to efficiently calculate
Probabilistic Certificates of
Correctness (PCCs)

Lisp May

SysML
(MagicDraw
plug-in)

Requirements capture. MagicDraw API, AMIL-
interconnected

May, Jul

CML/Master
Model

Repository of design patterns and
component models. Provides for
Design refinement and
Component Reuse

Ontology-based search,
Maven/Artifactory delivery
mechanism

Jul, Sep

ECTo Vehicle-level concepting and
prototyping

C++ object hierarchy of generic
domain models

Jul, Sep

Metrics
Infrastructure
and Dashboard

Integrated metrics analysis and
calculation services, role and
interest-configurable graphical
user interface

AMIL-integrated service architecture
using Java Standard Object Notation
(JSON text metric definition files)

Jul, Sep

Generative
Archetype
Reasoning
(GEAR)

Synthesis, Component Reuse,
Domain-specific reasoners for
design exploration and analysis.

Semantic Web technologies such as
OWL, Description Logic and
Declarative Logic Programming,
Lisp, SPARQL, Protégé

Sep

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

Tool
Component Function Provided Underlying Technology

Demos
(2011)

Cloud
Deployment

Provide mechanisms to support
wide distribution and crowd
participation.

Amazon Cloud deployment
mechanisms

Sep

In Section 4.1, we present a notional flow through the ARRoW architecture, describing how
the various components and tools interoperate to support design processes. Section 4.2 goes
through this tool chain a step at a time, providing greater detail. Section 4.3 covers aspects of
foundation components of ARRoW that are potentially active throughout the workflow.
Finally, Section 4.4 describes notional demo systems that were used to test and motivate
ARRoW design and development.

An overview diagram of the ARRoW tool chain is provided in Figure 4. In this depiction we
have emphasized the progression that begins with requirements and ends with a design sent to
be manufactured at the iFab. Such a depiction by its nature does not reveal the iterative aspect
of developments, with many cycles of design exploration and verification. In order to make the
diagram interpretable we have also chosen to minimize the number of crossing lines by
representing two software entities at multiple locations. Metrics are computed and the CML is
accessed at multiple places in the workflow, and these components are represented at a number
of locations in the diagram, where in fact there is a single metrics library and a single CML that
supports this. However, the fundamental aspects of our tool chain are readily evident in the
figure – an open and readily extensible infrastructure that supports asynchronous and parallel
processes, distribution of functionality, and integration of heterogeneous tools and reasoners
throughout the development chain.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

Figure 4. ARRoW Tool Chain – From Requirements to Manufacture

4.1 ARRoW Tool Chain/Workflow Overview

The ARRoW tool chain is founded upon the notion of heterogeneous tool and technology
integration and lightweight, unobtrusive data integration mechanisms. This approach enables
the employment of fast and automated abstract design methodologies, but retains the capability
to access high-fidelity domain-specific tools and capabilities where needed and appropriate for
the development of a complex weapons platform like a combat vehicle.

Coordination of the workflows and data constructs are captured and fed through entities
known as Archetypes served out of a CML, which not only enable development-accelerating,
model and pattern-based design efficiencies and automation, but also facilitate participation by
novice designers in local domains. Metrics are generated and captured throughout the system,
facilitating asynchronous ―continuous verification and validation‖ to support ongoing design
decisions, and to provide for computation of deep high-level system development metrics like
Probability of Correctness (PoC) of specific requirements. (Associated with PoCs are
documentation for a given probability value or PCC). Finally, the tool chain is ideally suited to
the integration of, and augmentation by, advanced reasoning systems to provide further system
development acceleration. In particular, several mechanisms have been implemented under the
META program, including Knowledge-Based Reasoners, to facilitate more efficient and
intelligent design space exploration, and standardized ontologies throughout the system to
optimize data and logic access and flow.

This approach offers significant acceleration through all phases of the development process,
including the Requirements phase, which contains the most significant potential for
acceleration since robust, well understood requirements enable focused and efficient

METAFR015

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

development activities, while mitigating program-breaking risks and lengthy redesign
activities.

A language for expression of relationships among design elements (AMIL) provides a
foundation on which distributed tools interact to facilitate the ARRoW vision. This provides
for a loose (and hence flexible and readily extensible) coupling among ARRoW tools and
models, allowing a broad range of workflows to be supported. AMIL links connect the
components models, facilitating model execution for test and verification, enabling design space
exploration.

Multiple verification tools and methods can be used simultaneously for aspects of the design
problem for which they are suitable. The combination of test cases and design elements
contained within the master model determine which verification methods are appropriate to
test any particular constraint or design goal. This includes model checking and rigorous model
composition methods where they exist and are appropriate. By mapping from test cases to
suitable verification methods, various metrics can be produced, including estimates of the
probability of correctness. The set of verification tools is easily extensible. At a given time,
multiple tools can simultaneously be running test cases against multiple designs, and a given
verification tool could also potentially be running multiple test cases in parallel, using the
elastic compute bandwidth of the cloud.

Specific verifiers may be appropriate for only certain tests. For example, qualitative simulation
may be possible only if there is a relevant model in Qualitative Modeling Language (QML).
Some verification methods may only be appropriate for conceptual exploration stages, others
may be customized to particular technical tests (e.g. setting up and running a computational
fluid dynamics model). Specific tests will be applied though appropriate verification tools, using
tool associated attributes that describe their range of utility.

4.2 Stages in an ARRoW Facilitated Design Process

ARRoW has the flexibility to support a wide range of workflows. For example, it could be used
to analyze the impacts of alternative requirements, or to support modification of an existing
design. However, for descriptive purposes, it is useful to go through the canonical process that
begins with requirements, goes through multiple iterations of design exploration, verification
and refinement, leading eventually to a complete design ready for manufacture. In this section,
we describe the steps in this process in greater detail.

• Requirements Ingestion
• Initial Decomposition
• Initial Test Case Generation
• Initial Requirements Reasoning
• System Conceptualization
• System Composition
• Mixed Initiative Design Exploration
• System Detail Engineering Design
• System Operational Assessment

4.2.1 Requirements Ingestion

The workflow begins with a set of raw requirements for the System of Interest (SoI), which are
generally provided by the SoI customer. These requirements are then ingested into the
ARRoW Integrated Development Environment (AIDE), where they are captured in a SysML

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

tool-readable format. Specifically, when we refer to the ―ingestion‖ of requirements into
ARRoW, we mean the process of:

 Importing the raw source requirements from specification documents or other media
into the ARRoW IDE Master Model (MM), and

 Capturing the text of each requirement into a unique SysML ―requirement‖ model
element if the source requirement is not already in that format.

4.2.2 Initial Decomposition

After requirements are ingested, they must be processed (―digested‖) to be usable in the
ARRoW environment. This process begins by searching the CML for comparable
Requirement Archetypes. Requirements Archetypes are abstractions of typical requirements
constructed for the purpose of reusability. Examples of Requirements Archetypes can be found
in the ―ARRoW System Engineering and Architecture‖ appendix (Appendix 7.1) under the
section labeled ―Requirements and Requirement Archetypes‖, and in the table labeled ―Sample
Requirement Archetype Text‖ in that same appendix. A possible mechanism for this search
process might be to scan the raw requirements for known keywords, and then using the
keyword ―hits‖, to search the CML for Requirements Archetypes containing those keywords.

Requirements Archetypes in the CML are associated with both Requirement Archetype Sets
(RASs) and Design Archetypes. Requirements Archetype Sets are logical groupings of
Requirements Archetypes. These sets can be related to MIL-STDs, for example ―full up‖
System Performance Specifications, system functions, or common design constraints such as
allowable material types, transportability requirements, best practice design standards, product
structures, etc. Design Archetypes include reference architectures and/or specific design
components. They are abstractions of integrated designs or components constructed for
reusability in new systems. Just as decomposed requirements are typically allocated to lower
level product structure elements in finished systems, decomposed Requirement Archetypes are
pre-allocated to Design Archetypes in the CML.

The AIDE helps the developer to select which Requirement Archetype Sets are most
appropriate for the raw requirements imposed on the system. Once the Requirement
Archetype Sets are imported (copied into) the Master Model, the raw system-level
requirements are allocated to system-level Requirement Archetypes to establish traceability
from the ARRoW derived Requirement Archetypes to the requirements provided by the
customer. This allocation process could be aided by ARRoW based on keyword associations.
Gap analyses are then performed between the raw requirements and the Requirement
Archetype Sets to determine if raw requirements are missing or overly constraining. Note that
in the event that the raw requirements are originally derived from existing Requirement
Archetype Sets in the CML, this process can be quite straight-forward.1 This process
establishes the system-level requirements baseline for the SoI.

Once the requirements baseline is established, the AIDE will assist the developer to select an
initial design baseline. Since Requirement Archetypes are allocated to Design Archetypes in
the CML, the aforementioned discovery of Requirement Archetypes in the CML that

1 The AIDE is open to integration of mechanisms that in-process natural language requirements, but
that technology was not sufficiently mature to leverage for this phase of the META program.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

correspond to customer requirements can be used as a basis to present candidate design
solutions to the developer. The developer, in concert with AIDE design mechanisms, then
selects and imports the Design Archetypes initially deemed most appropriate for the SoI.
When these Design Archetypes are imported, lower level decomposed Requirement
Archetypes, pre-allocated to corresponding Design Archetypes and parent Requirement
Archetypes, are automatically imported. Design Archetypes are then refined within the Master
Model to create specific instances of a design. This refinement process might involve, for
example, manipulation of Design Archetypes with design tools or assignment of constant
values to design parameters. Completion of the Design Archetype import and refinement
process establishes the initial design baseline.

This initial decomposition process provides a significant acceleration of the design process by
automating many of the conventionally tedious and manual processes employed for
requirements decomposition. This is accomplished by leveraging a fully populated CML to
facilitate automated requirements decomposition and to establish an initial design baseline. It
additionally provides the structure to facilitate test case generation, and reasoning over the
requirements to reduce the Design Space Exploration required in later phases of the
development process.

4.2.3 Initial Test Case Generation

A Test Case is an executable that configures and orchestrates the testing of, and stimulates the
inputs of a design component for, the purpose of verifying one or more requirements levied
against that component or a product structure parent of that component. Each Requirement
Archetype that is allocated to a Design Archetype in the CML has a corresponding Test Case
Archetype. When the Design Archetype is imported into the AIDE Master Model, the
appropriate Test Case Archetype is also imported automatically.

Test Case Archetypes might be composed of pseudo-code, parameterized functions/services
expressed in a general purpose language, Modelica or other solvers, Simulink® or other
simulator blocks, SysML parametric diagrams, or any form of expression that can provide a
template for the logic of a Test Case. Test Cases are created by refining Test Case Archetypes
consistent with the design choices made when design components are refined from Design
Archetypes. Test Case Archetypes are abstracted such that the form of their abstraction clearly
corresponds to the form of the Design Archetype abstraction.

4.2.4 Initial Requirements Reasoning

Once requirements have been transformed into interpretable form, designers can begin the
process of conceptual design exploration. Alternatively, automated reasoners could also be
employed at this point to perform further decomposition of requirements and initial Design
Space Exploration (DSE). Relatively simple processing of the requirements can drastically
reduce the potential design space that must later be assessed at lower levels of abstraction with
slower-running, higher fidelity tools. Examples of this reasoning include:

 If a vehicle’s specified top speed exceeds X, it must be a wheeled vehicle (exceeds known
limitations of tracked mobility systems).

 If a vehicle is required to ―swim‖ in this marine environment, it must have an aquatic
propulsion system.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

 If a vehicle must protect X #crew and Y #squad, at this level of protection, and be able
to traverse this terrain, then it will likely weigh in excess of Z and therefore require
tracks.

Through this simple logical processing of the requirements, the range of feasible vehicle
Design Archetypes (e.g. ―wheeled combat vehicle‖, ―tracked amphibious combat vehicle‖, etc.)
can be significantly reduced (or even singularly identified), before any significant and time-
consuming human analysis is required. The same mechanisms could also (if, for example, one
were to treat the above examples as a set), identify non-viable and/or high-risk requirements
for immediate customer feedback. Further, information produced by this process can
significantly prune the space of possible system components to be explored in subsequent
phases of the development process. Information such as this is instantiated in the Master Model
for the system being developed and passed via the AMIL to the data management system for
continued development.

In the course of the ARRoW project various design space exploration tools have been
developed. Approaches tested include use of the parametric capabilities of the SysML tools and
the Knowledge-Based Reasoning framework employed in our Expert-System Knowledgebase
Evaluation Reasoner (ESKER) design space reasoning tool.

4.2.5 System Conceptualization

While automated tools can narrow the range of choice, systems engineers and others experts
will typically wish to be involved in resolving tradeoffs among alternative conceptual design
options. ARRoW provides a graphical tool supporting this exploration, the Early Concepting
Tool (ECTo). ECTo is a major component of the AIDE. As illustrated in Figure 5, ECTo
provides a graphical user interface for system composition and exploration, including
mechanisms to browse the CML for design archetypes and components, automatic updating of
design by choices from the CML, tracking of high level metrics (in particular cost, weight, and
spatial dimension impacts of design choices), and an interactive 3-dimensional representation of
the system. ECTo is fully integrated with AMIL, and is capable of either functioning as a
downloadable ―App‖, working exclusively from a local database and local executables, or as a
user interface to AIDE, communicating all data and executable functionality via AMIL.
Archetypes established during requirements reasoning are communicated, also via AMIL,
directly into ECTo, ready for immediate manipulation. Additionally, changes made in other
tools (for example a change to a requirement) will be reflected seamlessly in ECTo displays.
Design choices made in ECTo will be retained in the Master Model where they will be
available to other ARRoW tools (for example the Metrics dashboard, described later).

Once one or more conceptual designs are identified, further refinement of the system can
proceed, with multiple, different groups of engineers potentially working in parallel. The
conceptual design choices made at this stage provide a scaffolding (derived constraints) that
guide later design steps. Should abstract level decisions need to be reconsidered due to more
detailed design analysis, this conflict can be automatically detected, minimizing the potential
disruption.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

Figure 5. ECTo

4.2.6 System Composition

Beginning with a down selected number of System Archetypes chosen during conceptual
design, ARRoW allows a user to rapidly compose the system to begin exploration of more
refined concepts. ECTo automatically performs vehicle sizing estimates based on data from the
requirements and derived Archetypes, including the System Archetype(s), numbers of crew and
squad, levels of required protection, lethality subsystems, and propulsion system. Metrics for
vehicle size and weight are continuously monitored and maintained. From this baseline, the

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

designer can rapidly explore system configuration options and begin the design space
exploration activities to refine the design. Overall system configuration information is sent to
the architecture engineering system, and the two environments work in parallel to rapidly
establish system architectures and component/subsystem topologies.

Within the Design Archetypes are associated high-level abstract models of major subsystems,
enabling the designer to begin the process of identifying rough notions of required subsystem
capabilities. For example, a ―tracked combat vehicle‖ Design Archetype will contain abstract
models of track propulsion system efficiencies, context models, and engine sizing models. This
will allow the designer to determine notions of subsystem and component requirements to aid
in the reasoning over and selection of components. In other words, the designer will have the
capability at this point to determine that a vehicle of this approximate size and configuration is
required to meet the system requirements, and with this type of propulsion system over this
terrain, will require engines of this power range to achieve the required on- and off-road
mobility requirements. Note that archetypes and the associated reasoning systems are not
proscriptive, and don’t restrict any creativity by the designers. In addition to designing
facilitated by the set of archetypes in the CML, new ones are freely created, and the set of
archetypes can be extended at any time.

This abstract conceptual development will narrow the design space, essentially establishing
requirements (or requirement ranges) of subsystem or component performance to support
component search and selection. Elements of the CML will have associated meta-data
attributes (related to attributes of design elements in the master model), allowing the discovery
of candidate members of the CML for a possible design revision to be achieved through search.
The CML is structured through attributes and relationships, not directories and hierarchical
typologies. This allows our CML structure to be distributable and dynamic, not monolithic and
stagnant. The organizing principles develop according to use, which can take direct advantage
of the benefits of crowd-sourcing. Candidate design archetypes or components, deemed feasible
given the current state of the design, can be identified using search and discovery (implemented
with map-reduce algorithm, for example). In general, the link and relationship-centric design of
ARRoW (akin to the architecture of the semantic web) allows both the CML and the Master
Model to be segmented and geographically distributed. Consequently, it is possible to make
component models available for incorporation into designs and to test these designs without
making the models themselves public.

4.2.7 Mixed Initiative Design Exploration

Once a conceptual design has been selected, more refined design details can be addressed. The
scaffolding provided by a design at a given level of abstraction allows parallel design activities
to be pursued on subsystems. Previous design choices impose constraints on future design
choices, and this information is readily stored as relationship information in the AMIL graph
that represents the design. For instance, pre and post conditions on a given design element can
be interpreted as assume-guarantee contracts. By this means, ARRoW facilitates the early
pruning of design choices based on such constraints, as well as early detection of constraint
violation through either static (emergent violation of contracts) or dynamic (constraints
violated in a simulation based verification test) means.

These parallel activities can be driven by human designers or algorithmic search algorithms.
Architectural optimization leverages the system requirements and previously down selected
system Design and Requirements Archetypes, along with information about design options

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

stored in the CML, to perform its design exploration and refinement process. Algorithmic
design exploration will extract component models, or subsystem archetypes (with associated
contract patterns) from the CML, filtered by constraints in the current design or design criteria
set by either human or algorithmic means. Alternative feasible design choices can be assembled
(either by users or automated tools) into candidate architecture refinements that satisfy the
constraints, and then tested against computational models and metrics drawn from the metrics
library. Various algorithms can be used to iteratively test feasible options seeking designs that
optimize multiple objectives. Collaboration with human designers can often best be achieved by
search tools that produce trade sets rather than single recommendations. Consistent with
ARRoW’s overall approach, multiple such reasoning mechanisms can be supported and utilized
when appropriate.

Finally, ARRoW is designed to be easily extensible, and new design space exploration
algorithms or user design tools can readily be incorporated. Algorithms and user interfaces
facilitating specific aspects of the design problem are likely to be of use, and the same
infrastructure that supports identifying feasible components for a stage of design can also
identify the appropriate tool, reasoner, or solver for a stage of the design process. One
reasoning design exploration tool that was created during the development of ARRoW was the
ESKER. ESKER is an example of a tool that can incorporate design rules to ―break ties‖,
automating decisions between multiple components that satisfy all requirements but differ in
forecasted multi-attribute performance. Such tools can introduce reasoning based on designer
intent, such as qualitative preferences for faster vehicles, or lighter vehicles, or systems that can
be fielded quickly, or with minimum lifecycle cost.

Facile interoperation between user interfaces, design elements, heterogeneous models and
design tools, design space exploration algorithms, the component model library and the metrics
library is made possible by the web of connections provided by AMIL. Known relationships and
connections are explicitly represented. In particular, access to solvers is provided via AMIL
connections to both ECTo and higher fidelity engineering analysis tools. This concept is
illustrated in Figure 6, with identified commercial and alternate lightweight free or open
source tools that could usefully support ARRoW-based design work.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Figure 6. Tool Flexibility in Early Design Phases

4.2.8 System Detail Engineering Design

Ultimately, the conceptual design produced by the largely automated conceptualization tools
will need to be refined, analyzed and verified using higher-powered tools:

1. To complete design of any sub-systems that are developed specifically for the this (new)
system (e.g. the chassis/hull, component interface and integration mechanism, system
level software, etc.),

2. To ensure that potential abstraction leakages that have survived early analysis are
discovered and mitigated, and

3. To prepare the system for production and ultimate fielding.

This phase of the tool chain consists of the conventional ―heavyweight‖ engineering design and
analysis tools, as they provide what more abstract representations cannot—the necessary
domain richness, diversity, depth, and accuracy necessary to ensure that a producible,
functional, survivable, and operationally meaningful and compliant system is generated. Error!
Reference source not found.Figure 7 provides an overview of a representative set of these
tools, identifying both commercial and lighter-weight free or open source alternative in many
of the domains.

METAFR016

Logistics

Structural

HFE

(human
survivability,

operation)

Earned Value

Management Supply Chain

Requirements

Software

Operational

Performance

CREO, ECTo,

MathCAD, WAMSE,

ORCAD, Solidworks

FreeCAD,

OpenCascade,

Sketchup,

OpenSCAD, Xcircuit,

dEDA

ANSYS, PATRAN,

NASTRAN, ABAQUS,

OpenFOAM, Elmer,

FRAME3DD,

iMechanica,

Jack, MADYMO,

Task Architect,

NOLDUS

Error Budget

OneSAF, …

NATO Reference

Mobility Model

(NRMM), OneSAF

Product

Lifecycle
Management

Highjump MilPAC

TAKE Supplier Portal

OpenPro,

Integrity, Mathematica,

Clearcase, ClearQuest,

Redhat, VxWorks,

Insure++, CANoe, Sage

DOORs, iConcur,

unicase, rallydev,

MagicDraw, Enterprise

Architect, Topcased,

Papyrus, Modelio

Program

Management

Oracle, TipQA,

Highjump, MilPac,

GAGEtrak

OpenERP, WebERP

Relex, Immedius,

SlicWave, Adobe

Framemaker,

Abortext Epic

OSLS

ProPricer, Risk+, Pert Expert, Steelray

Analyze, OpenOffice, OpenProj, OpenAtrium

WelcomHome OpenPlan wInsight

Cobra, CESTA, OpenOffice, OpenProj

Dynamic

Performance/

Behavior

Production

/Integration

Fluid

Thermal
Controls

Vehicle

(survivability)

LS-Dyna, MUSES,

RADTHERM IR

CFX, Flowmaster,

FLOW-3D,

OpenFORM,

OpenCFD

ANSYS, Celsius,

WinTherm, FloTherm

LISA, SIMULIA

Windchill Teamcenter,

Eclipse, Aras, openPLM

MATLAB/ Simulink/StateFlow,

EASY5, NI TestStand/

LabView,

GNU Octave, FlexPro, Scilab,

FreeMat, greti, Sysquake,

Weapon/Sensor

System Performance

Design – geometric,

packaging/ space
claimVirtual.Lab Motion,

DADS, Adams,

RecurDyn,

SimMechanics

SeSAm, Scicos,

Modelica,

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

Figure 7. “Heavyweight” Analysis Tools with Potential “Lightweight” Alternatives

Engineering analysis tools consist of a large number of domain-specific, high-fidelity analysis
tools required to ensure that the design is producible, safe, sound, and effective. These include
structural, dynamic, fluids, and thermal computational fluid dynamics and finite elements
analysis codes; Human Factors analysis tools; and tools for the planning and prediction of
manufacturing and production, reliability, logistics, lethality, survivability, etc.

Use of these ―best-in-breed‖ tools identified in Error! Reference source not found.Figure 7 is
critical to the development of realizable and effective complex combat systems. However, the
tool chain provides a means to optimize the employment of these powerful tools to achieve
significant acceleration of the development process. Data is centrally contained within the
Master Model and distributed between tools via AMIL, and the multitude of complex and
cooperative engineering analysis processes are captured in Analytic Archetypes. Essentially,
Analytic Archetypes function as recorded ―macros‖ of the deep engineering and analytic
processes. Once recorded, they facilitate the automated distribution of data, work, and tool flow
to accelerate the processes and eliminate wasted or duplicated effort.

4.2.9 System Operational Assessment

System Operational Assessment tools provide context model environments to support system-
level performance assessment and metric production to ensure that the developing system

METAFR017

Logistics

Structural

HFE

(human
survivability,

operation)

Earned Value

Management Supply Chain

Requirements

Software

Operational

Performance

CREO, ECTo,

MathCAD, WAMSE,

ORCAD, Solidworks

FreeCAD,

OpenCascade,

Sketchup,

OpenSCAD, Xcircuit,

dEDA

ANSYS, PATRAN,

NASTRAN, ABAQUS,

OpenFOAM, Elmer,

FRAME3DD,

iMechanica,

Jack, MADYMO,

Task Architect,

NOLDUS

Error Budget

OneSAF, …

NATO Reference

Mobility Model

(NRMM), OneSAF

Product

Lifecycle
Management

Highjump MilPAC

TAKE Supplier Portal

OpenPro,

Integrity, Mathematica,

Clearcase, ClearQuest,

Redhat, VxWorks,

Insure++, CANoe, Sage

DOORs, iConcur,

unicase, rallydev,

MagicDraw, Enterprise

Architect, Topcased,

Papyrus, Modelio

Program

Management

Oracle, TipQA,

Highjump, MilPac,

GAGEtrak

OpenERP, WebERP

Relex, Immedius,

SlicWave, Adobe

Framemaker,

Abortext Epic

OSLS

ProPricer, Risk+, Pert Expert, Steelray

Analyze, OpenOffice, OpenProj, OpenAtrium

WelcomHome OpenPlan wInsight

Cobra, CESTA, OpenOffice, OpenProj

Dynamic

Performance/

Behavior

Production

/Integration

Fluid

Thermal
Controls

Vehicle

(survivability)

LS-Dyna, MUSES,

RADTHERM IR

CFX, Flowmaster,

FLOW-3D,

OpenFORM,

OpenCFD

ANSYS, Celsius,

WinTherm, FloTherm

LISA, SIMULIA

Windchill Teamcenter,

Eclipse, Aras, openPLM

MATLAB/ Simulink/StateFlow,

EASY5, NI TestStand/

LabView,

GNU Octave, FlexPro, Scilab,

FreeMat, greti, Sysquake,

Weapon/Sensor

System Performance

Design – geometric,

packaging/ space
claimVirtual.Lab Motion,

DADS, Adams,

RecurDyn,

SimMechanics

SeSAm, Scicos,

Modelica,

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

meets its system-level operational requirements. These tools support the notion of continuous
system validation, ensuring that the integrated system will meet its objectives, mitigating risks
associated with abstraction leakage and design/engineering ―stovepipe‖ issues.

4.2.9.1 Static

Static System Operational Assessment consists of tools designed to operate on abstract system
representations, beginning with requirements. These tools are generally stochastic analysis
environments and support reasoning systems that are employed to decompose and refine
system, subsystem, and component requirements; support early abstract system
conceptualization analysis; and system concept refinement (e.g., functional architecture
development and component down select and configuration).

4.2.9.2 Dynamic

Dynamic System Operational Assessment consists of tools designed to operate on explicit
system concepts, or those that consist of integrated fully defined components, functioning
according to operational use and test cases, driven by software and potentially simulated or real
human operators. The OneSAF war-gaming environment is an example of this type of
environment. These environments are time-based, and again support continuous system
validation as the developing system transitions from a concept to a mature system design.
These environments also support system-level human-cyber-mechanical trades and
optimization, and provide the development environment for the system being developed
Concept of Operations (CONOPS), and operational and training procedures.

4.3 ARRoW Foundation Infrastructure

There a several components of ARRoW that are used throughout its operation, and have not
been addressed in depth in the previous walkthrough of the design process. This section
describes each in turn:

 AMIL

 The Component Model Library

 Verification Methods

 Metrics

4.3.1 AMIL – ARRoW Model Interconnection Language

The purpose of AMIL is to automate in a rigorous fashion the joint use of tools, solvers, and
reasoners that are specialized for different parts of the design challenge and have very different,
possibly incompatible, syntax and semantics. AMIL is based on the same philosophy as the
Web in that the key concept is links between information that is not replicated. Links provide
information about relationships between models as well as computational dependencies and
only need to be established where they are needed.

AMIL links capture the relationships between design elements and can be annotated as needed
to capture salient information. In particular, where formal assumptions and guarantees are
available for component models this information can be carried in the AMIL graph, and the
operations of ARRoW can be guided and constrained by this knowledge. In similar fashion,
ARRoW can accommodate a range of formalized approaches to representing component
semantics.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

The use of AMIL links to represent both design detail and system engineering knowledge
provides a number of important benefits. As these links can cross platforms and domain
boundaries, this approach allows the master model of the system under development to be
distributed, so long as those pieces it is composed of each support the services that allow
ARRoW to traverse the design graph. AMIL describes the data that is communicated between
the models, which can also be annotated with information about the security that needs to be
imposed on each link. Thus, some component models contained in the master model could
reside on Windows platforms behind firewalls, while others could run on Linux systems in the
cloud. This feature provides opportunities for addressing Intellectual Property, licensing,
ITAR, and potentially even security level and classification issues by enabling models to
participate in testing without being made publically available.

4.3.1.1 AMIL Implementation

AMIL provides the data and process communication mechanism upon which other components
of the ARRoW system are built. It assumes only that external models and modeling tools
provide some sort of access interface and that they are capable of exporting unique identifiers
for modeling elements that are relevant across multiple models. AMIL creates proxies for these
elements as nodes in an attributed graph. These nodes can be associated with related nodes
(proxies of other model elements) with attributed links. The approach represents only the
proxies that are required and only introduces the interconnections that are useful. The
underlying attributed graph semantics provides a general and extremely flexible foundation in
support of the model interconnection semantics. Both nodes and edges of the interconnection
network contain lists of key-value pairs that can be extended without arbitrary limit. New
relationship types can be introduced on demand without compromising performance.

The physical data store AMIL is built on scales to billions of nodes and relationships. The
existing AMIL interpreter can be embedded, or AMIL statements can be executed by invoking
the AMIL Web Service. The data transport that we selected follows a standard format and is
thus easy to use.

Existing tools can be integrated into AMIL through the use of plug-ins. For example, we have
implemented a plug-in for the CAD tool Pro/Engineer (Pro/E and recently renamed Creo),
that allows us to utilize Pro/E as a geometry server within ARRoW. The Pro/E plug-in
dynamically provides parametric information for generating information about a design such as
mass and moments of inertia. A similar plug-in was implemented for the SysML tool Magic
Draw, allowing for information (capturing requirements, for example) to represented and
manipulated in SysML and seamlessly used by other tools by through the intermediary of the
AMIL database.

4.3.2 Component Model Library

The Component Model Library (CML) has two primary purposes. First, it is a repository that
stores technological knowledge and facilitates its sharing and communication between work
threads and components. Second, it encourages re-use of artifacts and makes it easy to do so in
a reliable and consistent manner. A centralized component library supports distributed design,
because it is available anywhere, and facilitates design evolution, because it is always available.

Design exploration and verification is greatly facilitated by having a Component Model Library
(CML) that contains data about available options. Heuristic or combinatorial search can be used
for aspects of design that can be framed as a fixed topology in which components from the

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

library be combined. While developing and populating a complete CML for IFV design was out
of scope for the project, we developed requirements, a design, and implemented a prototype
CML in order to facilitate our development and demonstration of ARRoW. (See Appendix 7.4.)

In the context of ARRoW, the CML advantageously contains information beyond models and
data of physical components. In particular, it is useful to also have archetypes stored there, and
to include all relationship information that is available regarding archetypes, components, and
models at varying levels of abstraction. As a consequence, the CML is not a hierarchical data
store, but also contains a complex web of relationships among its elements. These relationships
can greatly facilitate design exploration. Information on how this information can be used can
be found in appendices 3, 4, and 6.

Key to using the CML is the ability to search for artifacts that met specific needs. AMIL
provides a formal ontology and supports semantic searches of it using a standard language.
This is utilized in supporting search of the CML for components or models meeting particular
needs. For example, engines meeting specific size and performance requirements, whether in
terms of torque, power output or fuel efficiency.

4.3.3 Verification Methods

Formal verification methods offer sophisticated means of assuring that a design satisfies
requirements that can, for some issues, provide significant efficiencies in computing
probabilistic assessments of correctness over basic Monte Carlo approaches. Various candidate
methods have been investigated during this project (see appendices 3, 9, and 10), and others are
being developed by other groups. All of the formal verification methods currently available
impose restrictions on models and design and so are currently applicable to only a limited
subset of IFV related design issues. Consistent with the overall approach of taking advantage of
specialized reasoners, ARRoW provides for the use of formal verification methods where they
apply, without requiring that all models or design formalisms employed obey a limiting
framework. Conditions for appropriate use of these methods, as with the use of other specialized
reasoners, can be captured as analytic archetypes, and included in test sets for routine
execution.

4.3.4 Metrics

Metrics are central to the analysis of design alternatives. Some may be specified by system
requirements, others may be selected by designers seeking to better understand properties of
their designs. Some metrics can be directly calculated from available models. Others, notably
complexity and adaptability metrics and Probabilistic Certificates of Correctness (PCCs), can
require substantial additional computation. In order to facilitate ease of use of needed metrics,
ARRoW includes:

 A metrics library containing algorithms for computing metrics such as robustness and
adaptability

 A generic metric model that would allow for ease of metric development and
integration by outside users

 An extensible metrics framework to support selection and evaluation of metrics, with
supporting infrastructure allowing metrics to pull data from AMIL as needed

 A metrics dashboard to provide continuous graphical display of selected metric values
as alternative designs are explored

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

The ARRoW metrics framework seamlessly integrates metrics with simulation and design
tools, hides the back-end AMIL details, is easily re-configurable and supports straight-forward
metric creation. The metrics framework is an extension of AMIL, and the same mechanism for
integrating 3rd party tools into AMIL is applied to metrics. Consequently, the metrics
framework provides the ability to rapidly prototype and integrate new metrics.

An example of the Demo dashboard is shown in Figure 8. The various panels within the
dashboard are provided by the different views that have been developed, and include: metrics
values, assessment of metrics values (excellent, bad, worst), comparison of design alternatives
against requirements, and monitoring graphics.

Metrics themselves have many consumers, so the dashboard is easily configurable to support
those consumers. Top sponsor leadership and company management may be interested in cost
and system effectiveness, and capability and gap analysis, whereas the upper project
management are more interested in the health of the design and risk mitigation metrics. Direct
line management will be interested in reviewing tracking book metrics.

To support the varying needs of the different metrics consumers, three demonstration
dashboards were implemented during ARRoW development: Demo, Design, and
Requirements. The Demo dashboard is used to demonstrate a sample of a top level cost
analysis and capability assessment. The Design dashboard relies on the outputs of an ECTo
design exported to AMIL and presents the results of a mobility model and other design metrics
such as calculated total cost and total weight. The Requirements dashboard provides a table of
integrated Signal complexity results.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

Figure 8. Example Dashboard Configuration

Appendix 7.2 contains details about metrics implementation in ARRoW along with brief
descriptions of the metrics implemented during META ARRoW Phase 1b. A much longer
exposition on promising complexity and adaptability metrics can be found in the META
ARRoW Phase 1a Final Report.

4.4 Notional Demo System Application

The ARRoW system development used a series of design challenge problems in order to
illustrate key capabilities in the context of a non trivial problem that exists in the combat
vehicle design space today. The most thoroughly investigated challenge problem was that of
designing the egress system for an IFV squad.

The Ramp challenge problem:

 Considered alternative solutions for the ramp assembly and its supporting subsystems
and components to enable subsequent selection of solutions for further design
exploration

 Considered trade-offs of multiple inter-related subsystems/component alternatives in
order to realize an optimal solution for a given set of criteria

 Used realistic requirements in order to emulate a real design process and in order to
calculate correctness of solution alternatives

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

The various versions of the IFV Ramp challenge problem allowed ARRoW developers to
address a highly scalable problem containing contributions from every design domain,
including cyber-physical subsystems, and an operational context. These problems were
addressed across a broad range of abstractions, including high fidelity simulations of ramp
dynamics and mechanical deformations and drive response to operational stimuli including the
impacts of footfalls of soldiers running down the ramp. Together with conceptual design
problems demonstrated with ECTo, these problems span a range of realistic problems,
establishing the viability of ARRoW to support the design of an entire system at scale, given
the necessary models, archetypes, and a complete component model library.

5. Conclusions

Technologies developed for the ARRoW system provide an infrastructure facilitating
computational exploration of designs with continuous test and verification using multiple
models, multiple specialized reasoners, libraries of components, design patterns, and workflows.
AMIL provides an executable graphical database that supports relationship maintenance
among diverse models, designs, reasoners, patterns, and workflows, allowing either local or
distributed execution of computations. The innovation of archetypes, allowing design patterns
and workflows to be applied across a broad range of designs and stages in the design process,
provides an improved means of capturing and automating engineering practice in order to join
previously isolated MBE islands.

This infrastructure facilitates more aggressive use of computation, while reducing the workload
on experts, allowing for mixed initiative exploration for acceptable solutions. It provides an
extensible basis for automation, providing more opportunity for innovation and allowing new
models and tools to be incrementally introduced, and existing tools to be replaced as better
alternatives emerge.

6. Recommendations

6.1 Integration of Additional Tools

The ARRoW infrastructure provides a foundation in which multiple models, solvers, and
reasoners can be jointly used to solve difficult design and verification problems. In order to
exploit this foundation to achieve the goal of 5x reduction in times from requirements to first
operational prototype, a large number existing specialized design and analysis tools will need
to be connected to ARRoW. The benefits of doing so go beyond the automation of analytic
processes currently in routine use, as continuous testing and validation can detect problems
much earlier (when they are cheaper to fix, and have less schedule impact), and can potentially
facilitate the discovery of superior designs.

At its current level of maturity, ARRoW can usefully support requirements analysis,
conceptual design exploration, and the use of models of moderate abstraction to refine designs.
Incorporating very high fidelity models and design tools presents additional challenges, both in
terms of software engineering, and capturing required systems engineering knowledge. The
investment to continue ARRoW development to include such tools could provide improved
ability to capture combinations of phenomena. Figure 99 conveys a unique subjective
assessment by engineers at BAE Systems Land & Armaments of both the degree of difficulty
and importance for 36 combinations of physical effects in the design and verification of an IFV.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

Figure 9. Multiphysics Levels of Difficulty/Maturity and Relevance to IFV
Development

Among the classes of multiphysics phenomena portrayed in Figure 9, various tradeoffs could
be made in prioritizing their implementation. In order to facilitate making these choices, we
have identified the most significant deep-physics analytical activities necessary for the
development of combat vehicles. The following list synopsizes the most important analyses
that involve high fidelity multiphysics simulation and analysis for IFV design.

Significant deep-physics analytical domains and activities. (Not rank ordered)

 Structural:

 Load Assessment. Assess structural integrity for static load conditions

 Load Transmission. Determine transfer function through chassis to mounted
components and subsystems from external shocks and vibrations

 Durability and Life Prediction. Accumulate and assess typical operational loading
for the combat vehicle on the structure(s)

 Survivability:

 Mine Blast Simulation. Predict and assess the chassis structural performance when
exposed to under-belly explosion

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

 Armor: Prediction of armor recipe performance

 Automotive – Land:

 Static Attitude. Ensure ground clearance and vehicle attitude/wheel loading under
various Gross Vehicle Weight (GVW), lift load, grade and slope conditions

 Mission Rated Speed. Predict the maximum speed, governed by crew acceleration
and vibration, crossing a given terrain

 Obstacle Crossing. Simulate the go/no-go performance for the vehicle crossing
mobility obstacles

 Drivetrain/Powerplant Simulation. Simulate powerplant and drivetrain for
mobility and obstacle events for performance assessment

 Automotive – Aquatic:

 Water Speed. How fast can the vehicle travel (and maneuver).

 Buoyancy. Buoyancy reserve and self-righting

 Thermal:

 Combat Operation Thermal Performance. Simulate the thermal exposure and
response for crew and components during a typical combat mission

 Compartmental Cooling. Assess airflow and temperature distribution for an
extreme thermal loading condition.

 Powerplant Cooling. Simulate the thermal load and ambient heat rejection for
various combat missions

 Towing and Transport:

 Rail Impact. Simulate the vehicle rail transportability scenario of a ―Hump‖ test

 Transport Tie Down. Longitudinal pull load

 Towing. Performance towing similar/like kind vehicles

 Towed. Performance assessment under tow

The subjective estimate of our engineers is that this list captures 80+% of the deep, high-
fidelity multiphysics based analytical work needed to support design and verification of an IFV.
The list is dominated by system level analysis, as this level of performance typically involves
multiple sub-systems, and consequently a large number of domains. Description at this level is
most readily done in terms of system level mechanics, but note that for each member of the list
there are multiphysics effects, and multiple design domains, frequently including control
systems and electronics.

Note that the classes of verification listed above have overlaps in the models and kinds of
information they would use. Figure 10 diagrams some of the overlaps and commonalities we
will exploit in implementing this list of analytic tests. The shading of the ellipses indicates the
relative ease of coupling. Darker shades indicate less challenging integration. Topics in the
ellipses of lighter shades provide more of a challenge, but we believe these also can be met with
additional investment.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

Figure 10. Overlap Among Multiphysics Modeling and Analysis Topics

6.2 Application to Other Domains

ARRoW has been designed to support design of any complex system for which the necessary
libraries are provided. However, testing and development to date have all been specific to IFV
design problems. Testing ARRoW’s applicability to other domain would both confirm the
achievement of this goal, and potentially reveal architectural revisions that would improve its
utility.

6.3 Achieving Industry Reform and a 5x Compression in System
Development Time

In order to achieve significant improvements in the nation’s ability to rapidly design and field
new weapon systems, innovation is needed in both the processes and supporting tools used in
designing these systems. By providing a means to connect what are presently isolated
applications of model based engineering, ARRoW is an important innovation of this kind.
Capturing the promise ARRoW presents will require combining it with existing commercial
tools, open source and academic innovations, and mechanisms, allowing private models and
reasoners to be used in a more open context. This combination will provide a means for defense
companies, whose greatest expense is their engineering talent, to get more leverage from this

METAFR009

Multi-Physics Integration

Multi-Physics Integration

Multi-
Physics In

tegratio
n

Mission Rated

Speed

Obstacle

Crossing

Rail Impact

Combat

Operation

Thermal

Performance

Mine Blast

Simulation

Durability &

Life Prediction

Structural

Load

Assessment

Compartment

Cooling

Distribution

Chassis

Structural

Load

Transmission

PowerPlant &

Drivetrain

Simulation

Load

Load

Extremum Conditions

Power

Load

Power

Cyclical Response

FE Mesh

Thermal Loads

Extremum Conditions

Geometry

Architecture

Data

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

resource and subsequently become more agile, faster, and cost effective, while at the same time,
tapping the innovation potential of the ―crowd‖ through facilitating democratized design. By
establishing the competitive advantage of reducing their footprint and creating more value
sooner, the industry can become an active agent in its own reform.

Additionally, the existence of software platforms that also allow interoperation of open source
and commercial tools will bring market forces to bear, leading over the longer term to
discovery of the best balance between open source and commercial design tools. As with the
historical case of Electronic Design Automation (EDA), it is the positive engagement between
systems of open innovation and commercial interests that is needed to achieve the long-term
goals of Adaptive Vehicle Make (AVM).

The restructuring of defense and software tool industries will involve processes that will
continue beyond the end of the AVM program. The use of hybrid approaches for the duration
of AVM can promote these processes and lay a foundation that can guide this evolution
towards desired long term goals.

6.4 The Hybrid Approach to Democratizing Design

ARRoW’s open architecture, support for distributed design, the automation of systems
engineering practices, together present a possibility of using ARRoW to enable a wider range
of individuals to contribute complex design enterprises. Access for a wider range of design
talent can be very helpful in discovering innovative solutions. Conversely, professional
engineering expertise can facilitate crowd innovation, by providing the context and assistance
with highly technical aspects of design problems. ARRoW could be used to promote
democratization of design in multiple ways:

 Proven design patterns can be captured and stored in the CML. These patterns provide
both the relationship graph of the components in a particular design and the constraints
these components impose on each other. These patterns also capture domain expertise
and experience, providing for beneficial, potentially innovative contribution from non
domain experts.

 Analytic workflows used to calculate important metrics can similarly be captured,
providing significant assistance in automating the testing and verification of designs,
especially to assess system level properties.

 Dual-use development of user interfaces and tools to serve both professional engineers
and the crowd can ensure that the crowd tools are sufficiently powerful to support
successful designs, and in particular militarily relevant designs.

 Flexible infrastructure allowing users scalability in the choice of commercial design
tools (frequently expensive) and equivalent, albeit often more limited and/or not
supported, low-cost or free tools, promotes both outreach to novice participants and the
involvement of professionals, who can in collaboration with other crowd users provide
important design ideas and insights.

 The participation of professional engineers in the management of crowd sourcing
exercises can monitor the course of design activities, potentially providing feedback,
assistance, and verification of any system properties not adequately addressed by
automated means.

A crowd-sourcing design exercise would illuminate this opportunity further.

META ARRoW Phase 1b Final Report—13 October 2011

© BAE Systems 2011. All rights reserved. 37 Refer to cover page for Distribution Statement.

7. Appendices
Appendices are included with this report as separate, external documents due to the volume of
material. The following is provided as title and number reference summary.

7.1 System Engineering and Architecture

7.2 Tool Design

7.3 Modeling Language

7.4 Library Requirements

7.5 System Demonstration

7.6 Advanced Reasoning and Applications of ARRoW Technology

7.7 Metrics Developed by Team Member (BBN)

7.8 Spatial Design Exploration (BBN)

7.9 RMPL (MIT)

7.10 Verification (MIT)

7.11 Programmatics

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.1 – ARRoW System Engineering and Architecture

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the

official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government .

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.1 ARRoW System Engineering and Architecture ... 1

7.1.1 ARRoW Systems Analysis .. 1
7.1.1.1 ARRoW IDE (AIDE) Brainstorming Results ... 2

7.1.1.2 Typical Requirements Quality Issues and Corrective Actions .. 3

7.1.1.3 Hard Vs. Soft Requirements ... 13

7.1.1.4 ARRoW Behavioral Analysis ... 16

7.1.1.5 Example Development Metrics ... 37

7.1.1.6 Design Concept Discriminator Analysis ... 48

7.1.1.7 META Project Product Breakdown Structure .. 50

7.1.1.8 Notional IFV System of Interest ... 53

7.1.1.9 IFV Reference Architecture SysML Model.. 92

7.1.2 ARRoW Architecture.. 92
7.1.2.1 Archetypes .. 92

7.1.2.2 ARRoW Context Diagram .. 103

7.1.2.3 AIDE Entities ... 104

7.1.2.4 ARRoW Master Model .. 111

7.1.2.5 ARRoW Library Elements .. 113

7.1.2.6 ARRoW Requirements to Test Case Flow Architecture ... 124

7.1.3 Bibliography .. 130

List of Figures
Figure 7.1-1. ARRoW Actors ... 18
Figure 7.1-2. AIDE Top Level UCs-Actors .. 34
Figure 7.1-3. Rqmts & TC Use Cases ... 35
Figure 7.1-4. RTTC Flow Use Case ... 36
Figure 7.1-5. Design UCs .. 37
Figure 7.1-6. Example Project Scorecard for a Notional IFV ... 38
Figure 7.1-7. Example Individual Metric Template Chart .. 39
Figure 7.1-8. Example Order of IFV Criteria Measures for Formal Decisions/Trade Studies 48
Figure 7.1-9. SysML Package Structure .. 52
Figure 7.1-10. Subversion Repository Structure .. 53
Figure 7.1-11. Example Allocation of Requirements to Ramp Assembly 64
Figure 7.1-12. Notional IFV PBS .. 67
Figure 7.1-13. Notional IFV Reference Architecture Components and Properties 75
Figure 7.1-14. Notional IFV Mounted Operations Use Cases Diagram .. 82
Figure 7.1-15. Notional IFV Actors Diagram .. 83
Figure 7.1-16. Example Operate IFV Ramp Use Cases Diagram .. 86
Figure 7.1-17. Example Details On Operate Ramp Use Case ... 87
Figure 7.1-18. Operate Ramp before Squad Dismounts Activity Diagram 88
Figure 7.1-19. Operate Ramp before Squad Dismounts Interaction Diagram 89
Figure 7.1-20. Operate Ramp while Squad Dismounts Activity Diagram 90
Figure 7.1-21. Operate Ramp while Squad Dismounts Interaction Diagram 91

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

Figure 7.1-22. Sample Requirement Archetype with Metadata.. 95
Figure 7.1-23. Physical Envelope Verification .. 101
Figure 7.1-24. Operational Virtual Prototype Verification .. 101
Figure 7.1-25. AIDE Context Diagram .. 104
Figure 7.1-26. AIDE ... 105
Figure 7.1-27. Master Model .. 112
Figure 7.1-28. Archetype Library (Notional) .. 113
Figure 7.1-29. RTTC Entities - Structure View .. 126
Figure 7.1-30. RTTC Entities - Run-Time Interfaces View ... 126
Figure 7.1-31. ARRoW RTTC Entities ... 127

List of Tables
Table 7.1-1. List of AIDE Brainstorm Ideas .. 2
Table 7.1-2. Requirement Quality Factor Definitions ... 5
Table 7.1-3. Example Rationale for Requirement Quality Issues ... 6
Table 7.1-4. Examples of Requirements Quality Issues and Corrective Actions 8
Table 7.1-5. Requirement "To Be" Key Words .. 14
Table 7.1-6. Sample Forbidden Requirement Words and Phrases .. 14
Table 7.1-7. Examples of Requirements Priority Assignments .. 15
Table 7.1-8. Examples of Requirement Bi-Directional Traceability ... 16
Table 7.1-9. ARRoW Actor Descriptions .. 19
Table 7.1-10. ARRoW Requirements ... 31
Table 7.1-11. Example Metrics for Trade Criteria and Measures ... 40
Table 7.1-12. MRL Definitions ... 43
Table 7.1-13. Example Ranges for Mobility Performance ... 49
Table 7.1-14. META Product Breakdown Structure Elements ... 50
Table 7.1-15. Example of Notional IFV Requirements in a SysML Model 55
Table 7.1-16. Additional Examples of Notional IFV Requirements .. 56
Table 7.1-17. Notional Ramp Assembly Requirements in a SysML Model 62
Table 7.1-18. Notional IFV PBS Elements .. 68
Table 7.1-19. Initial Example of Mobility Components and Properties ... 74
Table 7.1-20. Power Package/Power Train Subsystem Components and Properties 75
Table 7.1-21. Steering & Braking Subsystem Components and Properties 76
Table 7.1-22. Suspension Subsystem Components & Common Properties 77
Table 7.1-23. Suspension Subsystem Component Unique Properties ... 78
Table 7.1-24. Example Actor Descriptions ... 84
Table 7.1-25. Sample Requirement Archetype Text .. 96
Table 7.1-27. AIDE Block Descriptions ... 106
Table 7.1-28. Master Model Descriptions ... 112
Table 7.1-29. Archetype Library Descriptions ... 115
Table 7.1-30. ARRoW RTTC Entities Description .. 128

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. iii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms

Symbol,
Abbreviation,

Acronym
Definition

AFSC Air Force Systems Command

ACAT Acquisition Category

AIDE Arrow IDE

Ao Operational availability

AoA Analysis of Alternatives

APG Aberdeen Proving Grounds

ARL Army Research Lab

AROC Army Requirements Oversight Council

BCT Brigade Combat Team

BII Basic Issue Items

C2 Command and Control

CDD Capability Development Document

CDR Critical Design Review

CFV Cavalry Fighting Vehicle

CG Commanding General

CG Commanding General

CML Component Model Library

CONOP Concept of Operations

CPD Capability Production Document

CRM Customer Relationships Management

CSCI Software Configuration Item

CSSV Combat Service Support Vehicle

CSV Combat Support Vehicle

CV Combat Vehicles

DC Design Component

DCSCD Deputy Chief of Staff for Combat Developments

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. iv Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

DMI Defense Material Item

DoD Department of Defense

DRACAS Defect Reporting and Corrective Action System

DT&E Development Test & Evaluation

DTLOMS Doctrine, Training, Leader Development, Organization, Materiel and Soldier

EMC Electromagnetic Capability

EMD Engineering and Manufacturing Development

EMI Electromagnetic Interference

EVMS Earned Value Management System

FCC Federal Communication Commission

FIR Field Incident Report

FRP Full Rate Production

FSR Field Service Representative

GPS Global Positioning System

GUI Graphical User Interface

HFE Human Factors Engineering

HLA High Level Architecture

HSI Human System Integration

HVAC Heating, Ventilation, and Air Conditioning

HW Hardware

IAT&C Integration, Assembly, Test, and Checkout

ICA Industrial Capabilities Assessment

ICD Initial Capabilities Document

ICT Integrated Concept Team

IDE Integrated Development Environment

IFV Infantry Fighting Vehicle

IM Insensitive Munitions

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. v Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

INCOSE International Council on Systems Engineering

IPR In-Process Review

ISR Intelligence, Surveillance, Reconnaissance

JCIDS Joint Capabilities Integration & Development System

JROC Joint Requirements Oversight Council

Kph Kilometers per Hour

KPP Key Performance Parameter

KSA Key System Attribute

LCC Life-Cycle Cost

LRIP Low Rate Initial Production

MANPRINT Manpower and Personnel Integration

MATDEV Material developer

MBE Model Based Engineering

MBSE Model Based System Engineering

MGV Manned Ground Vehicle

MM Master Model

MMBF Mean Miles Between Failures

MOE Measure of Effectiveness

MOM Measure of Merit

MOP Measure of Performance

MOS Military Occupational Specialty

MOU Measure of Usage

MRA Manufacturing Readiness Assessment

MRL Manufacturing Readiness Level

MSA Materiel Solution Analysis

MTBF Mean Time Between Failure

MTBSA Mean Time Between System Aborts

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. vi Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

MTTR Mean Time to Repair

NATO North Atlantic Treaty Organization

NCO Non Commissioned Officer

NRE Nonrecurring engineering

O&O Organization and Operation

ORD Operational Requirement(s) Document

OT&E Operational Test & Evaluation

PBS Product Breakdown Structure

PLM Product Lifecycle Management

PM Program Manager

PMO Program Management Office

POC Point of Contact

QA Quality Assurance

R&D Research and Development

RD Requirements Design

RFP Request for Proposal

RoF Rate of Fire

RPG Rocket-Propelled Grenade

RTTC Requirements to Test Case

SAC System Analysis & Control

SBS System Breakdown Structure

SD System Design

SE Software Engineering

SME Subject Matter Expert

SoI System of Interest

SVN Subversion

SVS Surface Vehicle System

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. vii Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

SW Software

TBD To be determined

TBR To be reviewed

TBS To be supplied

TC Test Case

TCA Test Case Archetype

TD Technology Development

TDP Technical Data Package

TOE Tables of Organization and Equipment

TPM Technical Performance Measure

TRA Technology Readiness Assessments

TRADOC Training and Doctrine Command

TRL Technology Readiness Level

TSM TRADOC System Management

TTP Tactics, Techniques, and Procedures

UGS Unmanned Ground Vehicles

UI User Interface

UML Unified Modeling Language

V&V Validation & Verification

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.1 ARRoW System Engineering and Architecture

7.1.1 ARRoW Systems Analysis

This section describes the systems analysis performed in META Phase 1b that provides an
analytical foundation for the Adaptive, Reflective, Robust Workflow (ARRoW) Integrated
Development Environment (IDE) architecture described in section 7.1.2. Our goal was to
develop an AIDE system architecture that supports:

 Faster delivery of adaptable systems that are trusted, assured, reliable and interoperable

 New processes, methods and tools to build adaptable Defense Material Items (DMIs)

 Early Concept Engineering

 Model-Driven Design, Model-Based Engineering, and Model Based Systems
Engineering methodologies

 An open, virtual, realistic environment for validation and manufacturing

 Scalability from today‘s manually driven development tools and processes to integration
of tomorrow‘s automation techniques, algorithms, and applications

 An infrastructure that is tool agnostic: it does not prescribe particular tool choices, but
provides a framework that supports heterogeneous ARRoW design implementations

The purpose of the ARRoW Systems Analysis effort was to develop ideas to explore and
develop for ARRoW technologies, architecture, design, and proof of concept capabilities and
tools in the areas of:

 Automated requirements development for a DMI

 Automated selection of a DMI PBS

 Automated requirements allocation to DMI PBS elements

 Automated reduction of design space exploration

 Automated selection of preferred design alternative(s)

 Automated metrics for formal decisions and trade studies

 Automated verification preparation

 Automated reporting and recording of verification results

The ARRoW Systems Analysis on cardinal aspects of Combat Vehicle Development
(Requirements Analysis, System Design, Systems Analysis and Control, Verification &
Validation) reveals examples of:

 Product development systemic issues (e.g., poor quality requirements, lack of

requirements templates and reuse, lack of PBS templates and reuse, lack of development

metrics templates and reuse, lack of design concept discriminator templates and reuse)

 Potential product development enablers (e.g., model-based work products, reuse,

templates, patterns, archetypes, reference architectures, libraries, automation)

The ARRoW Systems Analysis section includes:

 AIDE brainstorming results

 Typical requirements quality issues and corrective actions

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

 Hard vs. Soft requirements

 ARRoW Behavioral analysis

 Example development metrics

 Design concept discriminator Analysis

 META Project Product Breakdown Structure

 Notional IFV System of Interest

 IFV reference architecture SysML model

7.1.1.1 ARRoW IDE (AIDE) Brainstorming Results

A series of brainstorming meetings were held that challenged the participants with the
following:

“Create a Revolutionary Approach to Combat Vehicle Development”

The full list of ideas offered in these brainstorming sessions can be found in the accompanying
reference document whose filename is ―ARRoW IDE Brainstorming.docx‖. Many of the ideas
in that document have influenced the analysis and architecture of ARRoW during META
Phase 1b.

Table 7.1-1 provides a synopsis of some of the more forward thinking items taken from
brainstorming ideas that might influence future development.

Table 7.1-1. List of AIDE Brainstorm Ideas

No. Idea

1 AIDE continuously integrates an acquisition customer User Interface throughout
development effort. AIDE should support continuous monitoring of customer satisfaction
(validation).

2 AIDE optimizes reporting to management and receiving management approval. AIDE
supports continuous monitoring of the health of the project and the design.

3 Develop Expert Systems for every engineering discipline/process (e.g., Safety,
Maintainability, Configuration Management specialist, System Engineering, Reliability,
Testability). Expert System Agents run in background to continuously assess master
model (like a spell checker).

4 Create models (physical and cognitive) of the user for automated trials and feedback.

5 AIDE continuously integrates the Warfighter User Interface throughout the
development effort: how is the Warfighter executing the mission, operating the
equipment and making use of the system capabilities.

6 Think of iFAB as additionally part of the early development process. AIDE facilitates
automated prototyping of hardware, supporting early test so as to detect emergent
behavior of hardware not accounted for in software-based models as well as continuous
model validation.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

No. Idea

7 Programmable, automated test rigs are integrated with the master model. For example,
vibration and temperature test environments can be automatically configured based on
system requirements.

8 AIDE will automatically generate engineering charts and diagrams so humans can
interpret patterns. AIDE additionally has automated agents that look for these patterns.

9 AIDE will provide a single log-on interface. Based on user roles (e.g., manager, curator,
professional developer, crowd source, etc.), AIDE automatically configures the user
interface to provide appropriate privileged access to data and applications (e.g., ITAR
data, licensed applications, etc.). Within the AIDE, security needs are transparently
managed. All models know their security levels and simulations can be run in appropriate
environments and with appropriately authenticated/need-to-know personnel.

10 In general, relevant information is available to the developer. All DoD data is accessible
by appropriately cleared personnel, facilities, and organizations. All DoD programs share
data with each other.

11 Actual Sustainment statistics (e.g., Ai, MTTR, MTBSA, MTBF), Field Incident Reports
(FIR), Operations & Support reports) feed into CML and AIDE elements. The AIDE
Verification environment generates similar metrics to Sustainment statistics and will be
able to directly compare to field maintenance and usage reports.

12 Designers, integrators, Field Service Representatives (FSRs), and end-users have access
to a ―Review‖ Web-site to comment on and rate products created by or used by AIDE
(ala Amazon.com). This product rating data is associated with CML elements and is
readily available in the AIDE to influence future designs. Designers and integrators have
access to a ―Review‖ Web-site to comment on and rate Requirements, Uses Cases, Test
Cases, Component Models, Archetypes, or in general any library element. This rating
data is associated with the respective library elements and is readily available in the
AIDE to influence future designs. AIDE interfaces with social networks (e.g., Customer
Relationships Management [CRM]) to influence the design process.

13 AIDE will allow the user to define an objective function and then, via automated design
exploration and optimization, create a design that realizes that function.

14 AIDE can roll-back to any prior point in the development (robust versioning control).

15 AIDE maintains pedigrees of components such as: TRL and supporting evidence, history
of demonstrations, manufacturing safety critical audits, model accreditations, etc.

16 AIDE supports ―Read Only‖ test results.

7.1.1.2 Typical Requirements Quality Issues and Corrective Actions

A diverse range of quality issues can exist for requirements at the beginning and end of a
development phase and during the transition from development to production. Typical DMI

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

programs such as one for a combat vehicle or an Infantry Fighting Vehicle (IFV) undertake
daunting time consuming and labor intensive requirements analysis and definition tasks during
the development phase. Requirements engineering can be an extremely complex discipline
because of the numbers of stakeholders involved in the development process and the precious
use of resources. Although requirements gain quality as the development phase progresses,
some requirements do not gain significant ground in maturity.
―Poor quality requirements are costly. Some statistics to illustrate the point:

 50% of product defects are actually due to requirement errors

 80% of rework is on fixing those errors

 30% of devices ship with 50% or fewer of the originally specified features

Gunnar Hofmann, a researcher in the requirements management area, found that ‗successful
projects typically allocate 15 to 30% of resources to requirements management
activities.‘‖[HOF11]

Successful DMI development programs conduct early and often validation of requirements to
enable building and delivering a ―right‖ quality product. Cardinal ingredients to validating
requirements are measuring and tracking the quality of individual requirements. Table 7.1-2
defines an example set of factors that have been used to determine the quality and issues of
requirements. Table 7.1-3 indicates that multiple quality issues can exist for an individual
requirement more often than not. Table 7.1-4 identifies candidate corrective actions to
overcome requirement quality issues.

Section 7.1.1.3 proffers a requirements maturity roll-up metric within the ―Problem Domain
Understanding quadrant‖ on a sample Combat Vehicle Development Project Scorecard that is a
summary compilation of requirement quality issues. Requirements maturity roll-up analysis
and requirement quality measurement and tracking provide key project visibility mechanisms
into requirements validation progression.

Requirements quality measurement and tracking tools should:

 Address requirements quality issues before the beginning of relevant design phases

 Resolve requirement quality issues before formal decisions are made on design

 Ensure steady progression on requirement quality and maturation

 Early and often project visibility into requirements validation

 Ensure that the right product is built

Table 7.1-2 identifies an example set of requirement quality factors used to determine the
quality issues/maturity of a requirement.

Table 7.1-2. Requirement Quality Factor Definitions

Example Requirement Quality Factors

A requirement is immature when it lacks one or more of the following quality factors.

 Title Definition

1 Necessity The requirement specifies an essential capability, characteristic or
quality. Unjustified or ―nice to have‖ requirements add cost to the
system.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

Example Requirement Quality Factors

A requirement is immature when it lacks one or more of the following quality factors.

 Title Definition

2 Conciseness The requirement states only what must be done. Explanations,
justification and definitions go in the rationale attribute.

3 Measurability The requirement is stated in qualitative, quantitative, or probabilistic
terms. If stated qualitatively, it specifies the standard for comparison.
If stated quantitatively, it specifies tolerances of quantity or a range of
acceptability, not an absolute. If stated probabilistically, it specifies
confidence levels.

4 Clarity and
Unambiguous

The requirement is stated in terms that are specific and have only one
interpretation.

5 Implementation/

Design Freedom

The requirement is stated in terms of what is required, not how it will
be met, either directly or by implication.

6 Attainability/
Feasibility

The requirement can be achieved by one or more concepts within
defined program constraints such as cost, schedule or risk.

7 Completeness and
Stand-alone

The requirement needs no further amplification for understanding
when separated from the other requirements.

8 Consistency The requirement does not contradict the other requirements at the
same level or any requirement above its level. Terminology is used
the same way throughout the requirements.

9 Verifiability The requirement is stated in quantified terms such that it can be
verified in one or more of five methods: analysis, modeling &
simulation, inspection, demonstration or test. However, requirements
should not be specified as tests. The verification is put in the
appropriate verification attributes.

10 Singularity Each requirement is a single thought. Only one ―shall‖ per
requirement should be used.

11 Uniqueness The requirements do not duplicate or overlap other requirements at
the same level.

12 Proper Level The requirement is written for the proper level in the PBS/System
Breakdown Structure (SBS).

13 Positivity Each requirement is written as a positive statement rather than a
negative one (i.e., avoid the use of ―shall not‖).

Table 7.1-3 represents an example of the multitude of quality issues associated with a given
requirement that is typically experienced during the development of a complex cyber-physical
combat vehicle system.

Table 7.1-3. Example Rationale for Requirement Quality Issues

Example Rationale for Requirement Quality Issues

Performance

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

Unless otherwise specified, performance requirements in the following paragraphs shall be met with the
Vehicle at maximum weight, resting on a flat, hard, level surface, and over the range of environmental
conditions specified herein.

Requirements relating to personnel shall apply to males in the 5th through 95th percentile in stature
wearing cold weather gear.

Quality Issue Definition Analysis

Conciseness The requirement states only
what must be done.
Explanations, justification and
definitions go in the rationale
attribute.

The 1
st
 requirement statement beginning with ―Unless

otherwise specified ...‖ is not concise (e.g., a product
performance requirement). It is a:

 test condition for a to be determined (TBD) set of
product requirements

 generalization statement

This statement is best suited for either section 4
(Quality Assurance Provisions – e.g., the test
requirements/approach for product requirements) of a
specification or a Verification Plan and associated test
procedure.

Measurability

The requirement is stated in
qualitative, quantitative, or
probabilistic terms. If stated
qualitatively, it specifies the
standard for comparison. If
stated quantitatively, it
specifies tolerances of
quantity or a range of
acceptability, not an absolute.
If stated probabilistically, it
specifies confidence levels.

The 1
st
 requirement statement beginning with ―Unless

otherwise specified ...‖ is not explicitly measureable as
stated.

It does not state qualitative, quantitative, or probabilistic
terms.

This statement needs to explicitly state the qualitative,
quantitative, or probabilistic terms for the combinations
of test conditions for each relevant product performance
requirement.

Clarity &
Unambiguous

The requirement is stated in
terms that are specific and
have only one interpretation.

The 1
st
 requirement statement beginning with ―Unless

otherwise specified ...‖ is not specific.

It does not identify specific:

 product performance requirements

 combinations of test conditions

This statement needs to explicitly state a finite list of
product performance requirements and an exact
combination of test conditions for each relevant product
performance requirement.

Completeness &
Stand-alone

The requirement needs no
further amplification for
understanding when
separated from the other
requirements.

The 1
st
 requirement statement beginning with ―Unless

otherwise specified ...‖ is not complete and standalone.

It by itself means nothing unless the other product
performance requirements are included.

This statement needs to explicitly state a finite list of
product performance requirements and an exact
combination of test conditions for each relevant product
performance requirement.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

Example Rationale for Requirement Quality Issues

Performance

Unless otherwise specified, performance requirements in the following paragraphs shall be met with the
Vehicle at maximum weight, resting on a flat, hard, level surface, and over the range of environmental
conditions specified herein.

Requirements relating to personnel shall apply to males in the 5th through 95th percentile in stature
wearing cold weather gear.

Quality Issue Definition Analysis

Consistency

The requirement does not
contradict the other
requirements at the same
level or any requirement
above its level. Terminology is
used the same way
throughout the requirements.

The 2
nd

 requirement statement relating to Human
System Integration (HSI)/Human Factors Engineering
(HSE) is not consistent with requirements in the
HSI/Human Engineering section.

This statement needs to be deleted to eliminate
contradiction with the HSI/Human Engineering section.

Verifiability

The requirement is stated in
quantified terms such that it
can be verified in one or more
of five methods: analysis,
modeling & simulation,
inspection, demonstration or
test. However, requirements
should not be specified as
tests. The verification is put in
the appropriate verification
attributes.

The 1
st
 requirement statement beginning with ―Unless

otherwise specified ...‖ cannot be explicitly verified as
stated.

Viable verification methods (analysis, modeling &
simulation, inspection, demonstration or test) cannot be
identified because the statement does not identify
specific:

 product performance requirements

 combinations of test conditions

This statement needs to explicitly state a finite list of
product performance requirements and an exact
combination of test conditions for each relevant product
performance requirement to ascertain viable verification
methods for each relevant product performance
requirement.

Uniqueness/

Duplication

The requirements do not
duplicate or overlap other
requirements at the same
level.

The 2
nd

 requirement statement relating to HSI/HSE
overlaps requirements in the HSI/Human Engineering
section.

This statement needs to be deleted to eliminate
duplication with the HSI/Human Engineering section.

Table 7.1-4 provides further examples of typical of requirements quality issues that need
requirements refinement and validation. This example set of requirement quality issues
includes potential corrective actions to improve the quality of the requirements.

Table 7.1-4. Examples of Requirements Quality Issues and Corrective Actions

Typical Requirements

Title Statement Quality Issues Corrective Actions

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

Performance Unless otherwise specified,
performance requirements in the
following paragraphs shall be met
with the Vehicle at maximum
weight, resting on a flat, hard,
level surface, and over the range
of environmental conditions
specified herein. Requirements
relating to personnel shall apply
to males in the 5th through 95th
percentile in stature wearing cold
weather gear.

 Conciseness

 Measurability

 Clarity & Unambiguous

 Completeness and
 Stand-alone

 Consistency

 Verifiability

 Uniqueness/Duplication

1) Derive and flow down
driving design constraint
requirements to vehicle
and lower level product
specifications to ensure
respective designs can
be used under pertinent
operating environmental
conditions (i.e.,
components on hard
surface and muddy
surface).
2) Eliminate duplication
and/or consistency
issues with the ingress
and egress requirement
in the HSI/Human
Engineering section.
3) Derive and flow down
HSI/HFE requirements to
respective components of
the vehicle PBS.

Acceleration The Vehicle at maximum capacity
weight shall accelerate from a
standing start with the engine
idling to 40 mph in not more than
20 sec under nominal conditions.
The vehicle, at curb weight, shall
accelerate from 0 to 40 mph in
not more than 15 sec.

 Measurability

 Clarity & Unambiguous

 Completeness and
Stand-alone

 Verifiability

1) Derive a vehicle
acceleration loads (TBD
g's) requirement to flow
down to the Rear
Egress/Ingress assembly
such it retains its closed
position while the vehicle
is under maximum
forward acceleration.

Threat

Ballistic
Protection

The Vehicle shall provide
protection against 14.5 mm
machine gun and RPG-7 threats.

 Measurability

 Clarity & Unambiguous

 Completeness and
Stand-alone

 Verifiability

 Uniqueness/Duplication

1) Determine threat
protection quantification
factors (e.g., friend-to-
threat range, munitions
energy level) to quantify
the degree of threat
protection by threat type.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

Rear Egress/

Ingress
Assembly

The time required for the Rear
Egress/Ingress assembly to fully
open or close with the engine
running shall not exceed 10 sec.
The Rear Egress/Ingress
Assembly lock mechanism shall
permit single hand locking and
unlocking.

 Measurability

 Clarity and
Unambiguous

 Implementation/
Design Freedom

 Verifiability
Proper Level

 Positivity

1) Develop requirements
that are clear,
measurable & verifiable,
implementation free,
stated in a positive
manner, and at the right
level of the PBS.

2) Derive and flow down
requirement to respective
components (e.g., Rear
Egress/Ingress
assembly, Rear
Egress/Ingress latch) of
the vehicle PBS.

Interior Lighting All interior lights, except the turret
panel and turret drive power
lights, shall extinguish
automatically when either the
Rear Egress/Ingress Assembly or
the Rear Egress/Ingress
Assembly door is opened.

 Measurability

 Clarity & Unambiguous

 Implementation/
Design Freedom

 Verifiability

 Proper Level

1) Develop requirement
that is clear, measurable
& verifiable,
implementation free, and
at the right level of the
PBS.

2) Derive and flow down
requirement to respective
components depending
on architecture and
solutions (e.g., chassis,
Rear Egress/Ingress
assembly) of the vehicle
PBS.

Driver's Switches
& Indicators

The Vehicle shall provide the
following analog functions and
indicators:
a. Rear Egress/Ingress Up/Down
switch and unlocked indicator

 Clarity & Unambiguous

 Implementation/
Design Freedom

1) Develop vehicle level
requirement that is clear
and implementation free.

2) Derive and flow down
requirements (e.g.,
performance, and internal
interfaces) to respective
PBS components
depending on
architecture and solutions
(e.g., chassis, driver
controls, passenger
personnel controls, Rear
Egress/Ingress
assembly).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

Failure Handling After a failure is detected and
acknowledged (if required), failure
handling shall disable only the
functionality affected by the
detected failure, and the
remaining Vehicle shall continue
operation. The Vehicle shall be
capable of handling occurrence of
multiple failures by disabling the
summation of impacted functions.
When a failure occurrence
impacts the Vehicle functionality,
the Vehicle shall inform the
personnel of the loss. The Vehicle
shall not create conditions that
may present an unacceptable risk
to personnel or result in serious
damage to equipment. The
Vehicle shall transition to a safe
mode as required. The Vehicle
shall remain in a safe mode until
crew acknowledgement is
received from failure handling
Pop-up. The Vehicle shall allow
the crew to display the
malfunction advisory list.

 Measurability

 Clarity & Unambiguous

 Implementation/
Design Freedom

 Completeness &
Stand-alone

 Verifiability

 Proper Level

 Positivity

1) Develop failure
handling requirements
set that are clear,
measurable & verifiable,
implementation free, and
at the right level of the
PBS.

2) Derive and flow down
requirements to
respective components
depending on
architecture and solutions
(e.g., electronics, SW,
user interface (UI), Rear
Egress/Ingress
assembly) of the vehicle
PBS.

Emergency
Operation

The Vehicle shall provide an
emergency operation capability to
drive the vehicle in the case of
electronics failures. Functions
required to support driving the
vehicle include:
a. Rear Egress/Ingress Assembly
up/down

 Measurability

 Clarity & Unambiguous

 Verifiability

1) Develop vehicle level
emergency operation
requirements set that is
clear, measureable &
verifiable.

2) Derive and flow down
requirements to
respective components
depending on
architecture and solutions
(e.g., electronics, SW,
user interface (UI), Rear
Egress/Ingress
assembly) of the vehicle
PBS.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

Embedded
Diagnostics

The Vehicle shall perform
embedded diagnostics
functionality sufficient to eliminate
special diagnostic equipment.

 Measurability

 Clarity & Unambiguous

 Completeness &
Stand-alone

 Verifiability

1) Develop vehicle level
embedded diagnostics
requirements set that is
clear, complete & stand-
alone, and measureable
& verifiable.

2) Derive and flow down
requirements to
respective components
depending on
architecture and solutions
(e.g., electronics, SW,
user interface (UI), Rear
Egress/Ingress
assembly) of the vehicle
PBS.

Climate The Vehicle shall be capable of
operating under the conditions
specified in AR 70-38, for the
climatic categories hot and basic
without a cold start aid, and
categories cold and severe cold
with an aid.

 Clarity & Unambiguous

 Completeness &
Stand-alone

 Singularity

 Uniqueness

Traceability Issues:

 AR 70-38
requirements

1) Restate into complete
& standalone vehicle
level operating climatic
environmental design
constraint requirements
that are clear, singular,
and unique.

2) Flow down the
operating climatic
environmental design
constraint requirements
to the Rear
Egress/Ingress
assembly.

Missing
Environmental
Requirements

Natural: Ambient Pressure,
Temperature Shock, Solar
Radiation, Salt Fog, Rain & Hail,
Ice & Snow, Winds, Lightning
(Direct & Indirect), Sand & Dust,
Induced: Weapon/gun firing
environmental loads: (shock,
vibration, thermal, & blast), non-
firing thermal loads, vehicle
movement shock and vibration

N/A 1) Develop and/or derive
vehicle level natural and
induced environmental
design constraint
requirements.

2) Flow down pertinent
natural and induced
environmental design
constraint requirements.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

MTBF The MTBF was a missing
reliability requirement.

Candidate - The Vehicle
Mean Time Between
Failures (MTBF) shall be
greater than 120 hours
(Threshold) and 168
hours (Objective).

1) Derive a vehicle level
reliability (MTBF) design
constraint requirement to
enable reliability budget
allocations to
components on the
vehicle PBS.

2) Flow down the
allocated reliability
budget (MTBF)
requirement to the Rear
Egress/Ingress
assembly.

General Safety The Vehicle shall ensure the
highest degree of safety and
health consistent with mission
requirements throughout its life
cycle.

 Conciseness

 Measurability

 Clarity & Unambiguous

 Attainability &
Feasibility

 Completeness &
Stand-alone

 Verifiability

 Uniqueness

1) Develop the complete
& stand-alone vehicle
level safety requirements
set (e.g., environmental,
material, equipment
motion, weapon firing
and munitions handling,
emitter usage, software,
failure modes, electrical,
mechanical, explosive).

2) Flow down the
pertinent safety
requirement to the Rear
Egress/Ingress
assembly.

Transportability .TBP Missing other
Transportability
environmental
requirements: e.g., Shock
and vibration
requirements associated
with Air, Sea, & Land
modes of transportation

1) Develop the complete
& stand-alone vehicle
level transportability
environmental
requirements set (e.g.,
shock, vibration for air,
sea, and land
transportation modes).

2) Flow down the
pertinent transportability
environmental
requirement to the Rear
Egress/Ingress
assembly.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Typical Requirements

Title Statement Quality Issues Corrective Actions

Materials,
Processes, and
Parts Selection

All materials, parts, and
processes selected for use in the
Vehicle construction shall be
compatible with the safety,
performance, and environmental
requirements as specified herein.

 Measurability

 Clarity & Unambiguous

 Attainability &
Feasibility

 Completeness &
Stand-alone

 Verifiability

 Singularity

1) Develop the complete
& stand-alone vehicle
level materials design
constraint requirements.

2) Flow down the
pertinent material design
constraint requirements
to the Rear
Egress/Ingress
assembly.

7.1.1.3 Hard Vs. Soft Requirements

Timely progressive requirements maturation drives success for both project management and
systems engineering. Requirements maturity measures the endurance or in other words the
hardness or softness of a requirement. A ―hard‖ or long lasting requirement possesses all
excellent quality factors, a verb form that obligates commitment to deliver, absence of
forbidden words, a priority of importance that the product meets the requirement at delivery,
and bi-directionally traceable to substantiated rationale, and higher level and/or lower level
requirements. The four cardinal attributes of a requirement that can be used to determine the
maturity of a requirement (hardness or softness) are:

 Quality factors

 Verb forms of ―To be‖

 Forbidden words and phrases

 Prioritization

 Bi-Directional traceability

One or more quality factors that are less than excellent determine that a requirement is soft or
not enduring. Refer to table 7.1-6 for quality factor attributes of a requirement.

Verb tense and mood of the verb forms of ―To be‖ used in a requirement statement dictate
whether a requirement is hard or soft and to the extent in which a requirement is hard or soft.
A requirement verb form of ―To be‖ obligates a commitment that is mandatory, desirable, or
optional.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

Table 7.1-5 provides requirement ―To Be‖ key word definitions consistent with the
International Council on Systems Engineering (INCOSE) Systems Engineering
Handbook.[INC10]

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

Table 7.1-5. Requirement "To Be" Key Words

Requirement Verb Forms of “To Be”Error! Bookmark not defined.
2

No. Verb Tense
and Mood Description

1 Shall A mandatory requirement that originates from a stakeholder. Requirements are
demands upon the designer or implementer and the resulting product. The verb
―shall‖ is the imperative form of the verb ―to be‖. The verb ―shall‖ identifies
requirements and requires verification.

2 Should A statement that conveys a desirable requirement or capability by the customer,
compliance is not required. The verb ―should‖ is an indefinite form of the verb ―to
be‖. When developing specifications minimal use of the verb ―should‖ is expected.
Use the ―Should‖ statements are not requirements.

3 Must A customer desire, or possibly a goal, but not a requirement and does not require
verification. If ―Shall‖ and ―Must‖ are both are used in a requirements specification,
there is an implication of difference in degree of responsibility upon the
implementer.

4 May An optional requirement or a statement relating to how the mandated requirements
can be achieved.

5 Will A statement of intent or a statement relating to something outside the scope of the
product to be developed, but that is relevant to the product under consideration. A
statement containing ―will‖ can be used to identify a future happening or convey an
item of information, explicitly not to be interpreted as a requirement.

Forbidden words or phrases lead to ambiguity and determine whether a requirement is soft or
not enduring. Table 7.1-6 provides a sample of forbidden words or phrases that is consistent
with the International Council on Systems Engineering (INCOSE) Systems Engineering
Handbook. [INC10]

Table 7.1-6. Sample Forbidden Requirement Words and Phrases

Sample Forbidden Words and PhrasesError! Bookmark not defined.
3

No. Type Examples

1 Superlatives Supreme, excellent, fullest, least, outstanding, highest, greatest, best, most, worst,
unparalleled, unrivalled, peerless, matchless, unsurpassed, of the highest order,
poor, ordinary

2 Subjective
Language

user friendly, easy to use, efficient, effective, cost effective, good, readable,
seamless, visible, ideal, assist, quick, correct, practicable, consistent, necessary,
near, clear, intended, capable

3 Vague
Pronouns

he, she, this, that, they, their, who, it, its, which

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

Sample Forbidden Words and PhrasesError! Bookmark not defined.
3

No. Type Examples

4 Ambiguous
Adverbs and
Adjectives

all, full, low, adequate, applicable, appropriate, almost always, better, significant,
maximum, minimal, minimum, timely, real-time, precisely, appropriately,
approximately, various, multiple, many, few, limited, accordingly, some, high, bad,
rapid, easy, complete, incorrect

5 Open-ended
Non-

verifiable
Terms

provide support, but not limited to, as a minimum, sufficient, give, do, provide

6 Comparative
Phrases

better than, higher quality, like, equivalent, in order to, includes but shall not be
limited to, between

7 Loopholes if possible, as appropriate, as applicable, however, relevant, could, possible,
consider, must, may,

8 Other
Indefinites

etc., and so on, to be determined (TBD), to be reviewed (TBR), to be supplied
(TBS), and/or, shall not, will be required, would, is

Priority assignment determines whether a requirement is soft or not enduring. Table 7.1-7
provides examples of the priority types:

Table 7.1-7. Examples of Requirements Priority Assignments

Examples of Requirement Priority Assignments

No. Type Examples

1 Mandatory A requirement that is deemed to be imperatively fulfilled by the product.

2 Desirable A requirement that is deemed to be worth being fulfilled by the product.

3 Optional A requirement that is deemed to be electively fulfilled by the product.

4 Regulatory
or Legislative

A requirement that is deemed to control or governed fulfillment by the product.

5 Tradable A requirement that is deemed to be partially or zero fulfilled by the product.

The ―bi-directional traceability‖ of a requirement determines whether a requirement is hard or
soft. A requirement should have traceability to substantiated rationale or an analytical
foundation, and upward or downward traceability to requirements. A low-level, detailed
requirement without traceability to a parent requirement is potentially a requirement with no
basis for existence (gold plating). A customer or higher-level PBS requirement that does not
yield lower level requirements that are either derived, decomposed, or allocated are potentially
irrelevant, unrealizable, not having been fulfilled or implemented, or not testable.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

Table 7.1-8 provides examples of downward traceability requirements.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

Table 7.1-8. Examples of Requirement Bi-Directional Traceability

Examples of Requirements Bi-Directional Traceability

No. Type Examples

1 Derivation Operate vehicle => conserve fuel, fuel carrying capacity

Vehicle dash speed (acceleration) => Power Package/Power Train power and
torque => Engine power and torque, Power Transport (Transmission) power and
torque

Transportability => military lift cargo weight limits, airlift and rail lift cargo
dimension limits

P kill or P raid annihilation => P Detect, P Decide, P Weapon Launch, P Missile Launch, P hit

Ao => MTBF, MMBF

2 Decomposition Operate vehicle => Move, Maneuver, Start, Initialize, Shutdown vehicle =>
Accelerate, move on highway, move on cross country, turn vehicle, climb obstacle,
cross gap/trench

Engage target => Initialize weapon, calculate ballistic solution, load weapon, point
weapon, fire weapon, return to battery

3 Allocation Flow down of weight, reliability, environmental conditions budgets

4 No further
allocation or

decomposition

Transportability, Personnel and training, operator manuals, facilities and facility
equipment requirements

A requirement is considered to be soft when its attributes are characterized with one or more of
the following:

 One or more excellent quality factors are missing

 Verb forms ―should, must, may, or will‖ are used for the verb forms of ―To be‖

 Forbidden words or phrases are used in the requirement statement

 Prioritization is determined to be either desirable, optional, or tradable

 Bi-directional traceability lacks substantiated rationale or analytical foundation, or leads
to an orphan requirement or childless parent requirement

7.1.1.4 ARRoW Behavioral Analysis

This section describes the analysis performed to discover desired functional capabilities of the
ARRoW Integrated Development Environment (IDE). An analysis of external actors was
performed to understand the context in which ARRoW will operate as well as to identify
automation opportunities. Textual requirements for ARRoW were written and are provided in
this section. Use cases were developed to elaborate essential functionality of ARRoW and to
identify an emergent logical architecture of ARRoW.

7.1.1.4.1 ARRoW Actors

An analysis was performed to identify actors that historically influence the design and program
management of ground combat systems. These same actors potentially might interface, either
directly or indirectly, with the AIDE. This section describes the actors that were identified as a
result of this analysis.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

In this context, ―actor‖ is defined to be an entity that represents the role of a human, an
organization, or any external system that that participates in the use of the AIDE. Since an
actor represents a ‗role‘, it is possible, for example, that a particular person can assume multiple
roles, and thus can be represented by multiple actors.

The rich breadth and depth of expertise that traditionally drives the design of combat systems
is evidenced by the extensive, but by no means exhaustive, list of actors described herein. It
should be noted that any attempt to reduce or eliminate the need for any of these actors, such as
through automation techniques within the AIDE, must fill the resultant design-influence
knowledge void by other means. Possibilities include:

 Development of expert systems agents as surrogates for these actors

 Development of non-traditional requirements and their attendant test cases to support
automated verification that ―subject matter expert‖ design rules are adhered to

 Reuse of configuration managed design components that are strictly accredited in terms
of the specific subject matter areas represented by these actors.

Figure 7.1-1 depicts a SysML diagram of ARRoW actors. Generalization-specialization role
relationships are shown in this diagram using standard SysML notation whereby arrowheads
terminate on the actor with the more general role. For example, at the top of the hierarchy in
this diagram is the ―ARRoW User‖ actor – the most general actor depicted. Specializations of
the ―ARRoW User‖ include the ―Acquisition Community Member‖ and ―SoI Development
SME‖ actors.

A non-normative convention is used in our SysML diagrams to distinguish human actors from

nonhuman actors. Human actors are represented with a stick figure symbol, for example:

Nonhuman actors are represented in block form, for example:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

Figure 7.1-1. ARRoW Actors

Descriptions of the actors shown in Figure 7.1-1, alphabetically sorted by actor name, are
provided in Table 7.1-9. These actors can be additionally found in the MagicDraw file
―META_Project.mdzip‖, in the package labeled ―6.1.1 Actors‖ with the description text in the
documentation metadata field associated with each actor element.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

Table 7.1-9. ARRoW Actor Descriptions

Actor Name Description

Analysis Archetype Developer A library content developer of any analysis archetype.

Applied Mechanics Analyst An Applied Mechanics Analyst applies advanced modeling techniques to
analyze fluid dynamics, multi-body dynamics, thermal dynamics,
shock/vibration analysis, etc. Generally has advanced degree.
Typically, engineering mechanics is used to analyze and predict the
acceleration and deformation (both elastic and plastic) of objects under
known forces (also called loads) or stresses.
When treated as an area of study within a larger engineering curriculum,
engineering mechanics can be subdivided into:

 Statics, the study of non-moving bodies under known loads

 Dynamics (or kinetics), the study of how forces affect moving bodies

 Mechanics of materials or strength of materials, the study of how
different materials deform under various types of stress

 Deformation mechanics, the study of deformations typically in the
elastic range

 Fluid mechanics, the study of how fluids react to forces. Note that fluid
mechanics can be further split into fluid statics and fluid dynamics, and is
itself a subdiscipline of continuum mechanics. The application of fluid
mechanics in engineering is called hydraulics.

 Continuum mechanics is a method of applying mechanics that
assumes that all objects are continuous. It is contrasted by discrete
mechanics.

[edit] Major topics of applied mechanics

 Acoustics

 Analytical mechanics

 Computational mechanics

 Contact mechanics

 Continuum mechanics

 Dynamics (mechanics)

 Elasticity (physics)

 Experimental mechanics

 Fatigue (material)

 Finite element method

 Fluid mechanics

 Fracture mechanics

 Mechanics of materials

 Mechanics of structures

 Rotordynamics

 Solid mechanics

 Soil mechanics

 Stress waves

 Viscoelasticity

ARL Vulnerability Analyst ARL = Army Research Lab

A Vulnerability Analyst will analyze and review integrated solutions of
armor, spall liners, component placement, and hull design to assess force

http://en.wikipedia.org/wiki/Elastic_Deformation

http://en.wikipedia.org/wiki/Plastic_Deformation

http://en.wikipedia.org/wiki/Stress_(physics)

http://en.wikipedia.org/wiki/Statics

http://en.wikipedia.org/wiki/Dynamics_(mechanics)

http://en.wikipedia.org/wiki/Mechanics_of_materials

http://en.wikipedia.org/wiki/Strength_of_materials

http://en.wikipedia.org/wiki/Materials

http://en.wikipedia.org/wiki/Deformable_bodies

http://en.wikipedia.org/wiki/Elastic_deformation

http://en.wikipedia.org/wiki/Fluid_mechanics

http://en.wikipedia.org/wiki/Hydraulics

http://en.wikipedia.org/wiki/Continuum_mechanics

http://en.wiktionary.org/wiki/discrete

http://en.wikipedia.org/w/index.php?title=Applied_mechanics&action=edit§ion=3

http://en.wikipedia.org/wiki/Acoustics

http://en.wikipedia.org/wiki/Analytical_mechanics

http://en.wikipedia.org/wiki/Computational_mechanics

http://en.wikipedia.org/wiki/Contact_mechanics

http://en.wikipedia.org/wiki/Continuum_mechanics

http://en.wikipedia.org/wiki/Dynamics_(mechanics)

http://en.wikipedia.org/wiki/Elasticity_(physics)

http://en.wikipedia.org/wiki/Experimental_mechanics

http://en.wikipedia.org/wiki/Fatigue_(material)

http://en.wikipedia.org/wiki/Finite_element_method

http://en.wikipedia.org/wiki/Fluid_mechanics

http://en.wikipedia.org/wiki/Fracture_mechanics

http://en.wikipedia.org/wiki/Mechanics_of_materials

http://en.wikipedia.org/wiki/Mechanics_of_structures

http://en.wikipedia.org/wiki/Rotordynamics

http://en.wikipedia.org/wiki/Solid_mechanics

http://en.wikipedia.org/wiki/Soil_mechanics

http://en.wikipedia.org/w/index.php?title=Stress_waves&action=edit&redlink=1

http://en.wikipedia.org/wiki/Viscoelasticity

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

Actor Name Description

protection/ mission effectiveness characteristics of a system.

Analyses could include:

 Shotline Analysis

 Ballistic Impact Analysis

 Fragmentation Impact Analysis

 Shape Charge Impact Analysis

 Sympathetic Detonation Analysis

 Mine Blast Analysis

The ARL reviews combat systems’ vulnerabilities. A system that fails
such a review may not be allowed to be fielded.

AIDE Developer Developer of the AIDE product. Analyzes capabilities of, architects,
designs, integrates, verifies, and deploys the AIDE.

ARRoW Power User An ARRoW user who has advanced knowledge and skills related to use
and configuration of the ARRoW toolset/environment.

ARRoW Tool Developer An ARRoW Developer who specifically develops a tool that integrates
into the AIDE.

ARRoW User An ARRoW User is a general role for any human that uses the AIDE.

Battle Lab Representative A member of a battle lab group who might compose a model of a real or
notional system for evaluation in an operational scenario. The model
might be constructive, virtual, or live.

Circuit Designer An engineer who designs electrical circuits.

CML Curator This role is charged with maintaining the integrity of the CML.

Combat Arms User End user that includes representatives from:

 Infantry

 Armor

 Field Artillery

 Air Defense Artillery

 Aviation

 Special Forces

 Corps of Engineers

Combat Service Support User End user that includes representatives from:

 Adjutant General Corps

 Finance Corps

 Transportation Corps

 Ordnance Corps

 Quartermaster Corps

Combat Support User End user that includes representatives from:

 Signal Corps

 Military Police Corps

 Military Intelligence Corps

 Civil Affairs

 Chemical Corps

Command & Control Expert Expert who understands battle command software, command and control
messaging, and in general any interface to external command and control

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

Actor Name Description

centers of operation.

Communications Engineer Engineer who designs and analyzes wireless communications equipment
and systems.

Component Developer Develops components for inclusion in the CML. Adds/modifies
components to Component Model Libraries pursuant to library curator
polices/procedures.

Components may or may not be initially developed within the AIDE.

Computer Architect Develops architectures for computer processing systems including
networked processing systems.

Context Model Developer Creates models of external environments and systems that might
interface with the system of interest.

Controls Engineer An engineer who develops control hardware, software and algorithms for
control systems. Examples include electrical motor servo control, thermal
management control, and hydraulic systems control.

Design Archetype Developer A library content developer of any design archetype or design reference
architecture.

Design Integration Engineer An design integration engineer manages the physical integration,
including assigned location, of all components within the SoI.

Domain Engineer A general role for a classical engineering discipline such as a mechanical
or electrical engineer.

Domain Tool Developer Developer of a Domain Tool. Refer Domain Tools.

Domain Tools Tools, such as ProE, that are used by domain specific engineers to
design the system of interest or its components.

Electrical Power Engineer An electrical engineer who architects and designs power generation,
distribution, and control systems and components.

EMI / EMC Expert EMI = Electromagnetic Interference
EMC = Electromagnetic Compatibility
An expert, generally with an electrical engineering background, who
understands the effects of electromagnetic coupling between
components and systems and who is able apply design principles to
minimize adverse effects of such phenomena.

FCC Representative FCC = Federal Communications Commission

Expert who would validate that intentional radiated emissions are
permissible within the USA.

Full Spectrum Simulator A Full Spectrum Simulator is BAE Systems' concept of an external
wargaming environment that could request the AIDE to construct a virtual
prototype of a specified SoI and/or serve up its simulation, for example,
via an HLA federation.

Full spectrum operations range from stable peace operations to major
combat operations. Full Spectrum Operations includes variant sets of
tasks required to conduct offensive, defensive, stability, and civil support
operations.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

Actor Name Description

Government Needs Website This is a notional website that the government acquisition community
would use to publish any form of request for contributions from the crowd.
Such a website might publish challenge problems, requests from the
cloud for design concepts, formal Requests for Proposals, detailed
System Requirements Specifications, etc. The form of any such request
might be standardized such that the AIDE can link a master model to a
government needs interest or request.

Such a website might be used by unsophisticated individuals as well as
major defense contractors.

Human Factors Engineer An engineer who architects, designs, and analyzes the ergonomics of
systems and components as well as the predicted performance of
humans using the system.

HVAC Expert HVAC = Heating, Ventilation, and Air Conditioning

An HVAC expert additionally designs Chemical, Biological, and Nuclear
particle filtration and overpressure systems.

IAT&C Engineer IAT&C = Integration, Assembly, Test, and Checkout

iFab The output of the ARROW toolset is a "blueprint" which is then sent to an
iFab tool for virtual manufacturing.

Information Assurance
Engineer

An expert in the field of cyber security.

Innovation-Driven SOI
Developer

A member who executes clockwise thinking, i.e., creates ideas without
being constrained by knowledge, explores the ideas, challenges the
ideas, and discovers problems that can be solved with the ideas.

Could be a Grad Student, for example. This person may have a technical
background, but might also be an artist or a science fiction writer.

ISR Engineer ISR = Intelligence, Surveillance, Reconnaissance

An ISR Expert specifies and/or designs sensors, cameras, and sensor
data processing and data distribution equipment.

Knowledge-Driven SOI
Developer

A member who executes counterclockwise thinking, i.e., uses
assumptions facts, and beliefs to establish knowledge, develops solutions
based on knowledge, validates solutions to the knowledge, and applies
solutions to the problems at hand.

Library Content Developer A library content developer works on products that are meant to be
applied across a multiplicity of future potential systems of interest,
whereas a SoI developer is concentrating on solutions that are targeted
to a specific design solution.

Library Curator A library curator administers and manages the integrity of the library that
they are responsible for. A curator controls the quality of the entities
within the library, the certification of the trustworthiness and integrity of
the collection content, ensures library services are maintained, are
functional, and perform adequately, manages configuration of the library,
and controls the security of and access to the library.

Library Developer A Library Developer develops the infrastructure and services that are

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Actor Name Description

associated with the library.

Logistics Engineer A Logistics Engineer is a SoI Development Subject Matter Expert (SME)
focused on the scientific organization of the purchase, transport, storage,
distribution, and warehousing of materials and finished goods of the
system of Interest.

Maintainability Engineer A Maintainability Engineer is a SoI Development SME focused on the
ease in which a product can be maintained (preventative and corrective
maintenance) in order to minimize the downtime of the System of interest
(SoI). Thus increasing the operational availability (Ao) of a SoI.

Maintainability– The ease with which a SoI to be retained in, or restored
to, a specified condition when maintenance is performed by personnel
having specified skills using prescribed procedures and resources at
each prescribed level of maintenance and repair.

Maintainability engineering aides in maximizing SoI uptime and
operational availability (Ao) by providing design influence and analysis in
the following cardinal product life cycle considerations:

 isolate defects or their cause

 correct defects or their cause

 meet new requirements

 make future maintenance easier

 cope with a changed environment

In some cases, maintainability involves a system of continuous
improvement - learning from the past in order to improve the ability to
maintain systems, or improve reliability of systems based on
maintenance experience.

The maintainability engineering effort in the conception and design phase
is critical to ensure that high system availability is obtained at optimum
Life Cycle Support Cost.

 Maintainability engineering effectively influences the System of Interest's
availability calculation by minimizing downtime: the time required to bring
a failed system back to its operational state or capability. This down time
is normally attributed to maintenance activities. This minimized downtime
does not happen at random, it is made to happen by actively ensuring
that full consideration is given during the conceptual and design phase.
Therefore the inherent maintainability characteristics of a system must be
assured. This can be achieved by the implementation of specific design
practices and validated through a maintainability assessment process,
utilizing both analyses and testing. The following are cardinal
maintainability engineering assurance activities:

 Maintainability Programs

 Maintainability Assessment

 Maintainability Modeling

 Maintainability Demonstration

 Design for Maintainability

 Defect Reporting and Corrective Action System (DRACAS)

Malicious User This is any user of the AIDE that has malicious intent. Such a user may

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

Actor Name Description

be an amateur or a member of a sophisticated organization, including
foreign governments.

A malicious user might create content that has intentional side effects
that may be difficult to detect but could make its way into deployed
systems.

Additionally, a malicious user might disrupt ARRoW services such as by
employing denial of service. Such an attack could be in the form of
overloading web servers or by provoking non-useful simulations that
consume server processing bandwidth.

Mechanical Engineer Mechanical engineering is a discipline of engineering that applies the
principles of physics and materials science for analysis, design,
manufacturing, and maintenance of mechanical systems. It is the branch
of engineering that involves the production and usage of heat and
mechanical power for the design, production, and operation of machines
and tools.

Mobility Expert A mechanical engineer who specializes in vehicle power train, steering,
and/or suspension systems.

Modeling & Simulation
Engineer

A software engineer who specializes in the design of modeling systems
used for simulating the behavior of physical or cyber designs in the
context of various external environments.

NATO Representative Any NATO representative that would be interested in the SoI design,
capability, or its modeled behavior.

Navigation Systems Expert An engineer who specializes in the capability of and integration of
navigation equipment such as Global Positioning System (GPS) and
inertial navigation systems.

Networking Architect An electrical or software engineer who specializes in the design and
analysis of local area or wide area data networks.

Operating Environment Expert A software engineer who specializes in the design and integration of
operating systems, hypervisors, middleware, etc.

Operational Commander Actual strategic user of the system. Stakeholder based on operational
capabilities and Deep Green level use cases.

OT&E Representative OT&E = Operational Test & Evaluation

PMO Member PMO = Program Management Office

This member can be of any Program Management Office that supports
the acquisition of materiel for the U.S. Government.

Process Monitor Quality assurance role, making sure the vehicle is designed and built
correctly with respect to DoD processes and guidelines.

Producibility Engineer An engineer who can influence the design to ensure it can be
manufactured most easily and cost effectively.

Program Manager The lead manager of the government acquisition organization directly
responsible for the proper execution of the program (cost, schedule, and
performance) that develops the system of interest.

Program Office The government acquisition organization that is ultimately responsible for

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

Actor Name Description

the proper execution of the program that develops the system of interest.
A program office might manage multiple programs, each with its own
Program Manager.

R&D Center Representative R&D = Research & Development

Government funded R&D centers that undertake creative work on a
systematic basis in order to maintain and/or increase the stock of
knowledge in the interest of the United States of America, or for the
betterment of mankind, culture and society.
Research and development is often scientific and focused towards
developing particular technologies, and devising new applications based
on the stock of knowledge and technologies.

Regulatory Authority This includes any agency or organization representative that may need to
review and/or analyze and approve the SoI design and the context in
which the design may be used and is fielded.

Reliability Engineer A Reliability Engineer is a SoI Development SME focused on the study,
evaluation, and life-cycle management of reliability of the System of
Interest (SoI): the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.

Basic Reliability - The duration or probability that a SoI will perform
satisfactorily (failure-free performance) for a given time when used under
specified operating conditions. As a general definition, reliability is the
capacity of parts, components, equipment, products and systems to
perform their required functions for desired periods of time without failure,
in specified environments and with a desired confidence. There are two
specialized types of reliability: Logics Reliability and Mission Reliability.

Logistics Reliability – The ability of a SoI to perform failure free, under
specified operating conditions and time without demand on the support
system, measured as a mean time between maintenance actions.
Logistics reliability is a measure of a system's ability to operate without
logistics support. All failures, whether the mission is or can be completed,
are counted.

Mission Reliability – The probability that the SoI is operable and capable
of performing its required function for a stated mission duration or for a
specified time into a mission.

Reliability engineering and maintainability engineering are inter-
dependent.

Reliability engineering discipline concerned with predicting, monitoring,
testing, and improving the reliability of a system, device, or process.

Reliability engineering for complex systems require a different more
elaborated systems approach than reliability for simple systems/parts.
Reliability engineering is closely related to system Safety engineering in
the sense that they both use common methods for their analysis and
require input from each other. Reliability engineers should have broad
skills and knowledge. Reliability engineering has important links with

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

Actor Name Description

Functional design, Hardware Design, Software, Manufacturing,
Transport, Handling, Storage, Spare parts, Operational issues, Human
Operators and maintainers, Repair shops, Software, Manuals, Training
and more.

Requirement Archetype
Developer

Develops requirement archetypes for inclusion in the CML or other
libraries.

Safety / Environmental
Engineer

An engineer who analyzes and influences designs in terms of safety and
environmental impact.

Safety Board Representative Example: Weapon Systems Explosive Safety Review Board.

Software Architect The main responsibilities of a software architect include:

 Limiting choices available during development by:
- choosing a standard way of pursuing application

development
- creating, defining, or choosing an application framework for

the application

 Recognizing potential reuse in the organization or in the
application by:
- Observing and understanding the broader system

environment
- Creating the component design
- Having knowledge of other applications in the organization

Software architects can also:

 Subdivide a complex application, during the design phase, into
smaller, more manageable pieces

 Grasp the functions of each component within the application

 Understand the interactions and dependencies among
components

 Communicate these concepts to developers
In order to perform these responsibilities effectively, software architects
often use Unified Modeling Language and OOP. UML has become an
important tool for software architects to use in communicating the overall
system design to developers and other team members, comparable to
the drawings made by building architects.

Software Engineer Software Engineering (SE) is a profession dedicated to designing,
implementing, and modifying software so that it is of high quality,
affordable, maintainable, and fast to build. It is a systematic approach to
the analysis, design, assessment, implementation, test, maintenance and
reengineering of software, that is, the application of engineering to
software.

SoI Analyst A System of Interest (SoI) developer who uses the AIDE to analyze the
design or performance of the SoI.

SoI Acquisition Community
Member

General role for any member of the government acquisition community.

SoI Developer SoI = System of Interest

A library content developer works on products that are meant to be
applied across a multiplicity of future potential systems of interest,
whereas a SoI developer is concentrating on solutions that are targeted
to a specific design solution.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

Actor Name Description

SoI Developer - Designer A System of Interest (SoI) developer who uses the AIDE design a new
SoI or any of its components.

SoI Developer - Reference
Architecture

A System of Interest (SoI) developer who uses the AIDE design a new
design archetype or reference architecture.

SoI Developer - Test Case Coordinates with Requirements developer to create ARRoW-compatible
test cases and test case archetypes.

SoI Developer - Test Result
Analyzer

A System of Interest (SoI) developer who uses the AIDE design a new
test result analyzer.

SoI Developer - Verifier This is the person who reviews the test results reported by ARRoW for
the purpose of disposition.

SoI Developer -Requirements Performs requirements analysis, writes requirements and requirements
archetypes, derives/decomposes and allocates requirements and
requirements archetypes. Assigns test method to each requirement
created.

SoI Development SME SME = Subject Matter Expert

A SoI SME is someone who has some specialized expertise in a field, the
application of which could potentially influence the design of the SoI.

SoI End User Actual strategic user of the fielded system of interest, including any
personnel involved in its needed support services.

Specialty Engineer Specialty Engineering is a general class of engineering disciplines that
include Reliability, Maintainability, Logistics, Human Factors, Testability,
Producibility, Safety, and Environmental engineering.

Survivability Expert A Survivability Expert can analyze and design integrated solutions of
armor, spall liners, component placement, and hull design to optimize
force protection/mission effectiveness characteristics of a system.

SW Integration Expert A software engineer who specializes in the integration and test of
software systems.

Systems Engineer A SE is a specialized domain engineer who applies an engineering
discipline to a SoI that concentrates on the design and application of the
whole (system) as distinct from the parts. The SE looks at a problem in its
entirety, taking into account all the facets and all the variables and
relating the social to the technical aspect. A SE integrates multiple
disciplines and specialty groups into a set of activities that proceed from
concept to production to operation.

A SE applies an interdisciplinary approach and means to enable the
realization of a successful SoI. The SE focuses on defining customer
needs and required functionality early in the development cycle,
documenting requirements, and then proceeding with design synthesis
and system validation while considering the complete problem:
operations, cost and schedule, performance, training and support, test,
manufacturing, and disposal. The SE also considers both the business
and the technical needs of all customers with the goal of providing a
quality SoI that meets the user needs.

Test Case Archetype
Developer

Develops test case archetypes for inclusion in the CML or other libraries.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

Actor Name Description

Test Range/Facility
Representative

Test ranges and test facilities have severe constraints on SoI design and
operation limits. Test articles sent to these facilities may need special
configurations to conform to these constraints and may need to be
independently verified that they conform to these constraints before the
article can be used on the range/facility.

Notes:
- A Safety Assessment Report (SAR) is generally required to be delivered
to this representative.
- A Safety Fan Declaration is typically provided for ballistic or flyable
rounds that declares the worst case maximum flight envelop through
which the round will pass under any normal or failure mode condition.

Testability Engineer A Testability Engineer is a SoI Development SME focused

Testability - A design characteristic which allows the status (operable,
inoperable, or degraded) of an item to be determined and the isolation of
faults within the item to be performed in a timely manner (MIL-STD-
2165). A design characteristic that allows its operational status to be
determined and the isolation of faults to be performed efficiently (IEEE
Std 1522).

Testability Analysis – The engineering practice associated with evaluating
the testability of a system, device, or process.

TRA Archetype Developer Develops test result analyzer archetypes for inclusion in the CML or other
libraries.

TRADOC Member TRADOC = Training and Doctrine Command

Training and Doctrine
Developer

A Training and Doctrine Developer creates Tactics, Techniques, and
Procedures (TTPs) that include use of materiel solutions, including the
SoI.

Training Engineer An engineer who specializes in the content development of embedded
and non-embedded training materials.

TSM Representative (1 of 4) TSM = TRADOC System Management

The CG, TRADOC will establish a TSM office to provide intensive
management beyond the scope of normal management resources
available to the proponent for:

(1) A materiel system, a family of materiel, or a group of closely
related/interdependent materiel systems that are being developed.

(2) Non-system training devices or training systems.

b. TRADOC System Managers will normally be considered for
establishment between Milestones A and B, at the end of Materiel
Solution Analysis, or when a concept is approved. Programs must meet
the following criteria for establishment of a TSM:

(1) Program must be an ACAT I, ACAT II, or other high-priority materiel
system as determined by CG, TRADOC.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

Actor Name Description

(2) Must be a program manager/program executive officer managed
program.

(3) Workload must be such that the program cannot be managed within
the resources and structure available to the proponent.

(4) Workload or uniqueness of the program must be such that an existing
TSM cannot assume the program. Intent of this regulation is not to
preclude combining of individual system responsibilities in one TSM.

TSM Representative (2 of 4) (5) Program must be higher priority or have greater need for a TSM than
existing TSM managed programs. Charter revisions through DCSCD
whenever they perceive that a need exists. TSM duties and
responsibilities. TRADOC System Managers will:

a. Serve as the TRADOC user representative and single Point of Contact
for systems assigned in accordance with the TSM charter.

b. Provide intensive, centralized, total system management and
integration of all DTLOMS considerations.

(1) Doctrine. Coordinate the development of doctrine and tactics,
techniques and procedures from individual to collective, tracing back to
the operational and organizational concept.

(2) Training. Coordinate development of home station and institutional
training for individual, crew and unit. Coordinate development and fielding
of training aids, devices (system and non-system), simulations and
simulators for use in training in the institution, home station, and Combat
Training Centers.

(3) Leader Development. Coordinate development of leader (NCO and
Officer) training and development.

(4) Organization. Coordinate development of basis of issue plans for
assigned systems and associated ancillary equipment, including all
aspects of logistical support. Coordinate development of force design
updates and Tables of Organization and Equipment (TOEs) related to
assigned systems.

(5) Materiel. Coordinate TRADOC position on system reviews, ensure
requirement documents are updated as needed, ensure DTLOMS and
the logistics support system are in place for system testing and first unit
equipped, and plan for system product improvements and
recapitalization.

(6) Soldier. Identify and reconcile all Manpower and Personnel Integration
(MANPRINT) issues, including safety. Coordinate development of new
military occupational specialty (MOS) and appropriate career progression
as needed.

c. Monitor and synchronize all aspects of total system development,

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

Actor Name Description

testing and evaluation, corrective actions, acquisition, materiel release,
and fielding, to include direct interaction with the program/project/product
managers (PMs) and materiel developers (MATDEVs) of the primary and
ancillary system(s), test community, and the fielding/gaining commands.

TSM Representative (3 of 4) d. Using an Integrated Concept Team (ICT) with empowered membership
from schools and MATDEVs, coordinate the development and
documentation of all related materials, as needed:

e. In coordination with the proponent Directorate of Combat
Developments propose refinement of system requirements in the ORD.
Justify or validate system requirements at all levels of the Army,
Department of Defense (DoD), and Congress, as directed.

f. Participate in MATDEV system concept analyses and cost performance
trade-off and cost as an independent variable analyses by providing
detailed warfighting capability impact of specific system characteristics.
Provide TRADOC senior leadership recommendation for all design
reviews.

g. Prepare TRADOC position on, receive TRADOC leadership approval,
and participate in decision reviews (In Progress Review (IPR)/Army
Systems Acquisition Review Council/Army Requirements Oversight
Council (AROC)/Joint Requirements Oversight Council (JROC)/Defense
Acquisition Board) for assigned systems. Provide user input for
documentation of these reviews, such as Acquisition Program Baseline.
Act as user representative on any other acquisition reviews/boards for
assigned systems.

h. As a part of unit set fielding, support total package fielding by
managing a coordinated schedule of work for TRADOC schools and
activities in support of system development and initial fielding.

i. Identify and prioritize system hardware and software deficiencies to the
MATDEV for corrective action. Review and evaluate proposed actions
and engineering change proposals of the project or program manager to
ensure that user requirements are adequately addressed.

j. Provide for system improvements (Preplanned Product Improvements,
System Enhancement Program, Service Life Extension Program,
recapitalization efforts, etc.) in coordination with the proponent. This is
accomplished through the identification of Science and Technology,
Science and Technology Objectives, Advanced Technology
Demonstrations, Advanced Concept Technology Demonstrations, and
Concept Experimentation Programs for systems assigned to the TSM.

k. Ensure test units are trained and prepared for testing. Coordinate all
user involvement in system testing (for example, scenario development,
test support, unit training, and user subject matter expertise). Monitor
technical and user test activities for assigned systems to keep TRADOC
leadership informed of system progress and to initiate corrective action
for user unit or test personnel/activities as needed.

TSM Representative (4 of 4) l. Crosswalk and reconcile O & O concept to ORD characteristics to the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

Actor Name Description

Request for Proposal (RFP) materiel specifications, ensuring the
acquisition strategy meets user needs.

m. Articulate system operational and organizational concepts associated
with their system as a member of combined arms system of systems and
joint environments.

n. Provide user coordination to manpower estimates.

o. Provide use representation in analysis of alternatives (AoAs), and
other studies, evaluations, and efforts supporting the development
programs.

p. Provide TRADOC representation to allied/prospective users of the
assigned systems.

Use Case Creator Creates the operational use cases and test cases that derive from them.
Maintains and controls access to the tests.

User Interface Expert An expert in the design and architecting of software and hardware
interfaces with the user, including Graphical User Interfaces (GUIs).

War Fighter Front line user of the system. Stakeholder concerns are about how it
operates.

Weapons Expert A subject matter expert in the field of combat systems armament.

7.1.1.4.2 ARRoW Requirements

During the development of the ARRoW use cases and the ARRoW architecture, a few
behavioral requirements emerged that were most expediently captured as text requirements.
Although the list of these textual requirements is quite brief, it is provided in Table 7.1-10 or
the purpose of completeness of this report. These requirements can be additionally found in the
MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.1.3 Requirements‖.

Table 7.1-10. ARRoW Requirements

ID Name Requirement Text

3 Requirements {Header}

3.1 Functional Requirements {Header}

3.1.1 SoI Test Requirements {Header}

3.1.1.1 Estimate Execution
Duration

ARRoW shall provide an estimate of Test Case execution duration
prior to initiation of the test. This duration may be normalized to a
benchmark standard.

3.1.1.2 Configure the Test
Environment for the UUT

ARRoW shall configure the test environment for design-under-test.

Rationale: The test environment includes all of the test support
environment assets required to execute the test.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

ID Name Requirement Text

3.1.1.3 Record Test Result ARRoW shall record the test results.

3.1.1.4 Check Missing Rqmt
Dependency

ARRoW shall check that each requirement dependency in a
requirement archetype is mapped to an actual SoI requirement.

3.1.1.5 Record Test Failure
Cause

ARRoW shall record the cause of failure when a test fails.

3.1.1.6 Test Failure Guidance ARRoW shall compare historical test failure causes to the current
design and shall notify the user if design discrepancies exist in this
regard.

3.1.1.7 Recommend Order of
Test Case Execution

ARRoW shall recommend the execution order when multiple test
cases are run in a shared simulation.

3.1.1.8 Utility Curves ARRoW shall support utility curve association with requirements
and verification.

Rationale: as in Quality Functional Deployment, there can be
degrees of requirement compliance other than just Pass/Fail. This
requirement is intended to support this capability.

3.1.1.9 Report Test Result ARRoW shall report test results such that both required results and
actual results are depicted.

3.1.1.10 Configure Unit For test ARRoW shall configure the design-under-test for testing.

3.1.2 SoI Design Requirements {Header}

3.2 ARRoW Interface
Requirements

{Header}

3.3 ARRoW Design
Constraints

{Header}

7.1.1.4.3 ARRoW Use Cases

The main thrust of the AIDE use case analysis for this phase of the META project was to
explore how requirements imposed on a System-of-Interest (SoI) will flow to test cases that in
turn can be executed to verify that the SoI satisfies those requirements. This is sometimes
referred to as the ―Requirements to Test Case (RTTC) flow problem‖.

The SysML use case artifacts described in this section can be additionally found in the
MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.1.4 Use Cases‖.

Figure 7.1-2 provides a top level overview of the relationships between the generalized
ARRoW actors, the top level use cases that they interact with, and the SysML packages in
which these use cases are contained.

The initial set of top level use case categories include:

 Acquiring System of Interest (SOI) Designs

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

 Developing & Delivering SOI Designs

 Developing & Supporting the AIDE

 Protecting Against Malicious Acts

The ―Acquiring SOI Designs‖ use case category includes lower level use cases for SOI
capability analysis and capability gap analysis, and enabling interaction with government
needs. The ―Developing & Delivering SOI‖ use case category involves use cases to assist the
developer of the SOI in requirements analysis, design, design analysis, verification-testing, and
transition of design to production. The ―Developing & Supporting the AIDE‖ use case category
includes the generation of library content, curating the library, and developing the AIDE. The
―Protect Against Malicious‖ use case category includes active and passive measures to protect
the AIDE, and its data and users.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

Figure 7.1-2. AIDE Top Level UCs-Actors

Figure 7.1-3 is a SysML diagram that shows the beginning organization of a use case analysis
to explore the RTTC flow problem. The use cases associated with this AIDE functionality are
contained in the package labeled ―Rqmt & TC UCs‖. As a ‗housekeeping‘ technique, a ―ToDo‖
package is nested within the ―Rqmt & TC UCs‖ package, and contains those use cases that have

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 37 Refer to cover page for Distribution Statement.

been identified but have not yet had internal textual content created for them. The use case
labeled ―Requirement to Test Case Flow‖ was used as the driving use case for the development
of the ARRoW architecture supporting the ARRoW RTTC flow process. The text for this use
case is provided in Figure 7.1-4.

Figure 7.1-3. Rqmts & TC Use Cases

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 38 Refer to cover page for Distribution Statement.

Figure 7.1-4. RTTC Flow Use Case

Requirements to Test Case Flow Use Case

Author

John Bangs, Steve Schmitt

Date

7/12/2011

Description

This use case explores the steps involved in creating a test case that can verify a given SoI requirement.

Preconditions

All levels of requirement specifications related to the SoI have been created.

Stimuli

Main Flow

1. Import the set of rqmts (a specification) into ARRoW. This entails recording the text of the rqmts into the ARRoW

environment.

2. For each requirement:

2.1. Peruse a library of existing rqmt archetypes (RAs) and find an applicable RA.

2.2. Create a copy of the RA and place it in the master model.

2.3. Associate the SoI rqmt with the RA (e.g., using a Wizard). TBR: this step may also allow for modification of the

RA's template expression

2.4. Modify and/or add to the default RA-to-design entity allocation relationships (e.g., using a Wizard).

2.5. Optionally add and define a utility function.

2.6. For each RA referenced in the Requirement Archetype Dependency List:

2.6.1 Execute steps 2.2 through 2.6.1 using the appropriate constraint requirements in the SoI specs. TBR:

Probably need to account for multiple grades of utility function sensitivity that flows from requirement to

specific test case.

3. For each RA:

3.1. Create a copy of its associated Test Case Archetype (TCA) and place it in the master model.

4. For each TCA:

4.1. Modify the TCA to make it an executable Test Case (TC) (e.g., using a Wizard). Note: since step 2.4 previously

allocated the RA to the design entity, and since this TC's parent TCA has a one-to-one association with that RA,

then this TC is allocated to the design entity.

4.2. Create a Test Result Analyzer (TRA) that compares the test results to the associated SoI requirement. Note: could

be built automatically in some cases.

5. For each TC:

5.1. Create a component model (CM).

5.2. Associate the CM and TC into a TC-CM Pair.

5.3. Associate the TC-CM Pair with the appropriate DUT.

Postconditions

A test case and component model have been created and associated with a DUT. The TC and CM are derived from the

associated SoI requirement.

--

Alternate Flow

<Rqmt Archetype Not Found>

2.1. Requirement Archetype was not found, so execute Create Requirement Archetype UC

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 39 Refer to cover page for Distribution Statement.

In addition to the RTTC flow analysis, an initial analysis was performed to identify use cases
that could apply to ARRoW functionality not directly related to the RTTC flow problem.
Inputs were solicited from subject matter experts within the ARRoW tool design community.
Figure 7.1-5 shows the use cases and actors identified in this analysis.

Figure 7.1-5. Design UCs

7.1.1.5 Example Development Metrics

Program personnel typically use a variety of metrics charts (e.g., scorecard, line, scatter plot,
control, bar, pie, histograms, area, bubble, radar, etc.) to execute a combat vehicle development
project and transition into a combat vehicle production project. Figure 7.1-6 illustrates an
example project metrics scorecard. Project metrics scorecards or dashboards communicate
overall project status on a wide range of indicators, and aide in information briefings, and
managing by exception. Figure 7.1-7 illustrates an example individual metric template chart.
Individual metrics charts communicate details on plans, progress, trends, impacts, and aide in
developing a thorough understanding and decision making. Development metrics can also

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 40 Refer to cover page for Distribution Statement.

serve double duty or be leveraged as aids to project formal decisions, trade studies, and pivotal
phase transitions such as production and deployment of combat vehicles.

Example Project Metrics Scorecard

Project leaders configure project scorecards to provide roll ups or summaries of lower level
metrics charts to meet the needs of the project forum and/or communication plan. Figure 7.1-6
illustrates an example of a project metrics scorecard for a notional IFV covering a range of
typical program and project metrics for:

 Cost and system effectiveness

 Joint Capabilities Integration & Development System (JCIDS) capabilities-based
assessments and gap analysis

 Design maturity and health

 Problem domain understanding

 Project health

Figure 7.1-6. Example Project Scorecard for a Notional IFV

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 41 Refer to cover page for Distribution Statement.

Example Individual Metric Template Chart

Figure 7.1-7 illustrates a typical individual metric line-control chart template used as a Systems
Analysis & Control tool by program management to monitor a technical performance
measurement (TPM) within project design maturity & health metrics. TPMs are created for
the purpose of tracking design progress for key requirement and supporting management
decision-making. A line-control metrics chart provides project leadership with the following
design maturity & health knowledge enablers within the System Analysis & Control process:

 Performance tracking

 Planned performance, risk reduction, or opportunity exploitations

 Threshold triggers

 Trend indications

Individual metrics chart templates can be used to:

 Project probable performance over time

 Provide indications of design progress by recording actual performance observed

 Assist decision making by comparing actual versus projected performance

 Provide early warning of technical problems

 Support trend analysis and assessments as to whether operational requirements will be
met

 Support impact analysis of proposed changes to system performance
This individual metrics chart template can be used for Design Maturity & Health Metrics (e.g.,
all TPMs – weight, physical dimensions, transportability, start-up times, energy conservation,
movement speeds, reliability, etc.

Figure 7.1-7. Example Individual Metric Template Chart

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 42 Refer to cover page for Distribution Statement.

Project Formal Decision/Trade Study Criteria and Measures

Table 7.1-11 provides an example of common metrics that are used as measures for evaluation
criteria in formal decisions or trade studies to:

 Balance requirements

 Assist requirements compliance path forward decisions

 Select technologies, design concepts, hardware and/or software alternatives

 Assist design development path forward decisions

 Assist integration, assembly, test, and checkout path forward decisions

 Assist verification and validation path forward decisions

Table 7.1-11. Example Metrics for Trade Criteria and Measures

Criterion Description Measure

Production
Cost

Cost for recurring production of the
alternative.

Average Unit Production Cost relative to
Baseline Product

Development
Cost

Cost to develop, design, test, implement,
and certify the alternative (includes all
program costs through LRIP).

Hardware Non-Recurring Engineering (HW
NRE) cost

 Software Non-Recurring Engineering (SW
NRE) cost

Inter-
operability

The ability of the alternative to operate
across new, existing, and foreign
platforms.

Weapons Compatibility

 Munitions Compatibility

 Command & Control (C
2
) Compatibility

 Communications Compatibility

 Logistics Compatibility—transportability,
Supplies

Adaptability The ability of the alternative to satisfy
current and future operational needs.
Includes commonality, scalability,
modularity, and upgradeability/
extensibility.

Component Commonality

 Future Capability Growth Potential

Survivability The ability of the alternative to complete
the mission under threat measures or
countermeasures. Includes susceptibility,
vulnerability, and recoverability.

Insensitive Munitions (IM) Characteristics

 Anti-Jam Capability (self-defense,
communications)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 43 Refer to cover page for Distribution Statement.

Criterion Description Measure

Safety The effect the alternative has on
minimizing hazards or injury to
operations and maintenance personnel.
The criterion also includes safety to
ordnance and equipment.

Basic Safety

 Equipment Safety

 Weapons & Munitions Safety

 Operational Safety

 Software Safety

Reliability The effect the alternative has on the
probability that the projectile does not fail
to complete its mission under specified
supply, handling, storage, and firing
conditions.

Parts Count

 Complexity

Risk The cost, schedule, and technical risk
level of developing the alternative.

Technology Risk

 Schedule Risk

 Cost Risk

Capability The capability of each alternative for
providing the core functionality.

Lethality – Range, Rate of Fire (RoF)
Accuracy

 Mobility – Speed, Acceleration

 C
2
 – Planning, Execution

 Communications – Range, Throughput

 Survivability - Reaction

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 44 Refer to cover page for Distribution Statement.

Transition to Production & Deployment

The transition success from a combat vehicle development phase using the ARRoW Integrated
Development Environment (IDE) into a combat vehicle production phase hinges on
incorporating transition to production & deployment metrics. The AIDE would assist in
conducting Manufacturing Readiness Assessments (MRAs) and use Manufacturing Readiness
Levels (MRLs) to determine readiness for production.
―MRAs ensure mature manufacturing processes to meet:

 Cost commitments

 Product quality and consistency requirements

 On time delivery‖[MRL10]
―MRL goals are to use:

 Mature technologies

 Stable designs

 Production processes in control‖
The purpose of MRLs is to provide decision makers with a common understanding of the
relative maturity and risks associated with manufacturing technologies, products, and processes
being considered. The purpose and definitions of MRLs range from:

 Design readiness and producibility

 Manufacturing plans and schedules, processes, tools, training, skills, risks

 Supply chain, QA, material availability, long lead

 Demonstrated production (pilot lines, Low Rate Initial Production (LRIP), Full Rate
Production [FRP])

Manufacturing readiness and producibility are as important to the successful development of a
combat vehicle as those of readiness and capabilities of the technologies intended for the
combat vehicle. Manufacturing risk identification and management begins at the earliest stages
of technology development, and continues vigorously throughout each stage of a program‘s
development life-cycle. MRL levels 1 – 8 as listed in Table 7.1-12 span development phases from
Materiel Solution Analysis (MSA) to Technology Development (TD) up through engineering
& Manufacturing Development (EMD). [MRL10]
―MRL is a measure used to assess the maturity of manufacturing readiness serving the same
purpose as Technology Readiness Levels serve for technology readiness. MRLs are designed to
be measures used to assess the maturity of a given technology, component or system from a
manufacturing prospective. The MRL intent was to create a measurement scale that would
serve the same purpose for manufacturing readiness as technology readiness levels (TRLs)
serve for technology readiness – to provide a common metric and vocabulary for assessing and
discussing manufacturing maturity, risk and readiness. MRLs were designed with a numbering
system to be roughly congruent with comparable levels of technology readiness levels (TRLs)
for synergy and ease of understanding and use.‖ [MRL10]
―MRAs and MRLs answer production transition questions and reduce manufacturing risk
unanswered by Technology Readiness Level (TRLs):

 Is the technology producible

 What will the design cost in production

 Can the design be made in a production environment

http://en.wikipedia.org/wiki/Technology_Readiness_Level

http://en.wikipedia.org/wiki/Technology_Readiness_Level

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 45 Refer to cover page for Distribution Statement.

 Are key materials and components available‖ [MRL10]

Table 7.1-12. MRL Definitions

Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5

MRL Definition Description Phase

1 Basic
Manufacturing
Implications
Identified

This is the lowest level of manufacturing readiness.
Basic research expands scientific principles that may
have manufacturing implications. The focus is on a
high level assessment of manufacturing opportunities.
The research is unfettered.

Pre Material
Solution
Analysis

2 Manufacturing
Concepts
Identified

Invention begins. Manufacturing science and/or
concept described in application context. Identification
of material and process approaches are limited to
paper studies and analysis. Initial manufacturing
feasibility and issues are emerging.

Pre Material
Solution
Analysis

3 Manufacturing
Proof of
Concept
Developed

Conduct analytical or laboratory experiments to
validate paper studies. Experimental hardware or
processes have been created, but are not yet integrated
or representative. Materials and/or processes have
been characterized for manufacturability and
availability but further evaluation and demonstration
is required.

Pre Material
Solution
Analysis

4 Capability to
produce the
technology in a
laboratory
environment.

Required investments, such as manufacturing
technology development identified. Processes to
ensure manufacturability, producibility and quality are
in place and are sufficient to produce technology
demonstrators. Manufacturing risks identified for
prototype build. Manufacturing cost drivers identified.
Producibility assessments of design concepts have
been completed. Key design performance parameters
identified. Special needs identified for tooling,
facilities, material handling and skills.

Material
Solution
Analysis
(MSA) leading
to a Milestone
A decision.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 46 Refer to cover page for Distribution Statement.

Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5

MRL Definition Description Phase

5 Capability to
produce
prototype
components in
a production
relevant
environment.

Mfg strategy refined and integrated with Risk Mgt
Plan. Identification of enabling/critical technologies
and components is complete. Prototype materials,
tooling and test equipment, as well as personnel skills
have been demonstrated on components in a
production relevant environment, but many
manufacturing processes and procedures are still in
development. Manufacturing technology development
efforts initiated or ongoing. Producibility assessments
of key technologies and components ongoing. Cost
model based upon detailed end-to-end value stream
map.

Technology
Development
(TD) Phase.

6 Capability to
produce a
prototype
system or
subsystem in a
production
relevant
environment.

Initial mfg approach developed. Majority of
manufacturing processes have been defined and
characterized, but there are still significant
engineering/design changes. Preliminary design of
critical components completed. Producibility
assessments of key technologies complete. Prototype
materials, tooling and test equipment, as well as
personnel skills have been demonstrated on
subsystems/ systems in a production relevant
environment. Detailed cost analysis include design
trades. Cost targets allocated. Producibility
considerations shape system development plans. Long
lead and key supply chain elements identified.
Industrial Capabilities Assessment (ICA) for MS B
completed.

Technology
Development
(TD) phase
leading to a
Milestone B
decision.

7 Capability to
produce
systems,
subsystems or
components in
a production
representative
environment.

Detailed design is underway. Material specifications
are approved. Materials available to meet planned
pilot line build schedule. Manufacturing processes and
procedures demonstrated in a production
representative environment. Detailed producibility
trade studies and risk assessments underway. Cost
models updated with detailed designs, rolled up to
system level and tracked against targets. Unit cost
reduction efforts underway. Supply chain and supplier
QA assessed. Long lead procurement plans in place.
Production tooling and test equipment design &
development initiated.

Engineering &
Manufacturing
Development(
EMD) leading

to Post CDR

Assessment

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 47 Refer to cover page for Distribution Statement.

Manufacturing Readiness Level DefinitionsError! Bookmark not defined.
5

MRL Definition Description Phase

8 Pilot line
capability
demonstrated.
Ready to begin
low rate
production.

Detailed system design essentially complete and
sufficiently stable to enter low rate production. All
materials are available to meet planned low rate
production schedule. Manufacturing and quality
processes and procedures proven in a pilot line
environment, under control and ready for low rate
production. Known producibility risks pose no
significant risk for low rate production. Engineering
cost model driven by detailed design and validated.
Supply chain established and stable. ICA for MS C
completed.

Engineering &
Manufacturing
Development

(EMD) leading

to a Milestone

C decision.

9 Low Rate
Production
demonstrated.
Capability in
place to begin
Full Rate
Production.

Major system design features are stable and proven in
test and evaluation. Materials are available to meet
planned rate production schedules. Manufacturing
processes and procedures are established and
controlled to three-sigma or some other appropriate
quality level to meet design key characteristic
tolerances in a low rate production environment.
Production risk monitoring ongoing. LRIP cost goals
met, learning curve validated. Actual cost model
developed for FRP environment, with impact of
Continuous improvement.

Production &
Deployment
leading to a
Full Rate
Production
(FRP)
decision.

10 Full Rate
Production
demonstrated
and lean
production
practices in
place.

This is the highest level of production readiness.
Engineering/design changes are few and generally
limited to quality and cost improvements. System,
components or items are in rate production and meet
all engineering, performance, quality and reliability
requirements. All materials, manufacturing processes
and procedures, inspection and test equipment are in
production and controlled to six-sigma or some other
appropriate quality level. FRP unit cost meets goal,
funding sufficient for production at required rates.
Lean practices well established and continuous
process improvements ongoing.

Full Rate
Production/
Sustainment

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 48 Refer to cover page for Distribution Statement.

Acronym and Metric Definitions

System Effectiveness – ―A probability measure that the system solution can successfully meet
an overall operational demand within a given time when operated under specific conditions.
System effectiveness reflects the technical characteristics of the system solution (e.g.,
performance, availability, supportability, dependability). System effectiveness is the ability of
the system solution to do the job for which it was intended.

 Single-measures and Multiple-measures can be used to express system effectiveness.

 The objective is to reflect system design attributes and logistics support elements
―[BF90]

Cost Effectiveness – ―A measure of a system solution in terms of mission fulfillment (system
effectiveness) and total life-cycle cost (LCC). Reliability is a major factor in determining the
cost effectiveness of a system solution.

 A singular cost effectiveness is hard to measure since many factors that influence the
operation and support of a system solution cannot be realistically quantified e.g.,
interactions effects of other systems, political implications, extreme environmental
factors).

 Cost effectiveness can be express in various perspectives, depending on the specific
mission or system capability parameters chosen for evaluation.

 A set of cost effectiveness measures are typically used to express the cost effectiveness
of a system solution.
- System effectiveness/LCC
- System benefits/LCC
- Availability/LCC
- System capacity/LCC
- Supply effectiveness/LCC‖[BF90]

Measures of Merit (MOMs) – A set of characteristic parameters used to define the
effectiveness, performance, usage, and suitability of a system in the context of its operations and
fielding. MOMs take into account mission objectives, functions, capabilities, and tactical,
strategic, and political constraints.

Measure of Effectiveness (MOEs) – A set of operational characteristic parameters that define
how well the system performs its overall and assigned missions and executes tasks in
operational situations under a given sets of conditions. The MOEs are used to predict,
determine, and assess force and system effectiveness. Product development use MOEs for early
and continuous verification and validation:

 Design to predict that the system will perform as expected in the intended battlespace

 Development Test & Evaluation (DT&E) to determine whether the system meets its
specifications

 Operational Test & Evaluation (OT&E) to determine the operational success of the
system

Measure of Performance (MOP) – A set of capability parameters that define how well a
system performs during operations and execution of assigned tasks. MOPs represent the
performance abilities of the system.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 49 Refer to cover page for Distribution Statement.

Measure of Usage (MOU) – A set of operational and sustainment characteristic parameters
that define how much the system is utilized or how many supplies are being consumed during
operations and execution of assigned tasks.

Measures of Suitability (MOS) – A set of appropriateness characteristic parameters that
define of how fitting a system is during deployment.

Key Performance Parameters (KPPs) – KPPS those critical system characteristics that, when
achieved, allow the attainment of operational performance requirements. They are technical
measures associated with Joint Capabilities Integration & Development System (JCIDS)
documents: Initial Capabilities Document (ICD), Capability Development Document (CDD),
and Capability Production Document (CPD).

―KPPs are those attributes of a system that are considered critical or essential to the
development of an effective military capability. KPPs must be measurable and testable to enable
feedback from test and evaluation efforts to the requirements process. KPPs are validated by
the Joint Requirements Oversight Council (JROC) for JROC Interest documents, by the Joint
Capabilities Board for JCB Interest documents, and by the DoD component for Joint
Integration, Joint Information, or Independent documents. Capability development and
capability production document KPPs are included verbatim in the acquisition program
baseline.‖ [CJCS09]

Key System Attributes (KSAs) – ―KSAs are those system attributes or characteristics
considered critical or essential for an effective military capability and considered crucial to
achieving a balanced solution/approach to a system, but not critical enough to be designated a
KPP. KSAs provide decision makers with an additional level of capability performance
characteristics below the KPP level and require a sponsor 4-star, Defense agency commander,
or Principal Staff Assistant to change.‖ [CJCS07]

TPMs (Technical Performance Measures) – TPMs are those system attributes created for
the purpose of tracking the health of a design, and supporting the decision-making process.
They provide indications of design progress and status and/or risk mitigation progress and
status. They are monitored on a frequent basis as the design is being completed. TPMs are
traceable to requirements and must be measurable parameters.

Characteristics of a Good Measure of Merit (MOM)

The following are characteristics of well-defined Measure of Merit (MOM)

 Relevant – MOMs are pertinent to the missions, functions, capabilities, critical issues,
and intended uses of the product.

 Complete – The set of MOMs needs to be a complete set of measures to adequately
represent and understand the product‘s effectiveness, performance, suitability, and
utility while fielded in its intended environment. A MOM needs no further amplification
for understanding when separated from other MOMs.

 Clear and Unambiguous – MOMs are precisely stated in terms that are specific and
have only one interpretation.

 Mutually Exclusive – Each MOM should be independent of each other to prevent
dependency coupling issues.

 Enduring Importance – MOMs should have long-term significance for personnel
starting from project beginning to closure.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 50 Refer to cover page for Distribution Statement.

 Measurable – MOM inputs need to be assessable using quantification methods. If MOE
inputs are assessed qualitatively, then standard measurement criteria is required.

7.1.1.6 Design Concept Discriminator Analysis

Infantry Fighting Vehicle (IFV) product development requires iterative decision making and
progressive trade studies starting from concept exploration to the final design in a Technical
Data Package (TDP) issued for production. Figure 7.1-8 illustrates examples of criteria
measures in a typical hierarchical order that are commonly used in formal decisions and trade
studies on DMI development programs.[BF90]

Figure 7.1-8. Example Order of IFV Criteria Measures for Formal Decisions/Trade
Studies

Example 4th Order Mobility Criteria Measures for a Notional IFV

The Notional IFV Mission Statement contained in Section 7.1.1.8 was used to refine the
common abstract 4th order capability criteria measures illustrated in Figure 7.1-8 to a set of
typical criteria measures that could be used as design concept mobility discriminators for an
IFV or all combat vehicles.

METAFR011

1st Order

2nd Order

3rd Order

4th Order

5th Order

Cost

Effectiveness

Life-cycle Cost
System

Effectiveness

• R&D Cost

• Investment Cost

• Opns & Spt Cost

• Phase-out Cost

• Performance

• Operational Availability

• Supportability

• Capacity

• Research Cost

• Design Cost

• Data Cost

• T&E Cost

• Manufacturing Cost
• Inventory Cost

• Maintenance Cost

• Range and Accuracy

• Reliability

• Maintainability

• Speed of Performance

• Transportability
• Producibility

• Size, Weight, Shape, Volume

• Accessibility

• Diagnostic Aids

• Display & Controls

• Facilities

• Handling
• Interchangeability

• Inventory Level

• Logistics pipeline

• Mounting

• Packaging

• Human Factors
• Personnel Skills

• Safety

• Servicing

• Storage

• Testability

• Transportation
• Utilities

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 51 Refer to cover page for Distribution Statement.

Table 7.1-13 provides example ranges of mobility performance that can be used to assist in
automated IFV design concept space reduction or selection of preferred IFV design concept
alternatives (Wheeled or Tracked).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 52 Refer to cover page for Distribution Statement.

Table 7.1-13. Example Ranges for Mobility Performance

Example Ranges for Mobility Performance

No.

Capability

Wheeled Tracked

Solutions usually offer high-speed
mobility with versatility in maneuver,
firepower, and transportability

Solutions for Cross-Country Mobility
Dominance for Maneuver or Heavy
Firepower

Major focus is on obtaining high
speeds on improved surfaces (primary
& secondary) with 2-4 times energy
efficiency over track vehicles

Major focus is on obtaining
maneuverability on un-improved
surfaces (trails & cross-country) and
negotiating obstacles

1 Energy
Efficiency

5.0 – 9.0 km/gal (1.32 – 2.38 km/liter)
@ 50 kph on primary roads

1.0 – 4.0 km/gal (0.26 – 1.06 km/liter)
@ 50 kph on primary roads

2 Dash Speed
(Acceleration)

70 - 80 kph in 15 – 20 seconds on
hard level surface road

40 - 50 kph in 15 – 20 seconds on hard
level surface road

3 Highway Speed 80 - 105 kph 30 - 80 kph

4 Cross-country
Speed

15 - 25 kph on 1-6 inches of terrain
roughness @ 20% of total distance
miles

30 - 45 kph on 1-6 inches of terrain
roughness and @ 35-50% of the total
distance miles

5 Turning Radius 360 degree left and right turn within
1.5 vehicle diagonal length

360 degree left and right turn within 1.0
vehicle diagonal length

6 Weight 20 - 50 tonnes 25 - 80 tonnes

7 Transportability Deploy a Brigade Combat Team (BCT)
of Wheeled Combat Platforms
anywhere in the world within 96 hrs, a
Division within 120 hrs, and 5
Divisions in 30 days using Strategic
Military Lift assets (Airlift - C-17/C-5)
and Tactical Lift assets (Fix Wing (C-
130) and Rotary Wing (CH-47))

Deploy a Brigade Combat Team (BCT)
of Tracked Combat Platforms anywhere
in the world within 30 days using
Strategic Military Lift assets (Sealift

(RORO) and Airlift (C-17/C-5))

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 53 Refer to cover page for Distribution Statement.

7.1.1.7 META Project Product Breakdown Structure

A PBS was created to hierarchally organize the products produced by the BAE Systems Team
in support of the META program. This PBS was used as a basis for organizing the package
structure within the file used to capture and document SysML artifacts produced in support of
the META Systems Engineering analysis effort (MagicDraw file ―META_Project.mdzip‖, see
Figure 7.1-9). Additionally, this PBS was used as a basis for organizing the Systems
Engineering directory structure within the Subversion (SVN) version control repository (see
Figure 7.1-10).

Table 7.1-14 provides a brief description for each of the PBS elements.

Table 7.1-14. META Product Breakdown Structure Elements

No. Element Name Description

1 ARRoW Toolset All software applications and associated products that are integrated
into the ARRoW Integrated Development Environment (AIDE). May
be developmental or non-developmental items with respect to META
project scope.

1.1 System Documentation The User’s Manual and Version Description Document for the
delivered version of the integrated toolset.

1.2 Toolset System Package The package delivered to the DARPA customer that includes the set
of software tools developed along with their supporting
documentation.

1.3 Systems Engineering Any Systems Engineering analysis artifacts specifically associated
with the ARRoW Toolset development.

1.4 OTS Tools Off-the-Shelf Tools. Non-developmental software applications
integrated into the AIDE.

2 Component Model Library Artifacts related to the infrastructure, interfaces, and content of the
Component Model Library.

3 Demos Products and documentation related to all demonstrations presented
at the various PI meetings.

4 Vehicle System Model All requirements, behavioral analysis, and design associated with a
notional Combat Fighting Vehicle that is the target product of the
AIDE toolset, workflow, and processes.

5 Integrated Toolset
Documentation

Development effort and products associated with writing a User’s
Manual and Version Description Document.

5.1 Users Manual The User’s Manual describes the general process for using the
toolset and how to use each tool within the toolset.

5.2 Version Description
Document

The Version Description Document describes what is included in the
release package, known issues, and system requirements and
instructions for installing the toolset.

6 Systems Engineering All Systems Engineering analysis artifacts associated with
development of the AIDE toolset.

6.1 Requirements
Development

All effort and artifacts associated with defining the required use of,
behavior of, and capability of the AIDE.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 54 Refer to cover page for Distribution Statement.

No. Element Name Description

6.1.1 Actors Description of human and non-human actors that interface with the
AIDE toolset.

6.1.2 CONOPS Concept of Operations analysis and documentation of the AIDE.

6.1.3 Requirements Textual requirements for the AIDE.

6.1.4 Use Cases Use case analysis and SysML documentation that drives the
required behavior of the AIDE.

6.2 Architecture
Development

Analysis and documentation of the AIDE architecture.

6.3 Design Analysis and documentation of the AIDE low level design elements.

6.4 Verification & Validation Artifacts and analysis related to the Verification & Validation of the
AIDE.

6.5 IAT&C Artifacts and analysis related to the Integration, Assembly, Test and
Checkout of the AIDE.

6.6 Specialty Engineering Any Specialty Engineering artifacts and analysis related to
development the AIDE.

7 Program Management Any analysis and artifacts associated with management of the META
program.

7.1 Risk & Opportunity
Management

Any artifacts associated with risk and opportunity management of the
META program.

7.2 Briefings Any artifacts associated with META program briefings to the DARPA
customer.

7.3 Configuration & Data
Management

Any artifacts associated with Configuration & Data Management
efforts in support of the META program.

7.4 EVMS Any artifacts associated with Earned Value Management efforts in
support of the META program.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 55 Refer to cover page for Distribution Statement.

Figure 7.1-9. SysML Package Structure

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 56 Refer to cover page for Distribution Statement.

Figure 7.1-10. Subversion Repository Structure

7.1.1.8 Notional IFV System of Interest

A notional Infantry Fighting Vehicle (IFV) containing a representative set of requirements,
behavior, structure, and properties was created as a System-of-Interest (SoI) for the ARRoW
Integrated Development Environment (IDE).

This section contains the following:

 Notional Defense Material Item (DMI) IFV Problem Statement

 Notional Defense Material Item (DMI) IFV Mission Statement

 Notional IFV requirements analysis

 Notional IFV PBS analysis

 Notional IFV use case and behavioral analyses

Notional DMI IFV Problem Statement: Design a notional Infantry Fighting Vehicle (IFV)
system such that the total solution is optimized to a set of system-level correctness criteria, and
is conformant to the system requirements.

Notional DMI IFV Mission Statement: The notional IFV is a versatile medium armored
vehicle which provides cross-country mobility dominance, for mounted firepower,
communications, and protection to a mounted mechanized infantry squad, overwatch support
for a dismounted infantry squad, and deployable anywhere in the world.

7.1.1.8.1 Notional IFV Requirements Analysis

The example requirements serve as a typical set of customer requirements that could be
experienced during the development of a complex cyber-physical system, such as an IFV. The
Notional IFV requirements analysis identified a subset of mobility performance, environmental
conditions, physical characteristics, ownership and support, design and construction
requirements common across DMI Surface Vehicle Systems (SVSs) or combat vehicles
(Infantry, Armor, and Artillery). Cardinal IFV capabilities include transporting a protection
infantry squad and enabling egress of a squad infantry at a dismount point on the battlefield.

The example requirements are generalized to be non-program specific, amped-up or toned-
down with no analytical foundation, and can be found on Web sites listed in this section or in
military publications similar to Jane‘s Military Vehicles. An independent assessment concluded
that the notional IFV and Ramp Assembly requirements contained in this section and in the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 57 Refer to cover page for Distribution Statement.

IFV SysML model are not ITAR or company proprietary restricted information. The following
references were used to generate the example sets of notional IFV and ramp assembly
requirements that are non-ITAR and/or company proprietary restricted:

 Material Need (MN) For An Infantry Fighting Vehicle/Cavalry Fighting Vehicle

(IFV/CFV), 2 March 1978

 Operational Requirements Document for Bradley Modernization Program (M2/M3A3),

12 March 2001

 IFV (M2A3) AND CFV (M3A3) Performance Specification Rev J (19207-12465518), 17

December 2009

 Bradley System Specification Rev C (19207-12386023), 1 June 1999

 Crusader System Specification, 14 November 1997

 http://www.army-guide.com/eng/product364.html

 http://www.youtube.com/watch?v=6_RMDiLCRRM

 http://military.wikia.com/wiki/M2_Bradley

 http://en.wikipedia.org/wiki/M2/M3_Bradley_Fighting_Vehicle

 http://www.fas.org/man/dod-101/sys/land/m2.htm

 http://www.army.mil/factfiles/equipment/tracked/bradley.html

 http://www.history.army.mil/books/www/256.htm

 http://www.history.army.mil/books/www/256.htm

 http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-
s&va=m2+m3+bradley+fighting+vehicle

 http://www.army-technology.com/projects/bradley/

 http://www.historyofwar.org/articles/weapons_bradley.html

 http://militarytechyard.blogspot.com/2009/04/m2m3-bradley-fighting-vehicle.html

 http://www.armedforces-int.com/projects/m2_m3_bradley_fighting_vehicles.html

 http://pediaview.com/openpedia/M2/M3_Bradley_Fighting_Vehicle#Armament

 http://www.wikinfo.org/index.php/M2_Bradley

 http://en.citizendium.org/wiki/M2_Bradley_%28armored_fighting_vehicle%29

 http://www.military-today.com/apc/m2_bradley.htm

 http://www.military-today.com/apc/m3_bradley.htm

 http://www.3ad.org/18inf/documents.htm

http://www.army-guide.com/eng/product364.html

http://www.youtube.com/watch?v=6_RMDiLCRRM

http://military.wikia.com/wiki/M2_Bradley

http://en.wikipedia.org/wiki/M2/M3_Bradley_Fighting_Vehicle

http://www.fas.org/man/dod-101/sys/land/m2.htm

http://www.army.mil/factfiles/equipment/tracked/bradley.html

http://www.history.army.mil/books/www/256.htm

http://www.history.army.mil/books/www/256.htm

http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-s&va=m2+m3+bradley+fighting+vehicle

http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-894-s&va=m2+m3+bradley+fighting+vehicle

http://www.army-technology.com/projects/bradley/

http://www.historyofwar.org/articles/weapons_bradley.html

http://militarytechyard.blogspot.com/2009/04/m2m3-bradley-fighting-vehicle.html

http://www.armedforces-int.com/projects/m2_m3_bradley_fighting_vehicles.html

http://pediaview.com/openpedia/M2/M3_Bradley_Fighting_Vehicle#Armament

http://www.wikinfo.org/index.php/M2_Bradley

http://en.citizendium.org/wiki/M2_Bradley_%28armored_fighting_vehicle%29

http://www.military-today.com/apc/m2_bradley.htm

http://www.military-today.com/apc/m3_bradley.htm

http://www.3ad.org/18inf/documents.htm

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 58 Refer to cover page for Distribution Statement.

Example of Notional IFV Requirements in a SysML Model
Table 7.1-15 provides examples of notional IFV requirements captured in a SysML model.

Table 7.1-15. Example of Notional IFV Requirements in a SysML Model

Example of Notional IFV Requirements in a SysML Model

ID Name Text

1 IFV1 1.0 Scope Header

2 IFV2 2.0 Applicable Documents Header

3 IFV3 3.0 Requirements Header

4 IFV3-1 3.1 Ramp Assembly Description Header

5 IFV3-2 3.2 Performance Requirements Header

6 IFV3-2-3-1-1 3.2.3.1.1 Protect Against Ballistic
Threats

The IFV shall provide protection against 14.5 mm
machine gun and RPG-7 threats.

7 IFV3-2-5-2-1 3.2.5.2.1 Lower Ramp The IFV shall achieve an opening ramp duration of
not greater than 10 seconds.

8 IFV3-3 3.3 Interface Requirements Header

10 IFV3-4 3.4 Physical Requirements Header

11 IFV3-4-1 3.4.1 Weight The IFV maximum combat weight shall be not
greater than 45359.24 kg (TBR 100000 lbs).

12 IFV3-5 3.5 Ownership and Support
Requirements

Header

13 IFV3-5-1 3.5.1 Reliability Header

14 IFV3-5-1-1 3.5.1.1 MTBF The IFV predicted Mean Time Between Failures
(MTBF) shall be greater than 120 hours (Threshold)
and 168 hours (Objective) (TBR).

15 IFV3-6 3.6 Environmental Requirements Header

16 IFV3-7 3.7 Design and Construction
Requirements

Header

17 IFV3-7-1 3.7.1 Materials, Processes, and
Parts

Header

18 IFV3-7-1-1 3.7.1.1 Watertightness The IFV shall restrict the entrance of water into the
vehicle during fording operations at 48 inches deep.

19 IFV3-7-2 3.7.7 Human Systems Integration Header

19 IFV3-7-2-1 3.7.7.1 Ingress and Egress The IFV shall permit ingress and egress of a 95th
percentile (in size) male wearing Arctic gear.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 59 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

Table 7.1-16 provides additional examples of notional IFV requirements.

Table 7.1-16. Additional Examples of Notional IFV Requirements

Additional Examples of Notional IFV Requirements

No. Name Text

1 1.0 Scope Header

2 1.3 System Overview The IFV is a tracked, medium armored vehicle which provides cross-
country mobility, for mounted firepower, communications, and protection
to a mounted mechanized infantry squad, and overwatch support for a
dismounted infantry squad.

3 1.4 Document Overview This document is a ―representative set‖ of performance, functional,
interface, and design constraint requirements for an Infantry Fighting
Vehicle (IFV). Both mechanized infantry problem and solution domains
in breadth and depth are stated as requirements. The requirement
statements vary in maturation and quality due to issues such as:
necessity, conciseness, measurability, clarity, implementation/design
freedom, attainability/feasibility, completeness & stand-alone,
consistency, verifiability, singularity, uniqueness, proper level, and
positivity.

4 2.0 Applicable Documents Header

5 3.0 Requirements Header

6 3.1 Performance
Requirements

Unless otherwise specified, performance requirements in the following
paragraphs shall be met with the Infantry Fighting Vehicle (IFV) at
maximum combat weight, resting on a flat, hard, level surface, and over
the range of environmental conditions specified herein. Requirements
relating to personnel shall apply to males in the 5th through 95th
percentile in stature wearing Mission Oriented Protective Posture
(MOPP-IV) gear and Arctic gear.

7 3.1.1 Mobility Except where otherwise specified, the automotive performance shall be
on dry, level, hard-surfaced roads and the IFV shall perform as specified
herein without irregular operation, damage to any component, or danger
to any crew or squad member.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 60 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

8 3.1.1.1 Operational Profile The IFV shall be capable of 24 continuous hours of combat as follows:

a. Sixteen hours shall consist of:

 - 35% (5.6 hr) at rated engine idle speed.

 - 35% (5.6hr) over cross-country terrain from 2.0 miles per hour (mph)
to maximum safe speed.

 - 20% (3.2 hr) over dirt and gravel roads from 10 mph to maximum safe
speed.

 - 10% (1.6 hr) on hard-surfaced roads at 10 mph to maximum
operating speed.

b. Eight hours shall be at silent watch with electrical equipment operated
as needed for no more than three continuous hours, depending on
ambient temperature, without recharging batteries

9 3.1.1.2 Cruising Range The IFV shall operate on internally carried fuel for at least 300 miles at
an average sustained speed of 30 miles per hour.

10 3.1.1.3 Dash Speed
(Acceleration)

The IFV at combat weight shall accelerate from a standing start with the
engine idling to 50 mph in not more than 25 sec under nominal
conditions. The IFV, at curb weight, shall accelerate from 0 to 50 mph in
not more than 20 sec.

11 3.1.1.4 Highway Speed The IFV shall attain a highway speed of not less than 50 mph.

12 3.1.1.5 Cross-Country
Speed

The IFV shall attain a cross-country speed of not less than 28 mph.

13 3.1.1.6 Slope Operation The IFV shall ascend or descend dry slopes up to 60% either forward or
backward, and shall maintain at least 15 mph in the forward direction
while climbing hard-surfaced slopes up to 15%. The IFV shall maneuver
on dry side slopes up to 45% either forward or backward direction.

14 3.1.1.7 Turning Radius The IFV shall pivot 360 deg right or left within a 35-ft diameter circle.

15 3.1.1.8 Fording Under its own power, the IFV without special preparation, shall ford
water up to 50 in deep with up to 35% embankment slopes, while
retaining full functionality.

16 3.1.1.9 Climb Obstacle The IFV shall climb obstacles at a height not less than 1.5 m.

17 3.1.1.10 Cross Gap The IFV shall cross trenches at a width not less than 1.5 m.

18 3.1.1.11 Towing The IFV, operating either forward or in reverse, shall tow comparable
IFVs over cross-country terrain. In the forward direction, the IFV shall be
capable of towing such an IFV cross-country at up to 5 mph for 10 miles.

19 3.1.2 Survivability Header

20 3.1.2.1 Protect Against
Ballistic Threats

The IFV shall provide protection against 14.5 mm machine gun and
RPG-7 threats.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 61 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

21 3.1.3 Auxiliary Systems Header

22 3.1.3.1 Intercom The IFV shall accommodate a vehicular intercommunication system with
controls at the commander’s station and communications ports at each
vehicle member station.

23 3.1.3.2 Rear Ramp The time required for the rear ramp to fully open or close with the engine
running shall not exceed 10 sec. The ramp lock mechanism shall permit
single hand locking and unlocking.

24 3.1.3.3 Seals Static seals shall prevent Class II and Class III leaks. Dynamic seals
shall prevent Class III leaks.

25 3.1.3.4 Blackout Lighting Header

26 3.1.3.4.1 Interior Lighting All interior lights, except lights for turret control and turret drive power
indication, shall extinguish automatically when either the rear ramp or
the rear door is opened.

27 3.1.3.5 Driver’s Switches
and Indicators

The IFV shall provide the following functions and indicators:

a. Ramp Up/Down switch and unlocked indicator

28 3.1.4 Emergency
Operations

The IFV shall provide an emergency operation capability in the case of
electronics failures. Vehicle operations requiring backup include:

a. Fuel Pump operation

b. Steering operation

c. Transmission operation

d. Ramp up/down

e. Ramp Lock/Unlock

29 3.2 Physical Characteristics Header

30 3.2.1 Weight The air shipping weight of the IFV shall not exceed 60,000 lb. The curb
weight shall not exceed 100,000 lb. The maximum combat weight shall
not exceed 120,000 lb.

31 3.2.2 Dimensions The dimensions when configured for shipping, height shall not exceed
120 in, width 110 in, and length 250 in.

32 3.2.3 Angle of
Approach/Angle of
Departure

The angle of approach for the IFV, defined as the angle between the
ground and a line through the forward most part of the hull and track,
shall be a minimum of 75 deg. The angle of departure, defined as the
angle between the ground and the rear-most part of the hull and track
(excluding the pintle) up to at least 40 in, shall be a minimum of 50 deg.

33 3.2.4 Ground Clearance The IFV shall have a minimum ground clearance to the bottom of the
hull of 18 in at the front and 16 in at the rear.

34 3.2.5 Interior Arrangement Header

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 62 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

35 3.2.5.1 Personnel Seating
Capacity

The IFV shall provide seats for personnel as shown in table XV.

Table XV. Personnel Seating Capacity.

Configuration
Number of Crew
Members

Number of Squad
Members

IFV Personnel 3 7

36 3.2.5.2 Space Allowance Space calculations shall use a 95th percentile (in stature) male wearing
Arctic clothing and MOPP-IV gear. Space allocation for the squad
members, driver, gunner, and commander shall be in accordance with
MIL-HDBK-759B. Interior stowage space shall be provided for the
fighting equipment of the squad.

37 3.2.6 Ramp The IFV shall include a ramp at its rear that permits rapid entry and exit
of personnel and supplies. The ramp shall include a door. The ramp
shall satisfy the following requirements:

a. Incorporates a quick-opening/closing device, an internal hold-closed
locking device, and a hold-open device.

b. Incorporates an automatic blackout switch.

c. Restricts the entrance of water into the IFV during fording.

d. Has a means of being padlocked from the outside.

e. Permits side-by-side mount/dismount of two 95th percentile (in
stature) males wearing Arctic clothing and MOPP-IV gear.

38 3.3 Environmental
Conditions

Header

39 3.3.1 Storage and
Transport

The IFV shall be capable of being stored and in transit without
sustaining damage under the climate design types hot, basic, cold, and
severe cold, including all daily cycle categories as defined in AR 70-38
table 2-1; i.e., -60 o F to +160 o F induced air temperature.

40 3.3.1.1 Storage and Transit
Humidity

The IFV shall be capable of being stored and in transit without
sustaining damage under the climatic design types hot, basic, cold, and
severe cold, including all daily cycle categories as defined in AR 70-38
table 2-1; i.e., nil to 100% induced relative humidity.

41 3.3.1.2 Storage The IFV shall not require preservation for storage less than 120 days.
The IFV shall require preservation prior to storage exceeding 120 days.

42 3.3.1.3 Altitude The IFV shall be capable of being stored and in transit up to 40,000 ft
above sea level.

43 3.3.2 Operating Conditions Header

44 3.3.2.1 Climate The IFV shall be capable of operating under the conditions specified in
AR 70-38, for the climatic categories hot and basic without a cold start
aid, and categories cold and severe cold with an aid, with the exceptions
in paragraph 3.3.2.2.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 63 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

45 3.3.3 Steam and Waterjet
Cleaning

The IFV shall demonstrate no performance degradation and show no
evidence of damage or deformation following a steam and waterjet
cleaning process which uses a cleaner conforming to P-C-437 Type II,
P-D220D, or commercial equivalent. Jet pressure shall be 100 +/-10
pounds per square inch gage (psig) for steam and 40 +/-10 psig for
water. The jet shall be applied perpendicular to the assembly from a
distance of not more than 1 ft for steam and not more than 3 ft for water.
The assembly shall be subjected to the jet at the rate of not less than 1
ft2/min.

46 3.5 Reliability The IFV including Government furnished equipment shall maintain at
least 500 Mean Miles Between Failures (MMBF) when operated as
described in 3.1.1.1. The IFV Mean Time Between Failures (MTBF)
shall be greater than 120 hours (Threshold) and 168 hours (Objective).

47 3.6 Availability The IFV including government furnished equipment shall maintain
achieved availability of at least 0.80 when operated as described in
3.1.1.1. Achieved availability is defined as the ratio of operating time to
the total of operating and maintenance time.

48 3.7 Safety The IFV shall ensure the highest degree of safety and health consistent
with mission requirements throughout its life cycle.

49 3.8 Logistics/Diagnostics Header

50 3.8.1 Built-In Test (BIT) Header

51 3.8.1.1 Self-Test BIT
(SBIT)

SBITs, internal to each subsystem, shall execute automatically upon
power up and results shall be displayed within 20 sec of the application
of power to the turret electronics.

52 3.9 Transportability The IFV shall have exterior lifting and tiedown provisions for the modes
of transport listed below:

53 3.9.1 Road The IFV shall be capable of being transported on a Heavy Equipment
Transporter.

54 3.9.2 Rail The IFV shall be capable of being transported over U.S. railways without
disassembly. For foreign transport, IFV width requirements may be met
by removing side armor and the closure kit, if installed. IFV width
requirements described by TM 55-2350-252-14 shall be met.

55 3.9.3 Water The IFV shall be capable of being transported by break-bulk cargo
ships, barge-carriers, roll-on/roll-off ships, and military landing craft.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 64 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

56 3.9.4 Air The IFV shall be capable of being transported in C5 and C17 aircraft in
conformance with MIL-STD-1791, ―Designing for Internal Aerial Delivery
in Fixed Wing Aircraft,‖ and as described in Air Force Systems
Command (AFSC) Design Handbook DH 1-11.

a. The width, height, and weight shall be reducible for air transport by
the IFV crew within one hour, assisted by unit tools and personnel, using
organic assets (fork lift, M88, or M578.).

b. The IFV will arrive at the loading pad minus its ammunition, Basic
Issue Items (BII), weapons, fuel, personal gear, and supplemental
armor.

57 3.10 Design and
Construction

Header

58 3.10.1 Materials All materials, parts, and processes selected for use in the IFV
construction shall be compatible with the safety, performance, and
environmental requirements as specified herein.

59 3.10.1.1 Fungal growth Materials used in the IFV shall not support fungal growth.

60 3.10.1.2 Corrosion
Resistance

Metals and alloys used in the construction of the IFV that are exposed to
corrosive environmental conditions shall be corrosion resistant or shall
be coated or metallurgically processed to resist corrosion. Except where
impractical, dissimilar metal combinations that promote corrosion
through galvanic action shall be insulated to prevent corrosion.

61 6.0 Note Header

62 6.1 Definitions Header

63 6.1.1 Curb Weight The IFV is complete with all components and systems, fully serviced
with liquids and one-fourth full fuel tank, with track pads, driver, no OVE,
no weapons installed, no other crew or squad aboard, no BII, AAL or
ICOEI, no ammunition or water, and no supplemental armor tiles. Items
may be simulated by ballast weights located at the appropriate center of
gravity.

64 6.1.2 Combat Weight The IFV is complete with all components and systems, fully serviced
with liquids and a full fuel tank, with track pads, all OVE BII, AAL, ICOEI,
25 mm and 7.62 mm weapons installed, all ammunition and water, crew
and squad, and supplemental armor tiles installed. Items, such as crew,
ammunition, supplemental armor tiles, etc., may be simulated by ballast
weights located at the appropriate center of gravity.

65 6.1.3 Approximately As close as reasonable for the intended purpose. In the opinion of the
operator the item being tested will not cause failure or malfunction of the
system, or cause the system to not function.

66 6.1.4 Smooth In the opinion of the operator, the item being tested does not exhibit
discernable erratic operation, chatter, jump, bind, skip, or does not
prevent the operator from properly functioning the item being tested.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 65 Refer to cover page for Distribution Statement.

Additional Examples of Notional IFV Requirements

No. Name Text

67 6.1.5 Subjectively An intuitive and conscious consideration by the operator, that the item
being tested, observed, or checked meets or exceeds the intended
function.

68 6.1.6 Focus Clear, without blurriness, objects at a distance of more than 200 m are
sharp and clear.

69 6.1.7 Subjective Evaluation This verification is a subjective evaluation of the operation or response
of the system or component in question. Conclusions of success depend
on the interpretations of an experienced operator/tester, rather than on
numbers derived from instrumentation, bus data, or other quantitative
results.

70 6.1.8 Hardware/Software
Test

Specific functions, responses, and other parameters of the system or
component in question have been measured or determined during
Software/Hardware Final Qualification Tests, component tests, or
subsystem tests. Therefore, quantitative or instrumented measurements
at the system/IFV level may not be required.

71 6.1.9 Previous Tests Where appropriate, use the procedures and results of tests of other
functions as evidence that the requirements of this paragraph are met.

72 6.1.10 Classification of
Leaks

Class I: Fluid seepage is not great enough to form drops, but is shown
by wetness or color changes. Class II: Fluid leakage is great enough to
form drops. Drops do not drip from the item being checked or inspected.
Class III: Fluid leakage is great enough to form drops that fall from the
item being checked or inspected.

Notional Ramp Assembly Requirements in a SysML model

Table 7.1-17 provides notional IFV Ramp Assembly requirements captured in a SysML model.

Table 7.1-17. Notional Ramp Assembly Requirements in a SysML Model

Notional Ramp Assembly Requirements in a SysML Model

No. ID Name Text

1 Ramp1 1.0 Scope Header

2 Ramp2 2.0 Applicable Documents Header

3 Ramp3 3.0 Requirements Header

4 Ramp3-1 3.1 Ramp Assembly Description The Rear Egress/Ingress assembly is an automated
inclined vehicle pathway that connects the vehicle
personnel payload compartment with the ground
surface.

The Rear Egress/Ingress assembly enables
onloading and offloading of personnel for a vehicle.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 66 Refer to cover page for Distribution Statement.

Notional Ramp Assembly Requirements in a SysML Model

No. ID Name Text

5 Ramp3-2 3.2 Performance Requirements Header

6 Ramp3-2-1 3.2.5.2.1 Lower Ramp The Ramp Assembly shall achieve an opening ramp
duration of not greater than 10 seconds.

7 Ramp3-2-2 3.2.5.2.2 Raise Ramp TBP

8 Ramp3-2-3 3.2.3 Initialize/Prep Ramp TBP

9 Ramp3-2-4 3.2.4 Shutdown Ramp TBP

10 Ramp3-2-5 3.2.3.1.1 Protect Against Ballistic
Threats

The Ramp Assembly shall provide protection
against 14.5 mm machine gun and RPG-7 threats.

11 Ramp3-3 3.3 Interface Requirements Header

12 Ramp3-4 3.4 Physical Requirements Header

13 Ramp3-4-1 3.4.1 Weight The Ramp Assembly weight shall be not greater
than 453.59 kg (TBR 1000 lbs).

14 Ramp3-5 3.5 Ownership and Support
Requirements

Header

15 Ramp3-5-1 3.5.1 Reliability Header

16 Ramp3-5-1-
1

3.5.1.1 MTBF The Ramp Assembly predicted Mean Time Between
Failures (MTBF) shall be greater than 10000 hours
(Threshold) and 14000 hours (Objective) (TBR).

17 Ramp3-6 3.6 Environmental Requirements Header

18 Ramp3-7 3.7 Design and Construction
Requirements

Header

19 Ramp3-7-1 3.7.1 Materials, Processes, and
Parts

Header

20 Ramp3-7-1-
1

3.7.1.1 Watertightness The Ramp Assembly shall restrict the entrance of
water into the vehicle during fording operations at 48
inches deep.

21 Ramp3-7-2 3.7.7 Human Systems Integration Header

22 Ramp3-7-2-
1

3.7.7.1 Ingress and Egress The Ramp Assembly shall permit ingress and
egress of a 95th percentile (in size) male wearing
Arctic gear.

Figure 7.1-11 illustrates an example allocation of requirements to the IFV Ramp assembly.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 67 Refer to cover page for Distribution Statement.

Figure 7.1-11. Example Allocation of Requirements to Ramp Assembly

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 68 Refer to cover page for Distribution Statement.

7.1.1.8.2 IFV Product Breakdown Structure (PBS) Analysis

PBS-based Reference Model

Department of Defense (DoD) Systems Engineering defines a ―Reference Model‖ as a common
conceptual framework for a System-of-Interest (SoI). DoD Handbook (MIL-HDBK-881A)
identifies (Product Breakdown Structure) ―PBS-based‖ reference models for Defense Materiel
Items (DMIs).[SEF01]

A PBS-based Reference model is a direct output of the Architecture Development process and
is also a Systems Analysis & Control tool because of its multi-faceted utility on product
development, and engineering and project management. It aids the development of a SoI by
providing a PBS-based framework for engineering work products in the following process
areas:

 Requirements Development (RD) – Product concept of operations & use cases,
functional/logical architecture, decomposed & derived requirements, model-based
specifications, requirement maturation metrics, requirement repository & management
environment

 System Design (SD) - Requirements allocation & flow down, architecture views/view
points, architecture/concept/design alternatives, specialty engineering design influence,
integrated design & domain engineering, computer aided design & model-based designs
and analysis, interface design definition & budgets, technology maturation & growth,
SD maturity & health assessment metrics (technical performance measurements
(TPMs), requirements compliance, technology readiness assessments (TRA)s &
manufacturing readiness assessments (MRAs), state-of-integration readiness)

 System Analysis & Control (SAC)- Effectiveness analysis (cost & system), capability &
gap assessments, formal decisions/trades, Risk & opportunity management,
configuration & data management, interface (I/F) management

 Verification & Validation (V&V) – Strategy & plans, test cases & procedures results,
V&V metrics

A PBS-based reference model also provides structure for:

 Identifying products, processes, data, documents, and models,

 Organizing risk and opportunity management,

 Enabling configuration and data management,

 Organizing integrated product development teams,

 Developing work packages for work orders and material/parts ordering, and

 Organizing technical reviews and audits

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 69 Refer to cover page for Distribution Statement.

Defense Material Items (DMIs)

MIL-HDBK-881A identifies End/Mission PBS information to aid in the creation of a PBS-
based reference model for each of the following DMI types:

 ―Surface Vehicle Systems (SVSs)

 Ordnance Systems

 Missile Systems

 Sea Systems

 Aircraft Systems

 Space Systems

 Electronic/Automated SW Systems

 Unmanned Air Vehicle Systems‖ [AMSC05]

―MIL-HDBK-881A also identifies common products and services to develop, produce, and
support the end/mission product. The common products and services are categorized as the
following enabling products:

 ―Systems Engineering/Program Management (SE/PM)

 System Test and Evaluation (T&E)

 Development Test Evaluation/Operational Test Evaluation (DTE/OTE)

 Training (Equipment, Services, Facilities),

 Data (Technical Publications, Engineering Data, Support Data, Management Data,
Data Repository)

 Peculiar Support Equip (PSE) and Common Support Equip (CSE)

 Operational/Site Activation, Industrial Facilities, Initial Spares & Repair Parts‖
[AMSC05]

Surface Vehicle System (SVS) PBS-Based Reference Model

The SVS is an abstract and generic structure for all DoD primary and secondary vehicles that
navigate over the earth‘s surface including manned and unmanned surface systems and
amphibious vehicles. The SVS PBS-based reference model provides the framework for the IFV
PBS-based sub-reference model and other like sub-reference models depending on vehicle role,
mission, or deployment:

 Combat Vehicles (CVs), Combat Support Vehicles (CSVs), and Combat Service Support
Vehicles (CSSVs)

 Vehicle roles and/or missions Fires/Effects, Maneuver (Infantry & Armor),
Reconnaissance, Engineer, Ordnance, Amphibians, Cargo and Logistics,
Transportation, Medical, Food Service, Class III (POL), Mobile Work Units.

 Unmanned Ground Vehicles (UGSs) and Manned Ground Vehicles (MGVs)

Example IFV PBS-based Reference Model Development

Figure 7.1-12 illustrates MIL-HDBK-811A PBS-based elements of a notional IFV that served
as a basis for the creation of an example notional IFV Reference Architecture and PBS-based
Design Archetypes for the AIDE.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 70 Refer to cover page for Distribution Statement.

Figure 7.1-12. Notional IFV PBS

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 71 Refer to cover page for Distribution Statement.

Table 7.1-18 provides a brief description for each of the Notional IFV PBS elements.

Table 7.1-18. Notional IFV PBS Elements

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1 IFV A vehicle system with the capability to navigate over the surface. Surface
vehicle categories include vehicles primarily intended for general purpose
applications and those intended for mating with specialized payloads.
Includes, for example:

a. Cargo and logistics vehicles, mobile work units and combat vehicles

b. Combat vehicles serving as armored weapons platforms, reconnaissance
vehicles, and amphibians

The mobile element of the system embodying means for performing
operational missions. Includes, for example:

a. Means of propulsion and structure for adaptation of mission equipment or
accommodations for disposable loads

1.1 Chassis
Assembly

The vehicle's assembly of structure, compartments and equipment
installations required to provide the mobility element of combatant vehicles.
Includes, for example:

a. Hull Structure

b. Personnel and weapons compartments

c. Chassis Electronics

d. Suspension & Steering

e. Auxiliary Equipment

f. Power Package/Power Train

g. Special equipment

h. NBC/ECU

h. Software

1.1.1 Hull Structure The vehicle's primary load bearing component which provides the structural
integrity to withstand the operational loading stresses generated while
traversing various terrain profiles.

Includes, for example:

a. Simple wheeled vehicle frame or combat vehicle hull which satisfies the
structural requirements and also provides armor protection

b. Structural subassemblies and appendages which attach directly to the
primary structure

c. Towing and lifting fittings, bumpers, hatches, and grilles

d. Provision to accommodate other subsystems such as mountings for
suspension, weapons, turret, truck body, cab, special equipment loads

1.1.1.1 Squad
Compartment

The major component to be mated to a chassis to provide a complete
vehicle having a defined mission capability.

Includes, for example:

a. Accommodations for personnel, cargo, and such subsystems as need to
be placed in proximity to operators

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 72 Refer to cover page for Distribution Statement.

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1.1.1.2 Driver’s
Compartment

The major component to be mated to a chassis to provide a complete
vehicle having a defined mission capability.

Includes, for example:

a. Accommodations for personnel, cargo, and such subsystems as need to
be placed in proximity to operators

1.1.2 Ramp Assembly Includes, for example:

a. Ramp structure which satisfies the structural requirements and also
provides armor protection

b. Structural subassemblies and appendages which attach directly to the
ramp structure

c. Provision to lower/raise and secure the ramp structure

d. Provision to accommodate other subsystems such as mountings for
survivability equipment loads

1.1.2.1 Ramp Structure Includes, for example:

a. Ramp structure which satisfies the structural requirements and also
provides armor protection

1.1.2.2 Ramp Drive Includes the means to lower and raise the ramp structure

1.1.2.3 Ramp Latch Includes the means secure the ramp structure when in the closed position

1.1.3 Chassis Vetronics All hardware/software used to integrate the electronic subsystems and
components of the vehicle, such as computer resources, data control and
distribution, controls and displays, and power generation and management.
Electronic Subsystems and components to be integrated include, for
example:

a. Information systems such as command and control (C2), mission planning
and logistics functions, C4ISR

b. High end real-time systems such as sensors, robotics, active protection,
mission critical applications

c. High power load management systems such as the electronic turret,
electric drive, autoloader

d. Automotive/utility systems such as steering, brake and throttle by wire and
the auxiliary load management

1.1.3.1 Ramp Controller All hardware/software used to integrate the ramp electronic subsystems and
components of the ramp controller, such as computer resources, data
control and distribution, controls and displays, and power generation and
management. Electronic Subsystems and components to be integrated
include, for example:

a. High end real-time systems such as sensors, mission critical applications

b. High power load management systems such as the electronic electric
drive

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 73 Refer to cover page for Distribution Statement.

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1.1.4 Suspension/
Steering

The means for generating tractive efforts, thrust, lift, and steering forces
generally at or near the earth's surface and adapting the vehicle to the
irregularities of the surface.
Includes, for example:

a. Wheels, tracks, brakes, and steering gears for traction and control
functions

b. Rudder thrust devices and trim vanes for amphibians

c. Springs, shock absorbers, skirts, and other suspension members

1.1.5 Auxiliary
Automotive

The group of hardware and software subsystems which provide services to
all of the primary vehicle subsystems (as distinguished from the special
equipment subsystems) and which outfit the chassis.
Includes, for example:

a. The on-board diagnostics/prognostics system, fire extinguisher system
and controls, chassis mounted accessories

b. The winch and power take-off, tools and on-vehicle equipment

c. Crew accommodations (when otherwise not provided for)

Excludes, for example:

a. Electrical subsystems and components which are now included in the
vetronics WBS element.

1.1.6 Power Package/
Drive Train

The means for generating and delivering power in the required quantities
and driving rates to the driving member.
Includes, for example:

a. Engine-mounted auxiliaries such as air ducting and manifolds, controls
and instrumentation, exhaust systems, and cooling means

b. Power transport components as clutches, transmission, shafting
assemblies, torque converters, differentials, final drivers, and power
takeoffs

c. Brakes and steering when integral to power transmission rather than in the
suspension/steering element

1.1.7 Special
Equipment

The special equipment (hardware and software) to be mated to a chassis or
a chassis/body/cab assembly to achieve a special mission capability.
Includes, for example:

a. All items required to convert basic vehicle configurations to special-
purpose configurations

b. Blades, booms, winches, robotic arms or manipulators, etc., to equip
wreckers, recovery vehicles, supply vehicles and other field work units

c. Furnishings and equipment for command, shop, medical and other
special-purpose vehicles

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 74 Refer to cover page for Distribution Statement.

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1.1.8 Navigation
Equipment

The equipment (hardware and software) installed in the vehicle which
permits the crew to determine vehicle location and to plot the course of the
vehicle.

Includes, for example:

a. Navigation systems such as dead reckoning, inertial, and global
positioning systems

b. Landmark recognition algorithms and processors

1.1.9 NBC/ECU The subassemblies or components which provide nuclear, biological,
chemical protection and survivability to the vehicle crew, either individually or
collectively, during a nuclear, biological, chemical attack.
Includes, for example:

a. A positive pressure system; micro-climate cooling; air conditioning and
purification system; ventilated face piece (mask); nuclear, biological,
chemical detection and warning devices; decontamination kits; and
chemical resistant coatings

1.2 IFV System SW That software designed for a specific computer system or family of computer
systems to facilitate the operation and maintenance of the computer system
and associated programs for the primary vehicle. (ref. ANSI/IEEE Std
610.12)
Includes, for example:

a. Operating systems—software that controls the execution of programs

b. Compilers—computer programs used to translate higher order language
programs into relocatable or absolute machine code equivalents

c. Utilities—computer programs or routines designed to perform the general
support function required by other application software, by the operating
system, or by system users

d. All effort required to design, develop, integrate, and checkout the air
vehicle system software including all software developed to support any
primary vehicle applications software development

e. Primary vehicle system software required to facilitate development,
integration, and maintenance of any primary vehicle software build and
CSCI

Excludes, for example:

a. All software that is an integral part of any specific subsystem specification
or specifically designed and developed for system test and evaluation

b. Software that is an integral part of any specific subsystem, and software
that is related to other WBS Level 2 elements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 75 Refer to cover page for Distribution Statement.

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1.3 Msn Application
SW

Includes, for example:

a. All the software that is specifically produced for the functional use of a
computer system or multiplex data base in the primary vehicle (ref.
ANSI/IEEE Std 610.12)

b. All effort required to design, develop, integrate, and checkout the primary
vehicle applications Computer Software Configuration Items (CSCIs)

Excludes, for example:

a. The non-software portion of air vehicle firmware development and
production

b. Software that is an integral part of any specific subsystem and software
that is related to other WBS Level 2 elements

1.4 C2 Equipment All hardware/software used to integrate the Command & Control (C2)
subsystems and components of the vehicle, such as computer resources,
data control and distribution, controls and displays.

C2 Subsystems and components to be integrated include, for example:

a. Information systems such as mission planning and logistics functions

1.5 Turret Assembly The structure and equipment installations required to provide the fighting
compartment element of combatant vehicles.
Includes, for example:
a. Turret armor and radiological shielding, turret rings, slip rings
b. Attachments and appendages such as hatches and cupolas
c. Accommodations for personnel, weapons, and command and control
Excludes, for example:
a. Fire control and stabilization system

1.5.1 Armament
Equipment

The means for combatant vehicles to deliver fire on hostile targets and for
logistics and other vehicles to exercise self-defense.
Includes, for example:
a. main gun, launchers, and secondary armament
Excludes, for example:
a. Fire control systems

1.5.2 Munitions
Handling
Equipment

Automatic Loading. The equipment (hardware and software) for selecting
ammunition from a stored position in the vehicle, transferring it, and loading
the armament
system.
Includes, for example:
a. The means to eject spent cases and misfired rounds
b. Ammunition storage racks, transfer/lift mechanisms, ramming and ejecting
 mechanisms, as well as specialized hydraulic and electrical controls

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 76 Refer to cover page for Distribution Statement.

Notional IFV PBS Element Definitions

Element
Level # Element Name Description

1.5.3 Fire Control
Equipment

The equipment (hardware and software) installed in the vehicle which
provides intelligence necessary for weapons delivery such as launching and
firing.
Includes, for example:
a. Radars and other sensors necessary for search, recognition and/or
 tracking
b. Controls and displays
c. Sights or scopes
d. Range finders, computers, computer programs, turret and gun drives, and
 stabilization systems

1.5.4 Communications
Equipment

The equipment (hardware and software) within the system for commanding,
controlling, and transmitting information to vehicle crews and other personnel
exterior to operating vehicles.
Includes, for example:

a. Radio frequency equipment, microwave and fiber optic communication
links, networking equipment for multiple vehicle control, and intercom and
external phone systems

b. Means for supplementary communication like visual signaling devices

c. Navigation system and data displays not integral to crew stations in the
turret assembly or the driver's automotive display in the cab

1.5.5 Intelligence,
Reconnaissance,
Surveillance (ISR)
Equipment

All hardware/software used to integrate the intelligence, surveillance,
reconnaissance (ISR) subsystems and components of the vehicle, such as
computer resources, data control and distribution, controls and displays.

1.5.6 Turret Vetronics All hardware/software used to integrate the electronic subsystems and
components of the turret, such as computer resources, data control and
distribution, controls and displays, and power generation and management.
Electronic Subsystems and components to be integrated include, for
example:

a. Information systems such as command and control (C2), mission planning
and logistics functions, C4ISR

b. High end real-time systems such as sensors, robotics, active protection,
mission critical applications

c. High power load management systems such as the electronic turret,
electric drive, autoloader

Example Mobility Components and Properties

The following organization of mobility subsystems for a notional IFV, a specialized combat
vehicle, into three subsystems provides design alternative flexibility for both wheeled and
tracked combat vehicle concepts:

 Power Package/Power Train (Engine & Transmission)

 Steering & Braking

 Suspension

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 77 Refer to cover page for Distribution Statement.

The steering and braking subsystem is integral to the power package/train subsystem for
tracked combat vehicle concepts and integral to the suspension subsystem for wheeled combat
vehicle concepts. MIL-HDBK-881A served as a guide to organize the mobility subsystems and
lower level components.

Table 7.1-19 identifies an initial example of notional IFV mobility subsystem components and
properties. Figure 7.1-13 illustrates an example of a notional IFV PBS with affiliated product
design properties using a reference architecture design archetype. For example, initial
properties are identified for acceleration (dash speed), center of gravity, deceleration
(retardation), ground clearance, cruising range, turning radius, and velocity (speeds for cross
country and highway travel) at the notional IFV level.

Table 7.1-19. Initial Example of Mobility Components and Properties

 Subsystem

Property
Unit of

Measure Power Package/Power Train Steering & Braking Suspension

 Component

 Engine
Power Transport
(Transmission)

Power hp (kW) x x

Torque lb-ft (N-m) x x

Dimensions/Space
Claim

(h x w x l)

in (mm) x

in (mm) x

in (mm)

x x

Weight lbs (kg) x x

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 78 Refer to cover page for Distribution Statement.

Figure 7.1-13. Notional IFV Reference Architecture Components and Properties

Table 7.1-20, Table 7.1-21, Table 7.1-22, and Table 7.1-23 provide further details on mobility
subsystem components and properties to be taken into consideration when further developing
the ARRoW design engineering and analysis tools for a notional IFV.

Table 7.1-20. Power Package/Power Train Subsystem Components and Properties

 Subsystem 1
st

 Tier Components

Property Unit of Measure
Power Package/

Power Train Engine Power Transport

Lower Level Components Transmission,
Torque Converter,

Clutch,

Shaft Assembly,

Differential,

Final Drive,

Power Take-Off

Type Various x Size X.X
(Inline/V/Rotary)

cylinders

x

Power hp (kW) x x x

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 79 Refer to cover page for Distribution Statement.

 Subsystem 1
st

 Tier Components

Property Unit of Measure
Power Package/

Power Train Engine Power Transport

Gross Input Power (Max) hp (kW) x

Gross Net Power (Max) hp (kW) x

Torque lb-ft (N-m) x x x

Gross Input Torque (Max) lb-ft (N-m) x

Gross Net Torque (Max) lb-ft (N-m) x

Dimensions

(h x w x l)

in (mm) x

in (mm) x

in (mm)

x x x

Weight lbs (kg) x x x

Rate Speed min-max rpm x x x

Bore x Stroke (dia x dist) in (mm) x in (mm) x x

Displacement cid (cc) x x

Materials Various x x x

Cost $ x x x

Mounting list of connections x x x

Orientation x x x

Gearing # of speeds x x

Fwd Speeds # of speeds x x

Rwd Speeds # of speeds x x

Drive Selection All Wheel,
Selective, Full time

x x

Power Takeoff (PTO) x x

Table 7.1-21. Steering & Braking Subsystem Components and Properties

 Subsystem 1
st

 Tier Components

Property
Unit of

Measure
Steering &

Braking Steering Gears Brakes

Rudder
Thrust

Devices
Trim

Vanes

Type x

Brake Power hp (kW)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 80 Refer to cover page for Distribution Statement.

 Subsystem 1
st

 Tier Components

Property
Unit of

Measure
Steering &

Braking Steering Gears Brakes

Rudder
Thrust

Devices
Trim

Vanes

Dimensions

(h x w x l)

in (mm) x

in (mm) x

in (mm)

x

Weight lbs (kg) x

Materials Various x

Cost $ x

Mounting list of
connections

x

Orientation x

Table 7.1-22. Suspension Subsystem Components & Common Properties

Suspension Subsystem Components & Common Properties

 Subsystem 1
st

 Tier Components

Property
Unit of Measure or

Description Suspension
Springs &
Dampers Wheels Tracks Skirts

Lower Level Components Shock
Absorbers,

Torsion Bars,

Struts

Type Various x x x x x

Dimensions – Space
Occupied

(h x w x l)

in (mm) x

in (mm) x

in (mm)

x x x x x

Weight lbs (kg) x x x x x

Materials Various x x x x x

Cost $ x x x x x

Mounting list of connections x x x x x

Orientation Forward, Rear,
Center, Left Right,
Top, Bottom

x x x x x

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 81 Refer to cover page for Distribution Statement.

Table 7.1-23. Suspension Subsystem Component Unique Properties

Suspension Subsystem Component Unique Properties [WS11]

 Subsystem 1
st

 Tier Components

Property Unit of Measure or
Description

Suspension Springs &
Dampers

Wheels Tracks Skirts

Spring Rate x x

1) Used to isolate vehicle from terrain

2) A ratio used to measure how resistant a spring is to being compressed or expanded during the spring's
deflection

Wheel Rate x

The effective spring rate when measured at the wheel

Roll Couple % x

1) The effective wheel rate, in roll, of each axle of the vehicle as a ratio of the vehicle's total roll rate.

2) Critical in accurately balancing the handling of a vehicle.

3) Commonly adjusted through the use of anti-roll bars, but can also be changed through the use of
different springs.

Weight Transfer x

1) The total amount of weight transfer is affected by four factors: the distance between wheel centers
(wheelbase in the case of braking, or track width in the case of cornering) the height of the center of
gravity, the mass of the vehicle, and the amount of acceleration experienced.

2) The speed at which weight transfer occurs as well as through which components it transfers is complex
and is determined by many factors including but not limited to roll center height, spring and damper rates,
anti-roll bar stiffness and the kinematic design of the suspension links.

3) Weight transfer during cornering, acceleration or braking is usually calculated per individual wheel and
compared with the static weights for the same wheels.

Unsprung Wgt Xfer x

Unsprung weight transfer is calculated based on the weight of the vehicle's components that are not
supported by the springs. This includes tires, wheels, brakes, spindles, half the control arm's weight and
other components. These components are then (for calculation purposes) assumed to be connected to a
vehicle with zero sprung weight. They are then put through the same dynamic loads. The weight transfer
for cornering in the front would be equal to the total unsprung front weight times the G-Force times the
front unsprung center of gravity height divided by the front track width. The same is true for the rear.

Sprung Wgt Xfer x

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 82 Refer to cover page for Distribution Statement.

Suspension Subsystem Component Unique Properties [WS11]

 Subsystem 1
st

 Tier Components

Property Unit of Measure or
Description

Suspension Springs &
Dampers

Wheels Tracks Skirts

Sprung weight transfer is the weight transferred by only the weight of the vehicle resting on the springs,
not the total vehicle weight. Calculating this requires knowing the vehicle's sprung weight (total weight
less the unsprung weight), the front and rear roll center heights and the sprung center of gravity height
(used to calculate the roll moment arm length). Calculating the front and rear sprung weight transfer will
also require knowing the roll couple percentage.

The roll axis is the line through the front and rear roll centers that the vehicle rolls around during
cornering. The distance from this axis to the sprung center of gravity height is the roll moment arm length.
The total sprung weight transfer is equal to the G-force times the sprung weight times the roll moment
arm length divided by the effective track width. The front sprung weight transfer is calculated by
multiplying the roll couple percentage times the total sprung weight transfer. The rear is the total minus
the front transfer.

Jacking Forces x

Jacking forces are the sum of the vertical force components experienced by the suspension links. The
resultant force acts to lift the sprung mass if the roll center is above ground, or compress it if
underground. Generally, the higher the roll center, the more jacking force is experienced.

Travel x

Travel is the measure of distance from the bottom of the suspension stroke (such as when the vehicle is
on a jack and the wheel hangs freely) to the top of the suspension stroke (such as when the vehicle's
wheel can no longer travel in an upward direction toward the vehicle).

Damping x x

Damping is the control of motion or oscillation, as seen with the use of hydraulic gates and valves in a
vehicles shock absorber. This may also vary, intentionally or unintentionally. Like spring rate, the optimal
damping for comfort may be less than for control.

Damping controls the travel speed and resistance of the vehicle's suspension. An undamped car will
oscillate up and down. With proper damping levels, the car will settle back to a normal state in a minimal
amount of time. Most damping in modern vehicles can be controlled by increasing or decreasing the
resistance to fluid flow in the shock absorber.

Camber Control x

Camber changes due to wheel travel, body roll and suspension system deflection or compliance. In
general, a tire wears and brakes best at -1 to -2° of camber from vertical. Depending on the tire and the
road surface, it may hold the road best at a slightly different angle. Small changes in camber, front and
rear, can be used to tune handling. Some race cars are tuned with -2~-7° camber depending on the type
of handling desired and the tire construction. Oftentimes, too much camber will result in the decrease of
braking performance due to a reduced contact patch size through excessive camber variation in the
suspension geometry. The amount of camber change in bump is determined by the instantaneous front
view swing arm (FVSA) length of the suspension geometry, or in other words, the tendency of the tire to
camber inward when compressed in bump.

Roll Center Height

x

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 83 Refer to cover page for Distribution Statement.

Suspension Subsystem Component Unique Properties [WS11]

 Subsystem 1
st

 Tier Components

Property Unit of Measure or
Description

Suspension Springs &
Dampers

Wheels Tracks Skirts

This is important to body roll and to front to rear roll stiffness distribution. However, the roll stiffness
distribution in most cars is set more by the antiroll bars than the RCH. The height of the roll center is
related to the amount of jacking forces experienced.

Instant Center x

Due to the fact that the wheel and tire's motion is constrained by the suspension links on the vehicle, the
motion of the wheel package in the front view will scribe an imaginary arc in space with an ―instantaneous
center" of rotation at any given point along its path. The instant center for any wheel package can be
found by following imaginary lines drawn through the suspension links to their intersection point.

Anti-Dive & Anti Squat x

Anti-dive and anti-squat are percentages and refer to the front diving under braking and the rear squatting
under acceleration. They can be thought of as the counterparts for braking and acceleration as jacking
forces are to cornering. The main reason for the difference is due to the different design goals between
front and rear suspension, whereas suspension is usually symmetrical between the left and right of the
vehicle.

Flexibility & Vibration
Modes of Suspension
Element

 x

In modern cars, the flexibility is mainly in the rubber bushings. For high-stress suspensions, such as off-
road vehicles, polyurethane bushings are available, which offer far more longevity under greater stresses.

Isolation from High
Frequency Shock

 x

For most purposes, the weight of the suspension components is unimportant, but at high frequencies,
caused by road surface roughness, the parts isolated by rubber bushings act as a multistage filter to
suppress noise and vibration better than can be done with only the tires and springs. (The springs work
mainly in the vertical direction.)

Contribution to Unsprung
Wgt and Total Wgt

 x

These are usually small, except that the suspension is related to whether the brakes and differential(s)
are sprung.

Force distribution x

The suspension attachment must match the frame design in geometry, strength and rigidity.

Air Resistance (drag) x x x x x

Certain modern vehicles have height adjustable suspension in order to improve aerodynamics and fuel
efficiency. And modern formula cars, that have exposed wheels and suspension, typically use
streamlined tubing rather than simple round tubing for their suspension arms to reduce drag. Also typical
is the use of rocker arm, push rod, or pull rod type suspensions, that among other things, places the
spring/damper unit inboard and out of the air stream to further reduce air resistance.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 84 Refer to cover page for Distribution Statement.

7.1.1.8.3 Notional IFV Use Case and Behavioral Analyses

The section contains notional IFV use case and behavioral views used to develop ARRoW
design and analysis tools. This section also identifies and describes the actors associated with
IFV use cases.

Example Breadth of Notional IFV Mounted Operations Use Cases

Figure 7.1-14 illustrates a breadth of use case examples and affiliated actors for IFV Mounted
Operations. The example set of mounted operations use cases includes:

 Startup and shutdown of an IFV by an IFV crew member

 Manage IFV power by an IFV crew member

 Control vehicle movement and maneuver a mounted infantry squad by the driver
and/or squad member

 Command & control the IFV operations by the vehicle commander, squad leader, or
squad member

 Deliver IFV effects by the vehicle commander or gunner

 Exploit IFV intelligence, surveillance, and reconnaissance ISR/situation awareness (SA)
by the vehicle commander or gunner

 Communicate with operational nodes by the vehicle commander

 Sustain the IFV by a mechanic

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 85 Refer to cover page for Distribution Statement.

Figure 7.1-14. Notional IFV Mounted Operations Use Cases Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 86 Refer to cover page for Distribution Statement.

Actors
Figure 7.1-15 illustrates an example set of actors affiliated with the happy path, design limit
and safety testing, and bad day testing for IFV operations. The set of actors that interact with
the IFV range from mounted squad members, dismounted squad members, vehicle crew
members to other vehicles and personnel that could be in proximity to the IFV operations.

Figure 7.1-15. Notional IFV Actors Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 87 Refer to cover page for Distribution Statement.

Table 7.1-24 provides example descriptions for each of the actors that could be affiliated with
the happy path, performance envelope, and bad day testing for IFV operations.

Table 7.1-24. Example Actor Descriptions

Actor Name Description

IFV Personnel Represents all IFV crew members and mounted squad members.

IFV Crew Represents all IFV crew member roles of vehicle commander, gunner, or
driver.

Vehicle Commander Represents the IFV crew member commanding the overall operations
and use of the IFV. The Vehicle Commander issues commands to the
driver for IFV movement and maneuver and ramp operations, and the
gunner for weapon operations and target engagement and intelligence,
surveillance, and reconnaissance operations.

Gunner Represents the IFV crew member operating an infantry support weapon
such as a main gun/cannon, secondary gun/machine gun, anti-tank
guided missile launcher, or automatic grenade launcher,

Driver Represents the IFV crew member operating the IFV for movement and
maneuver, and ramp operations.

Squad Members Represents all squad positions/roles of squad leader, fire team leader,
rifleman, automatic rifleman, grenadier, or designated marksman.

Mounted Squad Members Represents all squad positions/roles of squad leader, fire team leader,
rifleman, automatic rifleman, grenadier, or designated marksman while
being transported in a personnel carrying vehicle.

Mounted Squad Leader Represents the first-line supervisor in an enlisted individual's chain of
command while being transported in a personnel carrying vehicle. The
Squad Leader is in command of the squad and issues orders to Fire
Team Leaders. This individual is responsible for the daily activities that
an individual performs, to include any career-mandated training.
Ultimately, this individual becomes a mentor, trainer, role model, and
supervisor all in one.

Left Side Squad Members Represents all squad positions/roles of squad leader, fire team leader,
rifleman, automatic rifleman, grenadier, or designated marksman while
being transported on the left side of a personnel carrying vehicle.

Right Side Squad Member Represents all squad positions/roles of squad leader, fire team leader,
rifleman, automatic rifleman, grenadier, or designated marksman while
being transported on the right side of a personnel carrying vehicle.

Dismounted Squad Members Represents all squad positions/roles of squad leader, fire team leader,
rifleman, automatic rifleman, grenadier, or designated marksman while
dismounted from a personnel carrying vehicle.

Dismounted Squad Leader Represents the first-line supervisor in an enlisted individual's chain of
command when dismounted from a personnel carrying vehicle. Same
responsibilities as the mounted squad leader

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 88 Refer to cover page for Distribution Statement.

Actor Name Description

Mechanic Represents all maintenance personnel tasked to perform organizational
or higher level organizational maintenance on the IFV and that could be
in close proximity to IFV ramp assembly operations.

Personnel Not Clear of the
Vehicle

Represents all personnel types that could be in close proximity to IFV
ramp assembly operations. Includes: crew members, mounted squad
members, dismounted squad members, maintainers, etc.

Cbt Vehicles Represents all vehicle types that could be in close proximity to IFV ramp
assembly operations. Includes: combat vehicles (e.g., IFV), combat
support vehicles (e.g., engineer), and combat service support vehicles
(e.g., medical, ammunition, maintenance).

Definitions for Ramps, Doors, Hatches

A ramp is an inclined vehicle egress/ingress pathway that connects the infantry fighting
vehicle squad/payload compartment with the ground surface. Ramps and hatches pivot on a
horizontal or near horizontal axis while doors pivot on a vertical or near vertical axis. Hatches
are incorporated on the top and/or bottom of a frame/hull primarily to provide egress/ingress
to a crew/operator position and for emergency exits. Doors are incorporated on the sides of
vehicle hull/frame to provide access to vehicle position and/or equipment, egress/ingress,
and/or upload and offload of cargo and supplies. A Ramp is incorporated into the vehicle
hull/frame to provide a continuous path way from the vehicle to the ground for upload and
offload of personnel, cargo, and/or supplies.

Operate Ramp Use Cases Diagram

Initial IFV ramp assembly use case and behavioral analyses provided doctrinal operational
context (e.g., dismount/mount warriors side-by-side, after a fully opened ramp). Subsequent
use case and behavioral analyses (e.g., dismount/mount warriors side-by-side while the ramp is
in motion) was provided to determine the operational impacts on ramp assembly design limits.
Figure 7.1-16 illustrates Operate Ramp use cases that were used to develop ARRoW design
and analysis tools and assist in developing an optimal fault tolerant cost effective IFV Ramp
assembly design:

 A happy path/doctrinal ramp operations use case where the ramp completes lowering
before the squad dismounts

 A use case where the infantry squad dismounts while the ramp is moving to determine
design limits, safety qualify, or exercise bad day operations

These views also served to develop and analyze IFV ramp design alternatives for quarterly
demonstrations.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 89 Refer to cover page for Distribution Statement.

Figure 7.1-16. Example Operate IFV Ramp Use Cases Diagram

Example Details on Operate Ramp Use Case

Figure 7.1-17 illustrates example details on the Operate Ramp use case for consideration in
detailed design activities for the Ramp assembly. Example details on the Operate Ramp use
case includes:

 Stopping and parking the vehicle before ramp operations

 Observing clearance to the rear of the vehicle

 Sounding audio alarm before operating the ramp

 Turning on master power

 Removing the loads on/tension off the moving parts of the ramp,

 Releasing the ramp lock and unlocking the ramp

 Lowering and reversing the direction of the ramp motion

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 90 Refer to cover page for Distribution Statement.

Figure 7.1-17. Example Details On Operate Ramp Use Case

Operate Ramp before Squad Dismounts Activity and Interaction Diagrams

Figure 7.1-18 illustrates the activities and Figure 7.1-19 illustrates the interactions for the
Operate Ramp before Squad Dismounts use case.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 91 Refer to cover page for Distribution Statement.

Figure 7.1-18. Operate Ramp before Squad Dismounts Activity Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 92 Refer to cover page for Distribution Statement.

Figure 7.1-19. Operate Ramp before Squad Dismounts Interaction Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 93 Refer to cover page for Distribution Statement.

Operate Ramp while Squad Dismounts Activity and Interaction Diagrams

Figure 7.1-20 illustrates the activities and Figure 7.1-21 illustrates the interactions for the
Operate Ramp while Squad Dismounts use case.

Figure 7.1-20. Operate Ramp while Squad Dismounts Activity Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 94 Refer to cover page for Distribution Statement.

Figure 7.1-21. Operate Ramp while Squad Dismounts Interaction Diagram

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 95 Refer to cover page for Distribution Statement.

7.1.1.9 IFV Reference Architecture SysML Model

A SysML model of an Infantry Fighting Vehicle (IFV) reference architecture was created (a
reference architecture is a kind of design archetype). An automated report generated from the
MagicDraw® SysML model is provided in an accompanying reference document. Its filename
is ―IFVRefArchStructuralReport.rtf‖.

7.1.2 ARRoW Architecture

This section describes the ARRoW architecture developed for META phase 1b. This
architecture was influenced by, and developed to be consistent with, the analytical foundation
described in section 7.1.1 above.

7.1.2.1 Archetypes

The ARRoW architecture fundamentally depends on the pervasive use of a variety of
archetypes. This section introduces the subject of archetypes and describes in detail some of the
specific archetypes used in the ARRoW architecture.

An archetype is ―the original pattern or model from which all things of the same kind are
copied or on which they are based; a model or first form; prototype.‖ [DC11]

Archetypes are foremost created for the purpose of reuse. Because they are intended to be reused,
archetypes are generally stored in the CML so that they can be easily discoverable and
available for application on multiple projects. Archetypes are generally copied from the CML
into the Master Model, and are then refined into a form, either manually or through
automation techniques, specific to the system-of-interest being developed.

7.1.2.1.1 Benefits of Archetypes

A number of benefits can be realized through the use of archetypes:

1. Once an archetype is developed, significant development time can be saved through
its reuse. If the archetype is properly constructed, the time and effort required to
refine the archetype into an instance specific to the new application will be much less
than creating it from scratch.

2. Proven concepts, best practices, and accredited approaches can be designed into the
archetypes so that designs conforming to institutional quality standards can
confidently be applied to new projects.

3. Using principles of model based engineering, relationships between archetype
elements can be pre-allocated in the CML and these relationships can then be reused
when imported into the master model. Because the analysis required to derive and
define these relationships can frequently be significant, the reuse of these
relationships can be a significant system analysis time-saver. Examples include:

a. Hierarchal ―product structure‖ containment relationships, supporting
reference architecture reuse of entire systems and subsystems.

b. ―White-box‖ pre-allocation of test cases and requirements to design
components, supporting automated verification of designs.

c. Groupings of requirements (requirement sets) related to MIL-STDs, System
Performance Specifications, system capabilities, common design constraints,
best practice design standards, etc.

d. Programmatic performance metrics linked to both producers and consumers
of the data.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 96 Refer to cover page for Distribution Statement.

4. Archetypes can provide a base architecture and associated templates that are
conducive to automation techniques. Examples include:

a. Assumption-Guarantee Contracts (Requirement Archetypes)
b. Requirement Specification Languages (RSLs) (Requirement Archetypes)
c. Natural Language Interpreters (Requirement Archetypes)
d. Various Reasoners (Test Case, Analysis Archetypes)

7.1.2.1.2 Requirements and Requirement Archetypes

Requirements have been traditionally expressed in the form of natural language text, and have
historically been delivered to developers of systems in the form of specification documents that
are comprised of multiple requirements.

In recent years, advances in requirement management tools have supported the treatment of
requirements as records in a central relational database. This approach has facilitated improved
methods of managing relationships between requirements and other requirements,
relationships between requirements and specific elements of the design, and relationships
between requirements and test procedures/test result reports. Additionally, customizable
metadata can be attached to requirements using these tools. These tools frequently provide the
capability to import from/export to electronic document formats such as MS Word® for
compatibility with legacy methods of managing requirements. Examples of such tools include
IBM Rational® RequisitePro®[IBM11b], IBM® Rational® DOORS®[IBM11a], and
Cameo™ Requirements+[MD11].

SysML provides support for documenting requirements, their associated relationships, and
customizable metadata as well. Although today‘s SysML authoring tools tend to be somewhat
primitive in terms of requirements authoring and management capability, the SysML language
itself provides the underlying essential semantics needed to describe requirements and their
relationships with the system of interest. We have chosen to use SysML as the common
language for documenting requirements within the ARRoW environment because of its
standardization and ubiquity. Many of today‘s SysML authoring tools provide plug-ins and/or
data exchange capability with multiple high-end requirements management tools, so the best of
both worlds (standard underlying model and powerful requirements management) can be
achieved using SysML.

When we refer to the ―ingestion‖ of requirements into ARRoW, we mean the process of

 Importing the source requirements into the ARRoW master model

 If necessary, translating the requirements from their native format into the SysML
language.

After requirements are ingested, they must be processed (―digested‖) to be usable in the
ARRoW environment. This involves

 Binding the requirements to the appropriate master model elements

 Associating and updating any desired metadata with the requirements

 If appropriate, translating the text of the requirements into a form more suitable to
being processed within the ARRoW environment

The source requirements that are ingested and processed are generally associated with the
system level of the system of interest rather than lower order subsystems and components of
the system. The ultimate manifestation of the ARRoW concept would ideally eliminate the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 97 Refer to cover page for Distribution Statement.

need for all but system level requirements, instead supporting only a hierarchy of test cases
against the design that culminate in verification of the system requirements. In fact, there is
nothing in the ARRoW concept that depends on lower level requirements existing or being
verified, per se. However, there will likely be needs outside of the ARRoW environment that
will impose a required capability of ARRoW to support a hierarchal structure of requirements
and automated verification techniques below the system level. Some of these needs include:

 Not all elements of the system, at least initially, will lend their complete design to
ARRoW and/or their implementation by iFAB. Examples include the development of
needed software components (SW development is not yet a part of ARRoW), new
technology requiring hands-on experimentation with hardware, safety critical systems
where bodies within the government may insist on development and test procedures
outside the scope of ARRoW, or simply dependency on suppliers not yet integrated into
the ARRoW/iFAB environment. In each of these cases, it may be necessary to develop
requirements (natural language or otherwise) that are formally imposed on an
organization for development of a portion of the system of interest. These requirements
will need to be derived from the system requirements.

 For the purposes of project and design management, it may be desirable to have ―watch
points‖ interspersed at lower levels within the system design that can notify the
developer if certain limits are exceeded. These watch points need not be formal
requirements, but can be of identical form to requirements, including the manner in
which they interact with the verification mechanics of ARRoW. Examples of useful
watch points might be weight budgets, cost budgets, message latencies, etc.

 Trade studies can be automated within ARRoW to compare the relative utility of
alternative designs residing at arbitrary levels within the system product structure.
Requirements can be used to support the analysis of multiple criteria used to assess
these alternatives. Requirements in the ARRoW master model are generally verified by
comparing test results to an expected value or characteristic described in the
requirement. The verdict resulting from this comparison can be binary in nature
(pass/fail), or it can be the output of a utility function whose input domain is a test
result value and whose output is a score that grades (continuously or discretely) across a
range from ―no effective utility‖ to ―maximum possible utility‖. Thus, the standard
mechanism for verifying requirements can be used to analyze trade study criteria as
well.

 Subsystems and components will eventually reside in the CML, and should have
performance specifications associated with them in some form to aid in the proper
selection of elements from the CML. These specifications should be in the form of
requirements to best interface with the ARRoW tool chain. These requirements may or
may not be in the form of assumption-guarantee contracts, but as identified in the
contracts approach, simulation processing time can be saved if the system can be
analyzed based on the guaranteed performance of a system‘s components instead
needing to simulate the behavior of all of its components.

Since the processing of requirements (system-level or derived lower-level) can involve a
significant amount of analysis and documentation effort, they are prime candidates for
improvement within the development paradigm of ARRoW. To that end, we propose the
concept of ―Requirement Archetypes‖ (RAs).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 98 Refer to cover page for Distribution Statement.

RAs are patterns for requirements of like types. Requirements are refined from RAs within
ARRoW. The process of refinement generally involves copying the RA from the CML,
modifying the archetype pattern to make it a requirement specific to the system of interest
being developed, and associating the refined requirement (either directly or indirectly) with the
source requirement. RAs exist in the CML in two major forms: 1) they are pre-allocated to
design components and to their corresponding test case archetypes such that the act of
importing designs or design archetypes from the CML into the master model will also import
the associated RAs, and 2) they are grouped into Requirement Archetype Sets (RASs) that are
logical groupings of RAs that are associated with typical functions, capabilities, or constraints
of systems that might be developed. Examples of grouping criteria for RASs might be sample
performance specifications (composed of RAs, not requirements), RAs grouped by associated
MIL-STDs, functional groupings such as heavy combat vehicle mobility RAs, etc.

The process of copying RAs into the master model involves the use of both of these forms.
Candidate RASs can be imported by doing keyword searches based on source requirements‘
subject matter. Likewise, candidate design archetypes and their associated RAs can also be
imported based on similar keyword searches. Once both of these RA forms are in the master
model, they are compared as an aid to determine if there are missing source requirements or
missing requirements allocated to the design.

Note that to the extent that source requirements provided by the customer conform to the
existing scope and form of RASs already in the CML, the requirements analysis effort needed
for the new system of interest can be greatly simplified.

Requirements and RAs are of identical form and can have similar associations with other
master model elements, but generally differ in the values assigned to their metadata (although
in some cases, RAs may exist in the CML that are fully refined to requirements). An example of
a requirement archetype is shown in Figure 7.1-22.

Figure 7.1-22. Sample Requirement Archetype with Metadata

An RA is a SysML «requirement» model element from which new stereotypes can be derived
to provide additional metadata that may be of use in managing the requirement. Each SysML
«requirement» minimally has an ―Id‖ and a ―Text‖ field. The Id is a project unique identifier for
the requirement. The Text is the actual body of the requirement.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 99 Refer to cover page for Distribution Statement.

RAs are patterns for requirements. They can include additional metadata for suggested use
(such as that shown in Figure 7.1-22), they can be pre-allocated to elements in the CML
(including other RAs, design components, and test case archetypes), and the value of their Text
field can also be of a form that is a pattern for general use.

The nature of the RA or requirement text can take on many forms based on the type of
requirement involved, including references to non-textual model elements. Just a few examples
include:

 References to Use Case or Sequence Diagram based required behavior

 Assumption-Guarantee Contracts boilerplate

 Formal Requirements Specification Language (RSL) boilerplate

 Languages facilitating Qualitative/Quantitative Reasoners

 Three-dimensional Physical Envelope Constraints

 Operational requirements stated in a way that invites proper construction of appropriate
dynamic, multi-physics based Operational Virtual Prototype simulations

 Performance Requirements that lend themselves to parametric descriptions

Examples of how this last bullet can be provided in archetype form and then refined to specific
infantry fighting vehicle requirements is shown in Table 7.1-25.

Table 7.1-25. Sample Requirement Archetype Text

Topic Archetype IFV Refinement Examples

Mobility Requirement Archetype Set

Dash Speed

The <subject> shall accelerate from <X1> to
<X2> kph in not more than <Y> sec on
<Terrain type> at a <Z> degree slope

The <IFV> shall accelerate from <0> to <80>
kph in not more than <25> secs on <primary
roads> at a <0> degree slope.

 The <IFV> shall accelerate from <0> to <45>
kph in not more than <25> secs on <cross-
country terrain> at a <0> degree slope.

Speeds

The <subject> shall attain <Direction> speed
of not less than <X> kph on <Terrain> at a <Z>
degree slope

The <IFV> shall attain <forward> speed of not
less than <80> kph on <primary roads> at a
<0> degree slope.

 The <IFV> shall attain <rearward> speed of
not less than <16> kph on <primary roads> at
a <0> degree slope.

 The <IFV> shall attain <forward> speed of not
less than <45> kph on <cross-country terrain>
at a <0> degree slope.

 The <IFV> shall attain <rearward> speed of
not less than <5> kph on <cross-country
terrain> at a <0> degree slope.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 100 Refer to cover page for Distribution Statement.

Topic Archetype IFV Refinement Examples

 The <IFV> shall attain <objective forward>
speed of not less than <80> kph on <primary
roads> at a <0> degree slope.

 The <IFV> shall attain <threshold forward>
speed of not less than <30> kph on <primary
roads> at a <0> degree slope.

 The <subject> shall attain <Direction> speed
within and including the endpoints of the
range from <X1> to <X2> kph on <Terrain> at
a <Z> degree slope

The <IFV> shall attain <forward> speed within
and including the endpoints of the range from
<30> to <80> kph on <primary roads> at a <0>
degree slope.

 The <IFV> shall attain <rearward> speed
within and including the endpoints of the
range from <8> to <16> kph on <primary
roads> at a <0> degree slope.

 The <IFV> shall attain <forward> speed within
and including the endpoints of the range from
<30> to <45> kph on <cross-country terrain>
at a <0> degree slope.

 The <IFV> shall attain <rearward> speed
within and including the endpoints of the
range from <5> to <8> kph on <cross-country
terrain> at a <0> degree slope.

Turning Radius The <subject> shall turn <Bearing1> or
<Bearing2> <X> degrees within <Y.Y> times
the vehicle diagonal length <Z.Z> m

The <IFV> shall turn <left> or <right> <360>
degrees within <1.0> times the vehicle
diagonal length <7.5> m.

Energy
Efficiency

The <subject> shall consume not greater than
<X.XX> KPL at <Y> kph on <Terrain Type> at a
<Z> degree slope

The <IFV> shall consume not greater than
<0.32-0.95> KPL at <48> kph on <primary
roads> at a <0> degree slope.

Climb Obstacle The <subject> shall climb obstacles at a
height not less than <X.X> m

The <IFV> shall climb obstacles at a height not
less than <1.5> m.

Cross Gap The <subject> cross trenches at a width not
less than <X.X> m

The <IFV> shall cross trenches at a width not
less than <1.5> m.

Fording The <subject> shall ford water at a depth not
less than <X.X> m.

The <IFV> shall ford water at a depth not less
than <1.5> m.

Cruising Range The <subject> shall travel on internally
carried fuel for no less than <X> km at <Y>
kph average sustained speed on <Terrain
type>.

The <IFV> shall travel on internally carried
fuel for no less than <480> km at <45> kph
average sustained speed on <primary roads>.

Personnel Capacity Requirement Archetype Set

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 101 Refer to cover page for Distribution Statement.

Topic Archetype IFV Refinement Examples

Personnel
Capacity

The <subject> shall be sized for a <Personnel
Organization type> of <X> soldiers.

The <IFV> shall be sized for a <crew> of <2>
soldiers.

 The <IFV> shall be sized for a <crew> of <3>
soldiers.

 The <IFV> shall be sized for a <squad> of <6>
soldiers.

 The <IFV> shall be sized for a <squad> of <9>
soldiers.

Physical Characteristics Requirement Archetype Set

Weight The <subject> <Weight type> shall be not
greater than <X.X> tonnes

The <IFV> <air shipping weight> shall be not
greater than <45.0> tonnes.

 The <IFV> <curb weight> shall be not greater
than <50.0> tonnes.

 The <IFV> <maximum combat weight> shall
be not greater than <55.5> tonnes.

The <IFV> <transport dimensions> shall be
not greater than height <3.0> m, width <2.7>
m, and length <6.3> m.

Dimensions

 The <subject> <Dimension type> shall be not
greater than height <X.X> m, width <Y.Y> m,
and length <Z.Z> m

The <IFV> <operational dimensions> shall be
not greater than height <4.0> m, width <3.3>
m, and length <6.8> m.

Ground
Clearance

The <subject> <Orientation> ground
clearance type shall be not less than <X.X> m

The <IFV> <front> ground clearance shall be
not less than <0.45> m.

 The <IFV> <rear> ground clearance shall be
no less than <0.4> m.

Ramp Angle
Clearance

The <subject> <Ramp Angle Clearance type>
shall be not less than <X.X> degrees

The <IFV> <Angle of Approach> shall be not
less than <75> degrees.

 The <IFV> <Angle of Departure> shall be not
less than <50> degrees.

Transportability Requirement Archetype Set

Airlift Cargo
Dimension
Limits

 The <subject> shall comply with <Airlift asset
type> cargo transportability dimension limits
of height <X.X> m at width <Y.Y> m, width
<Y.Y> m, and length <Z.Z> m.

The <IFV> shall comply with <C-17> cargo
transportability dimension limits of height
<3.6> m at width <5.2> m, width <5.2> m, and
length <19.9> m.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 102 Refer to cover page for Distribution Statement.

Topic Archetype IFV Refinement Examples

 The <IFV> shall comply with <C-17> cargo
transportability dimension limits of height
<3.9> m at width <4.3> m, width <4.3> m, and
length <19.9> m.

 The <IFV> shall comply with <C-5> cargo
transportability dimension limits of height
<2.7> m at <5.4> m width, width <5.4> m, and
length <36.9> m.

 The <IFV> shall comply with <C-5> cargo
transportability dimension limits of height
<3.9> m at <3.6> m width, width <3.6> m, and
length <36.9> m.

 The <IFV> shall comply with <C-130> cargo
transportability dimension limits of height
<2.6> m at width <2.7> m, width <2.7> m, and
length <16.8> m.

Raillift Cargo
Dimension
Limits

The <subject> shall comply with <Raillift asset
type> cargo transportability dimension limits
of height <X.X> m at width <Y.Y> m, width
<Y.Y> m, and length <Z.Z> m.

The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <4.37> m at width <1.26> m,
width <1.26> m, and length <15.30> m.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <4.25> m at width <1.85> m,
width <1.85> m, and length <15.30> m.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <4.15> m at width <2.17> m,
width <2.17> m, and length <15.30> m.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <3.91> m at width <2.60> m,
width <2.60> m, and length <15.30> m.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <3.49> m at width <3.04> m,
width <3.04> m, and length <15.30> m.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability dimension
limits of height <3.25> m at width <3.15> m,
width <3.15> m, and length <15.30> m.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 103 Refer to cover page for Distribution Statement.

Topic Archetype IFV Refinement Examples

Militarylift
Cargo Weight
Limit

The <subject> shall comply with <Militarylift>
cargo transportability weight limit of <X.X>
tones.

The <IFV> shall comply with <C-17> cargo
transportability weight limit of <58.9> tonnes.

 The <IFV> shall comply with <C-5> cargo
transportability weight limit of <80.7> tonnes.

 The <IFV> shall comply with <C-130> cargo
transportability weight limit of <19.5> tonnes.

 The <IFV> shall comply with <NATO Rail M
Envelope> cargo transportability weight limit
of <70> tonnes.

Survivability Requirement Archetype Set

Threat
Munition
Protection

The <subject> shall protect against <Threat
type> munitions.

The <IFV> shall protect against <14.5 mm
machine gun> munitions.

 The <IFV> shall protect against <RPG-7>
munitions.

Vehicle Threat
Protection

The <subject> shall provide <Vehicle Amount
type> protection against <Threat type>
munitions

The <IFV> shall provide <360 degree>
protection against <Threat type> munitions.

 The <IFV> shall provide <crew compartment>
protection against <Threat type> munitions.

 The <IFV> shall provide <engine
compartment> protection against <Threat
type> munitions.

 The <IFV> shall provide <weapon
compartment> protection against <Threat
type> munitions.

 The <IFV> shall provide <squad
compartment> protection against <Threat
type> munitions.

Figure 7.1-23 and Figure 7.1-24 provide examples of how two additional classes of
requirements might be categorized and how they might share a common verification approach
within each category. Although we have not yet constructed requirement archetypes for these
categories, it can be seen that the dramatically different forms of respective verification might
invite RA patterns that can be optimally expressed to relate to the corresponding most
appropriate test cases.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 104 Refer to cover page for Distribution Statement.

Figure 7.1-23. Physical Envelope Verification

Figure 7.1-24. Operational Virtual Prototype Verification

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 105 Refer to cover page for Distribution Statement.

7.1.2.1.3 Test Cases and Test Case Archetypes

Refer to section 7.1.2.6 for additional information relating to the ARRoW entities that interact
with Test Cases and Test Case Archetypes, including diagrams related to this topic.

Within the scope of ARRoW, a Test Case (TC) is defined to be an executable that configures
and orchestrates the test of, and stimulates the inputs of a Design Component (DC) for the
purpose of verifying one or more requirements levied against that DC or a product structure
parent of that DC.

The DC has a corresponding Component Model (CM) that models the behavior or physical
properties of its detailed design. This CM reacts to the stimuli generated by the TC, and
produces output that is compared to a required output and/or routed to some other element
within the Master Model (MM) for further processing.

A TC does not have visibility into the internal structure or behavior of the DC, including its
associated CMs. In other words, a TC has a ―black box‖ interface to the DC. However, a TC
does impose a required interface standard on the DC for all inputs and outputs related to the
test. This interface standard might include both run time data exchange interfaces as well as
configuration/setup and status reporting interfaces.

TCs are frequently refined from Test Case Archetypes (TCAs). Within the CML, TCAs are
pre-allocated to design archetypes. TCAs might be composed of pseudo-code, parameterized
functions/services expressed in a general purpose language, Simulink® blocks, SysML
parametric diagrams, or any form of expression that can provide a template for the logic of a
TC. A TC may be a modification of a TCA, highly refined within the master model to make it
an executable for supporting test of a specific DC, or it may be the unmodified TCA itself if that
TCA can appropriately be applied to the run time test of the DC. For example, the CML will
contain, in addition to design archetypes, design components associated with specific model
numbers of equipment. The TCAs for such components may be indistinguishable from TCs.

In a top-down design process, it frequently is necessary to specify requirements for a design
component before that component is actually designed. In fact, new components are frequently
designed pursuant to the requirements imposed on them. In general, a black box test of a
component for the purpose of verifying a requirement can be constructed if all relevant external
interfaces of that component are known and well defined. This standardized test mechanism
can thus be reused against many alternative design solutions and revisions without needing to
change the structure/logic of the TC. Additionally, proprietary information related to the
component design need not be exposed as long as the external interfaces are openly
documented.

Thus, TCs and TCAs are generally expected to be open-source, whereas CMs may be
proprietary and might be published as an executable without exposing the source code. Both
TCAs and CMs are expected to be published in the CML.

Many requirements will have a recurrent set of environmental constraint (context)
requirements that apply during their verification test as test conditions. For example, ambient
temperature, altitude, and road surface properties will normally influence mobility performance,
so the verification test of, say an acceleration requirement of a vehicle, would be performed
under prescribed test conditions of the required ambient operational temperature range,
maximum required altitude, and specified road condition model.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 106 Refer to cover page for Distribution Statement.

When a TC is constructed, it must account for all the relevant test conditions imposed on the
test based on the relevant context requirements that will typically apply to the associated
design component. TCAs provide a mechanism by which this analysis can be reused. TCAs can
have references to multiple Requirement Archetypes (RAs) that act in the role of test
conditions for the test of the primary requirement(s) being verified.

There is a logical two-dimensional matrix that relates the set of all context requirements
imposed on a system and the set of all requirements whose verification is dependent on test
conditions specified by context requirements. Any particular context requirement is verified
only after every requirement dependent on that context is verified. The AIDE will support
verification of context requirements by keeping track of which context-dependent requirements
have been verified against the current system of interest design..

7.1.2.2 ARRoW Context Diagram

"ARRoW" is the BAE Systems META team's solution to the META problem. ARRoW
includes tools (both developmental as well as non-developmental), but also includes all
architectural templates, interface standards, libraries, etc. necessary to support development of
new systems. These new systems are herein referred to as "System(s) of Interest" (SoI).

The "ARRoW Integrated Development Environment" ("ARRoW IDE" or "AIDE") represents
the entire deployed runtime environment that supports development of a System of Interest, as
well as any documentation supporting the AIDE user for the use and maintenance of the AIDE.
For the purposes of this analysis, "ARRoW" and "ARRoW IDE" can be used interchangeably,

The AIDE is an "integrated" environment, meaning that the developer of ARRoW has
architected and verified that the ARRoW tool chain and data will function together as a
system. Additionally, subsequent to deployment, either the initial developer or a subsequent
authority assures the AIDE continues as an integrated solution, including the integrated
functionality of non-developmental, open-source, and freeware tools.

The AIDE users will include SoI end users, the SoI acquisition community, SoI developers,
regulatory authorities, and component vendors.

A context diagram depicting major actors that interface with the AIDE is shown in Figure 7.1-
25. Refer to section 7.1.1.4.1 above for descriptions of these actors.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 107 Refer to cover page for Distribution Statement.

Figure 7.1-25. AIDE Context Diagram

7.1.2.3 AIDE Entities

Figure 7.1-26 is a SysML block definition diagram that provides an overview of the major
components and tools that comprise the AIDE. Connectors with diamonds indicate that the
block on the diamond side contains the other block. Connectors with arrow heads indicate that
the block on the arrow head side is a generalization of the other block.

METAFR010

Adversary

Product Output Sink

Customer Domain

Sol Development

ARRoW
Infrastructure
Development

LEGEND

: Sol
Development
SME

: Library
Content
Developer

: Sol
Developer

: Library
Curator

: ARRoW
IDE
Developer

: ARRoW
Power User

: iFAB

: Malicious
User

: Full
Spectrum
Simulator

: Sol Acquisition
Community
Member

: Government
Needs
Website

:ARRoW

IDE

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 108 Refer to cover page for Distribution Statement.

Figure 7.1-26. AIDE

A high level overview of Figure 7.1-26 follows.

Master Model

The ARRoW development paradigm embraces principles of Model Based Engineering (MBE)
and Model Based Systems Engineering (MBSE) whereby, to the maximum extent practical, all
aspects of the SoI design and its development process are contained in an underlying unified
model that can be accessed and manipulated by a diverse set of development tools. In ARRoW,
this is called the Master Model (MM).

The Master Model (MM) contains the system being developed beginning with requirements
and culminating in the handoff to iFab. This includes all data associated with the specific
design, including requirements, metrics, geometry, software, controls, links to specific entities
within the component model library, and all data normally contained in a Technical Data
Package for a military system. All components of the toolchain use and store data within the
MM via AMIL.

PLM Repository

Because development of a SoI will normally involve multiple developers working concurrently,
the AIDE will need to support this. The evolution and configuration of the MM will need to be
managed to the same rigor that data is managed on complex projects today. Thus, we
anticipate that the MM will reside in a repository managed by a sophisticated Product Lifecycle
Management (PLM) toolset.

Library

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 109 Refer to cover page for Distribution Statement.

The ARRoW development process generally entails the import of model elements from various
libraries into the MM, and then a new SoI is developed within the MM by modifying some of
the imported elements, creating new elements, and creating new relationships between
elements.

In the context of the AIDE, we have identified a number of archetype categories that can
potentially contribute to more efficient development of new systems. We have logically
organized these archetype categories as if they would each have their own library structure and
custodian. Whether each of these notional libraries is actually implemented as part of the
ARRoW solution is left as a design decision for future consideration.

ARRoW Documentation

Critical to the success of any IDE is a set of quality documentation that describes its use and
capabilities. A user manual is an example of such documentation. Additionally, we anticipate
that certain data exchange standards will be required, and will pertain to both tool interfaces
and library interfaces.

ARRoW Toolset

The ARRoW Toolset is a set of software tools to:

 Aid in SoI design, analysis, and verification

 Provide an infrastructure for the AIDE

Descriptions of the blocks shown in Figure 7.1-26, alphabetically sorted by block name, are
provided in Table 7.1-26. The above diagram, and its constituent blocks can be additionally
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture
Development‖, with the description text in the documentation metadata field associated with
each block.

Table 7.1-26. AIDE Block Descriptions

Block Name Description

AMIL ARRoW Model Interconnection Language (AMIL) is a tool used to
represent the links or the network of those models of the System of
Interest (SoI) that ARRoW works with either directly or as a proxy.

Analysis Tools Analysis Tools is a set of application programs that aid in the
development of project and product metrics information that includes:

 Project health

 System and cost effectiveness

 Problem domain understanding

 Design maturity and health

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 110 Refer to cover page for Distribution Statement.

Block Name Description

Analysis Archetype Library The Analysis Archetype Library is a repository for templates of analysis
types (categories). It is expected that the analysis archetype templates
will include:

 System Analysis

 Operational Analysis

 Requirement Analysis

 Design Analysis

 Design maturity and health

 Support Analysis

ARRoW Documentation AIDE documentation set is a collection of documents that:

 Aid users in the operations and maintenance of the AIDE

 Identify and define internal and external interfaces of the AIDE

AIDE The Adaptive, Reflective, Robust Workflow (ARRoW) Integrated
Development Environment (IDE) includes the following elements:

 Set of master models to represent to the data for the pertinent System
of Interest (SoI) being developed

 A Product Lifecycle Management (PLM) repository for all product
information relating from concept through design and release for
production, to operations & support and disposal

 An ARRoW toolset to aid in SoI design, analysis, and verification, and
provide an infrastructure for the integrated development environment

 A library set consisting of product component models, project & product
development archetypes, and product context models

 A database of relevant stakeholder review comments on components in
development or deployed

 -AIDE documentation set for users, maintainers, and interface
standards

ARRoW Infrastructure Tools Adaptive, Reflective, Robust Workflow (ARRoW) Infrastructure Tools are
application programs that provide for and support the foundation of the
ARRoW integrated development environment (IDE).

ARRoW Plug-ins Adaptive Reflective Robust Workflow (ARRoW) Plug-ins are application
programs that add capabilities to an existing application programs or to
enable customization of application functionality so that existing
application programs can be utilized in the AIDE.

ARRoW Toolset The Adaptive, Reflective, Robust Workflow (ARRoW) Toolset is a set of
tools to:

 Aid in SoI design, analysis, and verification

 Provide an infrastructure for ARRoW integrated development
environment (IDE)

ARRoW UI The ARRoW User Interface (UI) includes all needed UIs to support the
set of ARRoW users.

ARRoW User Manual ARRoW User Manual is a collection of documents that aid users in the
operations and maintenance of the AIDE.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 111 Refer to cover page for Distribution Statement.

Block Name Description

CML A Component Model Library (CML) is a collection of component models
that represent products at various lifecycle stages:

 Technology Development

 Engineering & Manufacturing Development

 Production & Deployment

 Operations & Support

Component Review Database Component Review Database contains review comments provided by
end users, the acquisition community, developers, etc. against any entity
that is either published in a library or physically in use in the real world.

Context Model Library The Context Model Library includes Aberdeen Proving Grounds (APG)
Course models, Weather Models, satellite constellation models, threat
models, lethal effects models, OneSAF, etc.

Design Archetype Library The Design Archetype Library is a repository for templates of design
types (categories). It is expected that the design archetype templates will
include:

 Product Breakdown Structure (PBS) Items

 Component Items

 Design Domains

 New Technology Based Items

Design Tools Design tools are a set of product development application programs that
enable users to develop a System-of-Interest (SoI).

ECTo ECTo (Early Concepting Tool) is a tool used for vehicle level concept and
prototype development.

Envisioner Envisioner is a qualitative simulation tool used to aid in early and often
confirmation that the specified requirements are fulfilled by the System-
of-Interest (SoI).

ESKER ESKER (Expert-System Knowledgebase Evaluation Reasoner) is a tool
used for look-ahead and design space exploration for a System of
Interest (SoI).

GEAR GEAR (Generic Ensemble Archetype Reasoners) is a set of rule-based
tools used to develop archetypes for analysis, design, and
implementation.

Galileo Galileo is a tool used to operate on and reason with AMIL data and library
information. Galileo automates through orchestration and choreograph
the product development cycle of design and test exploration
(processes).

Interface Standards Interface Standards is a set of hardware and software interface
documentation that identify and define:

 Internal interfaces between ARRoW elements (data and tools)

 External interfaces to the AIDE

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 112 Refer to cover page for Distribution Statement.

Block Name Description

Library A library set consisting of product component models, project & product
development archetypes, and product context models used to develop a
System of Interest (SoI).

Master Model The ARRoW Master Model (MM) is the aggregate of all data, model
elements and their relationships that define and document the System of
Interest (SoI) under development as well as the management of the SoI
development process.

Mechanical CAD Tool A Mechanical Computer-Aided Design (CAD) tool is a design process
and documentation application that supports multi-dimension modeling
(e.g., 2 or 3) of physical elements and their materials for a System of
Interest (SoI).

Metrics Dashboard The Metrics Dashboard is the set of user interfaces (UIs) to support the
Metrics Framework applications that aid in the development and
management of project and product metrics information.

Metrics Framework Metrics Framework is a set of application programs that aid in the
development and management of project and product metrics information
that include:

 Project health

 System and cost effectiveness

 Problem domain understanding

 Design maturity and health

PLM Repository A PLM (Product Lifecycle Management) Repository is a set of data stores
managed by a PLM Tool for all information that affects a product from
concept, through design and release for production, to operations &
support and disposal.

PLM Tool A PLM (Product Lifecycle Management) tool is an application tool that
manages and communicates all information that affects a product from
concept, through design and release for production, to operations &
support and disposal.

Project Health Archetype
Library

The Project Health Archetype Library can include the following archetype
libraries for:

 Risk and opportunity management

 Cost and schedule management

Requirements Archetype
Library

The Requirements Archetype Library is a repository for templates of
requirement types (categories). It is expected that requirement archetype
templates will include:

 Operational requirements

 Design constraints

 External Interfaces

 Budgetary requirements

 Product delivery requirements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 113 Refer to cover page for Distribution Statement.

Block Name Description

SoI Analysis Data System of Interest (SoI) analysis data is investigative methodical
information about a product's operational usefulness, support burden,
and design. The SoI analytical data can range from the system level to
individual domain specific engineering disciplines. Systems level analysis
can include cost and system effectiveness analyses, life cycle cost
analysis, formal decisions/trade studies, architectural analysis, capability
& gap assessments, risk analysis, etc. Domain specific engineering
analytical information can include: thermal, shock and vibration, electrical,
communications, etc.

SoI ARRoW Infrastructure
Data

System of Interest (SoI) ARRoW Infrastructure Data is the information
generated as a result of using the ARRoW infrastructure tools on the SoI.

SoI Design Data System of Interest (SoI) design data is the plan elements of information
for the creation of a product that is either a development item or a non-
developmental item. Design data can range from conceptual information,
through detail design information of domain specific engineering
disciplines and "build to print" production information, to "as built"
information of a deployed product.

SoI Verification Data System of Interest (SoI) verification data is confirmation information about
a product that determines whether the product is compliant with its
requirements. A verification of a product also includes its work products,
(e.g., lower level specifications, designs, processes).

SysML Tool A Systems Engineering (SE) Modeling Language (SysML) tool is a
graphical SE modeling application that supports requirements and
architecture development, systems analysis & control, and verification
and validation for a System of Interest (SoI).

Test Case Archetype Library The Test Case Archetype Library is a repository for templates of test
case types (categories). It is expected that test case archetype templates
will include:

 Operational requirements

 Design constraints

 External Interfaces

 Budgetary requirements

 Product delivery requirements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 114 Refer to cover page for Distribution Statement.

Block Name Description

Test Result Analyzer
Archetype Library

The Test Result Archetype Library is a repository for templates of test
result types (categories). It is expected that test result archetype
templates will include:

 Roll-Up results

 Quantitative

 Qualitative

 Pass

 Pass with margin

 Fail

 Limited operational use

 Metrics

 Safety

 Certification

 Acceptance

 Sell-off

 Qualification

Verification Tools Verification Tools are a set of application programs that aid in early and
often confirmation that the specified requirements are fulfilled by the
System-of-Interest (SoI). Verification application programs provide
enabling information to determine corrective actions on non-conformance
issues. Verification tools confirm that the SoI and all its elements perform
their intended functions and meet the performance requirements
allocated to them (i.e., that the system has been built right). Verification
tool usage is also influenced by risk management, and safety and
mission criticality of the SoI.

Web UI for Component
Review

The Web User Interface (UI) includes all Web-based graphical user
interfaces (GUI) to support users of the Component Review Database.

7.1.2.4 ARRoW Master Model

The ARRoW Master Model (MM) is the aggregate of all data, model elements and their
relationships that define and document the System of Interest (SoI) under development as well
as the management of the SoI development process. The ARRoW development paradigm
embraces principles of Model Based Engineering (MBE) and Model Based Systems
Engineering (MBSE) whereby, to the maximum extent practical, all aspects of the SoI design
and development process are contained in an underlying unified model that can be accessed and
manipulated by a diverse set of development tools.

The normal ARRoW process of development entails the import of model elements from the
CML and other external sources into the MM, and then a new SoI is developed within the MM
by modifying some of the imported elements, creating new elements, and creating new
relationships between elements.

Please refer to Figure 7.1-27. Because development of a SoI will normally involve multiple
developers working concurrently, the AIDE will need to support this. The evolution and
configuration of the MM will need to be managed to the same rigor that data is managed on
complex projects today. Thus, we anticipate that the MM will reside in a repository managed
by a sophisticated Product Lifecycle Management (PLM) toolset. The AIDE will facilitate

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 115 Refer to cover page for Distribution Statement.

multiple developers concurrently modifying elements of the MM in their local workspace
environments and then integrating their changes into the unified MM via a managed process
supported by the PLM toolset.

Figure 7.1-27. Master Model

Descriptions of the blocks shown in Figure 7.1-27, alphabetically sorted by block name, are
provided in Table 7.1-27. The above diagram, and its constituent blocks can be additionally
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture
Development‖, with the description text in the documentation metadata field associated with
each block.

Table 7.1-27. Master Model Descriptions

Block Name Description

Configuration Managed
Master Model

This is a specialization of a Version Managed Master Model that not only
is version controlled, but additionally is configuration managed.

Master Model The ARRoW Master Model (MM) is the aggregate of all data, model
elements and their relationships that define and document the System of
Interest (SoI) under development as well as the management of the SoI
development process.

PLM Repository PLM = Product Lifecycle Management

A PLM Repository is the data store managed by a PLM Tool.

Version Managed Master
Model

This is a version of the master model that resides in a repository that
enforces version control of the master model and/or its constituent
elements.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 116 Refer to cover page for Distribution Statement.

Block Name Description

WIP Master Model WIP = Work in Progress

This is a version of the master model that is privately maintained by a
particular SoI developer.

Workspace Storage The memory or storage used by an individual developer that contains the
work in progress elements of the master model that the developer needs
to access and potentially may need to modify.

7.1.2.5 ARRoW Library Elements

In the context of the AIDE, we have identified a number of archetype categories that can
potentially contribute to more efficient development of new systems. Refer to section 7.1.2.1
above for a description of archetypes. We have logically organized these archetype categories
as if they would each have their own library structure. Whether each of these notional libraries
is actually implemented as part of the ARRoW solution is left as a design decision for future
consideration. Figure 7.1-28 is a SysML diagram depicting this logical organization of
archetype libraries.

Figure 7.1-28. Archetype Library (Notional)

Descriptions of the blocks shown in Figure 7.1-28, alphabetically sorted by block name, are
provided in

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 117 Refer to cover page for Distribution Statement.

Table 7.1-28. These archetype library blocks can be additionally found in the MagicDraw file
―META_Project.mdzip‖, in the nested package chain labeled ―6.2 Architecture | Library |
Archetype Library‖, with the description text in the documentation metadata field associated
with each block element.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 118 Refer to cover page for Distribution Statement.

Table 7.1-28. Archetype Library Descriptions

Library Name Parent Description

Archetype
Library

None The Archetype Library includes original patterns or models of
entities and behaviors from which all things of the same kind are
copied or on which they are based.

Budgetary Reqs
Archetype
Library

Requirements
Archetype Library

The Budgetary Reqs Archetype Library can include the following
types of requirements that are budgeted to lower level entities of
the SoI.

 Weight
 Reliability
 Testability
 Accuracy
 Timeline

Budgetary Reqs
Test Case
Archetype
Library

Test Case
Archetype Library

The Budgetary Requirements Test Case Archetype Library can
include the following types of test cases to test the SoI design to
the SoI budgetary requirements.

 Weight

 Reliability

 Testability

 Accuracy

 Timeline

Component Item
Archetype
Library

Design Archetype
Library

The Component Item Archetype Library can include the following
building block entities to create component item solution
alternatives based an original pattern or model of a component
entity. A Component Item Archetype can be use for a reference
architecture. Component Item archetypes include:

 Engines

 Transmissions

 Chassis/Hulls

 Radios

 C2

 ISR

Cost-Schedule
Archetype
Library

Project Health
Archetype Library

The Cost-Schedule Archetype Library can include the following
cost models and project tracking items to create Cost Model
alternatives and Project Tracking alternatives.

 Development Cost

 (AUPC) Average Unit production Cost

 (MPC) Manufacturing Production Cost

 (VAC) Variance at Complete

 Cv & cv (Cumulative & Current Cost Variance)

 Sv & sv (Cumulative & Current Schedule Variance)

 CPI & cpi (Cumulative & Current Cost Performance Index)

 SPI & spi (Cumulative & Current Schedule Performance Index)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 119 Refer to cover page for Distribution Statement.

Library Name Parent Description

Design Analysis
Archetype
Library

Analysis
Archetype Library

The Design Analysis Archetype Library can include the following
types of domain engineering analysis to influence SoI design and
determine the maturity of the SoI design.

 Thermal Analysis

 Structural Analysis

 Dynamic Analysis:
- Gun Firing Shock

- Firing on Move
- Emplaced Firing
- Crew Shock & Vibration
- Transport Loading
- Air Drop
- Chassis Vibration Transmission

 Finite Element Analysis

 Fluids Analysis

 Electrical & Electronics Analysis

 Power Analysis

 E3/EMC/EMI Analysis

 Communications Analysis

 Controls Analysis

 Timeline Analysis

 Equipment Motion Analysis

 Signature Management Analysis

 Vulnerability Analysis:
- Shotline Analysis
- Ballistic Impact Analysis
- Fragmentation Impact Analysis
- Shape Charge Impact Analysis
- Sympathetic Detonation Analysis
- Mine Blast Analysis

 Information Assurance Analysis

 Fire Control Analysis
- Wpn Pointing
- Technical Fire Control
- Wpn Firing Stationary & On-the-move

 Accuracy Analysis

 HSI Analysis

 Safety Analysis

 Reliability, Maintainability, & Testability Analysis

 Assembly & Producibility Analysis

 Logistics Analysis

 Transportability Analysis

Design
Archetype
Library

Archetype Library The Design Archetype Library is a repository for templates of
design types (categories). It is expected that the design archetype
templates will include:

 PBS Items

 Component Items

 Design Domains

 New Technology Based Items

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 120 Refer to cover page for Distribution Statement.

Library Name Parent Description

Design
Constraint Reqs
Archetype
Library

Requirements
Archetype Library

The Design Constraint Requirements Archetype Library can
include the following types of design constraint requirements
imposed on the SoI.

 Context – Environment

 EE, ME, & SW

 Specialty Engineering - Safety, HSI, RM&T

 Standards - Federal, Military, ESOH, etc.

 Operational and Life Cycle – PHST

 Cost

Design
Constraint Reqs
Test Case
Archetype
Library

Test Case
Archetype Library

The Design Constraint Requirements Test Case Archetype Library
can include the following types of test cases to test the SoI design
adherence to design constraint requirements.

 Context – Environment

 EE, ME, & SW

 Specialty Engineering - Safety, HSI, RM&T

 Standards - Federal, Military, ESOH, etc.

 Operational and Life Cycle – PHST

 Cost

Design Domain
Archetype
Library

Design Archetype
Library

The Design Domain Archetype Library can include the following
building block design domains for use in the design of DMI-PBS
Items and Component Items and to create Design Domain
alternatives.

 Physical
- Includes spatial guidelines, rules, and constraints. Used to

create layout alternatives based an original pattern or model
of building blocks

 Thermal

 Power

 Controls

 Fire Control

 Signal

 Computing

 Platform Electronics

 C4ISR

 BattleSpace Communications

 Network Ready

 EMC/E3

 SW

 Information Assurance (IA)

 Crew/Battle Station

 Training

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 121 Refer to cover page for Distribution Statement.

Library Name Parent Description

Design Maturity-
Health Analysis
Archetype
Library

Analysis
Archetype Library

The Design Maturity-Health Analysis Archetype Library can include
the following types of domain engineering analysis to monitor the
progress of the SoI design and determine the maturity of the SoI
design.

 TPMs (Technical Performance Measures):
- Weight
- Start-Up (All Up, Drive Away - Sec)
- Energy Conservation (MPG, GPH)
- Movement Speeds (CC, Sprint, HWY - MPH)
- Engagement Response Time (Sec)
- Fires (Ph, RgMax,Min, & Effect, ROF)
- Tgt Acq/SA (Rg, Accuracy, Coverage)
- Engagement Detection (Point of origin)
- Force Protection (Egress, IED)
- Reliability (MTBSA, MTBF)
- Maintainability (MTTR)
- Reserve Capacity (Pwr, Therm, Proc, Mem)
- Force Interoperability (Opns/Logistics)
- MOSA (Degree, # of Characteristics)

 Requirement Compliance
- Performance
- Functional
- Design Constraints
- Interfaces
- Safety

 TRL (Technical Readiness Level)
- Green Energy Propulsion TRL
- TRL #n

 MRL (Manufacturing Readiness Level)
- Green Energy Propulsion MRL
- MRL #n

 State of Design Integration
- Problem Burn Down
- Problem Criticality (#, Degree)
- Integration Demographics
- # of Re_Integrations

 Req-Design Feature Bi-Directional Traceability

Ext Interface
Reqs Archetype
Library

Requirements
Archetype Library

The External Interface Requirements Archetype Library can
include the following types of external interface requirements to the
SoI.

 Mechanical

 Electrical

 SW

 ICDs

 Standards

 Interface MIL-STDs

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 122 Refer to cover page for Distribution Statement.

Library Name Parent Description

Ext Interface
Reqs Test Case
Archetype
Library

Test Case
Archetype Library

The External Interface Requirements Test Case Archetype Library
can include the following types of test cases to test he SoI design
interface compatibility and adherence with external interface
requirements to the SoI.

 Mechanical

 Electrical

 SW

 ICDs

 Standards

 Interface MIL-STDs

Metrics
Archetype
Library

Archetype Library The Metrics Archetype Library is a repository for templates of
metrics types (categories). It is expected that the metric archetype
templates will include:

 System and cost effectiveness

 Problem domain understanding

 Design maturity and health

New Technology
Based Item
Archetype
Library

Design Archetype
Library

The New Technology Based Item Archetype Library can include
the following newly introduced building block technology item for
use in the design of DMI-PBS Items and Component Items and to
create New Technology Based Item alternatives.

 Counter Threat Blast Effects (IED)
- Blast Chimneys

 Hybrid Electric Drives

 Green Energy Sources

 Precision Guided Munitions

 GPS Based Applications

Operational
Analysis
Archetype
Library

Analysis
Archetype Library

The Operational Analysis Archetype Library can include the
following types of operational analysis to determine the operational
impacts of the SoI capabilities and design.

 Effects/Lethality Analysis

 Mobility Analysis

 Battlefield Communications Analysis

 Survivability Analysis
- Self Defense

 Interoperability

 Threat Analysis

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 123 Refer to cover page for Distribution Statement.

Library Name Parent Description

Operational
Reqs Archetype
Library

Requirements
Archetype Library

The Operational Requirements Archetype Library can include the
following types of usage requirements for the SoI.

 Scenario - OMS/MP

 Acceleration

 Rate

 Response

 I/O

 Capacity

 State/Mode Transitions

 Functionality

 Capability

Operational
Reqs Test Case
Archetype
Library

Test Case
Archetype Library

The Operational Requirements Test Case Archetype Library can
include the following types of test cases to test the SoI design
performance to meet the operational requirements.

 Scenario - OMS/MP

 Acceleration

 Rate

 Response

 I/O

 Capacity

 State/Mode Transitions

 Functionality

 Capability

PBS Item
Archetype
Library

Design Archetype
Library

PBS = Product Breakdown Structure

The PBS Item Archetype Library can include the following product
structures for Defense Material Items (DMI) to create materiel
solution alternatives based an original pattern or model of a
product framework or structure of entities. A PBS Item Archetype
can be use for a reference architecture

DMI-PBS Item archetypes include product structures for:

 Ground Vehicle Systems (Surface Vehicle Systems)

 Ordnance Systems

 Maritime Systems (Sea Systems)

 Missile Systems

 Aircraft Systems

 Electronic/Automated Software Systems

 Space Systems

 Unmanned Vehicle Systems

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 124 Refer to cover page for Distribution Statement.

Library Name Parent Description

Product Delivery
Archetype
Library

Requirements
Archetype Library

The Product Delivery Reqs Archetype Library can include the
following types of requirements that measure and improve the
quality, performance, and delivery velocity of the SoI to satisfy our
customer's needs, on time, and within cost commitments.

 Qualification

 Acceptance

 Certification

 Safety

Product Delivery
Test Case
Archetype
Library

Test Case
Archetype Library

The Product Delivery Requirements Test Case Archetype Library
can include the following types of test cases to measure and
improve the quality, performance, and delivery velocity of the SoI
design to satisfy our customer's needs, on time, and within cost
commitments.

 Qualification

 Acceptance

 Certification

 Safety

Project Health
Archetype
Library

Archetype Library The Project Health Archetype Library can include the following
archetype libraries for:

 Risk and opportunity management

 Cost and schedule management

Requirements
Analysis
Archetype
Library

Analysis
Archetype Library

The Requirements Analysis Archetype Library can include the
following types of problem domain analysis to define the customer
needs, required functionality, and the complete problem:
operations, cost and schedule, performance, training and support,
test, manufacturing, and disposal.

 Capability & Gap Analysis

 Functional Analysis

 Use Case/Scenario Analysis

 Object Oriented Analysis

 Requirements Maturity

 Requirements Stability

 Requirements Bi-Directional Traceability

 External Interface Definition

 SWaPC-C Analysis

Requirements
Archetype
Library

Archetype Library The Requirements Archetype Library is a repository for templates
of requirement types (categories). It is expected that requirement
archetype templates will include:

 Operational requirements

 Design constraints

 External Interfaces

 Budgetary requirements

 Product delivery requirements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 125 Refer to cover page for Distribution Statement.

Library Name Parent Description

Risk-Opportunity
Mgt Archetype
Library

Project Health
Archetype Library

The Risk-Opportunity Management Archetype Library can include
the following example risk and opportunity items to create Cost
Model alternatives and Project Tracking alternatives.

 If PwrPk Perf is not obtained, then Dash Speed is not met

 If R occurs, then consequence C - Risk n

 If alternative energy density is obtained, then energy
conservation is exceeded

 If O occurs, then benefit B - Opportunity n

Support Analysis
Archetype
Library

Analysis
Archetype Library

The Support Analysis Archetype Library can include the following
types of life cycle sustainment analysis to influence SoI design and
determine the logistics support package to sustain over the life
cycle of the SoI.

 Sustainment Analysis

 LCEP Analysis (Life Cycle Environmental Profile)

System Analysis
Archetype
Library (1 of 2)

Analysis
Archetype Library

The System Analysis Archetype Library can include the following
types of effectiveness, and capability assessment & gap analysis
on the SoI design.

 Cost Effectiveness Analysis:
- Sys Effectiveness/LCC
- Availability/LCC
- Sys Capacity/LCC
- System Benefit/LCC

 System Effectiveness Analysis:
- Measures of Effectiveness (MOEs)

o Pk, Pra, (Mobility, Firepower)
o Effects on Tgt (Destroy, Neutralize, Suppress)
o # Objectives Seized

- Measures of Performance (MOPs)

o Range
o RoF
o Tgt Acq (Detect, Tracking)
o Position & Heading
o Response Time
o ToF
o Movement Speeds
o Terrain Negotiation

- Measures of Usage (MOUs)

o Engagement Duration (FM, Direct, Tgt Acq)
o # of Rds Fired/per Msn/kill
o # of Supplies Transferred
o # Tgts Defeated
o # Msn Executed

o # of Moves

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 126 Refer to cover page for Distribution Statement.

Library Name Parent Description

System Analysis
Archetype
Library (2 of 2)

Analysis
Archetype Library

- Measures of Suitability (MOSs)
o Weight
o Ease of installation
o Interoperability
o Adaptability

 Capability & Gap Assessments
- Key Performance Parameters (KPPs)

o Survivability
o Force Protection
o Sustainment (Availability)
o Net-Ready/Interoperability
o System Training
o Energy Efficiency

- Key System Attributes (KSAs)

o Command & Control (Contact, Info, Planning)
o Intelligence (Coverage, METT, Tgt Acq Rg)
o Fires (Capacity, Response Time, Pk, Rg)
o Movement & Maneuver (Speed, Terrain, Transport)
o Protection (Jam Resistance, IA)
o Sustainment (Reliability & Ownership Cost)

System Effectiveness—A probability measure that the system
solution can successfully meet an overall operational demand
within a given time when operated under specific conditions.
Reflects the technical characteristics of the system solution (e.g.,
performance, availability, supportability, dependability). The ability
of the system solution to do the job for which it was intended.

 Cost Effectiveness - A measure of a system solution in terms of
mission fulfillment (system effectiveness) and total life-cycle cost
(LCC). Reliability is a major factor in determining the cost
effectiveness of a system solution

- Find the most effective solution with the least cost by
determining the cost-effectiveness differences between
alternatives of solutions

Test Case
Archetype
Library

Archetype Library The Test Case Archetype Library is a repository for templates of
test case types (categories). It is expected that test case archetype
templates will include:

 Operational requirements

 Design constraints

 External Interfaces

 Budgetary requirements

 Product delivery requirements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 127 Refer to cover page for Distribution Statement.

Library Name Parent Description

Test Result
Analyzer
Archetype
Library

Archetype Library The Test Result Archetype Library is a repository for templates of
test result types (categories). It is expected that test result
archetype templates will include:

 Roll-Up results

 Quantitative

 Qualitative

 Pass

 Pass with margin

 Fail

 Limited operational use

 Metrics

 Safety

 Certification

 Acceptance

 Sell-off

 Qualification

7.1.2.6 ARRoW Requirements to Test Case Flow Architecture

The architecture described in this section is that portion of the AIDE related to functionally
how requirements are ingested into the master model, how test cases relate to the verification
of those requirements, how run time testing of requirements is executed, and how test result
verdicts are determined and flowed to other elements within the AIDE. We refer to this overall
process as the Requirements to Test Case (RTTC) Flow.

Figure 7.1-29 shows a simplified view of the static architecture of ARRoW elements related to
the RTTC flow. These elements are shown as they relate within both the Master Model (MM)
and the Component Model Library (CML). Figure 7.1-30 shows a simplified view of the entities
and their interfaces that are involved in the run time execution of the test and verification
process. Please refer to both of these diagrams as part of the following discussion.

Refer to section 7.1.2.1.2 for a more comprehensive discussion of requirements, requirement
archetypes, and requirement archetype sets. A Requirement Archetype Set (RAS) contains
multiple Requirement Archetypes (RAs) and optionally other RASs. The CML contains both
RASs and RAs. RAs are indirectly bound to Design Archetypes (DAs) in the CML via their
mutual Test Case Archetypes (TCAs). When DAs are imported into the MM, references to the
associated TCAs and RAs are also automatically imported. Multiple TCA-RA pairs will quite
possibly be associated with a particular DA, since multiple requirements are commonly
allocated to components. However, mutually exclusive TCA-RA pairs may also be associated
with a particular DA element. For example, for US Marine Corps use of a component, one
TCA-RA pair might apply, but for US Army use of that same component, a different TCA-RA
pair might apply. By importing the appropriate RAS(s) from the CML, the imported RA
references can be de-conflicted within the MM, and consequently the appropriate TCAs can be
determined as well since each RA has exactly one corresponding TCA.

At this point in our discussion, the MM has RAS(s), RAs, TCAs, and DAs – all archetypes.
Archetypes must generally be refined to instances that specifically apply to the System of
Interest (SoI) being developed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 128 Refer to cover page for Distribution Statement.

Each DA will be refined to a Design Component (DC) within the MM. This might be
accomplished, for example, by assigning values to design parameters, selecting specific
equipment models from the CML, or even selecting optional architectural relationships from
the CML. Note that in the context of this discussion, a DA or a DC can be at any level within a
product structure hierarchy (e.g., system, subsystem, assembly, or component).

Once refined, a DC will have one or more Component Models (CMs). A CM is a model of a
component that potentially has ―white box‖ knowledge of the component design. This
knowledge is frequently necessary for all but low fidelity models of components. Since details of
the design may be modeled, the construction of a CM may be proprietary. CMs are generally
written and published in the CML for the purpose of supporting some or all of the suite of tests
that are expected to be applied to the DC. A DC might support multiple CMs differing in
fidelity and performance that are compatible with the same Test Case (TC). The DC itself
provides a standard interface between the CMs and TCs that orchestrate the test of the DC.
This standard interface support includes both run time data exchange interfaces as well as
configuration/setup and status reporting interfaces.

A TC is an executable that stimulates the DC for the purpose of verifying a requirement. The
DC has a corresponding CM that reacts to the stimuli and produces output that can then be
either compared to a required output or routed to some other element within the MM. A TC
does not have visibility to the internal structure or behavior of the DC, including its associated
CM. In other words, it has a ―black box‖ interface to the DC. This standardized test mechanism
can thus be reused against many alternative design solutions and revisions without needing to
change the structure/logic of the TC.

A TC may be a modification of a TCA to make it an executable for supporting test of a specific
DC, or it may be the unmodified TCA itself if that TCA can appropriately be applied to the run
time test of the DC.

As mentioned above, importing the DA will result in the importation of one or more RAs
associated with the DA and its refined DC. Each of these RAs may or may not be refined to a
corresponding requirement. The decision to create a requirement is based on whether a
requirement is deemed to be needed at any particular level within the SoI product structure.
Requirements will minimally be needed at the system level, since in general they will need to
trace to the customer provided source requirements. However, at lower levels in the product
structure, the choice to create a requirement will be based on whether a test result at that level
needs to be compared against some expected result, threshold value, or utility function. If it
does not, then the test result can instead be routed up the product structure hierarchy for
further processing so that it can support verification of a higher level requirement.

If a requirement is created by refining it from its parent RA, then it needs to be verified, of
course. Requirements are verified with the addition of one more element: a Test Result
Analyzer (TRA). Generally, a requirement is verified by the following process: a test case
stimulates the DC, the DC reacts with a resultant output, this output is then compared to the
required output by the TRA, and the result of this comparison (the verdict) is then dispatched
or published to the appropriate consumers such as verdict loggers, the metrics framework, or
an element of the ARRoW user interface.

It is anticipated that common patterns for the construction of TRAs will be defined, including
the use of common, reusable code. As an aid to the development of TRAs, we allow for the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 129 Refer to cover page for Distribution Statement.

definition of TRA archetypes. TRA Archetypes reside in the CML and can be imported into the
MM and refined to create TRA instances specific to the verification tests needed.

Figure 7.1-29. RTTC Entities - Structure View

Figure 7.1-30. RTTC Entities - Run-Time Interfaces View

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 130 Refer to cover page for Distribution Statement.

Figure 7.1-31. ARRoW RTTC Entities

Descriptions of the blocks shown in Figure 7.1-31, alphabetically sorted by block name, are
provided in Table 7.1-29. The above diagram, and its constituent blocks can be additionally
found in the MagicDraw file ―META_Project.mdzip‖, in the package labeled ―6.2 Architecture
Development‖, with the description text in the documentation metadata field associated with
each block. This diagram is essentially a SysML metamodel of the ARRoW RTTC
architecture.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 131 Refer to cover page for Distribution Statement.

Table 7.1-29. ARRoW RTTC Entities Description

Block Name Description

AIDE The AIDE includes all ARRoW tools, libraries, and the master model.

Component Model A component model models the DUT in the context of a specific test
case. In general, it is constructed to react to stimuli from the test case
and provide response output representative of what the real component
(that realizes the design) would do.

This component model supports use of legacy tools that might include
white box insight into the DUT as well as external environmental factors.

Context Requirement A Context Requirement (CR) is a requirement that specifies the external
environment to which a design will be exposed. It includes natural or
induced environments such as temperature or electromagnetic effects, as
well as interoperability/interface requirements with external systems.

A CR is sometimes not tested directly, but rather is verified by executing
a test case for each requirement that uses that context requirement as
part of its set of test conditions.

Context Rqmt Archetype A Context Requirement Archetype is simply an archetype for a Context
Requirement.

Design Component A design component is a specific implementation that conforms to a PBS
Design Archetype. It can be at any level in a product breakdown
structure.

Design Under Test A Design Under Test (DUT) is that portion of a Design Component that
can simulate the design in order to verify that the design conforms to the
requirements allocated to it.

Developer's Requirement This includes business development goals, budgets
(tolerance/power/etc.). This is requirements not validated by customer but
used by contractor management to influence/constrain the design. Is
problem space related. Does not include design rules, design guidelines,
etc. that are solution space related.

Interface Control Requirement Legacy interface management approaches that manage interfaces such
as using Interface Control Documents (ICDs) will employ an interface
requirement structure in the ARRoW environment.

Note that interfaces will include both design integration interfaces as well
as ARRoW environment interfaces. An example of an s ARRoW
environment interface would be a test case configuration interface.

Manufacturing Data This block is included to illustrate that a design can include more
elements than just virtual test related things.

PBS Design Archetype PBS = Product Based Structure

This is a template for similar design types (architectures). A PBS Design
Archetype facilitates reuse via abstracted levels in a reference design
architecture.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 132 Refer to cover page for Distribution Statement.

Block Name Description

Requirement Archetype This is a template for similar requirement types (categories). It is
expected that many types will exist. A requirement Archetype facilitates
reuse and mapping to abstracted levels in a reference design
architecture.

Requirement Archetypes generally conform to the following:

1. It has a template expression of a requirement, written in a way that can
be ultimately refined to be a well expressed requirement. For example,
this could be written in natural language text conforming to well known
systems engineering best practice characteristics or even a formal
requirements expression language. It can support parameterization if
necessary.

2. It supports default traceability to multiple (0..*) reference architecture
and/or design entities. TBR: this needs to be captured in the block
definition diagram (bdd).

3. It has a one-to-one mapping to a specific test case archetype.

4. It supports multiple (0..*) references to requirement archetypes on
which the associated test case results depend.

5. It supports (0..1) utility functions.

SoI Requirement This type of requirement must be validated with the customer, and its
verification must be validated by the customer.

SoI Requirement Specification
Set

This includes all specifications that are part of the SoI's spec tree (e.g., A-
spec, system spec, subsystem specs, critical item development specs,
etc.). This includes customer supplied specs as well as developer created
specs.

System of Interest (SoI) The System of Interest (SoI) is the system that is being developed using
the ARRoW toolset. In this context a SoI can be an entity at any level
within a product breakdown structure.

TC-CM Pair This is simply a container that shows that there is a one-to-one
relationship between a specific test case (TC) and its corresponding
component model (CM).

Test Case A test case is an executable that stimulates the DUT for the purpose of
verifying a requirement. The DUT has a corresponding component model
that reacts to the stimuli and produces output that can then be compared
to the required output.

A Test Case does not have visibility to the internal structure or behavior
of the DUT including its associated component model. This standardized
test mechanism can be reused against many design solutions without
needing to change the structure/logic of the test case.

A test case may be a modification of a test case archetype to make it an
executable for supporting verification of a specific requirement against a
specific DUT, or it may be the unmodified test case archetype itself if that
TCA can appropriately be applied to the DUT in this context.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 133 Refer to cover page for Distribution Statement.

Block Name Description

Test Case Archetype This is an archetype for similar test case types (categories). It is expected
that these archetypes will map one-to-one to requirement archetypes. A
test case Archetype facilitates reuse and mapping to abstracted levels in
a design reference architecture.

Certain classes of requirements will have a set of recurrent constraint
(context) requirements that apply during the verification test as test
conditions.

For example, ambient temperature will normally influence mobility
performance, so the verification of, say an acceleration requirement,
would be done using test conditions of the required ambient operational
temperature range. Verification of the acceleration requirement is
therefore dependent on the ambient operational temperature
requirement.

Note: the dependent RAs could optionally be copied into the Master
Model when the parent RA is copied, with ARRoW guiding the user to fill
in appropriately. Include notion of shallow copy vs. deep copy.

Test Result Analyzer Generally, a requirement is verified by the following: a test case
stimulates the DUT, the DUT provides resultant output, and this output is
then compared to the required output by the Verifier. In some cases, the
Test Case may execute without the need to execute the Test Result
Analyzer (TRA). For example, the DUT output may be routed to a higher
assembly level Test Case or DUT, where the summary test results are
verified at that level only.

Test Result Analyzer
Archetype

This is a template for similar Test Result Analyzer (TRA) logic classes. A
TRA Archetype facilitates reuse of verification patterns.

Utility Function This is a way of relating the DUT performance/capability/behavior to
perceived value to the customer or management. Perceived value can be
binary (e.g., pass/fail), enumerated (e.g., fail, threshold, objective,
exceeded), continuously scaled (e.g., linear, exponential, s-curve, etc.),
or any other function deemed applicable. Note: include default utility
function support in some RAs.

Verdict Logger This presents verification results to the user and/or saves the results to
persistent storage.

7.1.3 Bibliography

[AMSC05] Army Materiel Systems Command (2005), MIL-HDBK-881A: Work Breakdown
Structures for Defense Materiel Items, available at http://www.acq.osd.mil/

[BF90] Blanchard, B. S., & Fabrycky, W. J., (1990), Systems Engineering And Analysis, Engle
Cliffs, N.J., Prentice-Hall

[CJCS07] Chairman of the Joint Chiefs of Staff, 2007, OPERATION OF THE JOINT
CAPABILITIES INTEGRATION AND DEVELOPMENT SYSTEM, available at
http://www.dtic.mil/cjcs_directives/cdata/unlimit/m317001.pdf

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.1 – System Engineering
and Architecture

© BAE Systems 2011. All rights reserved. 134 Refer to cover page for Distribution Statement.

[CJCS09] Chairman of the Joint Chiefs of Staff, 2009, JOINT CAPABILITIES
INTEGRATION AND DEVELOPMENT SYSTEM, available at
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf

[DC11] Dictionary.Com (2011), http://dictionary.reference.com/browse/

[HOF11] Hofmann, G. (2011), ―What Is the Cost Of Poor Requirements Management,‖
available at http://www.reqdb.com/mediawiki/

[INC10] International Council on Systems Engineering. (2010), Systems Engineering
Handbook, version 3, available at http://www.incose.org/

[IBM11a] IBM (2011), "Rational DOORS," available at http://www-
01.ibm.com/software/awdtools/doors/

[IBM11b] IBM (2011), "Rational RequisitePro," available at http://www-
01.ibm.com/software/awdtools/reqpro/

[MD11] MagicDraw (2011) "Cameo Requirements+," available at
https://www.magicdraw.com/cameoreq

[MRL10], OSD Manufacturing Technology Program. (2010), Manufacturing Readiness Level
Deskbook, available at http://www.dodmrl.com/MRL_Deskbook_30_July_2010.pdf

[SEF01] (2001) Systems Engineering Fundamentals, Defense Acquisition University Press,
http://www.chassis-plans.com/PDF/DOD_Systems_Engineering_Fundamentals.pdf

[WS11] ―Suspension (Vehicle),‖ http://en.wikipedia.org/wiki/Suspension_(vehicle)

http://www.reqdb.com/mediawiki/

http://www-01.ibm.com/software/awdtools/doors/

http://www-01.ibm.com/software/awdtools/doors/

http://www-01.ibm.com/software/awdtools/reqpro/

http://www-01.ibm.com/software/awdtools/reqpro/

https://www.magicdraw.com/cameoreq

http://www.dodmrl.com/MRL_Deskbook_30_July_2010.pdf

http://www.chassis-plans.com/PDF/DOD_Systems_Engineering_Fundamentals.pdf

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)
Phase 1b Final Report
TR-2742

Appendix 7.2 - Tool Design

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011
Contract Number: HR0011-10-C-0108

Prepared For:
Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

Prepared by:
BAE Systems Land & Armaments L.P. (BAE Systems)
4800 East River Road
Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.2 Tool Design ... 1

7.2.1 AMIL .. 2
7.2.1.1 Introduction ... 2
7.2.1.2 AMIL Structure .. 3
7.2.1.3 Dynamic Nodes ... 5
7.2.1.4 Ontology ... 7

7.2.2 Component Model Library .. 8
7.2.2.1 CML Architecture .. 8
7.2.2.2 CML Search .. 10

7.2.3 Conceptualization – The Early Concepting Tool ... 11
7.2.3.1 ECTo Architecture .. 13
7.2.3.2 ECTo Models .. 16

7.2.4 Co-Analysis and Exploration ... 18
7.2.4.1 Principles Behind GEAR ... 18
7.2.4.2 ESKER ... 19

7.2.5 Tool Plug-ins ... 21
7.2.5.1 Magic Draw/SysML ... 21
7.2.5.2 Pro/Engineer (Creo) Plug-In ... 27
7.2.5.3 Incorporating Lightweight, Open Source, Freeware Tools into the Tool

Chain ... 27
7.2.6 Metrics .. 29

7.2.6.1 Metrics Framework ... 29
7.2.6.2 Specific Metrics .. 30
7.2.6.3 Metrics Dashboard .. 32

7.2.7 Cloud Deployment ... 34
7.2.8 Bibliography .. 35

List of Figures
Figure 7.2-1. AMIL Structure ... 3
Figure 7.2-2. Example Requirement in AMIL ... 5
Figure 7.2-3. Fragment of Executable Model ... 6
Figure 7.2-4. Data Flow for Semantic Queries ... 8
Figure 7.2-5. CML Query for Data in Artifactory ... 10
Figure 7.2-6. ECTo Layout and Views .. 12
Figure 7.2-7. ECTo Exploration Panes ... 13
Figure 7.2-8. Zulu (ECTo's 3D Visualization) ... 14
Figure 7.2-9. System Hierarchy and CML Panel .. 15
Figure 7.2-10. Supporting System and Component Panel ... 16
Figure 7.2-11. Hull Shaper Model ... 17
Figure 7.2-12. ESKER .. 19
Figure 7.2-13. Opening Block Dialog Box ... 22
Figure 7.2-14. AMIL Representation of Requirement Ranges of Values 23
Figure 7.2-15. Browsing Query Results ... 25
Figure 7.2-16. Relevant Commercial and Open Source Tools .. 28
Figure 7.2-17. A Generic Metric Composition ... 30
Figure 7.2-18. Total Weight Head Node Connectivity Computation ... 31

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

Figure 7.2-19. Dashboard Structure in AMIL .. 33
Figure 7.2-20. Example Dashboard Configuration .. 34

List of Symbols, Abbreviations, and Acronyms
Symbol,

Abbreviation,
Acronym

Definition

AMIL ARRoW Model Interconnection Language

API Application Programmers Interface

AWS Amazon Web Service

CAD Computer Aided Design

CML Component Model Library

DSE Design Space Exploration

ECTo Early Concepting Tool

ESKER Expert-System Knowledgebase Evaluation Reasoner

FEA Finite Element Analysis

GEAR Generative Archetype Reasoning

IFV Infantry Fighting Vehicle

JSON JavaScript Object Notation

MD Magicdraw

OWL Web Ontology Language

PCC Probabilistic Certificate of Correctness

RDF Resource Description Format

SPARQL Simple Protocol and RDF Query Language

SVN Subversion

UML Unified Modeling Language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.2 Tool Design

This table documents META tool components that we have developed over the past year. Each
of the components has met one or more needs outlined in the original META proposal. The
underlying technology shows the innovative approaches that we have come up with to make
the tools work well.

Tool
Component

Meets Need Underlying Technology Demo

ARRoW
Integrated
Development
Environment
(AIDE)
Interface and
Dashboard

Demonstration capabilities,
system launch and control

Eclipse/SpringHTML, , Maven,
Subversion, Tomcat, Java,
Metrics, more

Jan, Mar,
May, Jul,
Sep

Metrics Suite Design progress, Complexity
measures

Entropy-based methods, Design
Curvature algorithms, contention
models (BBN), (also see metrics
docs)

Jan, Mar,
May, Jul,
Sep

CAD
(Pro/Engineer
plug-in)

Provide interface and access
between ARRoW tools and
Pro/Engineer

Pro/Engineer API, C++ Mar, May

AMIL Heterogeneous model and tool
interconnect

Graph database, Java/Prolog/C++
API, persistence and caching
control, graph viewer

May, Jul

Galileo T&V Probabilistic Certificate of
Correctness, Diagnostics,
Language

Monte Carlo and Importance
Sampling, Context Model PDF’s
and Ratio distributions, Reach-
set Analysis (MIT), K-means
clustering, Expert system

May, Jul

ESKER Look-ahead and Design Space
Exploration, Adaptability via set-
based concurrent engineering,
Levels of Abstraction, Language

Expert system state expansion
and search, Rule-based design
structure matrix, AMIL-aware,
variable fidelity modeling, partial
decomposition,
subjective/qualitative rankings

May, Jul

Envisioner Qualitative Simulation Lisp May
SysML
(MagicDraw
plug-in)

Requirements MagicDraw API, AMIL-
interconnected

May, Jul

CML/Master
Model

Abstraction Control, Component
Reuse

Ontology-based search,
Maven/Artifactory delivery
mechanism

Jul, Sep

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

Tool
Component

Meets Need Underlying Technology Demo

ECTo Vehicle-level concepting and
prototyping

C++ object hierarchy of generic
domain models

Jul, Sep

Metrics
Infrastructure
and Dashboard

Integrated metrics analysis and
calculation services, role and
interest-configurable graphical
user interface

AMIL-integrated service
architecture using Java Standard
Object Notation (JSON text
metric definition files)

Jul, Sep

Generative
Archetype
Reasoning
(GEAR)

Synthesis, Component Reuse,
Domain-specific reasoners
(design, analysis, …), Language

Semantic Web technologies such
as OWL, Description Logic and
Declarative Logic Programming,
Lisp, SPARQL, Protégé

Sep

Cloud
Deployment

Provide mechanism to support
wide distribution and crowd
participation

Amazon Cloud deployment
mechanisms

Sep

7.2.1 AMIL
7.2.1.1 Introduction
The ARRoW Model Interconnection Language (AMIL) is used to represent the models that
ARRoW works with—either directly, when the models are very abstract, or as a proxy, when
the actual model is represented in a specialized tool like Simulink® or CREO™. More
important, it represents the links among those models. AMIL is deployed as a web service, and
provides a basic API for creating and manipulating nodes, links, and their properties; it is most
useful to think of it as a network of models, rather than as a computer language. Java clients are
expected to use the AmilLib wrapper library, which presents an object model of nodes and
links, and hides the web service interactions; C++ clients like the Early Concepting Tool
(ECTo) use a similar wrapper. The textual representation of AMIL data in JavaScript Object
Notation (JSON) (Introducing JSON, 2011) or Resource Description Format (RDF) (World
Wide Web Consortium, 2004), and the exact set of operations provided by the web service, are
only of interest within ARRoW components. An overview of the AMIL structure is shown in
Figure 7.2-1.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

Figure 7.2-1. AMIL Structure

AMIL was not designed to represent every component that might be needed to build a fighting
vehicle. Rather, it provides an abstraction that supports reasoning about basic structures and
connections in a consistent way, without attempting to provide services for which robust, high-
performance implementations are already widely available.

AMIL is built on the open-source graph database Neo4j (neo4j.org). The implementation uses
elements of Tinkerpop Blueprints (tinkerpop.com) to support the importation and use of OWL
(World Wide Web Consortium, 2004) to represent a formal ontology, and to support Simple
Protocol and RDF Query Language (SPARQL) (World Wide Web Consortium, 2008) queries
against the ontology.

In what follows, we will first describe AMIL’s basic structure, then the use of dynamic nodes to
support metrics and the Component Model Library (CML). Finally, we will discuss the formal
ontology embedded in AMIL’s repository, and its relationship to the other structures managed
by AMIL.

7.2.1.2 AMIL Structure

The AMIL repository contains nodes and links. It is not quite a conventional triple store,
because both types of objects can contain an arbitrary number of named attributes, as opposed
to the standard representation of RDF statements as SUBJECT-PREDICATE-OBJECT. As
will be discussed below, the AMIL repository contains RDF in that form, with the more
complex AMIL nodes and links overlaid on the RDF structures.

METAFR012

Amil
Interface CML Ontology

AMIL Data Store

AMIL
Interpreter

Neo4j

…

Client
Services

JSON

OWL
RDF

…

AMIL Cloud

…

AMIL
External

Calls
Interface

Archetypes

CML
Instances

Models

Java API

C++
API

Prolog
API

Java

CLI
Executable

Metrics

JSON

Relationships

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

Within AMIL, there are two types of nodes: “immediate” and “dynamic,” described below.
Either type can be accessed by name, by retrieving one of the ends of a link, or by query; both
types are represented in the data store by a unique ID and an arbitrary set of named attributes,
where the values can be strings, numbers, or arrays of strings or numbers. Links between
nodes have an arbitrary type—new types are created on request—as well as their own sets of
attributes. While nodes have a unique ID, the database key for a link consists of its type and the
unique IDs of its start point and its end point.

Although nodes can have arbitrary sets of attributes, there are some attribute names that
AMIL assigns specific meanings to. For example, any node associated with a class definition in
the formal ontology will have a “classDefinition” attribute; the set of attributes associated with
a particular class will be stored by AMIL in the “featureNames” attribute of the class node.
These reserved names are documented more fully in the Software Users Manual. Similarly,
certain link types may be given specific interpretations by AMIL in some contexts. For both
nodes and links, the reserved names are used either to support dynamic nodes, or to support
access to the ontology by AMIL clients. As shown in the following figure, and discussed more
fully below, AMIL stores a compact representation of the ontology to allow it to hide the
details of the database structure from its clients.

This shows a small piece of the ontology:

The three upper nodes represent the Engine class and two of its subclasses, which are
connected to the parent by “subclassOf” links. The bottom node is a specific model of gas
engine, tied to its class by an “instanceOf” link. The set of featureNames identifies specific items
that are declared in the ontology, so will be available for semantic queries; the engine’s power
rating is one.

Archetypes, requirements, metrics, and components in the CML are all represented by similar
groups of nodes and links, with their own specific link types and node attributes. Additional
subsystems can easily be supported.

METAF018

UniqueID: http://projects.baesystems.com/.../cmlAGT1500_turbine_engine
Nickname: AGT1500_turbine_engine
Power: 1118549
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]

UniqueID: http://projects.baesystems.com/.../meta#DieselEngine
classDefinition: DieselEngine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]

UniqueID: http://projects.baesystems.com/.../meta#GasEngine
classDefinition: GasEngine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]

UniqueID: http://projects.baesystems.com/.../meta#Engine
classDefinition: Engine
featureNames: [Torque, Speed, FuelConsumption, Power, Height…]

linkType: subClassOf

linkType: instanceOf

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

Requirement authoring in SysML is an example of an AMIL client application that capitalizes
on the ability to create arbitrary link types and properties in AMIL, as shown in Figure 7.2-2.

Figure 7.2-2. Example Requirement in AMIL

As discussed previously, requirements are an important concept in development with META.
In order to allow requirements to effectively drive design space exploration, authoring a
requirement in SysML creates a new type of link, "constraint", to carry relevant constraint
data, as well as creating its own set of attribute names to carry requirement-specific
information.

7.2.1.3 Dynamic Nodes

The nodes shown so far are all “immediate”: when an immediate node is retrieved by an AMIL
client, the client simply receives a representation of the name-value pairs associated with the
node. Many of the things represented in the AMIL graph are executable models; dynamic
nodes allow these executable models to be invoked transparently by any AMIL client. The code
associated with a dynamic node is executed on the server, so there is no need for additional
client software installation, and the results of the execution are presented as a set of name-value
pairs, just as if the node were immediate.

Dynamic nodes are stored in the repository with a set of named attributes. The “valueType”
attribute either labels the node as immediate, or identifies a Java class accessible to the server
that will be used to evaluate the node. The set of such classes is extensible, but not dynamic;
changing it requires a server restart The attribute set from the repository is passed to the
evaluation class, which may then do whatever is needed to return the node’s values: it can

METAF019

UniqueID: PowerRequirement
classDefinition: Requirement
description: “The ifvEngine must
use an engine with a power rating
of at least 400kW , but must not
exceed 1MW”

linkType: property

UniqueID: IFVEngine
nickname: ifvEngine

UniqueID: ifvEngine.Power
valueType: Watts

linkType: constraint
lowerValue: 400000
upperValue: 1000000

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

perform a straight Java computation, but it can also run an executable, invoke a web service, or
return the contents of a file.

Figure 7.2-3 shows a subset of the nodes and links associated with an executable model to
estimate the mass of the exit ramp on an infantry fighting vehicle (IFV), based on the ramp’s
dimensions and the survivability requirements of the IFV. The ramp mass model itself is a
legacy C program; the valueType property “external” tells AMIL that this node will be
evaluated by a class that allows the execution of arbitrary external code; there are more
structured evaluators for metrics and the component model library. The evaluation class, in
turn, will use the GenericExecutable class to run the legacy C code, as specified in other
attributes of the node.

Figure 7.2-3. Fragment of Executable Model

The model’s parameters will, in this case, be passed to it on the command line. The parameters
are identified by links from the node representing the model to other nodes in the graph: the
ramp’s height, in this case, is stored as a simple value. The “parameter” link from the
LowFidelityRampMass node causes that value to be pulled in for the model. The
“ArmorThickness” parameter, on the right, is a little more complicated: in this case,
ArmorThickness itself is another executable model, which in turn requires its own set of
parameters. The parameter shown, PenetratorMass, was published from a SysML application
as a requirement.

When a client application retrieves the LowFidelityRampMass node, AMIL begins by invoking
its “external” node type handler, which then invokes the GenericExecutable class. Each of these
invocations has full access to AMIL, of course; as GenericExecutable gathers the parameters
for the executable, it retrieves the “ArmorThickness” node, which causes a recursive invocation
of GenericExecutable. The second invocation retrieves the parameters for that the armor
thickness model, runs it, and returns an attribute set, one of whose members is “AMILValue.”
The first invocation of GenericExecutable can then proceed.

METAF020

UniqueID: LowFidelityRampMass
valueType: external
className: com.bae.meta.amilextern.GenericExecutable
executableName: LowFidelityRampMassModelMain

linkType: parameter
foreign ValueName: AMILValue

UniqueID: ArmorThickness
valueType: external
className: com.bae.meta.amilextern.GenericExecutable
executableName: ArmorMain

UniqueID: RampHeight
AMILValue: 19

UniqueID: PenetratorMass
REQUIREMENT_VALUE: 400.0

linkType: parameter
foreign ValueName: REQUIREMENT_VALUE

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

As described, this can be a very expensive process. Each of the executable models could take a
very long time to execute, and the chain of models required to evaluate a given node is
potentially quite large. Although there has been no need to implement it in the current system,
there is nothing to prevent caching of dynamic node evaluations, either in the server’s memory
or in the database: the handler for the node has full access to the database, including the ability
to modify existing nodes and create new ones.

AMIL is central to the implementation of metrics and to the implementation of the prototype
CML. For metrics, each metric definition is a dynamic node, of type “metric,” which can be
retrieved with parameters that specify the model for which the metric is to be computed; the
code has full access to the AMIL graph, so can retrieve parameters from other nodes, or run
arbitrary external computations to determine metric values. For the CML, the bulk of the data
is stored externally to AMIL; an index is maintained in AMIL to facilitate searches against the
CML’s content—for example, find all engines in the CML with a power output greater than
350 kw. AMIL was not designed to store all of the details of those engines, which might
include full Computer-Aided Design (CAD) drawings, very precise thermal models, torque
curves, and so on; rather, it helps client applications identify the appropriate models to retrieve
from the CML repository, and provides the coordinates within the repository for those models.

7.2.1.4 Ontology

AMIL and AmilLib provide some very basic search capabilities, and others can be added. A
primary requirement is to search highly structured, semantically rich data associated with
models in the component model library. We also have a need to represent archetypical
structures, where a component of the archetype might start out as “Engine,” and eventually be
refined to a specific model of a specific brand of gas turbine engine, based on size, power,
thermal characteristics, and so on. This kind of search is best supported by using a formal
ontology, which allows queries based on the meaning of the data. A free-text search, or even a
Google-style search, would be much too imprecise, missing matches because of differing
vocabulary terms or misspellings, or returning spurious matches because it couldn’t match
numerical size, weight, and power (SWAP) parameters.

At database initialization time, AMIL loads a predefined set of OWL files to populate the
ontology. These include class definitions as well as instance definitions, which, as discussed in
Section 7.2.2.2, act as an index for the Component Model Library. The nodes and edges created
by this process are stored in the same repository as the rest of the AMIL database, but the form
of the data is rather different: where AMIL supports arbitrary, extensible sets of attributes on
nodes and edges, the ontology has a well-defined and very small set of link types and attributes.
In AMIL’s model, the weight of a component would be stored as a “Weight” attribute on the
node representing the component; in the ontology, the weight is stored as the “value” attribute
of a node that can be reached from the component node by following links of specific types.

In order to support both models, AMIL post-processes the ontology during database
initialization, in order to identify all of the classes, instances, and features—which correspond to
AMIL’s attributes—that were created. Using this information, AMIL adds new links, and adds
new attributes to class and instance definition nodes; at the end, a component’s weight will be
stored both as an attribute of the component node, for AMIL clients, and as a feature associated
with the node, for ontology searches.

Because AMIL is the only thing accessing the repository, it is feasible for it to maintain
consistency despite all of the duplicated data. When an AMIL client changes an attribute that

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

was defined by the ontology, AMIL can find and update the feature value as well; if an AMIL
client creates a new instance of an ontology class, AMIL will create all the required attributes
and links to support its full use.

The ontology exists primarily to be searched; searches are supported using the SPARQL query
language. Queries can find instances of particular classes, and can filter based on instance
features; thus, a simple request like “find all engines whose weight is less than 250 kg and
whose power output is greater than 300 kW” is easily expressed, and can be evaluated very
efficiently. Figure 7.2-4 shows a snippet of the formal ontology, its representation in AMIL,
and a query to retrieve some elements defined by the ontology.

Figure 7.2-4. Data Flow for Semantic Queries

7.2.2 Component Model Library

The Component Model Library (CML) has two primary purposes. First, it is a repository that
stores technological knowledge and facilitates its sharing and communication between work
threads and components. Second, it encourages re-use of artifacts and makes it easy to do so in
a reliable and consistent manner. A centralized component library supports distributed design,
because it is available anywhere, and facilitates design evolution, because it is always available.

7.2.2.1 CML Architecture

Maven repository managers

The CML semantics borrows heavily from the semantics Apache Maven[MVN11] uses to
reference software artifacts and identify dependencies. The overlap allows us to leverage
existing Maven tools to build the CML infrastructure. The CML uses a Maven repository

METAF022

AMIL

{
"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L": {

"power_watt": "387763",
"value":

"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L",

"OBJECT_ID":
"http://projects.baesystems.com/M ET A/ontology/2011/8/cml#N ORINC O_121
50L",

"Property": "23000",
"monetary_usdollar": "23000",
"featureNames": ["Mass", "Cost", "Power"] ,
"featureIds": [
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Ma ss",
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Cost" ,
"http://projects.baesystems. com/M ETA/ontology/2011/8/meta#Pow er",
] ,

"kind": "uri",
"NICKNAME": "NORINCO_12150L",
"mass_kilogram": "895"

},
"type": "node"

},

Norinco 12150L Engine RDF

AMIL
Client

Norinco 12150L Engine JSON

<owl:NamedIndividual rdf:about="http://projects.baesystems. com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#D ies el Engin e"/ >
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Mass "/>
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Power"/>
<amil:hasFeature
rdf:resource="http://projects.baesystems .com/ META/ontology/2011/8/cml#NORI NCO _12150L_Cost"/>
</owl:NamedIndividual>

<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Mass" >
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Mass "/>
<meta:mass_kilogr am rdf:datatype="http://www.w3.org/2001/XMLSchema#decim al" >895</met a: mass _kilogr am >
</owl:NamedIndividual>

<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Power">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Power"/ >
<meta:power_watt rdf:datatype="http://www.w3.org/2001/XMLSchema#decim al" >387763</meta:power _watt >
</owl:NamedIndividual>

<owl:NamedIndividual
rdf:about="http://projects.baesystems.com/M ETA/ontology/2011/8/cml#N ORI NCO _12150L_Cost">
<rdf:typerdf:resource="http://projects.baes ystems.co m/M ETA/ontology/2011/8/meta#Cost"/ >
<meta:monetary_usdollar
rdf:datatype="http://www.w3.org/2001/XMLSchema#decima l">23000</met a: monetary _usdoll ar>
</owl:NamedIndividual>

"SELECT DISTINCT ?component WHERE {
?subclass rdfs:subClassOf

meta:Engine .
?component a ?subclass .

}

SPARQL query for
engines in client
application

Load engine ontology into
AMIL data store

AMIL returned JSON
representing a ‘fattened’
node of properties and values

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

manager as a back-end store for components and models. Repository managers generally
provide an interface between developers and online repositories; for the CML, Artifactory
[ART11] acts as a content management system for storing resources associated with a given
component or model (e.g., MagicDraw files, Matlab files, photos, videos, etc.). The following
repository managers are popular in the Maven community: Nexus [NXZ11], Artifactory, and
Apache Archiva [ARC11]. Artifactory was selected for its stability, usability, and active
user/developer community. It is available in several distributions with varying capabilities and
license restrictions; for the CML, the free open source version is sufficient.

Artifactory feature set

Despite its novel application in CML, Artifactory addresses several concerns out of the box:

1. User management – restricting and permitting access to CML
2. REST [RST11] interface – providing programmatic access to CML resources
3. Web GUI – providing an easy-to-use browser interface to CML resources
4. System logging – monitoring CML usage
5. Backups – data loss prevention
6. Dependency management – maintenance of artifact dependency trees

Artifactory usage in CML

In CML design, Artifactory saves bandwidth by delaying the transfer of large data files into the
ARRoW workspace. For example, the user might search for an engine with a given set of
parameters, and select a single engine from the search results. Not until the user needs to use
the data files associated with that engine will they be brought into the local cache by
Artifactory.

Artifacts—CAD drawings, spec sheets, executable models, and so on—can be uploaded to the
Maven repository via Maven’s command-line interface or through Artifactory’s web interface.
Artifact versions are categorized as snapshots or releases: a release artifact will not change,
while a snapshot artifact can change. Snapshots and releases are uploaded to separate locations
in the Maven repository.

AMIL serves as the index for the CML, allowing semantic searches to retrieve the metadata for
a specific component model. The metadata includes the Maven “coordinates,”1

Figure 7.2-5

 which the AMIL
“cml” dynamic node type will use to retrieve artifacts from Maven via Artifactory’s REST
interface (). A traditional Maven repository would set the packaging coordinate to
be an archive format such as jar, war, or zip; CML overloads it to be a more flexible file
extension setting to account for the wide variety of system engineering file formats. Artifactory
provides a basic search capability as well, but it is focused on retrieval of versions of software
packages, so is not easily extended to support the queries required for system design.

1 The Maven coordinates are group ID, artifact ID, version, and packaging. For example,
com.tinkerpop.blueprints is the group ID for all of the Tinkerpop code used to support the AMIL
ontology; an artifact ID is blueprint-neo4j-graph, the library for interfacing Tinkerpop to neo4j; a
version would be 1.0-BAE, and packaging would be jar. These four values uniquely identify the library
version in the world of Maven; a copy of the library can be cached locally, or retrieved from any Maven
repository that has it, without further thought.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Figure 7.2-5. CML Query for Data in Artifactory

7.2.2.2 CML Search

Key to using the CML is the ability to search for artifacts that met specific needs. In cyber-
physical design three major use cases for CML search are in design space exploration,
analytical compositions and design verification.

Design space exploration

In META, a design starts with a set of requirements, which are essentially constraints on the
design space. In design space exploration, we can use these constraints to limit the space of
possible component configurations. However, it is often the case that design requirements are
contradictory, so the problem cannot be solved automatically, for example by using constraint-
based solvers. The goal instead is let designers use their domain knowledge, providing support
through the CML’s search facility. For example, the size of the engine compartment for a
vehicle might already be known, but performance requirements require an engine with
particular capabilities, whether in terms of torque, power output or fuel efficiency. At this point
a designer can search for engines in the CML that can meet the space and performance
requirements. If no results are returned, then it is clear that there are problems with the
requirements and that the design is over-constrained, unless developing a new engine is within
scope. If results are returned, the engineer can select one, or, if his design software supports it,
retain all matching engines as candidates until subsequent requirements, such as weight claims,
allow the set to be further reduced.

Analytical Compositions

System designers regularly perform repetitive sets of analysis in the course of system design,
often as part of test and verification of a design. These analyses consist of a common set of tools
and methods applied in an analytic workflow, with the design data flowing from one analytical
tool to the next. There are a wide variety of design modeling methods available to engineers
(CAD, Finite Element Analysis [FEA], Thermal, etc). There are also a number of general
purpose modeling tools that have a wide user base, such as Simulink and OpenModelica. For an
engineer, finding the most appropriate model to use in a particular workflow is often a time

METAFR029

AMIL

CML

artifactId
groupId
version

ArtifactoryREST
Interface

download

query artifactId
groupId
version

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

consuming task. A CML query service can aid them by helping them find design models which
meet their requirements, in terms of input and output parameters, or in terms of what type of
analysis is to be performed.

Design verification

In design verification, the design task (which is a synthetic task) has been completed to some
level of detail, and the goal is to analyze the design to confirm that it still fulfills all the
requirements and design assumptions. Perhaps later on in a design, a weight claim for the
drivetrain was imposed that made the current engine choice in appropriate. At this point the
engineer can perform another search of the CML with the updates set of engine requirements.
Tradeoffs might have to be made at the margins—relaxing one requirement slightly could
allow for a consistent design.

As discussed in Section 7.2.1.4, AMIL provides a formal ontology and supports semantic
searches of it using a standard language. We believe this allows the best combination of high
precision and expressive power in queries, which are critical to the use of the CML. A goal of
future work would be to provide support both in the AMIL/CML API and in the user interface
for the types of searches supported by SPARQL, without requiring knowledge of its relatively
difficult syntax, or knowledge of the relatively complex naming conventions that are used in
OWL ontologies.

7.2.3 Conceptualization – The Early Concepting Tool

The Early Concepting Tool (ECTo) guides a vehicle design process by applying abstract
components that fit together a priori as a result of applying archetypal rules. Any down-select
process that excludes incompatible components is made possible by doing DSE as a successor
stage. The ECTo concepting reasoner captures spatial representations, complex space claims,
and articulations, which are difficult to represent and reason with in pure logic.

As a system design tool ECTo enables editing of a master model primarily through the
hierarchical assembly and manipulation of components from the CML. It is focused primarily
on empowering a designer in the early design phase to be able to incorporate and manipulate
major design drivers and rapidly assess the qualities of system concepts. The resultant concepts
can be used as the basis for more detailed design.

The ECTo includes a 3D viewer called Zulu to represent the vehicle design concept and to aid
in initial spatial layout and rudimentary packaging without the burden of a commercial CAD
tool. ECTo was developed as a tool which could be used independently or that can fit naturally
into the ARRoW toolchain and interact closely with the projects AMIL graph. Figure 7.2-6
highlights the key layout of the tool.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

Figure 7.2-6. ECTo Layout and Views

The ECTo’s logic reasoner works on vehicle archetypes at specific levels of modular
abstraction, incorporating encoded knowledge of interactions and design rules of how the
modules fit together. The intermodule influence diagrams at block levels are selected from
composites of lower level archetypes. The first pass that ECTo makes is at the conceptual
stage, in which we can then realize a concept system2

Synthesis. Synthesis at the concepting level is the art of realization based on merging intent
(requirements) with possible embodiments (components from the model library). ECTo
synthesizes a numerical subsystem/component space and weight claim topology with a visual
representation and an accompanying AMIL blueprint that another tool or engineer can use.
The design may not be complete either—as when alternative design options are available, and
an identifier tag can be used to indicate sets of components which can provide inputs to another
decision support system.

.

2 ECTo thus creates “ectypes” which the conceptual realization or instances of a vehicle archetype

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Component Model
LibrarySystem Design

System Requirements
and Properties

Component Properties

Tool Log

Figure 7.2-7. ECTo Exploration Panes

7.2.3.1 ECTo Architecture
The overall architecture of ECTo is based on the premise of editing a master model primarily
through the hierarchical assembly and manipulation of components from the CML. To this end,
both system design data and CML data can be stored or retrieved interchangeably using either
local XML files or the Arrow Web Services AMIL graph. The interface between ECTo and the
Arrow Web Services is intended to be very transparent and provides an example for how a
design tool would interface with these services.

The ECTo is written in C++ and build on top of the Qt application framework using Visual
Studio. The ECTo uses a C++/Qt based AMIL client library to facilitate all its interactions
with the AMIL graph. Zulu is built using the Unity Engine and communicates with ECTo
using UDP messages.

ECTo Main Window. ECTo is made up of several configurable panels with the candidate
system as shown Figure 7.2-7 in a typical layout.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

Zulu. The interactive 3D visualization component to ECTo, called Zulu, runs as a separate
process. No state is stored in the visualization and it is not required to be run for ECTo to
function, though this provides the easiest way to manipulate components and generate a spatial
view of the system. Figure 7.2-8 illustrates the Visualization capability.

Figure 7.2-8. Zulu (ECTo's 3D Visualization)

System Design Toolbar. ECTo maintains a list of all the elements it is operating with so it is
meant to work as an exploration tool with its own private set of data. This means that ECTo
essentially assumes it owns the system hierarchy while it is editing it. For checking design
consistency, models can be run explicitly by selecting a model to execute or by executing all
models. Refer to the ECTo user’s manual for more information.

Query CML creates a SPARQL query for refinements of a selected component and queries for
items in the ontology that are valid refinements of abstract item selected.

System Hierarchy. The hierarchical representation of the system is displayed in the System
Design panel. The values of the major states are displayed in a table. The ‘Local State’ column
is the state values for only the component selected. The ‘Rollup State’ column displays a rollup of
values for the selected state and all that states children. System level rollups for Mass, Cost,
Length, Width, and Height are always displayed in the System Properties panel.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

Figure 7.2-9. System Hierarchy and CML Panel

System Requirements and Properties Panel. This panel stores all the system level properties
or any properties that need to be exchanged between component models. The ‘Value’ column
indicates the current systems estimated performance and the ‘Req’ column is used to maintain
the system requirement or derived requirements for that property. Most key system inputs are
considered requirements but they can be adjusted by a designer so they can assess how
particular inputs drive a design. Figure 7.2-10 shows the supporting system and component
panel.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

Figure 7.2-10. Supporting System and Component Panel

Component Panel. This panel shows and allows one to edit the properties of a specific
component. Components with associated models will frequently have additional properties that
are specific to that model. For example, the SoldierCompartment model uses additional
properties to construct the soldier compartment such as seating arrangement, squad size
assumptions, clearances, etc.

Component Model Library Panel. The CML panel shows components from the CML which
can be included into the system hierarchy by dragging a component from this panel to the
parent in the system you want to attach this component to.

Components can be loaded into this panel either through XML files using or as a result of a
query to the CML service in Arrow Web Services.

As additional ways to interact with and search a CML are established, this panel can evolve to
support additional approaches. Additionally, CML repositories should be able to easily export
indexes of components into a compatible XML file. The file CML.xml in ECTo’s working
directory provides an example of various CML components used to build up the IFV in the
demo walkthrough below.

7.2.3.2 ECTo Models
Certain nodes, indicated by having a green background in the System Hierarchy, have Models
associated with them. These are typically parametrically driven components or systems that
change their properties or are ‘built’ based on inputs to those models. For example the
‘SoldierCompartment’ Model, when executed takes the requirement from the System Properties
panel for ‘number_soldiers’ and various other inputs in the Component Properties panel to
construct the space claim and mass for a the Soldier Compartment. If the number_soldiers
requirement is changed and run, this model will see the number of soldiers and the various
properties of the compartment, bench, egress volumes, etc., change to reflect this.

The ECTo models are run from the System Design Toolbar, either individually on a selected
model or by executing all models in the system. Running all models traverses the tree and

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

executes models from children models up, models under the sub-tree of another model node are
executed before the ancestor node’s model. Executing Models can retrieve and set data in the
System Properties widget as they run, so one model’s output can be used as input or modified
by another model. This data flow can also be used to control the execution order of models or
to establish an implicit causal network of models.

Another different kind of model included in ECTo is the Hull Shaper model. If you select the
‘Hull’ Model component, you should see a Hull Shaper UI popup in the Zulu visualization. By
modifying these fourteen dimensions a designer can capture the essential shape of most
traditional combat vehicles. As the Hull is modified, estimates of weight are calculated and cost
if calculated using the cost per pound input parameter. If this model is insufficient to represent
a design, a different hull model or component can be used in its place. Figure 7.2-11 shows a
hull shaper model.

Figure 7.2-11. Hull Shaper Model

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

In the System Properties panel, a quick look calculation is made as modifications occur to
generate a minimum Engine Power that would be required for a vehicle of this weight class to
achieve the required maximum speed (as show in the System Properties as top_speed). If the
sytem is modified to make it heavier, the required Engine Power will go up. Additionally, if the
top_speed requirement is modified in the System Property panel, this will also change the
minimum required Engine Power. This calculated, or derived, requirement for minimum
Engine Power is used when querying for viable refinements of Engine.

One way to quickly change the weight of the vehicle is to modify the ‘AvgThickness’
component property for the ‘Hull’ Model component. If the average hull thickness is changed
from 0.02 m to 0.03 and the Hull model is run, the new model will represent a heavier armored
vehicle.

Query for viable engines in CML. If we selected an ‘Engine’ model node in system hierarchy,
then we can ‘Query CML for Candidate Component Refinements’, and observe a SPARQL
query in the Output Log panel. The Query Results is added to the CML panel, and only
engines returned that exceed the minimum Engine Power calculated in the System Property
panel.

Replace abstract engine with specific engine. Delete an ‘AbstractEngine’ and replace it with
a concrete engine from the library.

Path Forward
ECTo is a prototype of an early system conception and analysis tool and has the potential to
evolve into a very powerful system engineering asset.

Architectural modifications

• Migrate IFV specific delegates and models into dynamically loadable libraries, these
libraries can then be stored and brought into ECTo from the CML.

• Include Ability to do multidimensional sweeps across input values or enumerated sets.
Add output tables and data export utilities to facilitate analysis of this data.

• As statistical models are incorporated allow for execution of Monte Carlo runs.
• Fully incorporate a Design Set node that can be used to represent alternatives and any

level in the hierarchy and tools.

Enhance the System Properties panel to allow for a designer to adjust values and still maintain
original requirements perspective. Add a third column for actual requirement, a column for
value to use as system input and a value for actual estimated output.

7.2.4 Co-Analysis and Exploration

This section summarizes Generic Ensemble (GEAR) and Expert-System Knowledgebase
Evaluation Reasoner (ESKER). For more details and examples of use, refer to Appendix 7.6.

7.2.4.1 Principles Behind GEAR

The idea of aligning archetypes with reasoners leads to the term GEAR to describe these
capabilities. Reasoners, patterns, templates, design rules, and archetypes are essentially
synonyms for this generic capability. The prominent idea behind GEAR is to apply similar
rule-based semantics in the context of developing archetypes for analysis, design, and
implementation. The goal is to extend the information laid out in AMIL and leave it in a

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

symbolic format, suitable for mapping into more concrete representations. The symbolic
representation thus forms an “archetype” for the specified behavior.

The first step is to start out with a domain model of some sequence (potentially concurrent) of
steps that may build into a cyber-physical realization. This sequence is referred to as a plan, a
use case, a scenario, a thread, or any term providing essentially a narrative description. The
main connecting theme is that it forms a set of behaviors that would typically reproduce a
human’s action (automation) or improve on some already automated realization. In practice,
these sequences draw from typical or archetypal behaviors that have stood the test of time. The
key is to not reinvent the wheel each time the engineering development process needs to
implement a behavior. Instead behavioral recipes can be extracted from the repository and
applied to a start-up design task that reduces development time. This requires a description
that can generate concrete realizations based on the behavioral archetypes and requirements.

See Appendix 7.6 for a detailed treatment of GEAR.

7.2.4.2 ESKER

The ESKER is the Expert-System Knowledgebase Evaluation Reasoner tool for design space
exploration which ties together AMIL and logical semantic reasoning to facilitate Design Space
Exploration (DSE). ESKER contains the engine that drives the search. The semantic web
reasoners available use a similar inference engine (Prolog). ESKER also uses a declarative form,
making it very compatible with triple-store and description logic.

The ESKER evaluates utility criteria for a given set of components selected from a set of
variants. We initially assume that the model components would fit together; a precursor
archetypal model actually establishes the specification for components that can get integrated
together, which is also what ECTo does from vehicle structural design rules.

Figure 7.2-12. ESKER

Local Knowledge

Specs

Rules

User Interface Layout

Forms

Inference
Engine

Inference Engine Auto-Generated=

Results
window

Select
window

External
Apps

SCREAMr
ARTQUIK

GroundWars

Mockup

NABK

CML
AMIL

“web crawl”

External
Knowledge

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

System optimization has historically remained a challenging problem because the complexity
involved in simply choosing between alternatives of any significant number makes a purely
quantitative approach prohibitive. Although algorithmic automation approach can alleviate the
bookkeeping, several challenges remain, especially in terms of integrating results from a set of
tools that provide the intermediate decision support.

Concepting and Design Phases. The general statement of the problem is concisely framed in
a basic two-dimensional design space. The scenario typically occurs with the design of any
sufficiently detailed product, such as a ground vehicle or a weapon system and it involves
selecting alternatives with respect to some set of criteria. Within the first dimension, a set of
concept or design alternatives exists. Some examples may include:

• Capacity of vehicle in terms of different count of troops
• Tracked vs. Wheeled
• Gun Caliber
• Engine Type
• Etc.

In the second dimension, a set of optimization criteria exists to arrive at the best choice of
element alternatives. The criteria can have various requirements and constraints associated
with their description and typically fall into a set of established categories, such as:

• Cost
• Reliability
• Performance
• Weight
• Etc.

The system engineering puzzle is to choose which alternatives fit best together within a given
set of criteria. The major difficulty in doing this from a global perspective is that both the
product and optimization categories cross a broad spectrum of disciplines and will likely
integrate a number of disciplines and analysis tools together to provide the most effective
solution. That is the nature of system engineering, and why a cross-disciplinary approach is
vital.

The results of this implementation show that an expert system backed by a dynamic knowledge
base is well suited for the optimization task. These objectives can provide a formal mechanism
to rationalizing the engineering decisions made:

• Declarative Knowledge
• Structured Decisions
• Human still in the loop
• Generate a narrative for explanation and regression (i.e., a provenance capability)

A search optimization problem. The problem boils down to optimizing among the
alternatives considering constraints, requirements, and various measures of effectiveness. Most
of these measures either come about through heuristics, analysis models, or simulation of the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

alternative being studied. An approach is needed that will selectively lock choices to prevent an
explosion of alternatives3

Originally, the expert system organization was predicated on a two-stage process. The first
stage included heuristics and straightforward calculations (cost lookup, first-order rules, etc.).
The second stage would feature more elaborate simulations, via connections to external tools.
The plan was to eventually allow the second stage outcomes to get adopted as first stage
heuristics as the tacit knowledge matures.

.

A detailed treatment of ESKER is provided in Appendix 7.6. ESKER has been implemented in
the functions of Design Space Exploration and PCC calculation.

7.2.5 Tool Plug-ins

Plug-in architectures are implemented by distinct but cooperating modules. We describe each
plug-in separately in the following paragraphs.

7.2.5.1 Magic Draw/SysML

To demonstrate an integrated SysML capability for ARRoW, we developed Magic Draw plug-
in extensions via the Java-based plug-in architecture of the Magic Draw tool suite. These tools
were then used to support modeling of a ground vehicle reference architecture model. This
section describes the various features of the extensions that were made to the Magic Draw tool.

7.2.5.1.1 Magic Draw Plug-In Architecture

Magic Draw is a Unified Modeling Language (UML)/SysML tool written in Java, and
provides a plug-in based architecture that allows developers to write Java code to extend or
modify its behavior. Magic Draw exposes an API to allow plug-ins access to the user interface
and the model database. Refer to the Magic Draw documentation for more information.

7.2.5.1.2 ARRoW Magic Draw Plug-In

We developed a single ARRoW plug-in for Magic Draw, with a variety of capabilities. The
ARRoW plug-in provides the following functionality:

• Initialize the plug-in
• Collect requirements in a way that can be integrated into AMIL without language

parsing.
• Read and writes from/to AMIL graph database
• Solve parametric equations
• Generate custom reports (e.g., OWL schemas)
• Query, read data, load models, and publish models into the component model library
• Select a refinement of a design archetype
• Provide model element information
• Extend SysML model elements with ARRoW stereotypes

3 A spreadsheet-based approach, although table-driven, is untenable since it lacks: (1) Large-scale
maintainability, with the “if-then” rules particularly difficult to implement and (2) Customizable
extensibility to outside tools. The latter strongly suggests that flexible reasoners could play a vital role.
Interesting to note that, despite decades of development of decision support systems and methodologies,
spreadsheets are still popular as primary tools for decision making.

http://en.wikipedia.org/wiki/Decision_support_system�

http://en.wikipedia.org/wiki/Spreadsheet�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

These capabilities are described further in the plug-in software documentation. All source code
is found in Subversion (SVN) under the mdplugin project.

7.2.5.1.2.1 Initialization

On startup, Magic Draw checks a certain directory for plug-ins. The mdplugin project, when
Maven Install is run, build the plug-in and installs it the proper directory under the
MDUML_HOME environmental variable. A file, plugin.xml tells Magic Draw about the plug-
in, including the name of the root Java class to initialize it, and JAR dependencies the plug-in
has. The ArrowPlugin class is responsible for initialization and installation of all ARRoW
capabilities within Magic Draw.

7.2.5.1.2.2 Requirements Capture

Requirements are captured as SysML requirements model elements, which are really just
wrappers around the text of the requirement. For ARRoW, we need to get at the meat of the
requirement and how it impacts the architectural elements of the system. To achieve this, we
created a custom dialog that would capture the relationship between blocks, requirements, and
properties, store it within the model, and publish it to AMIL.

A dialog box, implemented in the MD plug-in, is used to manage the requirements mapped
onto a block and the properties they affect. The dialog captures the range of values constraint
that the requirement places on the block property.

Figure 7.2-12 shows a screen shot of the dialog box for the Opening block, with requirements
Req1 and Req2 placing constraints on the size property. The prototype captures ranges of
values, in the form lVal < property < uVal. This can change to deal with other syntax,
tolerances, or more general expressions as we evolve the solution.

Figure 7.2-13. Opening Block Dialog Box

7.2.5.1.2.3 AMIL

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

The MD plug-in adds a menu item to the main File menu to Publish to AMIL the model. All
requirements and all Blocks with the <<RequirementValues>> stereotype are published to
AMIL. The following diagram documents the pattern of SysML elements as they are mapped
to AMIL nodes. This happens within the RequirementValues.java class.

Write

Blocks, instances, properties, and requirements are each mapped to their own AMIL node. The
arc from block to property represents the ownership of the property by a block. Attributes of
the property, such as type, description, etc., are not shown.

The arcs from requirements to property represent the constraints or desired values of the
property, and the range expression is mapped to attributes of the arc. As illustrated in Figure
7.2-13, the lVal and uVal ranges are included on the arcs.

Figure 7.2-14. AMIL Representation of Requirement Ranges of Values

Design values are assigned to a property and mapped to the AMIL graph using a designValue
property on the SysML property’s AMIL node.

The ARRoW allows reading back out of the AMIL graph for a single node. The ARRoW
SysML tools support reading back designProperty values back from the AMIL graph, allowing
tools to exchange design information. Since SysML is the authoritative source for requirements
in our application of ARRoW, requirement values are not read from AMIL. This feature will
also read back properties in ECTo’s format of name-value pairs on the AMIL node. Named
AMIL properties that do not align with SysML properties are ignored.

Read

This feature is implemented in PopulateFromAMIL.java.

7.2.5.1.2.4 Parametric Models
We used parametric diagrams to mathematically relate block properties with one another.
While we did not extend Magic Draw to achieve this capability, we do note that other Magic
Draw add-ons are required. ParaMagic and either OpenModelica, Modelica, or Mathematica
are required for full parametric support.

METAF023

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

7.2.5.1.2.5 Report Templates

Magic Draw uses the open source velocity tool as the means for generating reports from the
models. While not part of the Java plug-in extensions, we have created custom reports for
ARRoW. These templates are in SVN in the mdplugin/src/main/resources/templates
directory.

The owl.txt report generates an OWL schema from the SysML models.

SysMLStructuralReportTemplate.rtf is a fix to Magic Draw’s default report template that
includes blocks in the report.

Refer to the Magic Draw documentation for how to use custom reports from the Tools>Report
Wizard menu option.

7.2.5.1.2.6 CML Query
The ARRoW can query the CML database for components of a particular type, like engine, and
can even build more complex queries to find engines with power in a specific range. As
illustrated in Figure 7.2-14, the results are shown in a dialog box, allowing the user to browse
the results. A single result can be selected, which loads the CML property values into the
model element’s SysML properties.

This occurs within the PopulateFromCMLAction.java and PopulateFromCML.java classes.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Figure 7.2-15. Browsing Query Results

7.2.5.1.2.7 CML Publish
A Magic Draw package, containing an archetype, can be published to CML from within Magic
Draw. This adds the mdzip file to the CML and Artifactory, which supports the CML.

7.2.5.1.2.8 Archetype Refinement
The reference architecture includes decision points in selecting among design patterns or
components within the design. An ARRoW plug-in class, RefineDesignArchetypeAction.java,
reads from an AMIL node that triggers a reasoner within the AMIL graph to run, collect
design data, rank alternatives, and provide the top ranked option. The selected option is then
automatically added to the design.

7.2.5.1.2.9 Node Info
As an exploration and understanding tool, the ARRoW plug-in allows model elements on
diagrams or in the containment (tree) view to be queried about their type and other
information. This is in the NodeInfo.java class.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

7.2.5.1.2.10 ARRoW Stereotypes
The ARRoW defines stereotypes to extend the Block and Requirement SysML model elements.
These are described in the Language section of this Final Report.

7.2.5.1.3 Tool Considerations
For this work, we chose to use the Magic Draw UML/SysML tool, version 17.0, service pack
2. There are many other tools that support UML/SysML, including some open source tools.
While we made some extensions to the tool, via a plug in architecture that Magic Draw
exposes, we kept those extensions to a minimum. Other tools have similar extendibility
approaches, so these plug ins can be adapted to other tools.

The profiles, extensions to the SysML language, should be interoperable with other tools, as
should the UML and SysML models of the reference architecture.

ParaMagic is a tool from InterCax that extracts SysML parametric models and makes them
available to a solver, such as Open Modelica. ParaMagic has no open source equivalent
currently. However, it would be possible to write a SysML-tool-independent utility to extract
the parametric model to AMIL, then write a solver on top of the AMIL graph.

The following lists the features of a UML/SysML tool that we are using and dependent on
within ARRoW.

• Tool extension architecture, like a plug in capability, to add custom menu items, dialog
boxes, etc., to the tool.

• Ability to use the extension mechanism to create an interface to AMIL.
• Supports the UML 2.X and SysML 2.X standards
• Supports profiles
• Ability to partition models into separate files, at least package level
• XMI interoperability
• Support for all diagrams and constructs used in the Reference Architecture.

7.2.5.1.4 Future Work

7.2.5.1.4.1 Separating the Archetypes into Separate Files

Currently, all design archetypes live in one file, under models/SysML/IFV.mdzip in SVN.
Each archetype should be broken out into its own package and file for storage in CML.

7.2.5.1.4.2 Auto-Requirement Mapping

Requirement archetypes are mapped onto the reference architecture components they impact. A
corresponding relationship happens at the design level with requirements attached to design
elements. This process could be automated, to create and attach requirements from
requirement archetypes as design elements are created.

7.2.5.1.4.3 Design Under Test Configuration for Test/Co-Simulation

Using the internal block diagrams, behavioral models can be composed to support a co-
simulation. This SysML diagram can then be leveraged into executing the composition,
extracting models from CML and deploying it on the appropriate platforms.

7.2.5.1.4.4 Synchronization with ECTo

Both ECTo and SysML cover the design space from different viewpoints. We could combine
the reference architecture and ECTo to create a Domain Specific Language (DSL), a language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

that supports the capabilities and expressiveness of UML/SysML, but with the visual interface
of ECTo. Constraints can be enforced by warning the user that the engine usually doesn’t go
inside the squad compartment. The DSL would also ease the mapping of requirements onto the
design elements.

Ideally, ECTo would evolve into a tool that is plug-and-play, meaning that new component
types could be added without having to change the ECTo code base itself. Parametric
relationships that are hard coded into ECTo now could be authored in SysML and exported
into AMIL for use by ECTo. Likewise, design archetypes, components, subcomponents, and
peer connection patterns could be packaged for use by ECTo.

Ultimately, one of the desired features of the META project is to support the analysis of
parametric models outside the context of MagicDraw. MagicDraw could continue to be used
for authoring parametric relationships between components, just as it would be used for
developing the ontology interface for CML. The parametric models would also be published
into AMIL. However, instead of running the ParaMagic plugin from within MagicDraw, a
similar tool living in the cloud could be launched from within AMIL and used to solve the
parametric equations. This way, MagicDraw, ECTo, and other tools could benefit from the use
of tool independent parametric models, and the mathematical analysis would move from the
client to the cloud.

7.2.5.2 Pro/Engineer (Creo) Plug-In
7.2.5.2.1 Introduction

The Pro/Engineer (Pro/E) was recently renamed Creo, but is referred to in this paper as
Pro/E. This plug-in dynamically provides parametric information for generating mass,
moments of inertia, model structure, and baselines of Pro/E objects.

The information generated uses JSON (JavaScript Object Notation) for lightweight data-
interchange. The JSON provides an easy text format that is language independent but has
conventions that are familiar to programmers. In addition, since the AMIL language is a
derivative of JSON, it allows for easy input into the META systems.

7.2.5.2.2 Benefits
As the main worker, the Pro/E Plug-in does the heavy lifting of calculating the parametric
information and producing the necessary output. The plug-in consumes information placed on
the queue, with the JMS provider ensuring that items in the queue are only processed once.

 The architecture design for the Pro/E plug-in is configured to leverage cloud technology. For
example, if the demand for processing Pro/E objects increases additional workers can be
started. This offers parallel processing for on demand resource utilization while the plug-in
dynamically analyzes and calculates mass properties of any Pro/E object.

7.2.5.2.3 Conclusion
The Pro/E Plug-in provides critical parametric-constraint properties to allow automated
design decisions.

7.2.5.3 Incorporating Lightweight, Open Source, Freeware Tools into the Tool Chain
7.2.5.3.1 Engineering Design Tools Investigation
The BAE Systems META tool chain is founded upon the notion of heterogeneous tool and
technology integration and lightweight, unobtrusive data integration mechanisms. This
approach attempts to enable the integration of fast and automated abstract design

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

methodologies, but retains the capability to access high-fidelity domain-specific tools and
capabilities where needed and appropriate for the development of a complex, safety-critical,
weapons platform like a combat vehicle.

An analysis was completed to evaluate lightweight tool capabilities in the design chain. An
evaluation found existing open source tools with similar functionality matched to commercial
tools as shown Figure 7.2-15. An initial investigation assessed CAD due to its cost and
complexity.

Figure 7.2-16. Relevant Commercial and Open Source Tools

7.2.5.3.2 Capability Sampling

A capability assessment was concluded evaluating low-cost or freely-available CAD tools for
use in the META program. Some of the things evaluated include ease-of-use, flexibility, ability
to create and modify geometry, and any APIs to allow automation through scripting or other
software interfaces.

Low-cost or free (commercial or open-source) CAD tools can be an important part of early
product development. These CAD tools with an easy but powerful user interface coupled with a
richly-populated component model library will allow a wide user community to try out
different early concept layouts of a system.

The CAD tool capabilities to focus on at this early stage in conceptual design (of a large system
layout) include easy placement and movement of component geometry (singly or in groups),
easy geometry creation and modification, and presentation ability. Less important capabilities
include top-down design tools, drafting/annotation modules, or other detail-design capabilities.
Another important characteristic of a useful CAD tool is the ability to deal with
importing/exporting geometry from other CAD systems while still allowing full modeling
capabilities of the CAD tool (i.e. no loss of functionality or geometry).

Later, during preliminary design, the CAD tools can shift to more powerful (presumably more
expensive) CAD tools to support a more robust development activity.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

7.2.5.3.3 Conclusion

Generally, there are a lot of unknowns (such as performance with large models) with the CAD
software packages evaluated. Additional evaluations are necessary to conclude where and how
best to use open source and freeware software.

7.2.6 Metrics

Metrics provide the ARRoW designer with valuable calculations for measuring design
performance. In addition, metrics support credible decisions within the limited resources of
design space exploration. By designing a controlled process for assimilating metrics given
design goals, assumptions, and limitations, design space exploration proves more efficient.

In order to facilitate evaluation and exploration of design space in META, the purpose of
metrics is threefold:

1. provide the ARRoW designer with innovative metrics used for measuring design
performance

2. offer an extensible framework for integrating and developing metrics
3. allow the ARRoW designer to inspect and analyze metric calculations through a

comprehensive user interface

7.2.6.1 Metrics Framework
The metrics framework provides the mechanism for integrating metrics for design evaluation.
The purpose is to facilitate the evaluation of a design by providing quantitative measures,
flexible metric selection and grouping. The metrics framework also provides the ability to
rapidly prototype and integrate new metrics.

The framework is designed to use metrics consisting of at most two types of sub-elements;
evaluators and statistics. In addition, statistics incorporate a third type of element: measures.
Each component is defined as follows:

Measures

Measures are quantities that can be directly observed from the design under development. For
example, the weight of a vehicle's hull is a quantity that is directly measured from the design,
without requiring further reasoning or analysis. Measures, however, often times are coupled
with running a simulation in order to measure quantities calculated after the simulation.

Evaluators

Evaluators orchestrate the execution of measures used to compute a metric. For example, the
metric 'Total Weight of the Vehicle' requires the use of an evaluator to execute many measures
responsible for measuring the weight of individual vehicle components.

Statistics

Statistics perform a summarization of data. A statistic may be used to compute an average or
maximum calculation. A statistic may, however, return the entire set or a subset of values
collected by an evaluator as a form of summarization.

Metrics, evaluators and statistics are represented by AMIL nodes and are associated through
AMIL links. Modeling metric elements in AMIL facilitates analysis and reasoning over the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

design characteristics represented in AMIL (additional discussion on the use of AMIL for
metrics is given in Section 7.2.1.3).

Figure 7.2-17 illustrates the structure of a metric. Metrics directly reference an evaluator and
at least one statistic element. The metrics framework evaluates a metric by first evaluating the
metric's evaluator. By evaluating the evaluator, data is collected from the various referenced
design and model properties. Subsequently the statistics nodes are used to process all of the
collected data for statistical analysis.

Figure 7.2-17. A Generic Metric Composition

The metrics framework also maintains some key features listed below:

• Metrics used within the framework are consistent and repeatable. Consecutive
executions of a metric maintain the same analysis when no changes are made to
simulation or model data.

• Provides a convenient abstraction for interfacing metrics with design data in AMIL
• Manages node versions over time
• Capable of easily integrating executable models with limited concern about ownership

or proprietary data

7.2.6.2 Specific Metrics
Using the structure of the generic metric model designed within the framework, a number of
metrics were built and integrated for this effort. Two of these metrics were developed external
to BAE, and were integrated within days. For a more mature system, we believe this time
would be just hours.

7.2.6.2.1 Weight

As shown in Figure 7.2-17, system designers can calculate the total weight of the proposed
design by accessing weight information provided to by ECTo. The metric evaluator walks the
AMIL graph for the vehicle design, collecting weight values in support of the metric
computation. The metric statistic contains the information to sum these values. The value for

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

the weight metric can be used as input to Matlab Simulink mobility simulations in support of
computing other metrics such as top speed, fuel efficiency and time to accelerate to 20 MPH.

Figure 7.2-18. Total Weight Head Node Connectivity Computation

7.2.6.2.2 Graph Complexity

Complex designs are known to be, on average, more fragile than simple ones, and feature more
dependencies; longer integration, testing, and maintenance times; and greater susceptibility to
abstractions leakage “at the seams.” Because the AMIL graph provides the “glue” for the design
under consideration, we are able to generate simple graphical measures to understand how the
complexity of one design compares to another. We have implemented the following metrics:
total node count, count of incoming and outgoing links to each node, and maximum link counts
to/from a node. These metrics are simple enough that they also support testing for new
ARRoW users to verify operational server and database, and successful loading of metric data.

7.2.6.2.3 Signal Complexity

This metric calculates the signal entropy of a time series to indicate complexity. This metric
was developed by team member BBN and is documented in Section 7.7.

Because the metrics framework is an extension of AMIL, the same mechanism for integrating
3rd party tools into AMIL is applied to metrics. A standard evaluator node is provided by
AMIL to call an externally authored AMIL node with "overridden" parameters passed in and
extract "user configured" output values associated with those input parameters. For the
statistic node, 3rd party tools or metric authors can use a pre-defined statistic node (such as
max, min, sum, count, etc), build a new statistic node, or omit one altogether. The integration is
completed by pointing the metric node to the defined evaluator and statistic nodes.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

7.2.6.2.4 PCC Calculation

This metric utilizes the PARC Envisioner to generate a PCC comparison across two designs
for a ramp use case. This metric was integrated similar to the BBN metric integration above.

7.2.6.2.5 Design Decision Support

The MagicDraw Plug-in (discussed in Section 7.2.4) employs the metrics framework to reason
a best platform type based on comparisons between constraints of the design and constraints of
the candidate platform types. In this case, the evaluator collects the requirements stored as
AMIL nodes, evaluates all candidate design measurements against all criteria and returns the
minimum distance result. The minimum statistic used here passes back both the numeric result
along with information about the candidate design for which that result was computed.

7.2.6.2.6 Max Torque Variation

This metric measures the sensitivity of a model to variations in its inputs. The amount that
each of the simulator input variables is to be varied is defined in the evaluator. A mesh grid of
multivariate inputs is created by the evaluator and assigned to the measurement node, to result
in a sensitivity analysis to the amount of change in the result of Simulation 3’s output for a
determined amount of change of input.

7.2.6.2.7 Procurement Cost

In order to support a procurement cost metric, we used an accepted model that mapped weight
to procurement cost and used rough cost per pound data, in 2011 dollars, for several
classification types. These costs were based on the average unit production of 5000 units. The
17 classifications in the model are Automatic Fire Emergency System (AFES), Armor, Chassis
Structure, Crew Station, Defensive Armament, Dismountable, Electronic Control System
(ECS), External Lighting, Fuel, Hit Avoidance, Hydraulics, NBC, PDM, Platform Electronics,
Propulsion, Signature Management, Suspension.

7.2.6.3 Metrics Dashboard

Feedback to users on design performance is provided by the metrics dashboard. Metrics
themselves have many consumers, so the dashboard is easily configurable to support those
consumers. Top sponsor leadership and company management may be interested in cost and
system effectiveness, and capability and gap analysis, whereas the upper project management
are more interested in the health of the design and risk mitigation metrics. Direct line
management will be interested in reviewing tracking book metrics.

To support the varying needs of the different metrics consumers, there are three demonstration
dashboards implemented: Demo, Design, and Requirements. The Demo dashboard is used to
demonstrate a sample of a top level cost analysis and capability assessment. The Design
dashboard relies on the outputs of an ECTo design exported to AMIL and presents the results
of a mobility model and other design metrics such as calculated total cost and total weight. The
Requirements dashboard provides a table of the integrated PARC and BBN Signal complexity
results.

Each dashboard is composed of a combination of views. As shown in Figure 7.2-18, these views
pull data from AMIL and use HTML, JSON, and JavaScript. Each view specifies one or more
AMIL nodes from which to retrieve data. The views then request the AMIL node results, glean
the desired properties from them and display them.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

Figure 7.2-19. Dashboard Structure in AMIL

The dashboard views developed to date include:

1. Assessment view: dynamically constructed “gumball” rollups of data received via AMIL.
An assessor compares calculated values to minimum and required values and determines,
according to a rule, which region the value falls into. An example of the quadratic and
linear assessors of the value of the System Weight metric is shown below. The quadratic
specifies a characteristic length from the requirement to where the assessment is no longer
excellent while the linear specifies a percentage of minimum below which the assessment is
deemed as worst. Using an assessor determines the color displayed for a metric in the
assessment panel.

2. Progress Bars/Bar charts: dynamically evaluates a node value against an objective
measure (which is likely referencing a requirement)

3. Details View: Dynamically construct a table of data values received via AMIL
4. Metric Details View: Dynamically construct a table of evaluator data values (inputs and

outputs for each data point)
5. Summary View: Dynamically construct an HTML summary of the statistic results

contained within a metric

The dashboard is configurable both in terms of data displayed and widget placement on the
screen.

Additional data nodes represent content for the dashboard panels. For example, a necessary
metric for a quality IFV design may be that the tank has wheels or tracks and a turret. A
sufficient condition for a good design may be that the cost and weight are within desired
ranges. To support display of such information, the content nodes can reference other AMIL
nodes (indicator for having a turret, or ranges for cost) for which we can extract a value to
analyze and present.

An example of the Demo dashboard is shown in Figure 7.2-19. The various panels within the
dashboard are provided by the different views that have been developed, and include: metrics

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

values, assessment of metrics values (excellent, bad, worst), comparison of design alternatives
against requirements, and monitoring graphics.

Figure 7.2-20. Example Dashboard Configuration

The work of Phase 1B has extended a vehicle designer’s ability to make decisions based on
objective feedback on the design. The ARRoW metrics framework seamlessly integrates
metrics with simulation and design tools, hides the back-end AMIL details, is easily re-
configurable and supports straight-forward metric creation.

7.2.7 Cloud Deployment

Use of the Amazon Web Service (AWS) cloud provided a simple mechanism for deploying the
ARRoW Web service for external use. A cloud computer instance is similar to any other
computer that can be bought off the shelf. AWS provides a barebones Windows or Linux
system and the user installs software required to run the application. The strengths of cloud
computer instances are their ability to be readily available on the Web, their ability to scale in
storage and computational power as necessary, and its ability to store and reuse instance
images.

AWS incorporates a Security Group capability to control access to the cloud instance. The
Security Group is basically a list of IP addresses and ports through which access is established.
Through this list, Administrators of the cloud instances establish rules for governing which
external IP addresses have access to the cloud instance, and which types of connections are
allowed (e.g., SSH, HTTP, VNC, …). Each cloud instance is externally identified through an

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

IP address. When an instance is started or rebooted, it is assigned a new IP address. AWS
incorporates an Elastic IP capability that provides a static IP address for external access so that
users only have to remember the one address.

Cloud instances are scalable through computational power, RAM amount, and disk storage
size. When an instance is launched, AWS provides an option for selecting the size of the
computer in terms of number of processors and size of RAM. After the instance is launched,
any amount of disk storage can be added.

AWS provides a capability for creating and storing images of cloud instances. This provides a
convenient configuration management mechanism for maintaining baseline versions of the
application and testing enhancements to that application. An image is a snapshot of the of the
computers software configuration. This includes the operating system, application software,
user accounts, environmental variables, data files, and anything else required to reestablish the
running instance. Once the application is installed and successfully verified in a running
instance, an image of the instance provides a means for getting back to this exact running state
at any time. This then provides the freedom to change the instance to tryout potential
enhancements without worry of losing the known good state.

During Phase 1B of the contract, two cloud instances were successfully configured to run the
ARRoW Web service. One instance utilized a Red Hat Enterprise Linux 64 bit operating
system and the other a Microsoft Windows 2008 R2 SP1 64-bit architecture operating system.
The procedures for establishing these two instances are included in the User’s Manual that
accompanies this report.

7.2.8 Bibliography

[ARC11] Archiva documentation (2011), available at http://archiva.apache.org/

[ART11] Artifactory documentation (2011), available at http://www.jfrog.com/

[BPT11] Blueprints documentation (2011), available at
https://github.com/tinkerpop/blueprints/wiki

[HY10] Hong Yang, R. C.-q. (October 2010). “A Metrics Method for Software Architecture” 5
(JOURNAL OF SOFTWARE, Issue 10).

[INC95] Metrics Guidebook for Integrated Systems and Product Development, INCOSE-TP-1995-
002-01 (originally INCOSE TM-01-001).

[JSN11] Introducing JSON. (2011). Retrieved 9 26, 2011, from http://json.org

[META11a] META Adaptive, Reflective, Robust Workflow (ARRoW) Phase 1A Final
Report, TR-2683, 13 April 2011.

[MVN11] Maven documentation, (2011), available at http://maven.apache.org/

[NEO11] neo4j: The Open Source, NoSQL Graph Database. Retrieved 9 26, 2011, from
neo4j.org: http://neo4j.org

[NXS11] Nexus documentation (2011), available at http://nexus.sonatype.org/

[OWL11] OWL Web Ontology Language Reference (2011), available at
http://www.w3.org/TR/owl-guide/

[PRT11] Protege documentation (2011), available at http://protege.stanford.edu/

http://www.jfrog.com/�

https://github.com/tinkerpop/blueprints/wiki�

http://maven.apache.org/�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.2 – Tool Design

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

[RDF11] World Wide Web Consortium, OpenRDF documentation (2011), available at
http://www.openrdf.org/

[RST11] REST documentation (2011), available at
https://www.ibm.com/developerworks/webservices/library/ws-restful/

[SQPR11] World Wide Web Consortium, SPARQL Query Language for RDF (2011), available
at http://www.w3.org/TR/rdf-sparql-query/

http://www.openrdf.org/�

http://www.w3.org/TR/rdf-sparql-query/�

		7.2 Tool Design

		AMIL

		7.2.1.1 Introduction

		7.2.1.2 AMIL Structure

		7.2.1.3 Dynamic Nodes

		7.2.1.4 Ontology

		7.2.2 Component Model Library

		7.2.2.1 CML Architecture

		CML Search

		7.2.3 Conceptualization – The Early Concepting Tool

		7.2.3.1 ECTo Architecture

		7.2.3.2 ECTo Models

		Path Forward

		7.2.4 Co-Analysis and Exploration

		7.2.4.1 Principles Behind GEAR

		7.2.4.2 ESKER

		7.2.5 Tool Plug-ins

		7.2.5.1 Magic Draw/SysML

		7.2.5.1.1 Magic Draw Plug-In Architecture

		7.2.5.1.2 ARRoW Magic Draw Plug-In

		7.2.5.1.2.1 Initialization

		7.2.5.1.2.2 Requirements Capture

		7.2.5.1.2.3 AMIL

		Write

		Read

		7.2.5.1.2.4 Parametric Models

		7.2.5.1.2.5 Report Templates

		7.2.5.1.2.6 CML Query

		7.2.5.1.2.7 CML Publish

		7.2.5.1.2.8 Archetype Refinement

		7.2.5.1.2.9 Node Info

		7.2.5.1.2.10 ARRoW Stereotypes

		7.2.5.1.3 Tool Considerations

		7.2.5.1.4 Future Work

		7.2.5.1.4.1 Separating the Archetypes into Separate Files

		7.2.5.1.4.2 Auto-Requirement Mapping

		7.2.5.1.4.3 Design Under Test Configuration for Test/Co-Simulation

		7.2.5.1.4.4 Synchronization with ECTo

		7.2.5.2 Pro/Engineer (Creo) Plug-In

		7.2.5.2.1 Introduction

		7.2.5.2.2 Benefits

		7.2.5.2.3 Conclusion

		7.2.5.3 Incorporating Lightweight, Open Source, Freeware Tools into the Tool Chain

		7.2.5.3.1 Engineering Design Tools Investigation

		/

		7.2.5.3.2 Capability Sampling

		7.2.5.3.3 Conclusion

		7.2.6 Metrics

		7.2.6.1 Metrics Framework

		7.2.6.2 Specific Metrics

		7.2.6.2.1 Weight

		7.2.6.2.2 Graph Complexity

		7.2.6.2.3 Signal Complexity

		7.2.6.2.4 PCC Calculation

		7.2.6.2.5 Design Decision Support

		7.2.6.2.6 Max Torque Variation

		7.2.6.2.7 Procurement Cost

		7.2.6.3 Metrics Dashboard

		7.2.7 Cloud Deployment

		7.2.8 Bibliography

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.3 – Modeling Language

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.3 Modeling Languages in ARRoW ... 1

7.3.1 Languages and Their Purpose ... 1
7.3.1.1 Roles of Languages in Designing Complex Systems ... 1

7.3.2 Reference Architecture ... 4
7.3.2.1 SysML as the Umbrella for Multi-viewpoint Systems Integration 4
7.3.2.2 Engineering Activities ... 6
7.3.2.3 Archetypes .. 6
7.3.2.4 Archetype Development ... 10
7.3.2.5 Abstract Components ... 14
7.3.2.6 Design Refinement .. 15
7.3.2.7 Context Components .. 17
7.3.2.8 Viewpoints ... 17
7.3.2.9 Parametrics .. 18
7.3.2.10 Relationship with CML .. 18
7.3.2.11 Behavioral Models ... 19
7.3.2.12 SysML Usage .. 19

7.3.3 AMIL ... 29
7.3.3.1 Uses of AMIL Analysis and Verification .. 29
7.3.3.2 Design Support ... 29
7.3.3.3 Chaining of Tools .. 29
7.3.3.4 Analysis Reuse .. 30
7.3.3.5 Semantics of AMIL .. 31
7.3.3.6 AMIL Syntax .. 32

7.3.4 Qualitative Modeling Language ... 33
7.3.4.1 Qualitative Simulation in Early Design.. 34
7.3.4.2 Qualitative Representations .. 34
7.3.4.3 Specifying Qualitative Models .. 34
7.3.4.4 Example: Analysis of IFV Door Opening and Closing 37
7.3.4.5 Envisionment and PCC Computation ... 39
7.3.4.6 Modelica to QML Translation ... 40
7.3.4.7 Qualitative Simulation Semantics .. 43

7.3.5 Bibliography .. 43

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Figures
Figure 7.3-1. Three Worlds of Engineering.. 2
Figure 7.3-2. Categorization of Languages .. 3
Figure 7.3-3. Roles of Languages in Design... 3
Figure 7.3-4. Reference Architecture ... 4
Figure 7.3-5. SysML Integration with Domain Specific Engineering Areas 5
Figure 7.3-6. Requirement Archetypes and Design Archetypes ... 8
Figure 7.3-7. Acceleration Requirement Archetype ... 9
Figure 7.3-8. Acceleration Test Archetype ... 9
Figure 7.3-9. Acceleration Test Sequence Diagram .. 10
Figure 7.3-10. Design Archetype Applicability Ranges ... 12
Figure 7.3-11. Ground Vehicle Design Instances .. 13
Figure 7.3-12. SolidComponent Block and Core Relationships ... 14
Figure 7.3-13. Power Train Design Instances .. 15
Figure 7.3-14. Behavioral Models .. 16
Figure 7.3-15. Example Engine Power and Torque Curves ... 16
Figure 7.3-16. Ground Vehicle Viewpoints ... 18
Figure 7.3-17. Combining Behavioral Models into a Co-Simulation... 19
Figure 7.3-18. Block Diagram Integrating Multiple Viewpoints ... 21
Figure 7.3-19. Physical Interfaces of an Engine ... 22
Figure 7.3-20. Engine Torque Constraint Equation ... 23
Figure 7.3-21. Usage of Engine Torque Constraint Equation .. 23
Figure 7.3-22. Power Train Design Instances .. 25
Figure 7.3-23. Engine Torque Parametric Diagram ... 26
Figure 7.3-24. Requirement Values Stereotype .. 27
Figure 7.3-25. ARRoWRequirement Stereotype ... 27
Figure 7.3-26. AMIL Representation of Requirement Ranges of Values 28
Figure 7.3-27. Relationships Among Models and Design Elements ... 30
Figure 7.3-28. Example of Inferring a Link. ... 32
Figure 7.3-29. Definition of an Ideal Resistor including Both Qualitative and Quantitative
Equations .. 35
Figure 7.3-30. Defining an ideal diode requires landmarks to divide the quantity space into
additional intervals, and modes to model discrete transitions. ... 36
Figure 7.3-31. Composition of components in QML defining a system involving a diode
(shown graphically on the right). .. 37
Figure 7.3-32. Composition of components defining a system in which a door is given a
command to open and close. ... 38
Figure 7.3-33. (left) Directed graph describing the envisionment of the door system included
for concreteness. (right) A simplified version of the envisionment graph to describe the
example. ... 39
Figure 7.3-34. Modelica and QML Models of a Capacitor .. 41
Figure 7.3-35.Translating RLC Model in Modelica To QML ... 42

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. iii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms for Appendix

Symbol,
Abbreviatio
n, Acronym

Definition

AMIL ARRoW Model Interconnection Language

ARRoW Adaptive, Reflective, Robust Workflow

ASIC Application-specific integrated circuit

BDD Block Definition Diagram

CAD Computer Aided Design

CBD Contract Based Design

CDRL Contract Data Requirements List

CML Component Model Library

DARPA Defense Advanced Research Projects Agency

DUT Design Under Test

ECTo Early Concepting Tool

FEA Finite Element Analysis

IBD Internal Block Diagrams

IFV Infantry Fighting Vehicle

JSON JavaScript Object Notation

OWL Web Ontology Language

PCC Probabilistic Certificate of Correctness

PID Proportional Integral Derivative

QML Qualitative Modeling Language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. iv Refer to cover page for Distribution Statement.

Symbol,
Abbreviatio
n, Acronym

Definition

SWAP Size, Weight, and Power

UML Unified Modeling Language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.3 Modeling Languages in ARRoW

7.3.1 Languages and Their Purpose

This appendix surveys the requirements for languages that have emerged from developing
ARRoW in phase 1B. This includes describing the properties of and uses for two languages
developed as part of this effort: AMIL (ARRoW Model Interconnection Language) and QML
(Qualitative Modeling Language). Additionally, we describe the use of SysML (an existing
language) in ARRoW. An unlimited number of additional languages potentially have a role in
ARRoW as means to express models. During Phase 1B, Modelica, MatLab/Simulink, C++, and
Java models were used, as well as the CAD modeling system Pro/Engineer. These languages
are not discussed here, as their role in modeling components and systems is not unique to
ARRoW.

SysML is used in ARRoW to represent system requirements, to support aspects of
requirements analysis as part of the conceptual design process, and to provide one source of
archetypes to support the design process. Its use as a repository is the primary focus of 7.3.2
which describes its use in expressing a ―reference architecture‖ for Infantry Fighting Vehicle
(IFV) design.

Section 7.3.3 describes the role of AMIL in capturing the relationships among heterogeneous
elements in ARRoW. In focusing on language requirements, this document describes AMIL’s
role in providing this foundation for ARRoW. Implementation details for AMIL can be found
in the Tool_Design appendix. And the user’s manual also provides descriptions of how AMIL
tools can be used to support design.

Finally, section 7.3.4 describes QML, a language for describing the behavior of components in
terms of transitions among qualitatively similar states. Models in QML are necessary in order
to perform analysis based on qualitative simulation, a technology investigated in phase 1B of
this project.

The remainder of section 7.3.1 presents thoughts about the various roles languages play in the
design of complex systems, the need for multiple languages to fill these roles. And it attempts
to orient the various languages presented against a framework of language role.

7.3.1.1 Roles of Languages in Designing Complex Systems

Models are used throughout the process of designing, analyzing, verifying, diagnosing, and
manufacturing a ground combat vehicle. Some models serve a specific role within the process.
For example, a block diagram in SysML may be used to design the vehicle from the perspective
of the functional decomposition of the system. On the other hand, you may have a CAD model
of a component that is used to design the shape and structure of it, but this model also may be
used as the basis for structural analyses using a Finite Element Analysis (FEA) tool.

The diversity of both tasks and information to be represented implies that designers will utilize
a diversity of languages. Further, no model is a perfect and accurate representation of the final
product or the natural phenomena. Figure 7.3-1 shows some of the differences between the
domains of representation engineers must utilize.

While different in topic there are parallels between the domains of design and analysis. Design
effort is focused on the decomposition of the problem and defining the function and bounds of a
system or a component. Analysis is more focused on the composition of models resulting from

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

that decomposition to verify that system behavior or performance is as designed or planned in
relation to a representation of its environment. Design is not ignorant of these relations and
analysis also must deal with decomposition, but that their primary focus does differ.

Figure 7.3-1. Three Worlds of Engineering

Throughout the history of engineering, design and analysis has been to larger or lesser degrees
put on paper. Different languages, informal at first, then standardized, and to some extent
formalized have been created to record these aspects of engineering. These languages for
analysis and design of cyber-mechanical systems can be catalogued and organized in multiple
ways, e.g., by physical domain or engineering discipline they cover, by the type of
computational model they embody, or by the stage of the design process they are usually
invoked in.

For purposes of describing the roles languages play, we identify three broad phases of the
design process:

 Description languages characterize the behavior of a component, or a collection of
components, by representing, for example, the equations that govern it or its geometry.

 Analysis languages describe the processes and protocols used to test and verify whether
the system behavior is as desired.

 Synthesis languages define how components are interconnected and for what purpose.

Figure 7.3-2 roughly lays out finer grained tasks in relation to these broad phases. In Figure
7.3-3, we list the languages created as part of ARRoW and place them in a Venn diagram
according to their most dominant aspects. For context and comparison, we also add other
engineering design languages.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

Figure 7.3-2. Categorization of Languages

Figure 7.3-3. Roles of Languages in Design

The rest of this appendix describes all of the language advances we have made during phase 1B.
The flow of this appendix tries to follow the typical design process as it flows from
requirements to design and analysis.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

7.3.2 Reference Architecture

Development of new vehicles, planes, and other complex systems engineering products has
languished by comparison to electronic design. ASIC capacity has increased according to
Moore’s Law, doubling every 18 months. ASIC design has learned to make complex designs
out of composable components, but those operate with interfaces of ones and zeros, with some
well known physics in support. Their tools have formalized the low level knowledge of
transistor layout and allow ASIC designers to operate at higher levels of abstraction. This has
led to the exponential increase in productivity.

While the design space of systems engineering is orders of magnitude more complex, the
ability to capture the rules, patterns, limitations, interfaces, and components of systems in all
dimensions is key to raising the level of abstraction for systems engineers and capturing the
benefits that have been realized for other design domains.

One of the key obstacles in this effort is the integration of domain-specific engineering efforts
at the system level. Systems engineers are constantly balancing trade-offs in weight, power,
range, cost, schedule, capability, etc., across domains. Multiple engineering domains relevant to
IFV designs have evolved separately, and have their own vocabulary, notation, and tools that
continue to evolve. This makes it difficult for systems engineers to understand all the domain
specific models and make design trade-offs.

This section describes our use of SysML to create a reference architecture that brings together
product knowledge with engineering domain viewpoints to create an engineering knowledge
base. This captures product architecture, design patterns, archetypes, and relationships in a
way that can be shared among all stakeholders. And by this means, the experience of systems
engineers is captured in machine readable form.

Figure 7.3-4 shows a top level view of the reference architecture for a ground vehicle along
with the context with which the vehicle interacts. Domain viewpoints are integrated into the
architecture, and trade-off calculations are formalized using sets of parametric equations built
from a library of physics and mathematical relationships.

Figure 7.3-4. Reference Architecture

7.3.2.1 SysML as the Umbrella for Multi-viewpoint Systems Integration

ARRoW uses SysML to describe the reference architecture of a military ground vehicle.
SysML is a general purpose language for describing systems architecture and design. However,

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

it does not extend well into domain specific engineering areas. You cannot make a CAD
drawing with SysML, nor a circuit diagram. So, SysML based systems engineering models
must sit above the domain specific efforts, to link them together. The systems model identifies
the key structures, properties, interfaces, and behaviors between the components and between
the domain engineering efforts. Figure 7.3-5 shows this relationship.

SysML

M
e

c
h

a
n

ic
a

l

E
le

c
tric

a
l

T
h

e
rm

o
d

y
n

a
m

ic

S
a

fe
ty

...

Figure 7.3-5. SysML Integration with Domain Specific Engineering Areas

Designers often rely on their skill and experience to recognize and keep track of the
interactions among the domains. This does not scale well to increasingly complex systems, nor
can it support domain experts that need to understand how and why the decisions they make
affect other areas. SysML provides the infrastructure to relate the multiple aspects of system
development and prevent the design leakage that occurs at the seams between components and
between domain engineering groups.

The SysML models of the reference architecture tie into the SysML models of the domain
viewpoints. These domain viewpoints contain the high level properties that are typically part of
the trade-off analysis for systems engineers. From the viewpoint models, system architecture
decisions flow down to the domain engineers and tools, and results flow back up to the system
architecture for impact analysis and exploration of side effects. The SysML models bridge the
gaps between the engineering domains.

One could argue that SysML could be the ―one language‖ to express all aspects of vehicle
development. All engineering tools use some kind of data format which can be expressed in
UML/SysML. Behaviors that allow the tools to execute mathematical computations and
graphical visualizations can be expressed, completely and at various levels, in UML/SysML.
(UML/SysML includes a model-level programming language called (UML). However, creating
a universal language for all engineering domains would wipe out years of experience
developing those domain specific languages. Instead, in the ARRoW language toolset,
UML/SysML is used as a glue language to integrate the domain specific languages together.

Each of the domain specific engineering areas is considered a viewpoint in the reference
architecture. In modeling terms, a viewpoint addresses the questions and concerns of a set of
stakeholders that have an interest in the system. Each viewpoint is isolated from its counterparts.
While the electrical viewpoint is integrated with other components and subsystems, such as
communications, computing, etc., the viewpoint allows the entire vehicle electrical system to be

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

taken as a whole. Domain specific tools and languages can then be used from here to complete
the analysis of power consumption, generation, transient effects like power surges, and
assessments of cross-coupling interference.

The SysML model of the reference architecture only needs to capture the architecture of the
vehicle, including property values, interconnections, and behavioral patterns to pass this
information down to domain specific (viewpoint) models and engineering tools for analysis.
This interface to the other tools is facilitated by AMIL.

7.3.2.2 Engineering Activities

Reference architecture supports the engineering activities of synthesis, analysis, and
description.

7.3.2.2.1 Synthesis

The reference architecture describes how components can be connected by capturing the idea of
connection patterns. For example, moving mechanical energy from one place to another, on a
motorcycle from the engine to the wheel, can be done with a driveshaft, chain, or belt. There
are different tradeoffs involved – a driveshaft is less efficient, but requires little maintenance.
These tradeoffs are also captured in the reference architecture.

Reasoners are created that operate from the reference architecture. The reasoners rank design
alternatives by comparing the component context in the design with applicability data
associated with each option. For example, a reasoner to choose between a tracked and wheeled
vehicle evaluates the design’s mass, desired speed, acceleration, and maneuverability.

7.3.2.2.2 Analysis

The reference architecture captures test archetypes, which are templates for testing certain
types of requirements. For example, a test archetype for acceleration defines interfaces to the
design under test—a throttle control and a speedometer readout—and the test driver
behavior—floor it until the desired speed is reached. Then a verifier compares the how long it
took to reach that speed with the required acceleration.

7.3.2.2.3 Description

The reference architecture can use any of the behavioral SysML models to describe behavior.
State machines describe the behavior of a component. Sequence and activity diagrams describe
component interactions as well. Internal block diagrams describe the interfaces of other non-
SysML models, such as Simulink models. These block diagrams can then be composed using
ports and connectors to build the behavioral model of the entire system.

7.3.2.3 Archetypes

Archetypes are patterns or templates that can be used as a starting point for developing a
product. The reference architecture includes a collection of archetypes that capture the design
patterns, constraints, and possible combinations of components to build a system. Any phase of
engineering, from requirements through test, can make use of archetypes.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

7.3.2.3.1 Types of Archetypes

The following types of archetypes are supported in the reference architecture.

7.3.2.3.1.1 Requirements Archetypes

A requirement archetype defines a pattern for writing a requirement. The archetype includes
systems engineering best practices for phrasing the requirement to make it clear, complete,
precise, and testable. The requirement archetype is written in such a way that the requirements
archetype just needs to fill in the blanks. The example below shows a requirement archetype for
vehicle acceleration.

The <subject> shall accelerate from <X1> to <X2> kph in not more than <Y> sec on
<Terrain type> at a <Z> degree slope.

A requirement archetype set packages related requirement archetypes together. For example,
mobility related requirement archetypes, such as acceleration, maximum velocity, turning
radius, and obstacle negotiation are packaged together. These archetypes form the core set of
requirements that must be considered when creating a requirements document.

Current military vehicle procurement is heavily focused on the requirements documents to
define the contract as to what will be delivered. Requirement archetypes provide a head start in
developing these requirements with a template of all the aspects to be considered, providing
guidance of issues to be considered, based on systems engineering experience, for use by the
crowd.

The future of military vehicle development using the META toolset may be less focused on
requirements and more on use cases and executable test cases. However, requirement
archetypes provide a framework for defining non-functional requirements, such as safety and
reliability.

Figure 7.3-6 shows a requirement archetype allocated to a component in the reference
architecture. Here, acceleration is a typical requirement of a ground vehicle. The ground
vehicle, NGV, is an instance of the GroundVehicle in the system design. The Acceleration
requirement is an instance of the Acceleration requirement archetype, with the data and
context filled in.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

Figure 7.3-6. Requirement Archetypes and Design Archetypes

Requirements can automatically be allocated to design elements based on the relationship
between requirements archetypes and components in the reference architecture.

7.3.2.3.1.2 Design Archetypes

Design archetypes capture the design patterns involved in a typical system. The design
archetype describes the subcomponents, relationships, properties, interfaces, and behavioral
models of a component. The archetype provides guidelines to designers in decision and trade-
offs, helping to determine the requirements for components and aiding in the selection of
appropriate components from the CML.

The core of the design archetype is the block definition diagram, where the components are
defined. An internal block diagram defines the physical interfaces to the component. Parametric
diagrams can capture the mathematical relationships between the properties of these
components. State machines and activity diagrams can express high level operating modes.
Other behaviors can be expressed in other tools, such as Simulink, but those behavioral model
interfaces can be captured in SysML.

Design archetypes form a hierarchy. At the top level is the system being developed, such as a
ground vehicle. The vehicle is composed of several high level components. These components
have alternative design patterns, and so represent design choices.

These archetypes are further defined in the remainder of this section.

7.3.2.3.1.3 Analysis Archetypes

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

Analysis archetypes capture the processes and methods used by designers. These are not
currently captured as part of the reference architecture as captured in SysML.

7.3.2.3.1.4 Test Archetypes

Test archetypes define a pattern of tests to verify one or more system properties or
requirements. For example, the acceleration requirement archetype defines the pattern of
describing the acceleration requirement in various contexts. Figure 7.3-7 shows
__________________________.

Figure 7.3-7. Acceleration Requirement Archetype

The corresponding test archetype defines the system interfaces and test driver behavior needed
to execute the tests, and to judge whether it passed or failed. The acceleration test (Figure
7.3-8) requires two interfaces of the design under test (DUT), a speed control (throttle) DUT
input, and an output indicating the current speed. Properties startSpeed, endSpeed, and
maxTime are parameterized and filled in from the requirement being tested, as is the Ground
context component, e.g. pavement with 0% slope or sand with a 5% slope.

Figure 7.3-8. Acceleration Test Archetype

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

The behavior of the test driver and its interaction with the system is captured in a SysML
sequence diagram (Figure 7.3-9). It basically sets the throttle to maximum, then monitors the
current speed until it reaches the target speed, or the time expires, then validates the results.

Figure 7.3-9. Acceleration Test Sequence Diagram

These test archetypes are then implemented and populated with the project specific
requirement parameters, the context, and the design under test to be executed. The results of
these tests feed the PCC.

These tests can then be reused across a variety of design variations, given that the DUT
interface is consistent. This test capability would be used to exercise the same set of test cases
against all submitted designs as a check or input to PCC calculations.

7.3.2.3.1.5 Integrating Requirements, Design, and Test Archetypes

The relationship between requirements, design, and test archetypes is captured in the reference
architecture and provides significant speedups in development time. As shown in the previous
three sections, requirement archetypes are connected to the design and to the test archetypes
that verify them. The test archetypes define required interfaces to the design and to the
supporting context models. This pre-defined infrastructure allows designers to test and
communicate their designs quickly and early in the process.

7.3.2.4 Archetype Development

Archetypes are stored in the component model library (CML). Peer-to-peer component
connections link archetypes, as well as supertype-subtype links that represent decisions points,
for example wheeled vs. tracked option for vehicle traction.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

The set of archetypes is easily expandable. Designers can add new archetype entries to the
CML. New components are modeled in SysML; an OWL ontology schema is derived from
SysML and installed in CML; the new archetype is then added to the CML. The archetype is
connected to an archetype hierarchy representing the system breakdown, either as a new
component attached as a peer to an existing component, or a design alternative to an existing
archetype.

New design patterns for components that already exist in the CML, like the powertrain, can be
added as another design choice. By making the new archetype a subtype (refinement) of the
existing powertrain archetype, other designers searching for powertrain options will find the
option. By including applicability information (described below), automated reasoners can
determine the design conditions under which the archetype should be applied.

7.3.2.4.1 Heuristics for Choosing Design Patterns

The reference architecture captures design patterns and organizes them into a structure, all
based on the experience of engineers in creating these components and systems. We can
augment the archetypes with additional data that describes the tradeoffs between archetypes,
and add reasoners to help narrow the design space engineers have to consider, or make
recommendations. Thus, SysML provides one option for implementing design exploration
automation. Including applicability data describing what contextual properties impact the
decision and capture the range of values for which each option best applies allows such
reasoners to be independent of any specific system under design or component tradeoffs and is
general purpose utility that can operate on any system.

In general, such design exploration reasoners attempt to maximize performance while
minimizing cost. Component specific measures determine performance, such as radio range and
data rate, vehicle speed and acceleration, or engine power, torque, and efficiency. Cost is
typically measured by SWAP (size, weight, and power) and financial cost, as well as some
component specific factors, like heat.

7.3.2.4.2 Traction Example

This section describes using the reference architecture, applicability data, and a reasoner within
the AMIL graph to automatically select the best design pattern for the traction, suspension,
and steering – a tracked or wheeled pattern.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

Figure 7.3-10. Design Archetype Applicability Ranges

Figure 7.3-10 shows a design model with instances of the top level vehicle components. A top
level archetype, SteeringSuspensionTraction, stands in for a design decision yet to be made –
TrackImplementation vs WheelImplementation, which are shown as subtypes in SysML. The
supertype defines a set of critical measures or properties of the vehicle design that affect the
choice of subtype. These are captured in the TractionCriticalMeasures block. The subtypes
define their applicable ranges of values for these measures – i.e. a wheeled vehicle is better for
high fuel efficiency and low weight, while tracked is better for high weight and high off-road
speed. A pseudo-requirement, ApplicabilityRangesTraction is the root node for the
applicability data for each sub-archetype. A RefinementRule dependency connects the pseudo-
requirement to the top level archetype to which it applies. These applicability ranges are
stored in SysML the same way property ranges for requirements are captured, in the ARRoW
dialog box on the instances of the applicability ranges, wheeledRanges and trackedRanges in
the diagram. The name property is the return value, indicating the archetype to which the
ranges apply.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Figure 7.3-11. Ground Vehicle Design Instances

When a supertype design archetype such as SteeringSuspensionTraction is used on an
implementation diagram within a vehicle’s design, it is a placeholder for a decision, either one
of the archetypical subtypes or a new, manual design (see Figure 7.3-11). The user may right-
click the block and select ARRoW>RefineArchetype to trigger the reasoner to make a
selection, and add it to the diagram. The reasoner collects design values or the range of values
for the property as captured by requirements and ranks the design alternatives.

The refinement algorithm pattern is data driven and therefore, plug-and-play. A new
refinement archetype option, say half-track, can easily be added and included in the reasoning
by adding its own half-track applicability criteria.

The refinement reasoner/heuristic algorithm is driven by meta-data. This means that the
algorithm components can be easily applied to refinement algorithms for other design
archetypes. The ranges and the references to the vehicle properties to which they should be
compared are stored in AMIL and evaluated by the reasoner. The same reasoner can be
configured to select engines or other components or patterns expressed in the reference
architecture.

Thus, the reference architecture and the reasoner could become building blocks for a larger
scale, dynamic design space exploration across multiple design patterns captured in the
reference architecture as other requirements/design decisions are met.

7.3.2.4.3 Core Component Relationships

There are three core relationships between components leveraged throughout the reference
architecture.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

The SolidComponent represents a common supertype to all any non-fluid physical components
in the reference architecture. Association A1 in Figure 7.3-12 captures the whole-part
relationship between components. A component may be made up of multiple parts. A
component made up of no parts is an atomic component, like a screw or bolt. Each part has one
assembly as its parent component, except for the top level system being developed, which has
no parent component.

The Connection association represents the peer-to-peer connection between components. Each
connection usually has more information associated with it. A radio is connected to an antenna,
but through a cable and connectors that interface the cable with the radio and antenna.

Figure 7.3-12. SolidComponent Block and Core Relationships

Association A3 describes the refinement relationship between archetypes, abstract components,
and physical components. Archetypes like the traction subsystem can be refined into either
wheeled or tracked implementations. An abstract engine can be refined to a gas, diesel, or
electric engine, and then to a physical engine available in the CML.

7.3.2.5 Abstract Components

Abstract component is a placeholder for a real component from the component model library.
The abstract component can be modeled, simulated, and marked with desired property values.
The property values can then be used to query the CML to find components that match these
desired values, assisting in the component selection process.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

7.3.2.6 Design Refinement

The reference architecture defines the subcomponent types and interaction constraints within
the parent component. Designers can makes instances of these component blocks and link them
together. For example, when refining the PowerTrain component, the designer uses the
reference architecture model and creates instances of the engine, transmission, and differential.
Figure 7.3-13 illustrates this.

Figure 7.3-13. Power Train Design Instances

The reference architecture defines connection patterns for transferring mechanical power.
Users can utilize these in making design choices. Different configurations, such as front wheel,
rear wheel, and four wheel drive can be created.

At this point, the designer has created a model of the power train components and connections.
He can now start assigning values to the block properties, such as engine power, torque, and
mass, that will be used to understand the design trade-offs.

7.3.2.6.1 Default Behavioral Models

The reference architecture includes behavioral models that can be used in early
simulation/verification. For example, simple behavioral models representing the power, torque,
and heat curves vs RPM for an engine are shown in Figure 7.3-14. These models accept the
RPM as input (x) and produce the corresponding output (y), given a lookup table (table). The
table can be configured with the curves to describe the engine. These models can then be
combined with other behavioral models to build a full model of the vehicle for use in
quantitative simulation.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

Figure 7.3-14. Behavioral Models

As the design is refined, behavioral models associated with specific concrete components can
override the default behavioral models. Or, these curve-models can be re-used by supplying the
appropriate table data, making it easier to add new components and models to the library.

The CurveInterpolator is a support class that does simple linear/spline interpolation of a set of
points. Given curves that correlate the engine RPM to the generated heat, horsepower, and
torque (Figure 7.3-15), these can be combined to make a low fidelity model of the engine.

Figure 7.3-15. Example Engine Power and Torque Curves

7.3.2.6.2 Concrete Component Selection

Once the key properties of the abstract component are given design values and have been
analyzed for system level tradeoffs, we need to find a component that matches those
specifications in the CML. The CML is indexed by an OWL ontology schema, searchable with
the ARRoW tools. Using the design and/or requirements values for the component, a CML
query is generated that returns a set of matching CML entries. Selecting a component loads the
remaining properties from the CML entry into the design, making it possible to analyze the
side effects of the selection. For example, we can select an engine out of the CML based on

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

required power and torque, then load up the additional mass and thermodynamic properties
and re-evaluate the design.

7.3.2.7 Context Components

Context components are the components that the system interfaces with in the environment.
Context components are modeled with the same approach as system components. Context
components are represented by blocks, with properties, interfaces, associations, and behaviors.
Context components are also reusable across multiple projects and reference architectures for
different systems.

7.3.2.8 Viewpoints

A Viewpoint is a specification of the conventions and rules for constructing and using a view
for the purpose of addressing a set of stakeholder concerns. They specify the elements expected
to be represented in the view.

Viewpoints in the reference architecture tend to line up with domain specific engineering areas,
such as electrical and radio communication. It is these viewpoints that connect the system
architecture in SysML with the domain specific tools that engineers use. This connection,
through AMIL, allows the design to be constantly evaluated for project specific tradeoffs to
ensure objectives are being met.

Viewpoints are also reusable – their isolation from the details of the system under development
and the focus on one subject matter make them reusable in other designs and reference
architecture. The electrical viewpoint, addressing power consumption, can be used with ground
vehicle or satellite reference architectures, without any changes.

Figure 7.3-16 shows the set of viewpoints related to the ground vehicle reference architecture.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

Figure 7.3-16. Ground Vehicle Viewpoints

7.3.2.9 Parametrics

SysML formalizes the mathematical relationship between block properties using the parametric
view. For example, the relationship of vehicle mass, engine power, track sprocket size, and
maximum sustained vehicle speed can be captured in a parametric diagram, including
equations. The toolset of Magic Draw, Paramagic, and Open Modelica can then be used to
solve these equations in any direction – computing either target speed or required engine
power, depending upon what values are filled in.

Parametrics is used within the reference architecture to maintain and adjust these mathematical
relationships over the span of designs covered by the design archetype. For example, design
choices between 2 wheel vs. four wheel drive, electrical vs. gas powered engines, and even two
engine configurations should be analyzable using parametrics without having to rewrite large
number of equations.

7.3.2.10 Relationship with CML

The reference architecture is closely tied to the component model library (CML). Components
defined in the reference architecture are converted into an OWL schema and placed in the
CML. Components of that type can then be added to the CML. In addition, the reference
architecture components are also CML components and need to be published into and pulled
from the CML.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

7.3.2.11 Behavioral Models

A component may have multiple behavioral models, showing different aspects of its behavior
and at different levels of fidelity. Behavioral models can be represented in SysML as blocks with
input and output ports. The actual implementation of the model may be in another language or
tool, but the interfaces can be captured in SysML.

Behavioral models of components may be composed to create a model of the larger system.
These models can then be interfaced with the context models and connected to a test driver to
execute quantitative tests on the system. Having multiple fine grained component models
running in parallel under the same test allows the detection of emergent behaviors.

Connections between the output ports to input ports can support building a co-simulation
model. Figure 7.3-17 shows behavioral models of an engine connected together.

Figure 7.3-17. Combining Behavioral Models into a Co-Simulation

7.3.2.12 SysML Usage

SysML is the Systems Engineering Modeling Language, an Object Management Group
standard that extends UML notation for software engineering to cover systems engineering
concepts. This section will describe how SysML is used within the reference architecture.

The following section describes the parts of SysML that were used in the reference architecture
and in the design of a vehicle.

7.3.2.12.1.1 Block Definition Diagrams

Block definition diagrams (BDDs) capture the components the owning archetype component,
their properties and relationships. A BDD contains all the blocks that participate in the design
of the containing component. Blocks instances defined here are used in the design of a
component.

7.3.2.12.1.2 Internal Block Diagrams

Internal block diagrams are used in two ways. First, they define the operational interfaces of a
component. These are the external connections, including mounting, electrical, gears, gas or
liquid flows, controls, messages, etc. The ports may also include side effect interfaces, like noise,
heat, and vibration.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

Second, IBDs document the interface to behavioral models. Each component in the CML may
have multiple behavioral models. The models may be at different fidelity levels or consider
different viewpoints. For example, one model of an engine describes the power and torque
generated at different RPMs, while another thermal model captures the heat generated by the
engine, heat carried off by coolant, and heat transmitted to the surrounding components and
the air.

The ports on the IBDs serve to define the interfaces of these models. The designer can then
compose system level tests by combining these blocks by connecting input and output ports.

7.3.2.12.1.3 Sequence Diagrams

Sequence diagrams capture the interactions of components over time. Within the reference
architecture, they are used to document the contract between components and to define test
cases.

7.3.2.12.1.4 Requirements Diagrams

Requirements diagrams capture, graphically, the relationships among requirements. For
ARRoW, we used requirements diagrams to capture requirement archetype sets – sets of
related requirements that must often be considered when describing a component’s features.
For example, a ground vehicle’s mobility requirements address the acceleration, maximum
sustainable speed, turning radius, and obstacle negotiation under various conditions.

Requirements are also shown on some BDDs, to show the mapping of the requirements onto
the blocks which are affected by them.

For the ARRoW reference architecture, we extend the SysML requirements with additional
data to allow it to be shared via AMIL.

7.3.2.12.1.5 Parametric Diagrams

SysML formalizes the mathematical relationship between block properties using the parametric
view. Within the reference architecture, parametric diagrams express these relationships and
allow changes in property values to be propagated, showing their effect on other areas.

7.3.2.12.1.6 Implementation Diagrams

Implementation diagrams are used to capture the design of the system, in this project, a
military ground vehicle. Using the blocks defined in the block definition diagrams of the
reference architecture, the blocks in the implementation diagram represent instance of the
elements of the reference architecture. For example, while the BDD defines component types
such as Engine and its properties, the implementation diagram describes a specific engine, with
values for power, mass, and volume.

7.3.2.12.1.7 Use Case Diagrams

Use case diagrams capture the scenarios that the system or component is involved in. Use cases
describe a story where the system/component interacts with its environment. The story
usually captures the preconditions, the trigger that starts the interaction, a summary of the
interaction, and the post-conditions. Pre- and post- conditions describe the state of the system
and environment before and after the use case.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

Use case diagrams then capture the scenarios the system is involved in. Usually, these start
with a high level, concept of operations. A ground vehicle ConOps use case might to transport
a squad through cross country terrain, at night, without refueling, with a limited time. This use
case then derives a series of requirements, such as sustained cross country speed, range, and
passenger transportation. The use case can also evolve into a system level test case,
incorporating all the context components with the system design.

7.3.2.12.1.8 Blocks and Associations

Blocks in the reference architecture represent types of physical components, such as engines,
ramps, and wheels. Sometimes the blocks represent software. Within the viewpoints, a block
may also represent non-physical concepts like a waveform or channel used in radio
communications.

Associations in the reference architecture usually indicate a physical connection. The physical
connection often has its own set of patterns to select from. For example, the throttle control,
like a gas pedal, may be connected to the engine in a few different ways, by physical wire or by
sensor and network communications to the engine computer.

Associations may have additional semantics that are in the description of the model element.

7.3.2.12.1.9 Combining Viewpoints

Viewpoints are domain specific models within the reference architecture that are from a certain
point of view. Viewpoints are usually aligned with the concerns from domain specific
engineering. A physical component will often participate in multiple views.

For example, a radio draws power, so it has an electrical view. The radio has physical
characteristics, size and mass, so it has a structural view. The radio also generates heat, so it
has a thermodynamic view. Figure 7.3-18 shows a block diagram of these interacting
viewpoints.

Figure 7.3-18. Block Diagram Integrating Multiple Viewpoints

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

Using viewpoints, it is easy to examine the vehicle from the electrical perspective to determine
battery capacity required. All electrical components, their connections and characteristics are
part of the reference architecture and can be extracted from the model to provide power
budgeting for different scenarios. Knowing what equipment is needed in each scenario, with
associated power requirements, then drives the battery requirements, or could result in a
requirement that the engine be run (if a gas engine) to generate electricity to recharge the
batteries and run equipment.

Similarly, the thermodynamic view can address the radio and other electronics within an
enclosed area and determine the cooling needed to run them within optimal range.

7.3.2.12.1.10 Interfaces

Interfaces in the reference architecture are captured in the internal block diagram, using ports
for the interfaces. Connectors (lines) show the connections between the components.

7.3.2.12.1.11 Physical Interfaces

The physical interfaces of a block are captured in an internal block diagram, with each port
representing a possible connection to other components, including context components. Figure
7.3-19 shows an example of such physical interfaces.

Figure 7.3-19. Physical Interfaces of an Engine

Component interfaces represent contracts that the component and its context must adhere to.
There are some interfaces that may be added by components that refine a reference architecture
component. But an interface that is ignored is a possible issue with the design and could be a
cause of emergent behaviors. For example, if the model fails to address the heat interface of an
engine, it ignores the fact that an engine generates heat that radiates to the components around
it. This heat may have unintended consequences.

7.3.2.12.1.12 Model Interfaces

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

A component’s behavioral models also use the internal block diagrams to document its
interfaces. The model may be implemented in Matlab, Modelica, or C++ code, but the
interfaces are captured in SysML to enable composition of these models.

7.3.2.12.1.13 Properties

Properties are the characteristics that describe a component. All physical components have
associated properties such as a bounding box that represents spatial dimensions, mass, and
material composition. These are all shown in the model as properties. The reference
architecture captures all the characteristics that can describe the component.

Ontological technology underlies the reference architecture. Unlike other database
technologies that require every property to be filled out for every entry, and ontology regards
properties as optional. While it is true that all engines have a mass, that mass is not always
known, and the ontology allows the property to be omitted. Of course, this limits the usability
of the entry, but it is still permitted.

7.3.2.12.1.14 Constraints

Constraints are used with the parametric diagrams to capture the mathematical equations that
constrain the values of properties within a set of block instances. Figure 7.3-20 shows an
example of such a constraint.

Figure 7.3-20. Engine Torque Constraint Equation

The constraint is defined once, as a block with a <<constraint>> stereotype. The block defines
the parameters and mathematical equation. The constraint handles only one equation per block,
and can have only one output value.

Figure 7.3-21. Usage of Engine Torque Constraint Equation

The constraint is used in parametric diagrams which use the ports and connectors style of
diagram like the internal block diagrams. Figure 7.3-21 shows an example of this.

7.3.2.12.1.15 Connector Patterns

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

Many alternatives exist for connecting components together. For example, a driveshaft, belt, or
chain can transmit mechanical power from an engine to wheels on a motorcycle. Each option
has applicability and constraints/limitations, and the design context must be evaluated to select
the best choice. Cost, maintainability, complexity, reliability, and capability drive the pattern
selection. As with any component, connector patterns can be expressed abstractly in SysML,
and yet have corresponding models in CAD or other viewpoints.

Connector patterns also have applicability measures, just like components. A belt is not going
to be strong enough to move a 20 ton vehicle, while a sufficiently strong chain would have a
larger space claim than a driveshaft. However, for smaller vehicles, like a bicycle or motorcycle,
the tradeoffs are different. A driveshaft is less efficient than a belt or chain, but easier to
maintain.

The connector pattern is one that occurs throughout the reference architecture. Whenever two
high level components are connected, there will be a connector pattern and set of options
between them. The connector pattern also incorporates a set of components that are used to
connect the high level components together. The pattern then operates recursively, until you
get down to the nuts-and-bolts level.

For example, an antenna is connected to the hull of a vehicle. But the antenna does not attach
directly. A mounting bracket connects the antenna to the hull. The bracket is then connected to
the hull with nuts and bolts, while it is connected to the antenna with clamp and screws.

7.3.2.12.2 Language of Design

7.3.2.12.2.1 Block Instance Diagrams

Called Implementation Diagrams in Magic Draw, these capture the design of a component
using instances of reference architecture blocks defined in the component archetype. Links
between instances correspond to the associations in the reference architecture. The properties
of instances can be assigned values. These values represent design choices, as the requirements
values are captured using a custom dialog. Figure 7.3-22 shows an example of this.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Figure 7.3-22. Power Train Design Instances

7.3.2.12.2.2 Parametric Diagrams

Parametric diagrams are used to define the mathematical relationships among the properties of
the design block instances. These relationships are built up by chaining constraint equation
blocks together and connecting them to input and output properties.

Once these relationships are defined, values can be assigned to the properties. When enough
values have been assigned, tools can solve the set of equations for the unassigned properties.
Used this way, the parametric diagrams can be useful for design space exploration. With some
additional work, two and three dimensional graphs can be made to better visualize the tradeoffs
in the design space. Figure 7.3-23 shows a parametric diagram.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

Figure 7.3-23. Engine Torque Parametric Diagram

7.3.2.12.2.3 Block Instances

Instances are used to capture a specific component and properties within the design. Thus,
there is a type of combat vehicle called a Bradley, there are many instances of a Bradley. The
Bradley with serial number 12345 specifies a particular instance of the vehicle. So the SysML
block represents the type of component, while an instance represents a particular one.

7.3.2.12.2.4 Property Values

Properties of block instances can have values assigned to them. Each phase of development
places different values and views on the properties. In order for the components to support the
requirements, design, implementation and test phases of development, the language supports
multiple values for properties, each with a different viewpoint.

For example, requirements define a desired range of values for a property, possibly under
certain conditions. For example, a vehicle may have a max speed of 60 mph on flat pavement,
and a max speed of 23 mph on cross country terrain. The ARRoW tools support setting
multiple requirements values on a property, one value range per requirement.

Design values can also be assigned to a property. These are single values rather than the
ranges captured for requirements. Design values are used with parametric models to determine
the effects these design decisions have on other properties and components. Multiple design
values are often applied to properties to evaluate different alternatives. The current tools only
support one design value at a time.

In addition, properties will have an ―as built‖ value that describes the final measurable value of
the property for the built vehicle. This may differ from the design and requirement values.
Since the scope of the META program covered only through design time, the ―as built‖ value is
not currently supported.

The User’s Manual describes how property values are captured in SysML and mapped to the
AMIL graph.

7.3.2.12.3 ARRoW SysML Extensions (stereotypes)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

This section describes the extensions made to the SysML language to support ARRoW.
UML/SysML provides stereotypes as part of an extension mechanism called a profile.
Stereotypes change the semantics of the UML/SysML model element to which they are
applied, and can add tagged data in the form of name-value pairs to the model elements.

7.3.2.12.3.1 RequirementValues

The RequirementValues stereotype is applied to both blocks and block instances. It is used to
capture the impact that requirements have on block properties. Multiple requirements may
apply to each property, placing different, sometimes conflicting, ranges of values on the
property.

The stereotype has a single property, attributeValues. This stereotype tag holds a string
holding the table of attribute value ranges and the requirements they derive from, in XML
format. A custom dialog was added to the SysML tool to support the collection of the data
stored in that string. See the RequirementValues section of the User’s Manual for more
information. Figure 7.3-24 shows a RequirementValues Stereotype.

Figure 7.3-24. Requirement Values Stereotype

7.3.2.12.3.2 ARRoWRequirement

The ARRoWRequirement stereotype captures additional information associated with a
requirement.

PublishedName and PublishedValue tags are published to the AMIL graph. The
PublishedName becomes the AMIL node name, while the value is an early version of the ranges
of values now captured in the RequirementValues stereotype. Figure 7.3-25 shows an ARRoW
requirement.

Figure 7.3-25. ARRoWRequirement Stereotype

The other attributes capture details about the requirement or requirement archetype that are
important to other aspects of systems engineering. AllocationRationale helps capture the
provenance of what a requirement exists and how it connects with design elements and other
requirements. Maturity indicates if this requirement is something an organization is familiar
with or is new and therefore implies higher risk that needs to be managed. Safety and Mission-

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

Critical tags assert that there is additional engineering work around the requirement to ensure
reliability and safety, and indicate that these requirements are likely to significantly affect the
PCC of the design.

7.3.2.12.4 Integration With AMIL

AMIL is the means by which modeling tools share information within ARRoW. Model data
can either be published into the AMIL graph (pushed) or AMIL can extract (pull) the data from
the tool when requested by an AMIL client. Whether the data is pushed or pulled is invisible to
the client requesting the data (except that it might take a bit longer in the pull case).

7.3.2.12.4.1 Write

The SysML plug-in to Magic Draw uses the push method to share its data into AMIL.

Blocks, instances, properties, and requirements are each mapped to their own AMIL node. The
arc from block to property represents the ownership of the property by a block. Attributes of
the property, such as type, description etc., are not shown.

The arcs from requirements to property represent the constraints or desired values of the
property, and the range expression is mapped to attributes of the arc. Here, the lVal and uVal
ranges are included on the arcs.

Design values are assigned to a property and mapped to the AMIL graph using a designValue
property on the SysML property’s AMIL node. Figure 7.3-26 shows how this would be
represented in AMIL.

Figure 7.3-26. AMIL Representation of Requirement Ranges of Values

7.3.2.12.4.2 Read

The ARRoW SysML tools support reading back designProperty values back from the AMIL
graph, allowing tools to exchange design information. Since SysML is the authoritative source
for requirements in our application of ARRoW, requirement values are not read from AMIL.

METAF023

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

Blocks are not read from the AMIL graph, but this is a possible future enhancement. This
would allow tools such as ECTo to add components to the design, and communicate those
blocks back to the SysML viewpoint. The reverse flow could also be supported, allowing
components to be added in SysML and added to ECTo for 3D visualization and allocation.

7.3.3 AMIL

The top level goal of AMIL is to automate in a rigorous fashion the joint use of tools, solvers,
and reasoners that are specialized for different parts of the design challenge and have very
different, possibly incompatible, syntax and semantics. To that end, AMIL is less concerned
with individual models and more about how the models are used by the tools, solvers, and other
specialized reasoners to accomplish specific tasks in the design and analysis phases. However,
before one can understand how these models are used one needs to understand what these
models are. For this reason, AMIL must incorporate some meta-modeling to characterize the
models and must also incorporate relationships between the models that characterize how the
models are used.

7.3.3.1 Uses of AMIL Analysis and Verification

The point of analysis is to verify that the design can achieve the intended effect, but the effect is
to be realized in some environment. The relation between the designed component and its
environment must be captured in the analysis to verify that the component has the desired
behavior. In Contract Based Design (CBD), this is checking that the contract of a component is
compatible with its environment [AB11]. Analysis may also be used to verify vertical relations
such as refinement, where in CBD the contracts are used to check that the implementations of a
contract also satisfy that of the refined model. One role of AMIL in analysis is to capture these
relationships.

7.3.3.2 Design Support

Design of a complex vehicle will proceed in stages, starting with a high level, abstract, concept
that get successively refined into a completely defined vehicle.

This process is captured in the system design artifacts, in which functions get implemented
with systems and subsystems that themselves get implemented by interconnecting individual
components. The component model library facilitates this process by establishing a hierarchy of
abstraction between components and functions. As a system is refined, not only does the
analysis verify the refinement, but corresponding changes in the setup of the analysis may be
necessary. AMIL captures this analytical setup through analysis archetypes and provides
direction on which links in the setup may require updating.

7.3.3.3 Chaining of Tools

Consider a mechanical linkage, such as an actuator arm that operates a gate. The system view,
together with a 3d design can show all the individual components (bars, fasteners articulations,
ball bearings) and how they are interconnected. Given dynamical models of each of those
components it is possible to derive a dynamical model of the interconnection by translating the
system interconnections into dynamical ones. However the dynamical models of each of the
components will themselves be composite. For example, the bending modes of the links may
need to be computed individually or jointly, by integrating the corresponding partial
differential equations in an appropriate tool, before the dynamical model can be executed. This

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

relationship between the models allows computation of bending modes, and the model that
computes dynamic behavior is not a system relationship, nor can it be easily derived from them.
However, bending modes are reusable, and can be formalized.

For example, when computing the dynamic behavior of the vehicle gate, we need to update the
dynamical model with the mass properties of the gate. Those can be estimated from the shape
of the door, and the type of armor used, and the type of armor used can be estimated from
protection requirements.

Figure 7.3-27. Relationships Among Models and Design Elements

The existence of such a chaining of tools that can be used to inform the gate dynamics model
cannot be directly inferred from the system diagram. If sufficient declarative knowledge about
all the entities involved is available, it is conceivable that we could deduce that the gate
dynamics need to know the mass properties, that those can be approximated from the gate
dimensions and the armor model, and that the armor model depends on the protection
requirements. Finding the right string of tools can be complicated, even with a formal
definition of each of the models involved.

An alternative approach is to describe the pattern of links between the analysis components in a
formal language. AMIL can be used to define the links between the components and indicate
how the different analysis tools can be interconnected to answer specific analysis questions. In
Figure 7.3-29 the red links are AMIL links and the green links are system links. In order to
carry out the analysis (in this case simulate the system behavior) both types of links are needed.

Consider the example in Figure 7.3-27. The first time it is setup, design engineers will select
the models necessary to build the analysis construct. Engineers will also create the
interconnection between the links. The most common type of link would indicate data transfer:
a value generated by one model should parameterize another; or a signal generated in one
model is fed to a port in another. However they could indicate simply that one model informs
the other.

7.3.3.4 Analysis Reuse

AMIL is designed to facilitate reuse, not only of analysis components like the ones in the
example, but most importantly of analysis constructs.

Once the analysis structure has been built and used for one design, it will get persisted in the
library of designs. The network of interconnections can then be used as an analysis template. In
order to build the analysis graph for another similar problem, we start with the auto-generated
part of the diagram (the green boxes). We then analyze which parts of the graph are still

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

undefined (in this case we find out it is the mass properties). Next we search the library of
analysis graphs for similar cases in which the corresponding dynamics block had an external
definition of mass properties. One we retrieve feasible options; we can follow the AMIL links to
the other elements necessary for the AMIL graph. We expect that in general we will find many
possible solutions. Selecting the most appropriate one can be done either manually or
automatically.

7.3.3.5 Semantics of AMIL

AMIL records links and dependencies between various model types, to assist the creation of
analysis packages. The semantics of AMIL links are defined with respect to the particular
analysis product or process being carried out. By letting the link semantics be polymorphic, we
create a simple mechanism for the language to be naturally extended as new analysis
capabilities are introduced.

The semantics of an AMIL link are defined by the set of inferences that can be made based on
the link, while executing different analysis or design processes.

From the Link Semantics we are able to make inferences about the design during the
development process. These inferences are based on the existence, type, and data content of the
links between nodes. Some of the link types include informs, partOf, refines, isA, instanceOf, and
uses.

 One useful inference is to conclude the set of all models on which a test is dependent. Defining
certain link types to be transitive allows one to derive the transitive closure of AMIL nodes
from a node that represents the test. Similarly, one can trace back from a node representing an
analysis result to the nodes representing the requirements that are related to this result.

Substitution of models is a common activity in the development process. Being able to infer
new or updated relations between a model and its environment facilitates an automation of the
overall process. In Figure 7.3-28, a new Signal link is inferred between the Resistor Power and
the Power Input of the Dynamic FDA Analysis model. The inference rule used here is the
following:

Action(Substitute) ^ RefinedBy (M1, M2) ^ Temporal(M1,
SteadyState) ^ Temporal(M2, Dynamic) ^ Interface(M1, I1) ^

Interface(M2, I1) ^ Parameter(R, M1.P) Signal(R, M2.P)

The predicate Parameter(x, y) represents the existence of an AMIL link between AMIL nodes
x and y and the type of the link is Parameter. Similarly, the RefinedBy(x, y) predicate indicates
the existence of an AMIL link between AMIL nodes x and y and the type of the link is
RefinedBy. The RefinedBy link definition constrains the types of the nodes linked to be nodes
representing models.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

Figure 7.3-28. Example of Inferring a Link.

7.3.3.6 AMIL Syntax

The underlying structure of AMIL is based on an attributed graph. The syntax of AMIL is
designed to edit and manipulate this structure. The AMIL syntax uses a JSON notation for its
simplicity and readily available parsers.

An AMIL Statement is executed by the AMIL interpreter, which responds with a return value
that is also a JSON formatted string. The following is the grammar for an AMIL Statement
and its parts.

AMILStatement =>
[Action, SequenceOfNodeOrEdge]

Action =>
{
 action : actionName,
 preConditions : {predicateList},
 postConditions : {predicateList}
}

actionName =>
"createNodes" | "createLinks" | "getNodesRaw" | "getNodes"
| "getLinks" | "deleteNodes" | "deleteLinks" |
"updateNodes" | "clearDatabase"

PredicateList => PredicateCall | PredicateCall,
PredicateList

PradicateCall => predicateName : [parameterList]

ParameterList=> String | String, ParameterList

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

SequenceOfNodeOrEdge=>
 NodeOrEdge,
 NodeOrEdge, SequenceOfNodeOrEdge

NodeOrEdge=>
{
 type : nodeOrEdgeType,
 uniqueId : {nameValueList}
}

NameValueList=> name : value | name : value, NameValueList

NodeOrEdgeType=> node | edge

7.3.4 Qualitative Modeling Language

Our Qualitative Modeling Language, QML, has been designed to describe the topology and
behavior of composite models with connected sets of components. Simulation of the behavior of
such models is useful in providing guidance to users in early stages of the design process.

Four high-level design tasks have been identified: Description, Synthesis, Simulation, and
Analysis. QML supports all four. This section describes the language, how it helps in design,
and some results we have obtained in using this modeling framework. Later sections exemplify
the features described.

Description: Atomic components are the basis for building a systems model. QML has a
language to describe the interface, and the qualitative behavior of the component. Component
behavior is defined through qualitative algebraic and differential equations relating the
qualitative variables.

Synthesis: QML has language constructs that describe how to compose these components into
larger models using named nodes as connection points and specification of the components
connected to those nodes. It also describes initial conditions for the components and initial
modes of behavior.

Simulation: The test environment of a composite system is defined in the same way as a
composite model, with initial conditions that can be imported from a context model. It also
specifies how the environment behavior can evolve over time through transitions of modes that
represent system state. See the description of the IFV Ramp below.

Analysis: Simulation creates a representation (called an envisionment) of all significantly
different qualitative states that the system can reach in the test environment. The states in the
envisionment can be evaluated with respect to whether they satisfy qualitative versions of
system requirements. Paths with failed requirements require attention in more detailed design.

QML has a relatively small library of atomic component models. To grow this library, and to
make it align with a current quantitative modeling language, we have built a translator the
imports a Modelica library, and converts it to QML. Not all of Modelica constructs can (or
should) be mapped into QML. For example, algorithms and functions that define behaviors in
terms of programs rather than equations are not included.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

7.3.4.1 Qualitative Simulation in Early Design

Qualitative simulation may be used in a variety of ways by a designer or automated design tool.
The most common would be to simulate a system through a set of use cases with respect to
particular requirements. For each use case, the simulation can be used to provide a qualitative
answer for each requirement in each use case. A qualitative evaluation of a requirement can be
yes (all choices for numeric parameters will satisfy the requirement), no (no choice of
parameters values will satisfy the requirement), and maybe (some set of parameters will satisfy
the requirement). Using qualitative simulation in this manner can focus quantitative reasoning
on the maybe cases and throw out designs that cannot possible work.

7.3.4.2 Qualitative Representations

Qualitative simulation, or envisionment, is the process of projecting forward from an initial
situation, and a model, all possible states that may occur. Central to qualitative simulation are
qualitative representations of continuous quantities. Our approach to representing quantities
begins with the sign algebra. Each quantity and its derivative is represented as one of four
qualitative values {-, 0, +, ?}, where ? represents an ambiguous value. For example, we could
say that the voltage across a resistor is + and its derivative is -, to mean that the voltage is
positive and decreasing. Qualitative simulation would infer in this situation that there is a
potential transition from positive to zero voltage. Frequently, additional distinctions must be
made for a given quantity. To account for this knowledge, we use landmarks, i.e., constant
points of comparison, to introduce intervals for quantity values. For example, the substance is
between its freezing point and its boiling point. A qualitative state is an assignment of values
(intervals) to quantities and their derivatives.

To represent equations, we use qualitative constraints as follows. We represent the
mathematical relationship for an ideal resistor V=IR as a constraint on the qualitative values of
V and I. In any situation, the sign of the voltage across the resistor must equal the sign of the
current through the resistor. We also include algebraic constraints for qualitative addition and
multiplication. Finally, we have constraints that enforce continuity from calculus. That is, a
value cannot change from – to + without being 0, unless there is a discrete change in the
system.

Suppose the derivative remains positive (+). Then the value will equal 0 for an instant. In
general, the system's behavior corresponds to an alternating sequence of intervals and instants;
a situation is the set of qualitative values that state variables take on for each interval/instant.
During an interval each variable remains within a single qualitative region. The end of one
interval and the beginning of the next is marked by one or more variables transitioning

between qualitative regions [BCW84]. Moving from an interval to an instant, a variable's new
value is predicted by old value plus its derivative; the same is true when moving from the
instant into a subsequent interval. Discrete changes can happen in the system if a component
has a mode change. A mode can reset values and change the equations by which a quantity
evolves.

7.3.4.3 Specifying Qualitative Models

We develop a qualitative modeling language (QML) to specify qualitative models. We use
models of a resistor and a diode shown in Figure 7.3-29 to illustrate the various aspects of
QML.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

(defprototype ideal-resistor

 :external-terminals ((t1 :electrical) (t2 :electrical))

 :fixed-parameters ((R))

 :variables ((v (voltage t1 t2))

 (i (current t1)))

 :equations ((q= v i)

 (q= (deriv v 1 t) (deriv i 1 t))

 (= v (* R i)))

Figure 7.3-29. Definition of an Ideal Resistor including Both Qualitative and
Quantitative Equations

Atomic components are required to have external-terminals, variables, and equations. External
terminals define how the component can be connected to others, variables define quantities of
importance to the device, and equations relate these quantities to each other. The operator q=
defines a qualitative equality constraint. In this case, the voltage and current must have the
same sign. Fixed parameters and = are used to define quantitative equations.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

(defprototype ideal-diode

 :external-terminals (t1 t2)

 :variables

 ((v (voltage t1 t2) :landmarks (Q OnVoltage))

 (i (current t1)))

 :mode (off :entry ((q= i Q0))

 :initial ()

 :equations ((q= i Q0)

 (q= (deriv i 1) Q0)))

 :mode (on :entry ((q= v OnVoltage0))

 :initial ()

 :equations ((q= v OnVoltage0)

 (q= (deriv v 1) Q0))))

Figure 7.3-30. Defining an ideal diode requires landmarks to divide the quantity space
into additional intervals, and modes to model discrete transitions.

Figure 7.3-30 contains an ideal diode that illustrates how discrete transitions and intervals are
defined. A diode has two landmarks for voltage, Q, which represents the distinction between +
and – voltage as usual, and OnVoltage, which denotes the voltage at which the diode turns on.
The instant at which the diode turns on represents a discrete, or discontinuous, change and is
modeled using modes. Each mode has an entry condition, which is a conjunction of qualitative
equations that, when satisfied, cause the component to transition into the mode. On entering a
mode, the initial conditions set values of local variables. As long as the component is in the
mode, the constraints defined by the mode equations must hold. For example, the entry
condition for the on mode is satisfied when the voltage is equal to the OnVoltage landmark. If one
wished to express that the voltage was above the OnVoltage landmark, the equation would be
(q= v OnVoltage+). This initial and equation statements for this mode ensure that this value for
voltage is maintained as long as the diode is in the on mode.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 37 Refer to cover page for Distribution Statement.

(defprototype diode-test

 :internal-nodes ((input :electrical)

 (n1 :electrical)

 (n2 :electrical)

 (ground :electrical))

 :components ((D (ideal-diode n2 ground))

 (C (ideal-capacitor n1 ground))

 (R1 (ideal-resistor input n1))

 (R2 (ideal-resistor n1 n2))

 (B (ideal-battery input ground)))

Figure 7.3-31. Composition of components in QML defining a system involving a diode
(shown graphically on the right).

Figure 7.3-31 illustrates how these components can be synthesized into a design. The topology
of the system is defined by creating a set of nodes to which the components are connected.
Nodes have a domain type, e.g., :rotational, :linear, :thermal, :electrical. The
nodes from each domain are used to calculate constraints resulting from Kirchhoff’s current and
voltage laws. The list of components names and instantiates models with particular
connections to nodes. In this example, the only domain is electrical. The first component in the
list is the diode, which is connected to node n2 and n3. The resistor R2 is also connected to
n2, and the capacitor and battery are also connected to n3. In the next section, we move away
from circuits to show how a model can include the environment’s behavior, and illustrate how
an envisionment of the model can be used in analysis.

7.3.4.4 Example: Analysis of IFV Door Opening and Closing

Figure 7.3-32 contains the definition of the system for an IFV ramp door opening and closing
with a PID controller. The first three components model the output of proportional and
derivative control as well as their sum (Note: Integral control is ignored as it is not interesting
qualitatively). Given a control output, a piston produces a torque on the door. The last two
components are sensors which produce signals concerning the door’s position and velocity
relative to particular landmarks. Next, the initial conditions of the system are specified. The
operators == and qIn are used to specify the mode of a component and the interval of a
quantity. In this case, the initial mode of the system is opening, and the initial mode of the
velocity sensor is Q, that is, the value of the velocity sensor is determined by the door’s velocity
measured in respect to the landmark Q or 0 rad/s. The initial position of the door is between
the Closed and Open landmarks, and the initial velocity of the piston is in the + direction.
The system has two operating modes, which are used to initialize the mode of the position
sensor used by the p controller as well as the controller output. In the next section, we describe
what the resulting envisionment looks like and how it can be used to guide design.

(defprototype sept-demo

 :internal-nodes ((n1 :variable)(n2 :variable)(n3 :variable)

 (pos-sensor-node :variable) (vel-sensor-node :variable)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 38 Refer to cover page for Distribution Statement.

 (r1 :rotational)(r2 :rotational))

 :components ((p-control (mod-control-pd-6 pos-sensor-node n1))

 (d-control (mod-control-pd-6 vel-sensor-node n2))

 (control (mod-adder n1 n2 n3))

 (piston (controlled-piston-3 n3 r1 r2))

 (door (IFV-door-slab-3 r1 r2))

 (pos-sensor (sensor pos-sensor-node door position (Closed Open)))

 (vel-sensor (sensor vel-sensor-node door velocity (Q))))

 :initial ((== mode opening)

 (== (mode piston) normal)

 (== (mode vel-sensor) Q)

 (qIn (>> theta piston) (Q PistonParallel))

 (qIn (>> position door) (Closed Open))

 (q= (>> w piston) Q+))

 :mode (opening :entry ()

 :initial ((q= (>> out control) Q+)

 (q= (>> out p-control) Q+)

 (== (mode pos-sensor) Open))

 :equations ())

 :mode (closing :entry ((q= (>> velocity door) Q0)

 (q= (>> position door) Open0))

 :initial ((== (mode pos-sensor) Closed)

 (q= (>> out control) Q-)

 (q= (>> out p-control) Q-))

 :equations ()))

Figure 7.3-32. Composition of components defining a system in which a door is given a
command to open and close.

The use case for this simulation states that the door should open and close without
overshooting and slamming into the ground on open or the vehicle on close. The qualitative
simulation is performed by specifying success and failure conditions representing the
requirements. A failure situation is one in which the following logical expression holds (q=

(>> position door) Closed-) ∨ (q= (>> position door) Open+)), i.e.,
the position of the door is either before the closed landmark or after the open landmark. A
situation is determined to be a success if the system is in the closing mode and the door is

stationary at the closed position, (== mode closing) ∧ (q= (>> position door)
Closed0) ∧ (q= (>> velocity door) Q0). We are in the process of extending the
specification to include other expressions, like those used in linear temporal logic.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 39 Refer to cover page for Distribution Statement.

Figure 7.3-33. (left) Directed graph describing the envisionment of the door system
included for concreteness. (right) A simplified version of the envisionment graph to
describe the example.

The envisionment, shown in Figure 7.3-33, is created by taking the door system and initial
situation specified above, and computing each possible successor situation. The envisionment
on the left represents all possible trajectories through the qualitative state space. To illustrate
the important features of this envisionment, we use the simplified graph with labeled nodes on
the right. Starting in the initial situation, 1, the system will transition to one of two intervals, 2
and 3, as the door progresses toward open. The next set of situations, 4, 5, 6, and FAIL,
represents the state at which the door reaches the open position. FAIL is colored as red because
the position of the door is past the open landmark.

Each of situations 4, 5, and 6 represents an interval after the mode has been changed from
opening to closing. Situations 4 and 5 transition into situations 7 and 8, and finally, the
simulation ends with two more terminal situations, SUCCESS and FAIL. The success situation
satisfies the condition that the door is in the closed position and stationary; and the fail
situation is where the door has overshot the closed landmark.

Analysis of this envisionment provides the following feedback to the designer. First, the design
may reach a successful situation. Second, we can assess how difficult it will be verify a design
quantitatively. In this case, each of the requirements may be violated. Therefore, quantitative
analysis will be needed for each requirement. Alternatively, if one is looking for a quantitative
estimate for how difficult it will be to verify the design, one could use the ratio of successful
states to terminal states, in this case 1/3.

There is a terminal situation, 6, that does not satisfy the success or failure conditions of the
system. This dead-end state implies the need for additional requirements to guide the designer.
In this case, this situation results from a kinematic singularity in the piston door connection.
That is, when the acting angle of the piston is parallel to the angle of the door, the piston
produces no torque. While this is part of the piston component model, it is only terminal if the
door is stationary at this point. To identify this risk required simulating the system through
the use case where the door first opened and then closed. With only individual use cases, one
for opening the door, and one for closing it, the envisionment would not show this dead-end
state.

7.3.4.5 Envisionment and PCC Computation

In view of how central PCC is to the META program, we did some testing with OSU's
Uncertainty Propagation code, to see how a numeric PCC might mesh with a Qualitative
Reasoning approach. The two were not well matched.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 40 Refer to cover page for Distribution Statement.

QR's strength is to rapidly deal with unknowns and approximations early in design space
exploration, before part selection and sizing. To run specific stochastic inputs through a
compiled Modelica model and do Taylor series uncertainty propagation on the results, the
designer must nail down the parts and their tolerances. A great many repeated runs of the
model are necessary to compute a PCC. The calculation in Matlab was approximately twenty
minutes.

The requirement we evaluated was ability to control ramp operation within the specified ten-
second interval, using a progressively lighter and less powerful actuator. In the envisionment
graph there is a transition from the "opening" interval to successfully open, and another
transition to a failure state in which the ramp is not at a stationary open position within ten
seconds. We tried to see if PCC calculations would help a designer to better understand the
probabilities of taking those transitions.

Steady state torque needed by the ramp_A03 model to hold the ramp open was 7342 N m,
which was close to the maximum torque needed during soldier egress. Sizing the motor for a
nominal 7406 N m leads to output being saturated for 750ms of the opening sequence, so the
design is right on the edge and has a PCC slightly above zero. A small increase in nominal
motor size to 7440 Nm reduces the saturation interval to one sixth of a second. If actual max
torque forms a beta distribution in the range 7350 to 7463 Nm, then PCC for successful ramp
operation is 98.8%, with larger motors giving even greater assurance of proper operation.

But in answering the larger question of whether this is an appropriate analytic tool to
understand the envisionment graph or to size the motor, the answer turned out to be "no".
Simpler analyses of necessary torque margin, or of saturated output duration, are far more
productive methods for sizing components. Compute intensive repeated stochastic model runs
using specific component parameters should be performed a little later in the design process, to
verify that appropriate margins were used and that they perform in combination as expected.

7.3.4.6 Modelica to QML Translation

Modelica is a fully featured modeling and simulation language designed to do numeric
simulations from models of cyber-physical systems. It provides an object-style inheritance for
object structure, and specifies behavior using algebraic and ordinary differential equations. It
also provides computational capabilities found in standard programming languages such as C.
QML is a language that provides facilities for describing the qualitative behavior of models, and
a simulation engine that computes an envisionment of possible alternative behaviors of a
composite model based on the composition of behaviors of its components. Component
behavior has only qualitative values (basically significant ranges of values) and uses qualitative
linkages between variables, and qualitative analogs of ordinary differential equations.

For a significant class of constructs, there is a straight-forward mapping from Modelica models
to QRL models. We have built a translator that will do this mapping so that we can take
advantage of the large standard library available from, and be able to do qualitative simulations
of models that were built in Modelica. We have started with the Modelica Analog Basic library.
At this point we can successfully translate about three quarters of the models in that library.
For the rest, there are constructs that are not appropriate to translate – for example,
descriptions that are not model based (support equation based behavior), but instead make use
of algorithm and function constructs.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 41 Refer to cover page for Distribution Statement.

We have developed a methodology for exploration of the translation process that enables us to
see where there are issues in our translation. Our strategy for dealing with gaps has four
prongs: adding capabilities to the translator; extending the Modelica language to include
constructs needed for qualitative modeling (e.g. explicit modes); rewriting Modelica models to
in the extended language; and declaring (parts of) some models that need to be hand translated.

The following pair of models indicates how a basic capacitor in Modelica is translated
automatically into QML.

Capacitor

Modelica QML

model Capacitor “Ideal electrical capacitor”

 extends Interfaces.OnePort;

 parameter SI.Capacitance C(start=1);

equation

 i = C * der(v);

end Capacitor;

(defprototype Capacitor

 :external-terminals

 ((p :electrical)

 (n :electrical))

 :variables

 ((v (voltage p n))

 (i (current p)))

 :equations

 ((q= i (deriv v 1 t))))

Figure 7.3-34. Modelica and QML Models of a Capacitor

There are a number of points that should be noted in Figure 7.3-34 above. Modelica provides a
general inheritance mechanism from previously defined classes. In this case Capacitor inherits
from the class OnePort. This inheritance (from OnePort) provides two external interface
connection points, p and n; it also specifies that associated with these connection points are
electrical parameters of Voltage and Current. In the translation, we recognize this particularly
extends construct, and specially create the electrical external terminals, and define the voltage
and current parameters locally as they relate to those terminals. Note the translation of the
equation, where q= specifies a qualitative equality, and (derive v 1 t) specifies the first (1)
derivative of v with respect to time. Note that the numeric parameter C (Capacitance) has been
dropped since it does not affect the qualitative equation.

The model below illustrates how Modelica synthesizes models from components, and how we
translate this to QML. The RLC circuit has 4 components. These components are serially
connected, from voltage source to resistor to inductor to capacitor and back to voltage source.
In Modelica, a connection is explicitly declared with a ―connect‖ statement using the internal
names of the connection points of the connected model. It describes the connection between
two terminals of (mostly) different components.

QML’s connection description is different. QML reifies connecting nodes, and creates
components with explicit links to these nodes. The Modelica model shows the positive pin of
the voltage source connected to the resistor’s positive pin. In QML, the connection point itself
is an internal-node, and each component is connected to it. In the QML translation, we see
voltage source component V1 is instantiated connecting V1p and V1n terminals, while resistor

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 42 Refer to cover page for Distribution Statement.

component R1 is instantiated connecting V1p and R1n. These names have been generated based
on the Modelica model.

Modelica

model RLC

Modelica.Electrical.Analog.Sources.RampVoltage V1 (V=5,duration=10.0e-6);
Modelica.Electrical.Analog.Basic.Resistor R1 (R=3.0);
Modelica.Electrical.Analog.Basic.Capacitor C1 (C=10.0e-6, v(start=-5));
Modelica.Electrical.Analog.Basic.Inductor L1 (L=1.0e-3);

equation

connect(V1.n, C1.n);
connect(V1.p, R1.p);
connect(R1.n, L1.p);
connect(L1.n, C1.p);

end RLC;

QML

(defprototype RLC

:internal-nodes

((V1n :electrical)
 (V1p :electrical)
 (R1n :electrical)
 (L1n :electrical))

:components

((V1 (voltage-source V1p V1n))

 (R1 (ideal-resistor V1p R1n))
 (C1 (ideal-capacitor L1n V1n))
 (L1 (ideal-inductor R1n L1n)))))

Figure 7.3-35.Translating RLC Model in Modelica To QML

Status: We focused on the automatic translation of Modelica models in the
Modelica.Electrical.Analog library. We correctly translate 75% of those models. Where there
are differences in the semantics of the two languages, the translator highlights untranslatable
constructs. For example, QML does not support algorithms and functions; this is a principled
difference because QML is based on models with ―no function in structure‖ – that is QML

Modelica

model RLC

Modelica.Electrical.Analog.Sources.RampVoltage V1 (V=5,duration=10.0e-6);

Modelica.Electrical.Analog.Basic.Resistor R1 (R=3.0);

Modelica.Electrical.Analog.Basic.Capacitor C1 (C=10.0e-6, v(start=-5));

Modelica.Electrical.Analog.Basic.Inductor L1 (L=1.0e-3);

equation

connect(V1.n, C1.n);

connect(V1.p, R1.p);

connect(R1.n, L1.p);

connect(L1.n, C1.p);

end RLC;

QML

(defprototype RLC

:internal-nodes

((V1n :electrical) (V1p :electrical) (R1n :electrical) (L1n :electrical)

:components

((V1 (voltage-source V1p V1n))

(R1 (ideal-resistor V1p R1n))

(C1 (ideal-capacitor L1n V1n))

(L1 (ideal-inductor R1n L1n)))))

Above table shows a RLC circuit. This RLC circuit has 4 components. These components are serially

connected, from voltage source to resistor to inductor to capacitor and back to voltage source. In modelica,

connection is explicitly declared as “connect” statement. It describes the connection between two terminals

of (mostly) different compoennts. QML’s connection description is differnt. QML defines components’

3

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.3 – Modeling Language

© BAE Systems 2011. All rights reserved. 43 Refer to cover page for Distribution Statement.

models cannot depend on outside contexts. In addition our translator does not support
compile-time construction options. These include declaration clauses with ifUsed <Boolean>
where the Boolean tells the compiler whether to use the declaration. The translator also does
not support iterative constructions and arrays.

As part of our process for bringing quantitative and qualitative modeling together, we have
been working with the Modelica group to develop some common constructs; the focus has been
on extending Modelica to incorporate QML mode definition.

7.3.4.7 Qualitative Simulation Semantics

A qualitative simulation of a device results in a direct graph of the qualitative states that device
may exhibit starting with specified initial conditions – the envisionment. A quantitative
simulation of any assignment of parameters to the device results in a single trajectory that can
be mapped to one of the qualitative trajectories in the envisionment. Therefore there is a
homomorphism from the set of all trajectories of quantitatively specified models and the
qualitative trajectories computed for the envisionment, as illustrated in the figure. Thus the
semantics of the envisionment is a projection of the semantics of the quantitative modeling
system.

7.3.5 Bibliography

[AB11] Benveniste, A. et al. (2011) ―Contracts for the Design of Embedded Systems Part II:
Theory.‖ Submitted for publication.

[BCW84] Williams, B. C. (1984), The Use of Continuity in a Qualitative Physics, AAAI.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.4 – Library Requirements

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.4 Library Requirements .. 1

7.4.1 CML Library Goals and Capabilities ... 1
7.4.1.1 Existing Libraries ... 1
7.4.1.2 Synthesis of Library Capabilities ... 7
7.4.1.3 Access to Information at Different Levels of Abstraction 8
7.4.1.4 Beyond Specification .. 8

7.4.2 CML Goal Enablers .. 9
7.4.2.1 Content is King ... 9
7.4.2.2 Reasoning .. 10
7.4.2.3 Data-Driven Access ... 10
7.4.2.4 Maintenance .. 10

7.4.3 Library Strategies ... 11
7.4.3.1 Developing Ontologies ... 11
7.4.3.2 Creating Content ... 12
7.4.3.3 Organizing for Reuse .. 14
7.4.3.4 CML Administration... 18

List of Figures
Figure 7.4-1. Toolkit Library ... 1
Figure 7.4-2. Parts and Datasheet Library ... 2
Figure 7.4-3. Repository library - http://www.cpan.org/ .. 3
Figure 7.4-4. Developmental library - http://sourceforge.net/ .. 3
Figure 7.4-5. Information library - http://dbpedia.org ... 4
Figure 7.4-6. Library of Libraries ... 5
Figure 7.4-7. Product Data Management Library - http://www.ptc.com/solutions/windchill-
10/ ... 5
Figure 7.4-8. Library Management Automation ... 6
Figure 7.4-9. Library Mirrors .. 7
Figure 7.4-10. Process of incorporating components from a CML and of sharing candidate
components to the library. ... 8
Figure 7.4-11. Component Hierarchy Schema .. 11
Figure 7.4-12. Ramp Component Hierarchy Schema .. 12
Figure 7.4-13. Component Reuse ... 14
Figure 7.4-14. Component Copy and Modify .. 15
Figure 7.4-15. Component Alias ... 16
Figure 7.4-16. Component Inheritance ... 17

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Tables
Table 7.4-1. CML technology enablers concentrate on aspects of the library architecture 9
Table 7.4-2. Critical Product Development Functions ... 13

List of Symbols, Abbreviations, and Acronyms for Appendix

Symbol,
Abbreviati

on,
Acronym

Definition

BOM Bill of Materials

CAD Computer Aided Design

CML Component Model Library

COTS Commercial Off The Shelf

ITAR International Traffic in Arms Regulations

LCM Life Cycle Management

SHARE Software Hardware Asset Reuse Enterprise

TRL Technical Readiness Level

UML Unified Modeling Language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.4 Library Requirements

Model-based systems provide a means of explicitly storing technological knowledge while
sharing and communicating it between adjacent and parallel work threads. This facilitates
horizontal integration whereby knowledge becomes accessible independently of time, location,
and people. This being the overall goal needed with a Component Model Library (CML) and
the virtual product instantiation of the CML, the Master Model.

7.4.1 CML Library Goals and Capabilities

The inherent preconceived notions of what a library should do and its ultimate capabilities
must be clearly delineated for a successful CML instantiation. Libraries should facilitate the
following capabilities.

7.4.1.1 Existing Libraries

7.4.1.1.1 Hardware Libraries

Typical libraries should provide access to the large repository of hardware products available
today. Industrial supply companies like McMaster-Carr, MSC Industrial Direct Co., Inc., Reid
Supply Company, GSA Advantage, Digi-Key, and Glenair provide hundreds of thousands of
components for use in everyday products and processes. Linkages and access to this
information is critical to aligning the large vehicle design to the smallest of component. The
various levels of abstraction of each component will provide the necessary information at all
levels of the design process.

7.4.1.1.2 Simulation Convenience

Libraries should make model development and construction convenient. Toolkit libraries come
with modeling and simulation applications that aid in the rapid development of models. For
example, Matlab/Simulink comes with simulation components that the user can plug into a
data-flow diagram via a drag-and-drop mechanism. CAD tools such as Pro/E have similar
toolkit library capabilities for commonly used parts. Figure 7.4-1 is an example of a Simulink
library interface.

Figure 7.4-1. Toolkit Library

file://asdmnfs1/commeng/common/DARPA_META/Component%20Library/McMaster-Carr

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

7.4.1.1.3 Accurate Behavioral Specification

Libraries should accurately portray the functional and behavioral characteristics of the
components. Commercial parts libraries contain datasheets and occasionally working models.
For example, electronic component libraries may contain models written in SPICE to specify
behavioral operation. Figure 7.4-2 highlights the various types on information available.

Figure 7.4-2. Parts and Datasheet Library

7.4.1.1.4 Reuse and Sharing

A library should not only establish storage of content, but should also promote utilization of
content. A repository library is associated mainly with software. The repositories may be
language specific or they could provide translations of algorithms to a number of different
languages, such as the Numerical Recipes library (in Fortran, Pacal, C, C++). These can be
hosted on a file system or a database. Figure 7.4-3 highlights the importance of an online
library such as CPAN.org.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

Figure 7.4-3. Repository library - http://www.cpan.org/

7.4.1.1.5 Flexibility and Integration

A library should not only facilitate the final storage of an article, but should also promote the
development of content. A developmental library holds components that are under continuous
development, potentially for a Master Model. SourceForge or GitHub are examples of
distributed repositories for hosting source code. Figure 7.4-4 highlights the SourceForge
example.

Figure 7.4-4. Developmental library - http://sourceforge.net/

http://www.cpan.org/

http://sourceforge.net/

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

7.4.1.1.6 Knowledge Source

A library should contain data and present knowledge by providing organization such that
searches can be guided or directed more efficiently. An information library can contain
organized data corresponding to semantic content. This is the basis for the ontologically
organized semantic web. The information site DBpedia is a semantic version of the more free-
form content of Wikipedia. Knowledge sources typically contain reasoners which form the basis
of a library front-end user interface. Figure 7.4-5 highlights the DBpedia example.

Figure 7.4-5. Information library - http://dbpedia.org

7.4.1.1.7 Uniformity of Reference Method

A library of libraries is needed to cross-index between available libraries. Instead of a
Component Model Library, we may need to specify a Component Model Warehouse, which has
a much bigger scope. The fact is that libraries will need to interoperate, just as traditional
brick-and-mortar libraries interoperate with other libraries with shared card catalogs and inter-
library loaners. The libraries need to have fundamental uniformity in reference to support
inter-operation. Figure 7.4-6 illustrates an example of multiple library interaction.

http://dbpedia.org/

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

Figure 7.4-6. Library of Libraries

7.4.1.1.8 Life-Cycle Management and Curation.

The library needs to support an LCM process and curation to distinguish the developmental
components from the mature and utilized ones. Product Data Management (PDM) libraries
offered up by vendors such as Windchill can hold enterprise models alongside other
information. The data tracked usually incorporates the technical specifications of the product,
specifications for manufacture and development, and the types of materials that will be
required. The PDM serves as a central knowledge repository for process and product history,
and promotes integration and data exchange among all required functions. Figure 7.4-7
highlights a Windchill example.

Figure 7.4-7. Product Data Management Library -
http://www.ptc.com/solutions/windchill-10/

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

7.4.1.1.9 Dependency Management and Automation

The library needs to support dependency management with the interacting master models to
establish out-of-date, up-to-date, and modified components status within the master models.
To accommodate the huge number of library runtime components that a software application
may consist of, a library manager such as Artifactory which maintains control of versions, etc is
necessary. Specific version control, configuration management, build management, and
retrieval mechanisms are available for automation, such as GIT, Subversion, RPM, and Maven.
Maven is a mechanism for dependency tracking and management. Figure 7.4-8 highlights the
Artifactory example.

Figure 7.4-8. Library Management Automation

7.4.1.1.10 Dependability and Availability

Libraries are required to be continuously available. As an example, online libraries have an
expectation to be dependable mechanisms with permanent availability and fixed reference
method. Mirror libraries which contain duplicated archives of libraries, or the recent approach
known as cloud computing make availability less of a concern. This also provides a mechanism
for protecting Intellectual Property and Classified information by being able to separate the
data more effectively. Figure 7.4-9 highlights the Cloud example.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

Figure 7.4-9. Library Mirrors

7.4.1.2 Synthesis of Library Capabilities

Library interaction would extend from the typical parsing of singular requests to inferring the
query trend from the strings of interaction. Ideally, a desirable library capability would capture
interaction history and anticipate future needs. This would approach the goal of a tool such as
Wolfram Alpha, which essentially responds polymorphically to a user’s request for information.
Thus it can provide context models if the query is one of asking for ―weather data in Chicago
from 1950 to 1960‖ or it will provide a numerical algorithm in symbolic form if the
knowledgebase can infer meaning from a math library request.

Barring being able to accomplish that laudable goal, as an interim solution we have an objective
to providing as many capabilities as necessary to support the integration of a master model
from a component model library.

By building from requirements and an initial population of available components, we can
establish a process whereby proven components from the master model can be fed back into the
component model library for later reuse. Refer to Figure 7.4-10 for an example of the process
flow. Test cases of proven components will also be captured to effectively save time when
establishing new assemblies. This will enable the concept of crowd sourcing to utilize
archetypes to easily find and develop products off of similar solutions. This will also encourage
large organizations to benefit from the crowd-sourced advances.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

Figure 7.4-10. Process of incorporating components from a CML and of sharing
candidate components to the library.

7.4.1.3 Access to Information at Different Levels of Abstraction

The key to effective reuse from the existing CML lies in being able to reason directly from
requirements. This is understood when we consider that the highest level of abstraction in a
CML element is a component specification. As all components must have some minimal form of
specification, this information can be used for unique and unambiguous identification of a
component. Thus we can potentially transform requirements into essential information which
we can then apply to a component matching process. In other words, we can map requirements
onto candidate component specifications.

The authoring of a well-grounded specification will often be extracted from lower level (higher
fidelity) abstraction models. For instance, a component’s mass may be listed in its specification,
and that mass may be derived from a solid model of the component. The specification can also
contain information that is not associated with any underlying model. This sort of information
can include data describing component maturity, vendor information, government
classification, lead time, previous use, and general pedigree.

7.4.1.4 Beyond Specification

The CML will also connect any number of models associated with this component specification
or aspects of this specification. For example, a bolt may be specified as ¼-20 hex head cap
screw. This bolt component could then also have a 3D CAD representation, stress analyses and
thermal properties associated with it. One essential low level of abstraction for the bolt would
be the technical drawing that enables a manufacturer to create a bolt that has all the same
characteristics as its models. A software component may be specified via its inputs, outputs,
intended usage, and functional definition. Models of the software may include UML or

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

Simulink representations, and at the lowest level the source code used to generate the actual
software library or executable. 1

7.4.2 CML Goal Enablers

The classical approach to library access and retrieval is to apply the concepts of classification,
information content, and repository. This architecture enables a divide-and-conquer
strategy which will allow us to organize and access our content efficiently. The idea of
ontological classification is to provide uniform, predictable, and consistent long-term
organizational structure. The informational content provides an indexing scheme that allows
reasoners to operate with specific information while being more variable and flexible than the
ontological classification alone. The repository holds all the information of the library
including source code, models, and associated artifacts.

Organization of the library in this way allows us to adopt certain tools and algorithms that
work well in each of the abstraction level areas as well as across the levels. We broke the
enabling mechanisms into these categories (Table 7.4-1): reasoning, access, content, and
maintenance. While the preceding enablers represent the life cycle of information in the CML,
content is ultimately the primary reason of the CML.

Table 7.4-1. CML technology enablers concentrate on aspects of the library architecture

Enablers Ontological Informational Repository

Reasoning X X

Access X X X

Content X X

Maintenance X X

7.4.2.1 Content is King

The component model library will contain a collection of existing components and models,
archetypes, historical component usage, and a large variety of other information. These
repository items are indexed appropriately for fit with the CML flexible structure. This will
become the overall knowledge base, with ontologically-classified, efficiently indexed knowledge
acting as a powerful goal enabler for component discovery and reuse. In other words, the
content is not contained in the ontology but in instances and assertions classified by that
ontology.

The content can contain associated meta-data attributes (related to attributes of design
elements in the master model). Methods for fast authoring of information, both in defining and
populating the content knowledge are needed. For example, adding new artifacts to the

11 The development of good specifications for software is difficult, the Software Hardware Asset
Reuse Enterprise (SHARE) Repository Framework Final Report: Component Specification and
Ontology lays out some interesting concepts that could be of assistance in this area.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

repository by inheriting aspects of archetypal artifacts is a potentially useful mechanism for
populating a library quickly.

7.4.2.2 Reasoning

At the most fundamental level, access to the CML can be constructed based on some
ontologically classified component data types with semantic views that can be filtered by any
set of constraints or rules. All access to the CML should have automation hooks available.

The discovery of component models, collections of views of a component, or archetypes is
helped by reasoners optimized for searching the CML knowledge base. A search compatible
mechanism such as a ―map reduce operation‖ together with a CML structured through
attributes and relationships, has tremendous advantages over traditional directories and
hierarchical topologies by increasing efficiency and effectiveness of the search capability. This
type of action specifically indicates that the reasoners work at the indexing level and not at the
repository level to preserve the integrity of the actual component model information.

7.4.2.3 Data-Driven Access

Applying mechanisms that allow uniform, fast, and unambiguous access to information is
necessary across the board. Only the information levels of abstraction should change. The
development process must not be hindered by the amount of time it takes to access data from
the CML. A good efficient interface with reasoning behind the scenes keeps developers
engaged in useful work. However, it was determined that open source tools don’t necessary
eliminate the need for standard file formats. This indicates that it is imperative to use some
form of uniform development methodologies while maintaining as much of the original models
as possible.

Specifically, for the repository, most models are stored in native format, but other
representations will become necessary for efficient reuse of components. The combination of
segmentation of the master model and CML implies that it will be possible to make component
models available for incorporation into designs and to test designs incorporating these models,
without making the models themselves public.

The language section discusses the content implementation language, which obviously derives
from the ontological scheme chosen.

7.4.2.4 Maintenance

Maintenance will be required over the life cycle of the data within the repository and on the
informational structure to the data. The data within the CML will evolve with active
development in many instances and go unchanged in some cases. References to the CML from
Master Models can become broken links without necessary maintenance. Enabling the lifecycle
management and curation within the CML allows the connections between models and the
CML to be continued. The invariant characteristics of the ontological classification scheme
establish a solid reference for the instance knowledge categorized in the CML.

The mechanism of curation allows systematic design change, i.e replacing or refining a
particular design element.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

7.4.3 Library Strategies

7.4.3.1 Developing Ontologies

Ontology development requires large collection of information to best represent and capture
the necessary pieces of a component and its associated models, artifacts, and layers of
abstraction. Figure 7.4-11 represents a high level view of required fields of a component. The
classification provides the fundamental structure, but the information can change as needed
with the CML growth and use.

Figure 7.4-11. Component Hierarchy Schema

Figure 7.4-12 represents an instance of a ramp in the CML. The overall ontology structure
remains intact, but the appropriate and available information is accessible along with the proper
connections that link the data for the various engineering needs.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

Figure 7.4-12. Ramp Component Hierarchy Schema

7.4.3.2 Creating Content

The capture of knowledge is key to establishing the necessary models and artifacts sufficient to
represent a component. Historically, many of models used to represent components, sub-
systems, and systems are productized and built on demand by the appropriate experienced
experts. However, the models that are built for a demand can be extended to serve across all
product development domains. Table 7.4-2 captures the critical engineering functions that will
need to be served with the appropriate models, artifacts, and data stored in the CML. The list
following the table is a brief list the types of data that can be necessary in a CML. While not an
overly exhaustive list, it captures some of the breadth of information needed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Table 7.4-2. Critical Product Development Functions

Engineering Functions Provide CML Content

Controls Human Factors Training

Schedule Operational Effectiveness Production

Safety Survivability Structural

Finance System Integration Software

Reliability Maintainability Thermal

System Engineering Design Test

Example Types of CML Data

 COTS items

 Fully developed released Pro-E Models

 Space claim representation for Vendor Controlled Drawings/Altered Vendor
Controlled Drawings

 Sizing models (excel – spring design, o-ring; weld size, etc)

 Component selection templates (motors/actuators; gearboxes; fasteners; dowels;
retainers; inserts, etc)

 Materials database

 Drawing standard notes

 Heat Treat Notes

 Coating Notes

 Problem Records / Lesson learned

 Name of the tools for results that are in the library

 Manufacturing processes, cost factors, producibility limitations

 Supply chain material availability, cost, lead-times

 Access to rough space claim CAD data based on functional inputs

 Ready access to existing components for use in design (fasteners, pins, handles, motors,
etc.). Search capabilities across the industry.

 Generic scripts for automation

 Possibly acceptable posture ranges for human analysis

 Common Use Case Model

 As Designed, As Planned and As Supported BOMs

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

7.4.3.3 Organizing for Reuse

The CML will rely heavily on the ability of one component instance to reuse the effort of
another component individual in order to realize the 5× improvement needed for META.
There are four typical ways that this reuse can be accomplished: containment, copy, alias, and
inheritance. The majority of the reuse will be via containment of other component. In the
proposed ontology example, Figure 7.4-13, the object properties of hasComponent and its
inverse ComponentOf would be the mechanism for creating a containment relationship from
one component to another.

Component 1
Component 2

Component 3

hasSubComponent

subComponentOf

subComponentOf

hasSubComponent

...

hasSubComponent

subComponentOf

Figure 7.4-13. Component Reuse

The second mechanism is a copy of the component. This does not maintain a relation from one
component individual to another component individual. This allows a component developer the
freedom to be able to change the internal structure of the component but has the disadvantage
that the developer will not get changes if the original is modified. Copying and modifying a
component is shown in figure 7.4-14.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

Component 1
Component 3

Feature 1

hasComponent

ComponentOf

FeatureOf

hasFeature

...

hasSomeRrelation

SomeRelationOf

Component 2
Component 3

Feature 2

hasComponent

ComponentOf

FeatureOf

hasFeature

...

hasSomeRrelation

SomeRelationOf

Component 1 copied to make

Component 2 and Feature 1 was

changed to Feature 2

Figure 7.4-14. Component Copy and Modify

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

The third type of reuse is to alias one component individual from another component individual
using a syntax such as sameAs. This type of reuse will not allow the component developer to
change any of the features or properties from the base component individual. If a change is
made the result is an inconsistency in the data and there will be two paths that yield different
results. An example of this type of reuse is found in the figure 7.4-15.

Component 1
Component 3

Feature 1

hasComponent

ComponentOf

FeatureOf

hasFeature

...

hasSomeRrelation

SomeRelationOf

Component 2

sameAs

Figure 7.4-15. Component Alias

The last form of reuse is the inheritance of one component from another. Inheritance of one
component individual from another will again need to be done via an object properties defined
in the Arrow ontology. All the individuals that the parent has a relation would be aliased so
that the child could change these aliased individuals and override the values in the parent. The
hasChild and ChildOf properties would maintain the tie between parent and child so that
changes in the parent would be reflected in the child. These changes could be done manually
but a manual process would be prone to error and lack consistency. The complexity of these
relations will necessitate that a tool be used to maintain the component individuals. An
example of this relationship is in following figure 7.4-16.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

Component 1
Component 3

Feature 1

hasComponent

ComponentOf

FeatureOf

hasFeature

...

hasSomeRrelation

SomeRalationOf

Component 2
Component 4

Feature 2

hasComponent

ComponentOf

FeatureOf

hasFeature

...

hasSomeRrelation

SomeRelationOf

ChildOf

hasChild

sameAs

sameAs

sameAs

Figure 7.4-16. Component Inheritance

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

7.4.3.4 CML Administration

7.4.3.4.1 CML Tools

The difficult task of creating and maintaining the CML will require a robust set of tools. Some
of the needs for CML tools are addressed with a combination of tools that are currently
available but there is a need to integrate and augment the capabilities to provide a robust
solution. These tools will need to enable the curator and users of the CML to create, change
and remove components while maintaining the integrity of the library. The curation of the
CML will require that a tool set will provide version control, consistency management,
dependency tracking, change notification, and maintain the structure of the library. The
component creators and users will require client tools that ease the task of component creation,
component selection, interface definition, and component maintenance.

Version control is not a new concept so there are many available tools, but the CML does have
some unique challenges that will require some augmentation of the existing tools. Because of
the high degree of interdependence between specific versions of components there will be
additional features needed to manage these dependencies and to manage upgrading
components. When there are multiple dependent components, conflicts may arise when any
component is upgraded. Warning the user of conflicts and managing these complex
dependency trees is something that will need to be addressed by the CML tools.

Another aspect of the high degree of interdependency is maintaining the consistency of the
components. If the components were administered without the aid of some tools it would be
easy for components to create circular dependencies. Having tools that maintain the
dependency tree and alert the user when a circular dependency occurs would prove to be
invaluable during component design.

Ease of use for searching for and using components is also a factor that will need to be
addressed in order for these tools to be accepted in general use. If this is not the case the 5x
goal will likely not be achievable via the use of components. The users will need to be able to
find the components and have a high degree of confidence that they are useable and verifiable.
Tools do not currently exist that can provide this kind of specific information about
components in the CML.

7.4.3.4.2 CML Population

Component owners will populate the component library in order to encourage the use of their
components. Oversight will be required to ensure components are accurately represented,
documented, and controlled since component owners may have a conflict of interest in making
their components appear as attractive as possible. Component owners will be responsible for
entering appropriate information for component models including low fidelity information
through high fidelity meta information. The government may also be the owner of some
components making ownership more complicated. Ultimately, there needs to be moderation of
the library, a mechanism for component owners to populate the model library, and a process for
system integrators to solicit the desire for new components.

7.4.3.4.3 CML Integrity

Integrity of the library will be controlled by the Library Owner/Moderator who will provide
the appropriate level of access and control of the library. Some indicators of model usefulness
could include an incremental TRL-like metric as the indication of quality and/or a certification
of the model providing traceability and quality control. The Library Owner/Moderator would
also have the ability to "whitelist‖ or ―blacklist" products, components, technologies, or vendors

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.4 - Library Requirements

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

as more information is collected. This approach facilitates the open/crowd-sourced nature of
the program, while at the same time providing a filtering mechanism to control the breadth of
the component space.

7.4.3.4.4 CML Data Control

Part of the metadata associated with each model must include data classification level. The
database handles for the models themselves may point to different databases for varying levels
of data protection. Access to these databases can be controlled per the established procedures
associated with the data within them. There will likely be many models to represent each
component and each of these models may have different classification levels associates with
them.

Classified and International Traffic in Arms Regulations (ITAR) considerations: Applied
models may contain ITAR-restricted or classified information that may require protection.
Theoretical models may be well known processes and not be ITAR restricted, or may be
innovative models and will fall into the category of ITAR restricted/Company Proprietary.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.5 – Notional Demo System Application

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.5 Notional Demo System Application ... 1

7.5.1 September Demo Walkthrough ... 1
7.5.2 Application of ARROW to the Communications Domain... 8

7.5.2.1 Introduction ... 8
7.5.2.2 Link Analysis ... 9
7.5.2.3 ARROW Support for Communications ... 9

7.5.3 Electronic Warfare Example ... 11
7.5.3.1 Introduction .. 11
7.5.3.2 Archetype Summary .. 12

7.5.4 META Challenge Problem .. 13
7.5.4.1 Design Space Challenge Problem: Ramp Assembly .. 14
7.5.4.2 Challenge Problem CFV Performance Specification ... 17

7.5.5 Bibliography .. 24

List of Figures
Figure 7.5-1. The META ARRoW Architecture combines cloud-compatible services with
tailored local apps, including open-source, commercial, and META-specific engineering tools. . 2
Figure 7.5-2. The ARRoW Model Interconnection Language (AMIL) Viewer application
provides a representation of the underlying connections that the META ARRoW system uses
to synchronize and automate the design process. ... 3
Figure 7.5-3. The Early Concepting Tool (ECTo) interface provides multiple panels for
managing the design, reviewing the requirements, and accessing the component model library.
 .. 4
Figure 7.5-4. The Metrics Dashboard interface provides reconfigurable panels and a variety of
display formats for managing the designer’s view of the current system’s performance. 5
Figure 7.5-5. The ECTo tool provides a 3-D graphical representation using CML models to
assist designers in making rough space claim decisions during early design concepting. 6
Figure 7.5-6. The ECTo tool’s 3-D visualization capability can also incorporate space-limiting
requirements components, such as tunnels, to provide visual cues to the designer. 7
Figure 7.5-7. The Early Concepting Tool (ECTo) interface provides tools for querying the
CML against computed system requirements. .. 8
Figure 7.5-8. Communications Reference Architecture SysML Model .. 9
Figure 7.5-9. Design View of the Communications Link between NGV and Bradley Vehicles . 10
Figure 7.5-10. The Communications Dashboard .. 11
Figure 7.5-11. EW System Abstraction of Archetypes .. 13

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms

Symbol,
Abbreviation,

Acronym
Definition

AAE Army Acquisition Executive

AMIL ARRoW Model Interconnection Language

ANSI American National Standards Institute

AR Army

BBIT Background Built-In Test

BIT Built-In Test

C2 Command and Control

CCW Counterclockwise

CFV Combat Fighting Vehicle

CML Component Model Library

CW Clockwise

DoD Department of Defense

DoD Department of Defense

DODISS Department of Defense Index of Specification and Standards

ECTo Early Concepting Tool

EIA Electronic Industries Association

EW Electronic Warfare

FIT Fault Isolation Test

GFE Government Furnished Equipment

IBIT Interactive Built-In Test

ICD Interface Control Document

IFV Infantry Fighting Vehicle

ISO International Standards Organization

LRU Line Item Replaceable Unit

MIL-C- Military Standard C-

MIL-HDBK- Military Handbook

MIL-STD- Military Standard

MMBF Mean Miles Between Failures

MOPP-IV Mission Oriented Protective Posture (IV)

MTBF Mean Time Between Failures

NBIT Non-Interactive Built-In Test

SA Situational Awareness

SAE Society of Automotive Engineers

SBIT Start-Up Built-In Test

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. iii Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

SysML Systems Modeling Language

TBD To be determined

TBP To be provided

TECOM Test and Evaluation Command

TOP Test Operating Procedure

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.5 Notional Demo System Application

7.5.1 September Demo Walkthrough

We provide here a brief walk through of the demonstration elements as shown during the
September 2011 META Principal Investigator meeting. The overarching layout of the
demonstration system includes three primary locally deployed META applications (a SYSML
editing tool, the Metrics Dashboard, and the Early Concepting Tool (ECTo)) and a variety of
META Adaptive, Reflective, Robust Workflow (ARRoW) services hosted in a cloud computing
environment (Figure 7.5-1. (Note: The locally deployed applications are depicted on separate
screens, but can all be easily managed from a single workstation.)

Step 1. As our demonstration begins, the customer has pre-configured the design space
by loading their requirements into SysML using the ARRoW Design
Archetypes. The requirements archetypes are design patterns that encompass the
majority of common combat vehicle requirements. These archetypes provide structure for
the key parameters that are traditionally embedded in textual requirements, allowing the
ARRoW tool set to reason over the requirements. The requirements structures are linked
via the ARRoW Model Interconnection Language (AMIL) to provide built-in
traceability and synchronization from the requirements to the library of design archetypes
for high-level vehicle system categories (e.g. tracked vs. wheeled, ground vs. amphibious,
etc.) and to the test and analysis archetypes for system design evaluation.

Step 2. The designer reviews a challenge problem statement published on the customer’s

website:

Design an Infantry Fighting Vehicle (IFV) system such that the total
solution is optimized to a set of system-level correctness criteria, and is
conformant to the system requirements. The IFV is a versatile medium
armored vehicle which provides cross-county mobility dominance, for
mounted firepower, communications, and protection to a mounted
mechanized infantry squad, overwatch support for a dismounted infantry
squad, and deployable anywhere in the world.

Step 3. The designer manages the requirements in the SysML tool, reviewing and
making modifications and refinements to the requirements structures, then
publishing the changes. The designer can use ARRoW functions provided by the
SysML tool plug-in (in our case, Magic Draw) to create refinements of existing
archetypes and to publish the requirements changes out to the AMIL graph when complete
(Figure 7.5-2).

Step 4. The designer uses reasoners within the SysML tool to assist in the selection of a

Infantry Fighting Vehicle (IFV) design archetype. Due to the weight and
mobility requirements for this example, the reasoner recommends the Tracked
Vehicle archetype. For designers with more advanced SysML skills, reasoning tools
can be integrated at the SysML level to recommend design archetype choices based on
automated analysis of the requirements. Our META tool set includes a sample parametric
solver implemented in Magic Draw that provides a recommendation for selection of
tracked or wheeled archetypes for the IFV.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

Step 5. The designer then downloads the META app suite and launches ECTo to begin

analyzing the problem through design space exploration (Figure 7.5-3). ECTo
allows the designer to access the customer requirements, review the required system
properties, and begin reviewing and customizing the baseline reference designs.

Figure 7.5-1. The META ARRoW Architecture combines cloud-compatible services
with tailored local apps, including open-source, commercial, and META-specific

engineering tools.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

Figure 7.5-2. The ARRoW Model Interconnection Language (AMIL) Viewer application
provides a representation of the underlying connections that the META ARRoW system

uses to synchronize and automate the design process.

Step 6. The designer searches the Component Model Library (CML) for appropriate
system components then drags them into the design. ECTo provides 3-D
visualization for gross sizing and placement analysis, as well as recording the design
choices by creating AMIL links between models of design components, including
executable models and simulations that can be used to evaluate ranges of design
choices. At any point the designer can run all of the models associated with the
current design, which updates the design in the cloud.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

Figure 7.5-3. The Early Concepting Tool (ECTo) interface provides multiple panels for
managing the design, reviewing the requirements, and accessing the component model

library.

Step 7. The designer then launches the metrics dashboard app to review the performance
of their current design against the requirements. The metrics engine is an AMIL
service that uses AMIL links between requirements, metrics equations and evaluation
tools, and the current system design to evaluate the design and present a dashboard to the
designer (Figure 7.5-4).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

Figure 7.5-4. The Metrics Dashboard interface provides reconfigurable panels and a
variety of display formats for managing the designer’s view of the current system’s

performance.

Step 8. As the designer views the metrics, they notice that the crew capacity indicator is
amber. A further check reveals that the requirement is for a 9 man squad, but the
current design only accommodates 7 men (Figure 7.5-5). Through the ECTo tool,
the designer accesses crew space claim models from the CML, then ECTo performs
automated placement and alignment to reflect the number of people the space can
accommodate, and displays this in a 3-D simulation view.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

Figure 7.5-5. The ECTo tool provides a 3-D graphical representation using CML
models to assist designers in making rough space claim decisions during early design

concepting.

Step 9. The designer changes the design in ECTo, expanding the hull to allow a crew
of 9. Simultaneously, they use NATO tunnel simulation tools in ECTo to
keep design within tunnel transportability requirements (Figure 7.5-6).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

Figure 7.5-6. The ECTo tool’s 3-D visualization capability can also incorporate space-
limiting requirements components, such as tunnels, to provide visual cues to the

designer.

Step 10. Another review of the Metrics Dashboard indicates that the new design
modifications have caused some of the mobility requirements to fail. A review
of the design parameters shows that increasing the hull dimensions has
increased the required engine power. The metrics dashboard automatically
computed the required engine power from the estimated weight of the current design
and the mobility requirements form SysML such as top speed and acceleration.

Step 11. The designer initiates an automated query of the CML database for an engine

that meets the required power for the current design. They could then select
from the returned list of applicable engines, or engage additional solvers to
assist in the downselect process (Figure 7.5-7).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

Step 12. A final review of the Metrics Dashboard shows that the current early design
concept meets the requirements (at this level of abstraction).

Figure 7.5-7. The Early Concepting Tool (ECTo) interface provides tools for querying
the CML against computed system requirements.

7.5.2 Application of ARROW to the Communications Domain

7.5.2.1 Introduction

There are three essential parts of any communications system, the transmitter, RF channel, and
receiver. Understanding the characteristics and parameters of each part allows the Systems
Engineer to allocate and evaluate requirement compliance against the system design as the
analysis and trade studies are continuously refined. The RF link analysis is a key design tool
that sets up the initial allocation of the transmitter, RF channel and receiver parameters based
on system requirements. The Systems Engineer then has the flexibility of reallocating certain
parameters based on trade study and analysis iterations. Refinement of the tradeoffs continues
until the system’s performance is optimized. Typical challenges that are faced when
developing, optimizing, and integrating a communications system onto a platform are
communications coverage, interfaces, electromagnetic compatibility, size, weight, power,
cooling, and placement of subsystems and components both internally and externally.

Today’s communications systems are leveraging Software Defined Radios which are capable of
running a variety of waveforms simultaneously. A single vehicle can be required to operate
anywhere from 4 – 8 channels of simultaneous communications. The requirement for such a
dense electromagnetic environment within a single vehicle envelope drives the overall
communication systems design complexity. System requirements such as communications
coverage, waveforms, data rate, availability, and size, weight and power (SWaP) initiate
tradeoffs and analysis in the area of radio selection, antenna types and sitting, co-channel and
co-site mitigation, and subsystem and component placement in order to optimize
communication system performance.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

7.5.2.2 Link Analysis

The RF link budget analysis is an accounting of all of the gains and losses from the transmitter
through the RF channel to the receiver in a communications system. It accounts for the
attenuation of the transmitted signal due to propagation, cables and miscellaneous losses as
well as the antenna gains. Randomly varying channel effects such as fading and shadowing are
taken into account by calculating some margin depending on the anticipated severity of the
channel. The quantity of greatest interest in the RF link analysis is the receiving system’s
carrier-to-noise ratio (C/N) as modeled at the receiver output. The carrier-to-noise ratio is
defined as the ratio of the received modulated carrier signal power C to the received noise
power N.

Ultimately the link analysis provides the Systems Engineer with a calculated communications
range based on waveform, transmitter, RF channel model and receiver characteristics. The
inputs to the link analysis can be varied during the tradeoff and analysis phase in order to
optimize the RF link range and communications system performance.

7.5.2.3 ARROW Support for Communications

To support the communications domain using ARROW, we first created a reference
architecture model in SysML. The reference architecture captures the components, properties,
and connections within communications.

The diagram below shows the Communications Reference Architecture. It captures the main
components, radios, antennas, and cables, used to construct a radio system. It also captures the
characteristics of the Radio System design used to determine the link analysis tradeoffs
between range, data rate, power, and availability.

Figure 7.5-8. Communications Reference Architecture SysML Model

The Link block represents the RF channel between two antennas, using a base frequency and a
waveform to communicate. The link is analyzed using one or more ChannelModels that
represent the environment, or context, of the link. Two common link analysis models are

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Urban and Open & Rolling, named for the characteristics of the terrain included in their
models. The LinkCharacteristics block captures the key properties of the link for each channel
model.

The reference architecture is used to create a design of a communications system for a
NewGroundVehicle (NGV), shown below. The NGV is required to communicate with a
Bradley vehicle, and a specified range, data rate, and availability, captured in the requirement.
The design includes the features of the Bradley that affect the comm. link, as well as the NGV
communication system design.

Components and their properties can be imported from the Component Model Library (CML).
The CML provides a selection of off-the-shelf components, such as antennas, radios, and even
communications waveforms that can be imported into the design. The CML includes
constraints, such as which radios use which waveforms. These constraints can be enforced in
the design (although this is not yet implemented).

Figure 7.5-9. Design View of the Communications Link between NGV and Bradley
Vehicles

The communication requirements, design, and property values for gain, attenuation, etc., are
passed, through AMIL, to a spreadsheet that runs the Link Analysis models. The results of
Link Analysis are fed back into the SysML design model and to a Metrics dashboard that
provides summary feedback on the quality of the design and how well it meets requirements.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

Size, weight, and power impacts of the selected components are shown on other dashboard
panels.

Figure 7.5-10. The Communications Dashboard

The Link Analysis spreadsheet is just one example of how specialized tools that support the
communications domain can be connected through AMIL. Other tools in this domain that
could be connected include FEKO, an electro-magnetic modeling tool that allows mesh models
of vehicles, antennas, etc. to be imported into the tool. Once the models are in the tool, antenna
to antenna isolation and radiation pattern analysis can be performed to help optimize the
vehicle’s top deck layout of antennas and structures. The output of this analysis will feed
directly into the Cosite and Link analysis. Changes to antenna location made by a mechanical
engineer would trigger a re-analysis of the communications, providing immediate feedback on
the change.

The reference architecture provides a system level starting point for design, and defines the
interfaces and critical properties for domain engineering groups, such as communications. The
interconnectedness of the design, at the top level through the SysML reference architecture,
and at the tool level with AMIL, allows the impacts of design decisions in other domains and in
other components to be understood and assessed.

7.5.3 Electronic Warfare Example

7.5.3.1 Introduction

This section provides insights on how the META program approach could be applied to an
Electronic Warfare (EW) System. The section provides a preliminary generic description of the
major elements of the EW system and how design elements could be assessed in the future.

The classical description of an Electronic Warfare is: Military action involving the use of
electromagnetic energy to determine, exploit, reduce or prevent hostile use of the
electromagnetic spectrum through damage, destruction and while retaining friendly use of the
electromagnetic spectrum. There are three divisions within electronic warfare.

1. Electronic Attack: That division of electronic warfare involving the use of electromagnetic
or directed energy to attack personnel, facilities or equipment with the intent of degrading,
neutralizing or destroying enemy combat capability. This area is also referred to as EA.

2. Electronic Protection: That division of electronic warfare involving actions taken to protect
personnel, facilities, and equipment from any effects of friendly or enemy employment of

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

electronic warfare that degrade, neutralize or destroy friendly combat capability. This area
is also referred to as EP.

3. Electronic Warfare Support: That division of electronic warfare involving actions taken by
or under direct control of an operational commander to search for, intercept, identify and
locate sources of intentional and unintentional radiated electromagnetic energy for the
purpose of immediate threat recognition. Thus, electronic warfare support provides
information required for immediate decisions involving electronic warfare operations,
threat avoidance, targeting and other tactical actions. This area is also referred to as ES.

The section provides a high level overview of an EW system modeled in SysML within the
context of Model-based Systems Engineering (MBSE). MBSE can be used effectively to
manage, to reduce cycle time, and to improve communications among the diverse engineering
disciplines necessary for designing complex systems [SF10], [SF09].

The scope of this section is limited to a plausible modeling approach using SysML for an
illustrative EW system, abstracted by the Archetype blocks shown in 7.5-11. For simplicity, the
EW system implementation has been narrowed down to a pod for attachment to a host
platform (Tactical Aircraft or Unmanned Aircraft Vehicle (UAV)). For extensive background
and theory of operation of Electronic Warfare (EW) systems, reference [DCS99] is
recommended.

7.5.3.2 Archetype Summary

The EW example has identified a preliminary list of Archetypes (see 7.5-11) that could be used
by an engineer to perform and evaluate system level trades.

The following items are some key performance areas that influence operational effectiveness of
the EW system.

1. EW System constraints: for this example, a pod represents the carrying structure that
would attach to the host platform and would contain all of the EW sensor electronics and
associated antennas. The pod size, stowage volume, stowage weight, and available power
constrain the EW system. The total cost of the EW system should also be considered in
this example.

2. EW Intercept Performance: this represents the operational environment in which the EW
System would operate. For this example, it is assumed that the operational environment has
an established geographic area of interest (―footprint‖) where the EW System will be
operating. The EW system has specified response times, scanning rates, probabilities of
detection and identification, and other parameters defining how it is expected to gain
intelligence on these threats.

3. EW Geolocation Performance: a typical use of an EW System is to provide location
information on enemy threats. Performance settings associated with this location are stated
in response time, probability of intercept, accuracy, revisit rate, and target motion.

4. EW Operational Parameters: the EW System must support the specific frequencies,
bandwidths, modulation types, modes, and number of threats that it will encounter.

The Archetype figure also shows a generic top level system hierarchy and list of candidate
components or design features that could be considered by the EW System designer. It is
anticipated that the Archetype view would enable the designer to manipulate a set of these
items to review changes and impacts to the EW System.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Figure 7.5-11. EW System Abstraction of Archetypes

For example, increasing the EW Operational Threat Density, may require additional processor
throughput to meet response times. Increasing the number of processors may require
additional power, space, and cooling. The Archetype view could highlight the viability of this
change and allow the designer to immediately assess if the pod power and volume could
support this.

Today’s EW System design team uses a loosely coupled collection of special purpose software
tools, as well as internally developed MATLAB models and spreadsheet analysis methods to
perform trades like the one described above. This requires a high level of expertise as well as
access to tools in several development environments, and can be inefficient and time
consuming. Integration of these tools, through reference architecture archetypes and through
AMIL could speed the design process.

7.5.4 META Challenge Problem

To provide context for the IFV systems engineering studies conducted under the META
program, several challenge problems were addressed. This section provides the Ramp

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

Assembly challenge problem created by the BAE Systems Team. This challenge problem was
created to provide examples of complex systems-level vehicle requirements, as well as a multi-
domain (electrical, mechanical, and control systems) challenge to illuminate some of the
complexities associated with military combat vehicle design.

The problem materials are packaged in two parts: the challenge problem main body, plus a
related Combat Fighting Vehicle Performance Specification specifically crafted to feed that
challenge problem.

7.5.4.1 Design Space Challenge Problem: Ramp Assembly

7.5.4.1.1 Challenge Problem Purpose

Enable the META and META II participants to illustrate key capabilities of the technologies
and approach they have and/or are developing in the context of a non trivial problem that
exists in the combat vehicle design space today.

7.5.4.1.2 Challenge Problem Goals

This Challenge problem will:

 Invite alternative solutions for the ramp assembly and its supporting subsystems and/or

components to enable subsequent selection of solutions for further design exploration

 Encourage trade-off of multiple inter-related subsystems/component alternatives in order

to realize an optimal solution for the given set of criteria

 Enable META/META II participants to showcase their specific toolset capabilities

without requiring them to showcase all aspects of the challenge problem

- Encourage teaming of META/META II performers to stretch toward a large-scale

problem

 Be achievable by the September Meeting of the META and META II programs (or

earlier).

 Invite definition of selection criteria for defining correctness of solution alternatives

 Invite definition of parametric component properties that relate to selection criteria (e.g.,

if system weight is a criteria, component weight might scale with power output capability)

7.5.4.1.3 The Design Challenge Problem Statement

Design a ramp assembly for a Combat Fighting Vehicle (CFV), together with at least one interfacing
subsystem, using your toolset and/or workflow, such that the total system solution (ramp plus subsystem(s)
of interest), is optimized to a set of system-level Correctness Criteria, and is additionally conformant to
the System Requirements referenced herein.

META II performers can either team to accomplish the total design, or address an area of the total
problem specific to their initiative. There are aspects of the ramp design problem pertinent to all
META/META II Technical Areas: It is highly scalable, contains contributions from every design
domain, including cyber-physical subsystems, and is very addressable from an operational context.

7.5.4.1.4 Ramp Concept of Operations

Mission:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

The ramp assembly enables mechanized infantry squad mount/dismount operations with a
CFV. The ramp assembly is also used to assist in upload/download of supply classes (e.g.,
ammunition, mission equipment, food and water, and spare and failed parts) and
onload/offload of soldiers requiring evacuation and medical attention.

General Description:

The ramp assembly is an automated inclined vehicle egress/ingress pathway that connects
the CFV squad compartment with the ground surface.

Ramp Operations Battlefield Context:

Squad mount/dismount operations occur at decisive and tactical locations on the battlefield
on a variety of terrain conditions (e.g., at extreme slopes, and on concrete/asphalt, dry, or
muddy surfaces). Typically the CFV is oriented in the direction of the mission objective to
maximize protection against hostile fire, direct fires for infantry dismounted assaults, and
destructive fires against threat vehicles. The CFV will turn-off squad compartment interior
lighting when the ramp is opened. The ramp assembly will either provide and/or adapt
ballistic protection against ballistic threats.

Ramp Operations Activities:

Ramp operations activities begin when the CFV is at its decisive and/or tactical position on
the battlefield. The set activities needed to support ramp operations are the same whether
they be to mount/dismount an infantry squad, or to assist in the upload/download supplies
or to onload/offload soldiers in need. The set of ramp operations activities includes the
following:

 Clear the ramp area for safe operation

 Command and control of ramp operations for the vehicle commander, squad leader,

and driver

 Unlatch/Latch Ramp

 Lower/Raise Ramp

 Mount/Dismount an infantry squad

 Assist in upload/download of supplies and/or evacuation of soldiers in need

 Stop ramp motion upon operator initiation

Typical Ramp Operations Sequence:

The driver clears the ramp area for safe use once the squad leader or the vehicle commander
orders the squad to prepare to dismount. It should be noted that at any given time the
presence of soldiers in the vicinity of the ramp area can occur. Once the driver determines
that the ramp area is safe, the driver lowers the ramp. Squad compartment interior lights will
be turned off when the ramp initiates opening. Upon the squad leader’s order, the infantry
squad dismounts up to 2 soldiers abreast with load bearing equipment and assigned
individual/crew served weapons and sometimes outfitted with Arctic gear. Command and
Control (C2) of ramp operations involves operator controls and indicators (e.g., ramp safety,
motion, open/closed positions, and latched/unlatched) for the vehicle commander, driver, and
squad leader. Once the infantry squad dismounts and clears the ramp area, either the
dismounted squad leader notifies the driver that the ramp can be closed or the driver

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

determines that the ramp can be safely closed. The driver informs the vehicle commander
that the vehicle is ready for maneuvers when the ramp is in the closed position. At any given
time ramp movement can be stopped by the driver.

Concept Environments:

The ramp assembly will operate in extreme cold and hot weather conditions (temperature and
humidity) and restrict the entrance of rain, hail, snow, and water when closed. The ramp
assembly will handle the shock loads and vibration of vehicle movement on hardened surface
roads (concrete/asphalt) and cross-country terrain, and the transportation shock loads
(including rail hump) and vibration associated with sea, rail, truck, and/or air transportation
modes.

Maintenance Concept:

Cleanliness of the ramp assembly will be maintained by either steam or water washing
equipment.

7.5.4.1.5 System Requirements

See the accompanying document ―Ramp Assembly Design Space Challenge Problem Combat
Fighting Vehicle Performance Specification‖ (Challenge Problem CFV Perf Spec.docx). Each
participant is encouraged to

 Parameterize quantitative constants in these requirements such that tool solutions can

be easily reused if such quantitative values change.

 Decompose these System-level (Vehicle-level) requirements to lower level requirements

(subsystem, assembly, component) as necessary to support design of the ramp assembly

and any supporting chosen subsystems.

7.5.4.1.6 Context Elements

The following are systems or environmental elements that interface with or can affect the
performance of the ramp assembly:

 Ground/Terrain (e.g., asphalt, concrete, dirt/mud, gravel, contour)

 Soldier (Safety, physical stature, ergonomics)

 Natural Environment (e.g., temperature, humidity, dust, solar radiation, salt fog, rain,

hail, snow)

 Hull

 Appliqué Armor

 Electrical/Hydraulic Power Source

 Crew/Operator Indicators & Controls

 Software

 Actuator(s) (e.g., electrical/hydraulic motors)

 Sensor(s) (e.g., position, limit)

 Latches and Locks

7.5.4.1.7 Sample Correctness Criteria

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

Use any of the factors below or an alternative approach of your choosing to evaluate the
optimal correctness of the total ramp assembly and supporting subsystems/components
solution(s):

These factors should be treated as variables rather than constants.

 Criteria

- Space

- Weight

- Power Consumption

- Heating/Cooling

- Cost

- Human Systems Integration (HSI)

- Force Protection

- Survivability

 Weighting factors for each criterion

 Utility functions for select or all criteria

7.5.4.1.8 Sample Analysis of Alternatives (AoA) Approach:

Consider the following alternatives to be traded:

 Alternative discrete components

 Alternative parametric attributes of components

- Attribute values functions of other traded values

 Alternative number of component instances

 Alternative combinations of and interconnectivity of components

 Alternative location of components within a common constraining envelope

 Combinations of any and all of the above

7.5.4.2 Challenge Problem CFV Performance Specification

This section provides a sample subset of generic Combat Fighting Vehicle performance
specifications that can be used to drive the requirements for a challenge problem. This section
was originally delivered as a separate, independent document. This is reflected in the wording
and some of the definitions and explanations provided. These have been left in this form so the
section can more easily be removed and used to support a challenge problem exercise.

Some of the specifications included here are specific to the ramp assembly itself, while others
refer to the vehicle in general, but critically influence the ramp development. These have been
color-coded to help the reader differentiate the two.

Specification Highlight Legend:

Green text – Chassis/Mobility requirements

Yellow Text – Design constraint and/or ramp-related requirements

7.5.4.2.1 Challenge Problem Scope

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

7.5.4.2.1.1 Identification

This document is a typical set of customer requirements of varying degrees of quality that
could be experienced during the development of a complex cyber-physical system, such as a
CFV for the DoD. In particular, this document limits its scope to requirements that would
likely influence the design of the Ramp Assembly portion of such a CFV. A new innovative
technology and model-based approach for DoD material development must contend with
customer requirements.

7.5.4.2.1.2 Program Overview

The goal of the META program is to reduce the DoD development cycle time by a factor of 5x
over current cycle time. The META program applies an innovative technology employing a
model-based approach to revolutionize the design and verification processes currently used by
the DoD industry. META program objectives include: developing new metrics and flows for
the innovative model-based material development approach, and defining and developing the
new infrastructure (tools, models, component/manufacturing data bases) required for the
industry.

7.5.4.2.1.3 System Overview

The CFV is a tracked, medium armored vehicle which provides cross-country mobility, for
mounted firepower, communications, and protection to a mounted mechanized infantry squad,
and overwatch support for a dismounted infantry squad.

7.5.4.2.1.4 Document Overview

This document is a ―representative set‖ of performance, functional, interfaces, and design
constraint requirements for a CFV, which upon further decomposition, would influence the
design of the Ramp Assembly of the CFV. Both mechanized infantry problem and solution
domains in breadth and depth are stated as requirements. The requirement statements vary in
maturation and quality due to issues such as: necessity, conciseness, measurability, clarity,
implementation/design freedom, attainability/feasibility, completeness and stand-alone,
consistency, verifiability, singularity, uniqueness, proper level, and positivity.

7.5.4.2.2 Requirements

7.5.4.2.2.1 Performance Requirements

Unless otherwise specified, performance requirements in the following paragraphs shall be met
with the CFV at maximum combat weight, resting on a flat, hard, level surface, and over the
range of environmental conditions specified herein. Requirements relating to personnel shall
apply to males in the 5th through 95th percentile in stature wearing Mission Oriented
Protective Posture (MOPP-IV) gear and Arctic gear.

7.5.4.2.2.1.1 Operational Profile

The CFV shall be capable of 24 continuous hours of combat as follows:

a. Sixteen hours shall consist of:

35% (5.6 hr) at rated engine idle speed.

35% (5.6 hr) over cross-country terrain from 2.0 miles per hour (mph) to
maximum safe speed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

20% (3.2 hr) over dirt and gravel roads from 10 mph to maximum safe speed.

10% (1.6 hr) on hard-surfaced roads at 10 mph to maximum operating speed.

b. Eight hours shall be at silent watch with electrical equipment operated as needed for
no more than three continuous hours, depending on ambient temperature, without recharging
batteries.

7.5.4.2.2.1.2 Acceleration

The CFV at combat weight shall accelerate from a standing start with the engine idling to 50
mph in not more than 25 seconds under nominal conditions. The CFV, at curb weight, shall
accelerate from 0 to 50 mph in not more than 20 seconds.

7.5.4.2.2.1.3 Slope Operation

The CFV shall ascend, descend, and emplace on dry slopes up to 60% either forward or
backward, and shall maintain at least 15 mph in the forward direction while climbing hard-
surfaced slopes up to 15%. The CFV shall maneuver on dry side slopes up to 45% either
forward, backward, or emplace. The CFV shall support all ramp operations required herein
while emplaced per this requirement.

7.5.4.2.2.1.4 Steering: Pivoting

The CFV shall pivot 360 deg right or left within a 35-ft diameter circle.

7.5.4.2.2.1.5 Water Operation: Fording

Under its own power, the CFV without special preparations shall ford water up to 50-inch deep
with up to 35% embankment slopes, while retaining full functionality.

7.5.4.2.2.1.6 Towing

The CFV, operating either forward or in reverse, shall tow comparable CFVs over cross-
country terrain. In the forward direction, the CFV shall be capable of towing such a CFV cross-
country at up to 5 mph for 10 miles.

7.5.4.2.2.1.7 Survivability: Armor

The CFV armor protection shall be as specified in Appendix XXX. The CFV shall provide
mounting provisions and space claim to mount supplemental armor as described in ICDs XXX.
The CFV shall provide protection against 14.5 mm machine gun and RPG-7 threats.

7.5.4.2.2.1.8 Auxiliary Systems

7.5.4.2.2.1.8.1 Intercom

The CFV shall accommodate a vehicular intercommunication system with controls at the
commander’s station and communications ports at each vehicle member station.

7.5.4.2.2.1.8.2 Rear Ramp

The time required for the rear ramp to fully open or close with the engine running shall not
exceed 10 seconds. The ramp shall incorporate a lock/unlock mechanism.

7.5.4.2.2.1.8.3 Seals

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

Static seals shall prevent Class II and Class III leaks. Dynamic seals shall prevent Class III
leaks. Class II and Class III leaks are defined in paragraph 6.3.10 herein.

7.5.4.2.2.1.8.4 Blackout Lighting: Interior Lighting

All interior lights, except lights for turret control and turret drive power indication, shall
extinguish automatically when either the rear ramp or the rear door is opened.

7.5.4.2.2.1.8.5 Driver’s Switches and Indicators

The CFV shall provide the following operator controls and indicators:

a. Ramp Up/Down switch and unlocked indicator

7.5.4.2.2.1.9 Emergency Operation

The CFV shall provide an emergency operation capability in the case of electronics failures.
Vehicle operations requiring backup include:

a. Fuel Pump operation

b. Steering operation

c. Transmission operation

d. Ramp up/down

e. Ramp Lock/unlock

7.5.4.2.2.2 Physical Characteristics

7.5.4.2.2.2.1 Weight

The air shipping weight of the CFV shall not exceed 60,000 pounds. The curb weight shall not
exceed 100,000 pounds. The maximum combat weight shall not exceed 120,000 pounds.

7.5.4.2.2.2.2 Dimensions.

The dimensions when configured for shipping, height shall not exceed 120 inches, width 110
inches, and length 250 inches.

7.5.4.2.2.2.3 Angle of Approach/Angle of Departure

The angle of approach for the CFV, defined as the angle between the ground and a line through
the forward most part of the hull and track, shall be a minimum of 75 deg. The angle of
departure, defined as the angle between the ground and the rear-most part of the hull and track
(excluding the pintle) up to at least 40 inches, shall be a minimum of 50 deg.

7.5.4.2.2.2.4 Ground Clearance

The CFV shall have a minimum ground clearance to the bottom of the hull of 18 in at the front
and 16 in at the rear.

7.5.4.2.2.2.5 Interior Arrangement: Space Allowance

Space calculations shall use a 95th percentile (in stature) male wearing Arctic clothing and
MOPP-IV gear. Space allocation for the squad members, driver, gunner, and commander shall

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

be in accordance with DOD96. Interior stowage space shall be provided for the fighting
equipment of the squad.

7.5.4.2.2.2.6 Ramp

The CFV shall include a ramp at its rear that permits rapid entry and exit of personnel and
supplies. The ramp shall include a door. The ramp shall satisfy the following requirements:

a. Incorporates a blackout state position sensor or switch.

b. Restricts the entrance of water into the CFV during fording.

c. Has a means of being padlocked from the outside.

d. Permits side-by-side mount/dismount of two 95th percentile (in stature) males
wearing Arctic clothing and MOPP-IV gear.

7.5.4.2.2.3 Environmental Conditions: Storage and Transport

The CFV shall be capable of being stored and in transit without sustaining damage under the
climate design types hot, basic, cold, and severe cold, including all daily cycle categories as
defined in [DOA79} table 2-1; i.e., -60 °F to +160 °F induced air temperature.

7.5.4.2.2.3.1.1 Storage and Transit Humidity

The CFV shall be capable of being stored and in transit without sustaining damage under the
climatic design types hot, basic, cold, and severe cold, including all daily cycle categories as
defined in [DOA79] table 2-1; i.e., nil to 100% induced relative humidity.

7.5.4.2.2.3.1.2 Storage

The CFV shall not require preservation for storage less than 120 days. The CFV shall require
preservation prior to storage exceeding 120 days.

7.5.4.2.2.3.1.3 Altitude

The CFV shall be capable of being stored and in transit up to 40,000 feet above sea level.

7.5.4.2.2.3.2 Operating Conditions: Climate

The CFV shall be capable of operating under the conditions specified in DOA79, for the
climatic categories hot and basic without a cold start aid, and categories cold and severe cold
with an aid, with the exceptions in paragraph 3.3.2.2.

7.5.4.2.2.3.3 Steam and Waterjet Cleaning

The CFV shall demonstrate no performance degradation and show no evidence of damage or
deformation following a steam and waterjet cleaning process which uses a cleaner conforming
to P-C-437 Type II, P-D220D, or commercial equivalent. Jet pressure shall be 100 ±10 pounds
per square inch gage (psig) for steam and 40 ±10 psig for water. The jet shall be applied
perpendicular to the assembly from a distance of not more than 1 foot for steam and not more
than 3 feet for water. The assembly shall be subjected to the jet at the rate of not less than 1
ft2/min.

7.5.4.2.2.4 Reliability

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

The CFV including Government furnished equipment shall maintain at least 500 Mean Miles
Between Failures (MMBF) when operated as described in 3.1.1.1. The CFV Mean Time
Between Failures (MTBF) shall be greater than 120 hours (Threshold) and 168 hours
(Objective).

7.5.4.2.2.5 Availability

The CFV including government furnished equipment shall maintain achieved availability of at
least 0.80 when operated as described in 3.1.1.1. Achieved availability is defined as the ratio of
operating time to the total of operating and maintenance time.

7.5.4.2.2.6 Safety

The CFV shall ensure the highest degree of safety and health consistent with mission
requirements throughout its life cycle.

7.5.4.2.2.7 Logistics/Diagnostics: Self-Test Built-In Test (SBIT)

SBITs, internal to each subsystem, shall execute automatically upon power up and results shall
be displayed within 20 seconds of the application of power to the turret electronics.

7.5.4.2.2.8 Design and Construction: Materials

All materials, parts, and processes selected for use in the CFV construction shall be compatible
with the safety, performance, and environmental requirements as specified herein.

7.5.4.2.2.8.1.1 Fungal Growth

Materials used in the CFV shall not support fungal growth.

7.5.4.2.2.8.1.2 Corrosion Resistance

Metals and alloys used in the construction of the CFV that are exposed to corrosive
environmental conditions shall be corrosion resistant or shall be coated or metallurgically
processed to resist corrosion. Except where impractical, dissimilar metal combinations that
promote corrosion through galvanic action shall be insulated to prevent corrosion.

7.5.4.2.3 Definitions

Curb Weight. The CFV is complete with all components and systems, fully serviced with
liquids and one-fourth full fuel tank, with track pads, driver, no OVE, no weapons installed, no
other crew or squad aboard, no BII, AAL or ICOEI, no ammunition or water, and no
supplemental armor tiles. Items may be simulated by ballast weights located at the appropriate
center of gravity.

Combat Weight. The CFV is complete with all components and systems, fully serviced with
liquids and a full fuel tank, with track pads, all OVE BII, AAL, ICOEI, 25 mm and 7.62 mm
weapons installed, all ammunition and water, crew and squad, and supplemental armor tiles
installed. Items, such as crew, ammunition, supplemental armor tiles, etc., may be simulated by
ballast weights located at the appropriate center of gravity.

Approximately. As close as reasonable for the intended purpose. In the opinion of the operator
the item being tested will not cause failure or malfunction of the system, or cause the system to
not function.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

Smooth. In the opinion of the operator, the item being tested does not exhibit discernable
erratic operation, chatter, jump, bind, skip, or does not prevent the operator from properly
functioning the item being tested.

Subjectively. An intuitive and conscious consideration by the operator, that the item being
tested, observed, or checked meets or exceeds the intended function.

Focus. Clear, without blurriness, objects at a distance of more than 200 m are sharp and clear.

Subjective Evaluation. This verification is a subjective evaluation of the operation or response
of the system or component in question. Conclusions of success depend on the interpretations
of an experienced operator/tester, rather than on numbers derived from instrumentation, bus
data, or other quantitative results.

Hardware/Software Test. Specific functions, responses, and other parameters of the system or
component in question have been measured or determined during Software/Hardware Final
Qualification Tests, component tests, or subsystem tests. Therefore, quantitative or
instrumented measurements at the system/CFV level may not be required.

Previous Tests. Where appropriate, use the procedures and results of tests of other functions
as evidence that the requirements of this paragraph are met.

Classification of Leaks. Class I: Fluid seepage is not great enough to form drops, but is shown
by wetness or color changes. Class II: Fluid leakage is great enough to form drops. Drops do
not drip from the item being checked or inspected. Class III: Fluid leakage is great enough to
form drops that fall from the item being checked or inspected.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.5 – Notional Demo System Application

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

7.5.5 Bibliography

[DCS99] D. Curtis Schleher, Electronic Warfare in the Information Age, Artech House, 1999.

[DOA79] Department of the Army (1979), AR 70-38: Research, Development, Test and Evaluation
of Materiel for Extreme Climatic Conditions, http://www.apd.army.mil/pdffiles/r70_38.pdf.

[DOD96] Department of Defense (1995), MIL-HDBK-759C: Handbook for Human Engineering
Design Guidelines, available at http://www.hf.faa.gov/docs/508/docs/milhdbk759C.pdf.

[SF09] Sanford Friedenthal, et al, A Practical Guide to SysML, The MK/OMG Press, Elsevier
Inc, 2009.

[SF10] Sanford Friedenthal and Joseph Wolfrom, ―Modeling with SysML‖,, a tutorial
presented at INCOSE 2010 Symposium, Chicago, IL, July 2010. Published by The John
Hopkins University Applied Physics Laboratory.

http://www.apd.army.mil/pdffiles/r70_38.pdf

http://www.hf.faa.gov/docs/508/docs/milhdbk759C.pdf

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)
Phase 1b Final Report
TR-2742

Appendix 7.6 – Advanced Reasoning and Extended Applications of
ARRoW Technology

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)
4800 East River Road
Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.6 Advanced Reasoning and Extended Applications of ARRoW Technology 1

7.6.1 Applying ARRoW to Automation ... 1
7.6.1.1 The Goal of Reducing Complexity ... 1
7.6.1.2 Complexity Reducers ... 7
7.6.1.3 Engineering Domains ... 21
7.6.1.4 Application of Reasoning Languages .. 29

7.6.2 Co-Analysis and Exploration ... 43
7.6.2.1 Principles behind GEAR .. 43
7.6.2.2 ESKER ... 61
7.6.2.3 Ontology-based Logic Reasoners .. 84
7.6.2.4 ECTo... 98
7.6.2.5 Co-Analysis Flow using GEAR ... 98

7.6.3 Co-Simulation and T&V ... 99
7.6.3.1 MoCC and Heterogeneous Simulation ... 101
7.6.3.2 Tagged Signal Model.. 101
7.6.3.3 Multi-Physics and Compartmentalization ... 126
7.6.3.4 AMIL Configuration and Specification ... 129
7.6.3.5 Probabilistic Certificate of Correctness .. 134

7.6.4 Distributed Computing Speed-Up Potential .. 138
7.6.4.1 Spatial Computing ... 138
7.6.4.2 Generic Inferencing ... 138

7.6.5 Bibliography .. 140

List of Figures
Figure 7.6-1. Galileo Reasoning and Evaluation Tool Space ... 1
Figure 7.6-2. Graph Technology Used with Galileo .. 2
Figure 7.6-3. Search is Used for Solving Constraint Satisfaction Problems 3
Figure 7.6-4. Organization and Consolidation of Models, Towards a Component Model
Library .. 4
Figure 7.6-5. Synthesis, Co-simulation, and Co-analysis Operate Within an Ensemble
Environment ... 6
Figure 7.6-6. Control of Co-analysis, Co-simulation, and Synthesis .. 7
Figure 7.6-7. Component Encapsulation with Cached and Triggered Updates 8
Figure 7.6-8. Declarative Approach for Constraint Solvers ... 9
Figure 7.6-9. Influence Diagrams are More Useful for Showing the Directed Interactions than
a Design Structure Matrix .. 10
Figure 7.6-10. Partially Decomposable Systems .. 11
Figure 7.6-11. DSM Application Domains (from Pimler and Eppinger, 1994) 12
Figure 7.6-12. Design Structure Matrix for Information - Utility Functions Trade-off Criteria
for Different Design Choices .. 13
Figure 7.6-13. Heterogeneous Interfaces ... 13
Figure 7.6-14. Set-Based Concurrent Engineering Continuously Tracks Open Alternatives
While Culling Out Poor Design Choices .. 14
Figure 7.6-15. A Provenance Strategy Manages Development Processes that Require Multiple
Steps ... 15

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

Figure 7.6-16. Sources of Defects that TDD Aims to Mitigate .. 16
Figure 7.6-17. Parallel Development Process Speeds Development ... 17
Figure 7.6-18. Abstraction Levels in a Multi-Physics Domain Example 18
Figure 7.6-19. Test Space Sampling Generates a Histogram for PCC Evaluation 19
Figure 7.6-20. Diagnostic Aids Used to Discover a Design Problem ... 20
Figure 7.6-21. Paths to Stochastic Formal Verification - Stochastic Elements Starting from
Co-analysis to Co-simulation ... 21
Figure 7.6-22. Graph of Analysis Archetype for Projectile Fly-Out Simulation 22
Figure 7.6-23. Archetypes for Analyzing a Derived Fault-Tolerant Reliability Requirement . 23
Figure 7.6-24. Auto-Generated Expansion of Reliability Block Diagram 24
Figure 7.6-25. Design Structure Matrix Interactions Needed for Knowledge Engineering 26
Figure 7.6-26. ARRoW’s Template-Based Look-Ahead Concept .. 27
Figure 7.6-27. Test Space Exploration Uses Similar Combinatorial Techniques to Search the
Test Space as Used for DSE ... 29
Figure 7.6-28. AMIL as a Knowledge Store .. 31
Figure 7.6-29. Code Sample 1: JSON Parser and Store Rules ... 31
Figure 7.6-30. Code Sample 2: GEAR Reasoner Which Finds the Maximum Density from
Elements in a Set ... 32
Figure 7.6-31. Code Sample 3: GEAR Web Server with Handlers Pointing to Rules 33
Figure 7.6-32. Difference Between Prolog (left) and a Controlled Natural Language (right) .. 37
Figure 7.6-33. An example of a Typical Assisted Editing Environment for Query Development

 ... 37
Figure 7.6-34. Loading META/CFV Ontologies and SWEET Ontologies 38
Figure 7.6-35. Correct-By-Construction Application Involving a Heterogeneous Multi-
physics Interface .. 40
Figure 7.6-36. Analysis Archetype Rules ... 41
Figure 7.6-37. Behavioral Archetype .. 45
Figure 7.6-38. Alternate Rule Layout ... 46
Figure 7.6-39. Gear Suite ... 48
Figure 7.6-40. Abstract Representation of the Operating Environment .. 49
Figure 7.6-41. Dispatch Work Center .. 50
Figure 7.6-42. Material Move Specification in Prolog .. 54
Figure 7.6-43. Testing the Logical Specification .. 55
Figure 7.6-44. Adding Material Availability Constraint .. 56
Figure 7.6-45. Architecture of the Optimization Shell .. 64
Figure 7.6-46. AMIL-like Connections Between the Main Application and Server Applications

 ... 64
Figure 7.6-47. Part of the Prototyped HTML ESKER Query Interface .. 75
Figure 7.6-48. Web-Served Version of ESKER Used to Populate the Knowledge Base 83
Figure 7.6-49. Ontological Reasoners Follow a Similar Pattern of Encapsulating the Deeper
Semantic with a Uniform Logical Front-end ... 85
Figure 7.6-50. N3 Ontology for Engine and the Equivalent “invisible” Triples They Represent
(To the Right) .. 86
Figure 7.6-51. Weight, Horsepower, Speed Reasoner .. 87
Figure 7.6-52. CML Query Example .. 88
Figure 7.6-53. Parts Repository ... 89
Figure 7.6-54. Call to the SWEET Ontology ... 89

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. iii Refer to cover page for Distribution Statement.

Figure 7.6-55. Component Model Library N3 .. 91
Figure 7.6-56. CML library query ... 92
Figure 7.6-57. Book Ordering ... 93
Figure 7.6-58. Terrain Querying Similar to Book Ordering ... 94
Figure 7.6-59. The Web Service Composer Will String Together a Sequence of Service Calls
from an Ontology to Allow Flexibility in the Creation of a Composable Workflow 94
Figure 7.6-60. ISTAR Query (from [SMV11]) .. 95
Figure 7.6-61. Ontology for a Set of Components with Properties ... 96
Figure 7.6-62. Reasoner Which Understands How to Derive Mass from Shape Properties 97
Figure 7.6-63. Flow of Co-analysis from Initial Requirements Using Automation where
Possible .. 98
Figure 7.6-64. AMIL Nodes Serve as Plug-Ins Within a Distributed Co-Analysis 99
Figure 7.6-65. Composable Workflow Analysis Which is a Loosely-coupled, Service-Oriented
Architecture .. 100
Figure 7.6-66. Typical High-speed Co-simulation Network with Direct Data Paths Between
Communication Ports .. 100
Figure 7.6-67. MoCC Applied to Modeling of a Drivetrain .. 101
Figure 7.6-68. The tagged-signal model allows interoperability of different MOCC. 103
Figure 7.6-69. The Tagged-signal Model Encompasses a Family of Simulation Behaviors
(from Lee and Sangiovanni-Vincentelli). ... 104
Figure 7.6-70. Tagged Signal Runtime Polymorphism .. 106
Figure 7.6-71. A Typical Architecture of an Agent-Based Co-Simulation 107
Figure 7.6-72. Distributed Command Pattern for Selecting Among Alternative
Implementations .. 108
Figure 7.6-73. The Application of Middleware .. 109
Figure 7.6-74. Use of Distributed Pattern in Co-simulated Multi-physics Regime 126
Figure 7.6-75. Multi-Physics Data Flow and Integration ... 127
Figure 7.6-76. Multi-Physics Behavior Often Occurs Over Non-overlapping Time Intervals,
Allowing a Separation of Concerns ... 128
Figure 7.6-77. DSM for Compartmentalizing ... 129
Figure 7.6-78. Launching co-simulation apps ... 131
Figure 7.6-79. Logical Triples and Tuple Configuration ... 132
Figure 7.6-80. The Distributed Simulation is Collapsed into the Monolithic Model “Node-0”

 ... 133
Figure 7.6-81. A Multivariate PDF Drawn from 3 Normal Distributions and Applied to
Solving a Quality Factor, Q .. 135
Figure 7.6-82. Test Space Evaluation Using ESKER to Map Importance Sampled Test Cases

 ... 137
Figure 7.6-83. Bayes Update of PCC Applied During Reasoning .. 137
Figure 7.6-84. Generic Reasoning Allows Several Different Approaches to Potentially Be
Unified ... 138
Figure 7.6-85. Valuation Algebras Used in Generic Inferencing Run the Gamut of Decision
Theory ... 139

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. iv Refer to cover page for Distribution Statement.

List of Tables
Table 7.6-1. Enduring Engineering Properties ... 2
Table 7.6-2. List of Prototype Optimization Problems .. 66
Table 7.6-3. Elicitation Table ... 77
Table 7.6-4. Categorization of Configuration Parameters for Co-simulation and Co-analysis 130

List of Symbols, Abbreviations, and Acronyms for Appendix

Symbol,
Abbreviation,

Acronym
Definition

AIDE ARRoW Integrated Development Environment

AMIL ARRoW Model Interconnection Language

API Application Programmers Interface

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CGI Common Gateway Interface

CML Component Model Library

DAML DARPA Agent Markup Language

DCP Distributed Command Pattern

DL Description Logic

DSE Design Space Exploration

DSM Design Structure Matrix

DSS Decision Support System

ECTo Early Concepting Tool

ESKER Expert-System Knowledgebase Evaluation Reasoner

FIFO First In First Out

GEAR Generative Archetype Reasoning

GUI Graphical User Interface

HLA High Level Architecture

IFV Infantry Fighting Vehicle

IPC Internet Protocol Communications

JSON JavaScript Object Notation

MOCC Models of Computation and Communication

NABK NATO Armaments Ballistic Kernel

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. v Refer to cover page for Distribution Statement.

Symbol,
Abbreviation,

Acronym
Definition

OLP Onto-Logical Programming

OOP Object Oriented Programming

OWL Web Ontology Language

PACE Prototype Agile Component Environment

PCC Probabilistic Certificate of Correctness

QSP Qualitative State Plan

RDF Resource Description Format

RMPL Reactive Model-based Programming Language

SAF Semi Automated Forces

SOAP Simple Object Access protocol

SPARQL Simple Protocol and RDF Query Language

SVN Subversion

SWEET Semantic Web for Earth and Environmental Terminology

TCP Transmission Control Protocol

TDD Test-Driven Development

TSE Test Space Exploration

TSM Tagged Signal Model

UML Unified Modeling Language

URL Uniform Resource Locator

VHDL Virtual Hardware Description Language

XML Extensible Markup Language

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.6 Advanced Reasoning and Extended Applications of ARRoW
Technology

7.6.1 Applying ARRoW to Automation

7.6.1.1 The Goal of Reducing Complexity

7.6.1.1.1 ARRoW and the Design Cycle

The aim of ARRoW is to apply an efficient, concurrent evaluation process to the design, test,
and diagnose cycle. We broke the reasoning and evaluation capabilities out into general
categories that cover the design space and test space, and labeled the automated tools that fit
under these categories as Galileo. In practical terms, Galileo covered the planned set of tools
that would operate on and reason with ARRoW Model Interconnection Language (AMIL) data
and library information.

We further categorized the tools that (1) helped with composition/synthesis, (2) provided co-
analysis, and (3) provided co-simulation support. Figure 7.6-1 shows where these tool
categories fit within the ARRoW cycle. Since ARRoW defines an adaptive workflow
development, we pay special attention to composable workflow reasoners and using a set-based
strategy for maintaining flexibility with regard to product requirements.

The ARRoW automated design cycle

The necessary level of automation that orchestrates and choreographs
the development and test process (code named Galileo)

Synthesis by
Graph Semantics

Co-Analysis by
Graph Semantics

Behavioral
Co-Simulation T&V

Synthetic Repair
and OptimizationLanguage geared toward synthesis

Language geared toward analysis

Language geared toward simulation

Design Space Exploration Test Space Exploration

Figure 7.6-1. Galileo Reasoning and Evaluation Tool Space

7.6.1.1.2 Graph and Search

We took a data-centric approach to tool development and leaned heavily on the strong
organization principles provided by data modeling languages such as AMIL and the standard
Resource Description Format (RDF). Two principles that we learn from advances in

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

information technology are the adages that all information is dependent on a graph of some sort
and that all engineering is based on search principles. In other words, all information is a Graph,
and all process is Search.

So when we work Design Space Exploration (DSE) and Test Space Exploration (TSE), we rely
heavily on deep organization and classification principles, while obviously using computer-
automated search techniques to discover solutions and root out problems.

As Table 7.6-1 demonstrates, we apply specific search objectives and craft elements into the
graph that allow for the most efficient solution to a problem. So then Galileo becomes a mix of
reasoners and solvers that effectively perform a search on a state-space.

Table 7.6-1. Enduring Engineering Properties

 Search Objective Graph Elements

Co-Analysis Design Space High-Abstraction

Co-Simulation Test & Verification High-Fidelity

Logical Reasoning Correct-by-Construction Assume-Guarantee

Graph. The ARRoW information organization centers on our use of AMIL and RDF. Figure
7.6-2 demonstrates the significant distinction between AMIL and RDF. A topological view
reveals that the two graph languages are structurally identical, but that AMIL provides a
dynamic element which can provide additional active content to the data stores.

Figure 7.6-2. Graph Technology Used with Galileo

As indicated in the figure, the RDF and AMIL graphs are equivalent except for potential
behavioral dynamics of the nodes shown in RED. The node evaluation semantics make this an
active data store which cannot be duplicated with off-the-shelf triple-store technologies. Only
by adding an external reasoner can one implement dynamic solutions; with AMIL this is built-
in and used as needed.

Search. Figure 7.6-3 shows one example of a search problem applied to a vehicle design
exploration demonstration. The search criteria involved finding optimal values subject to
possible conflicting constraints.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

Constraint Satisfaction Approach

All good Marginal
Thickness requirements

for motor (thickness weight)

Max

All goodMarginal
Thickness requirements

for survivability

Min

Pick from Discrete Choices optimal not always the best approach,
as generating a solution with a margin leads to better adaptability and robustness

0.5” 1” 2”

Figure 7.6-3. Search is Used for Solving Constraint Satisfaction Problems

Can a graph search itself? The key element to facilitating efficient search is to use external
reasoners to supplant the active content of a language such as AMIL. The set of reasoners and
solvers referred to as the codename Galileo accounts for this capability.

To demonstrate the needs, we consider one case that could use the dynamics of AMIL and
another which we may consider it as overkill.

A practical case is one where a reusable model contains a dynamic calculation which depends on
a few other properties of the system. To make the model easy to use, a dynamic calculation is
embedded into the AMIL node and then saved as code linked to the CML library. When a user
wishes to evaluate the node, no parameters are needed and the user can simply access that value
isomorphically as a property. Then the active content of the node gets invoked and returned to
the user as a value.

A more complex case can be managed by pairing AMIL with custom reasoners. Such cases,
like tracking the meta-information in a large CAD model, can comprise a graph in the form of
an extended tree, much like that shown in Figure 7.6-2. Design engineers manage an assembly
as a dynamic object with its mass dependent on what the assembly contains. Therefore an
aggregated mass calculation on an assembly node is a perfect candidate for an AMIL type of
dynamic node. Yet, since current specialty engineering tools like CAD/CAM systems often do
not do this well, we instead use back-chaining reasoners because:

1. Specificity. The reasoner can be told to calculate the weight of an assembly main
component, the entire assembly, or the weight of the assembly a number of N levels
down. An AMIL-like dynamic calculation of assembly weight has no easy way of
controlling this.

2. Efficiencies of computation. An external reasoner can readily adopt dynamic
programming and join tree strategies, which can cut down the search space and the
number of computations required.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

3. Greater knowledge. For analysis, all states of the system are known. For example, the
reasoner does not have to follow a specific path if the valuation of that path is known to
not have changed (refer to 7.5.1.4.1).

4. Self-consistency. Side effects caused by a dynamic approach may lead to non-
deterministic solutions.

5. Unknown data, underspecified or overspecified data. If data is not available the reasoner
can deal with it. If it is overspecified, the reasoner can provide multiple solutions and an
explanation for what generated the solutions.

Combining AMIL with reasoners provides a very practical solution without breaking the
design tenets of AMIL: the light-weight, adaptive nature that provides the efficiency and broad
applicability necessary in the heterogeneous environment. For example, for the problem of
over-specified data, we can use a reasoner to provide for a comprehensive set-based approach to
development. In this case, the over-specified data (such as alternate design choices) become part
of the set of design choices that we can reason against (refer to 7.5.2.2). To leverage AMIL
directly, we can embed a query into a node that understands how to call a CAD model like
Pro/E and ask for the mass, realizing that the tool manipulating the vehicle structure can do a
much better job than in its native environment (refer to AMIL7.5.1.4.1).

7.6.1.1.3 Organization of Models and CML

The reasoners we developed interact heavily with the content and classification organization of
a comprehensive component model library. The library itself, in keeping with the traditional
approach, will provide several interfaces: (1) a classification system based on data ontologies, (2)
a meta-information content layer indexed to the ontology [BCW97], and (3) the actual model
repository. These interfaces are discussed elsewhere but the overall representation is shown in
Figure 7.6-4.

Ontologies and CML
TBOX
(terminological components)
Environmental classification

– SWEET, etc
Process classification

– Workflows and OWL-S
– Archetypes
– Knowledge-based engineering

Design Components
– Parts categorization
– Vehicle architecture

Metrics
Models & Theory

– Categorizations of models
META Classification

– Subsumes all of the above

ABOX
(assertion components)
Environmental Models

– Context Model Library
Reasoners

– Service-aware AMIL
– ECTo, ESKER, etc
– KBE templates

Component Model Library
– Semantic Web for models
– Master Model instantiation

Metrics Dashboard
Tool Library

– Available tools
AIDE

– Interface to all of the above

Linked to model repository

“the Dewey Decimal System” “the Card Catalog”

“the Stacks”

Figure 7.6-4. Organization and Consolidation of Models, Towards a Component Model

Library

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

For our reasoners, we will adopt the strategy of referring to classification or terminological data
as TBOX and instance or assertion data as ABOX. This is borrowed from the theory of
description logic [LS09] and is at the heart of ontological languages such as Web Ontology
Language (OWL) and DARPA Agent Markup Language (DAML).

7.6.1.1.4 Correctness versus Agility

To expedite the fast development of models, the co-analysis and co-simulation approaches lean
heavily on providing coarse graining fidelity appropriate for the problem at hand. This
approach has long been standard practice on vehicle integration efforts and for large scale
simulations such as High Level Architecture (HLA) for OneSAF as well as in the Electronic
Design Automation field. Rationale for using coarse graining of models follows.

• Needed for systematic evaluation
o One high fidelity model surrounded in a sea of low-fidelity representations
o Iterate through set according to importance of evaluation criteria (down-select,

PCC, etc)
o Use the ideas of templates and archetypes to switch easily between models

• Complexity management
o Integrating a ground vehicle with a mix of components

 Real and virtual
 High and low fidelity

o SAF-like large scale simulations
 Three levels in SAF-like simulation environments

o Standard, autonomous, and focused
• Interactions between entities of different levels of resolution tested
• Allows users to “dial up” the level of resolution where needed

• Evaluation performance
o EDA languages (VHDL) have idea of architecture fidelity built-in to the semantics

 Uses the semantics of configuration declarations
 No hope of simulating or proving designs without similar automated

composability
o One entity high-fidelity and thousands of others behavioral
o What general purpose model language offers this?

The level of abstraction needs to be carefully evaluated to avoid problems with leaky
abstractions (or abstraction leakage).

The significant aspect of the ARRoW toolset is that it readily adopts the set-based approach to
extend the plug-and-play philosophy to models of different fidelity representation (i.e.
alternative design choices are often polymorphically equivalent to alternate fidelity models as
the interface remains invariant). Like the electronics EDA industry has discovered, a large scale
simulation effort will fail without this capability.

7.6.1.1.5 The Conductor’s Role

Synthesis, co-analysis, and co-simulation tools can be classified according to the “conductor”
guidance that they require, which could be one of Composition, Orchestration, Choreography,
and Synthesis. Figure 7.6-5 illustrates the roles that the conductor plays.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

Compose

Orchestrate

Choreograph

Synthesize

The Crowd

CML

archetype
↘ ectype

ECTO analysis of
alternatives

ESKER

Facilitating Ensemble Engineering

test and
verification

Co-Sim production

Master Model

design rules
component data

bu
ild

 in
st

ru
ct

io
ns

bi
ll

of
 m

at
er

ia
l

Review

Metrics

Figure 7.6-5. Synthesis, Co-simulation, and Co-analysis Operate Within an Ensemble

Environment

The ensemble is both the aggregation of the components that makes up the vehicle and the
designer crowd that takes part and conducts the development. In a real-world ensemble,
different roles are adopted during different phases of the development. The crowd is able to
manipulate the design by using automated tools at each phase and thus assume different
“directorial” duties.

1. During composition, we use rule-driven archetypes to create concept ectypes1

2. We then orchestrate the down-selection of potential designs (the ectypes) among
the conceptual alternatives by systematically reasoning over trade-offs.

, which
represent possible implementations of an idealized design.

3. Once selected, the top ensemble designs are more loosely choreographed to reveal
emergent behaviors and requirements failures. The reasoner essentially conducts
the exercise over test space.

4. The final step is the production, which captures all the knowledge to synthesize the
design suitable for manufacturing.

The tooling interface provides a firewall to the knowledge within the library.

Metrics are used along the path to non-intrusively review and diagnose results2

This is designing engineering tools for resilience, adaptivity, and emergence as we encourage
the crowd to improve the design by using various reasoners that we supply and that they can

. For example,
do individual parts cooperate or compete to accomplish a task? Or are they co-operating but
competing for scarce resources? We can execute the metrics tools (see Appendix 7.2) to provide
measures of effectiveness in which to answer these questions.

1 An ectype is defined according to Merriam-Webster as an instance or facsimile of an archetype.
2 Metrics are also useful as criteria for down-selecting, as in step #2, but in this case play a more passive
and reactive role, not directly involved with the original design.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

customize. Customization of templates has been used effectively in the architectural design and
architectural engineering fields [RK06] with building information modeling products such as
Gehry Technologies' Digital Project or Autodesk's Revit [GW06].

The essential gambit behind our tooling approach is to keep the style open enough in terms of
languages and reasoners that the crowd can easily adopt the tools. And by the same token, they
can improve on the tools if they are provided the motivation

7.6.1.2 Complexity Reducers

Besides AMIL and the CML, we are merging several technology approaches to help reduce the
complexity of a cyber-physical design.

7.6.1.2.1 Knowledgebase Engineering

The concept of knowledgebase engineering relies on stored tacit design rules and archetypes of
idealized representations to automatically generate products or artifacts. The information can
be described by patterns, templates, or by concrete and abstract prototypes used in such a way
that we can invoke them from a reasoner, inference engine, or expert system.

The key insight that we provide is to combine the traditional and state-of-the-practice KBE
approaches with ontological and semantic web technology.

7.6.1.2.2 Reasoners and Archetypes

Following a KBE strategy, we refer to archetypes as tacit information that can be used to
establish early concepts, established process workflows, and other design rules. The idea of
aligning archetypes with reasoners leads to the term Generative Ensemble Archetype
Reasoners (GEAR) to describe these capabilities (Figure 7.6-6). Reasoners, patterns, templates,
design rules, and archetypes are essentially synonyms for this generic capability.

Galileo/GEAR

compose

ECTo

concept

orchestrate

ESKER

DSE

choreograph

Co-Simulation

T&V

synthesize

Master Model

production

Figure 7.6-6. Control of Co-analysis, Co-simulation, and Synthesis

Other reasoners such as the KBE Templates [KDG11] used in design automation tools such as
Pro/E and Catia and other generative reasoners used in design [AUK10] complement the
reasoners that we have developed for META.

7.6.1.2.3 Components

The reuse of components enables faster and more efficient product development [HDJ08]. The
general pattern of encapsulating models is shown in Figure 7.6-7.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

mass
a) Forwarded

b) Use cached

Revision: d
c

b
a

GEAR reasoner

(cached at
2nd level)

ProE /
other

Component encapsulation
Either query

for updates or send
asynchronously via
publish subscribe

pattern

For design evaluations,
minimize the time spent
in communicating data

(a recently cached
version may persist
across sessions)

behaviors

etc.

power
abstraction

level

accurate
approximate

query

response

Source of Data

Most of the internal
comm mechanisms
based on patterns,
thus reducing
development effort.

Set of components
and variants

…

“library”

Figure 7.6-7. Component Encapsulation with Cached and Triggered Updates

The strength of encapsulating objects was one of the main driving strategies for providing the
AMIL dynamic behavior. If the behavior of the internal dynamics is simple enough, we can
simply encapsulate this within a node.

A prevailing issue is how to find the model we need and unambiguously apply it in the correct
context and with the correct process workflow. This is essentially a search problem as well.

7.6.1.2.4 Ontologies and Semantic Constraints

The application of ontologies to reasoning brings a tremendous advantage to search strategies.
The constraints associated with strong classification schemes can help narrow in on a solution
much quicker than a free-form “Google-like” search is capable of. This comes with a caveat that
narrowing the search limits creative possibilities, but that is only dependent on the amount of
semantic meaning we can apply to the problem. For example, eventually Controlled Natural
Language interfaces will be able to infer possibilities that extend beyond the strict classifiers.

7.6.1.2.5 Declarative Semantics and Logic

The declarative style corresponds to several useful approaches already accepted in engineering
development:

• Mathematical equations as in Modelica [BL08], etc.
• Finite domain problems (e.g., the set of numbers between 1 and 10)
• Constraint satisfaction problems

(e.g., how many ways will these pieces fit into this compartment?)
• Engineering parametric solvers

– SysML
– Inverse kinematics

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

• Declarative and constraint logic domains which can be expressed as 5th generation
languages (5GL) such as Prolog [PRP94].

• Relational database queries via Search and Query Language (SQL) and Simple Protocol
and RDF Query Language (SPARQL)

The clearest explanation of the declarative approach is best described by example. Figure 7.6-8
shows how the declarative approach works in a practical application of accessing a parametric
knowledgebase with bound and unbound parameters.

• In the parametric design world
– Certain parameters are fixed (bound)
– Other parameters are unbound
– Choice of binding depends on what we are

interested in down-selecting for
– Mass may be unknown

• depends on volume and material density
– Thickness may be unknown

• constrained by frontal area and total mass
requirement

• Parameters organized into domain rules for
maximum declarative reuse

• Example of an alternate functional approach
– RampMass

• RampHeight
• RampWidth
• RampThickness
• RampMaterial

– Requires at least 5 functional relationships to fully
enumerate the possibilities of one unknown

Ramp

Parameters
Material

Thickness

Width

Height

Mass

r amp(?mat , ?t , ?w, ?h, ?mass) r et ur n r amp_mass(mat , t , w, h)
r et ur n r amp_t hi ckness(mat , w, h, mass)
…declarative

functional

Figure 7.6-8. Declarative Approach for Constraint Solvers

The functional and data-flow styles also apply to many conventional applications, and we will
apply those as well, but the declarative style finds particular utility in reasoning. For example,
the classic SPARQL query for a triple-store data element is declarative and is essentially a subset
of the declarative query illustrated above. A declarative approach often leads to problem-oriented
abstractions, and not the solution-oriented strategy that ends up employed in a procedural
approach.

7.6.1.2.6 DSM and Influence Diagrams

For the Design Space Exploration tools (Expert-System Knowledgebase Evaluation Reasoner
[ESKER] in particular, refer to 7.6.2.2) that we constructed, we incorporated the general
problem solving strategy of the Design Structure Matrix (DSM). The DSMs are generally
treated in matrix or spreadsheet form but we extended this to include the concept of influence
diagrams [JP05]. The general idea is illustrated by the following anecdotal application of a
DSM search:

Consider the situation of the popular “build-your-own-computer” from components. We can
conceivably put any components together that we want (power supplies, CPUs, memories, drives)
yet some of these will form constraint, incompatibility, or degradation relationships. For one
specific criterion, we can consider the selection in terms of power draw, and then we put a

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

premium on low power consumption as one selection criteria. This is a typical influence
relationship.

As another influence relationship, consider that by bundling a few of the components together one
can get a huge discount in price – the parts wouldn’t be connected yet they have an influence on
each other. That would be an example of no direct data flow between the components.

The key is that we will need lots of flexibilities in the rules, while a reasoner or expert system
conducts the search. A graphical illustration of an influence diagram is shown in Figure 7.6-9.
This particular example features the factors that go into designing a vehicle egress ramp.

wgt pwr

surv

Ramp armor thickness

wgt pwr

surv

Ramp motor

influences
Weight of ramp
sets motor sizing

partially influences
Speed of ramp opening/closing

impacts survivability other diagonal
elements

Influence diagram and Design Structure Matrix

The influence edges are
specified by AMIL links
and provide a semantic
web style of component
connectivity

Weight, power, and survivability generate the evaluation criteria.
Ramp armor does not consume power but influences motor sizing.

Figure 7.6-9. Influence Diagrams are More Useful for Showing the Directed
Interactions than a Design Structure Matrix

Periodic application of DSM searches accelerates the development of set-based designs.
Whenever possible the analysis of alternatives will weed out poor performers, and if done
comprehensively is complete enough to help expose the problems of cross-cutting concerns and
possible abstraction leakages. The tool ESKER (refer to 7.6.2.2) applies multi-objective criteria
to utility functions for solving Analysis of Alternative (AoA) problems. In other words, we can
use ESKER for down-selection and other optimization problems.

The DSM approach also supports the idea of partially decomposable systems, which is a divide
and conquer strategy for partitioning a system (Figure 7.6-10).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

Mission
Module

Fire Control

Chassis

Real-time control
Thermal / Vibration analysis

Space Claim
Power Usage

Reliability Analysis
Fault Detection

Weapon Handling

Software Reuse
(ballistics, coordinate transformations)

Adaptive control
(thermal regulation)

Fault Tolerance
Weapon Control

Structural Dynamics
Power Distribution
Space Availability
Human Factors

Weapon Structure

As a typically complex system,
a ground vehicle with the three
major modular components
shown will still have cross-
cutting concerns (thermal,
space, power, faults, etc.)
which we need to address with
the right level of abstraction.

Figure 7.6-10. Partially Decomposable Systems

A module is the definition as put forward by H. Simon to describe a decomposable unit. If a
system design contains a number of components that appears nearly decomposable or partially
decomposable, then we can try to group the components into modules. Or alternatively, we will
partially decompose the system of components into modularized sets of components.

These modules form archetypes as well, in the sense of being close to the ideal and thus provide
the design team a pattern or a set of alternative patterns from which to build. The process
workflow then becomes one of selecting the components to go into that archetype. To meet a
set-based engineering criteria, we can assume we always have alternatives for the components,
say for example three alternatives per component, leading to the use of an analysis of
alternatives combinatorial estimate:

<A> = average archetype influence-set size
(the number of interacting components per set)

NA = total number of archetypes for a vehicle

<M> = average number of alternatives per component

SearchSize = <M><A> × NA

For a reasonable set of sample numbers,

<A> = 10

NA = 500

<M> = 3

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

This draws from a pool of 15,000 components, which is just the three numbers multiplied
together. Then SearchSize = 3 million on the first pass with a nominal default selection for each
component.3

In terms of encoding the interaction knowledge, decomposition becomes a divide and conquer
strategy which tries to minimize the number of interfaces and extracts commonly occurring
global interfaces as design rules [BC00]. The design rules then provide constraints that reduce
the complexity of search, trading off the potential for finding interesting combinations with the
experiential knowledge of previous engineering archetypes. From the formulas above for
combinatorial complexity, we can eventually determine that:

1. Increasing the number of choices per component increases DSE search time
2. Increasing the number of constituents per module increases DSE search time
3. Increase in efficiency from specialized reasoners is ideal (to reduce by exclusion factors

1 and 2)

In other words, the rules prevent the DSE from going down paths that yield little
improvement. A knowledgebase format fits in well with this approach as the tacit knowledge is
directly coded as logical rules of design.

A component-based DSM also specifies the physical interactions between elements in a cyber-
physical system architecture. Different types of interactions can be displayed in the DSM and
the types of interactions will vary from project to project. Some representative interaction
types are shown in Figure 7.6-11.

Figure 7.6-11. DSM Application Domains (from Pimler and Eppinger, 1994)

In this figure, the spatial variant covers finite element analysis techniques for dynamic
structures, and the matrix could become three-dimensional to match the actual physical
structure. It also covers the computational arena known as Spatial Computing (covered in the
section 7.6.4.1).The energy variant of the DSM covers models such as Hybrid Bond Graphs,
where the transitions obey the laws of energy conservation. The information variant is Design
Space Exploration (Figure 7.6-12).

3 The Voyager spacecraft designed in the 1960’s consisted of 166 different potential assemblies grouped
into 51 functional families. When considering the different redundancy implementations, this resulted in
1021 potential system configurations and its optimization obviously required some computer support. A
good example is [LEH67] because the Voyager was probably the most durable system ever deployed.

Spatial needs for adjacency or orientation between two elements
Energy needs for energy transfer/exchange between two elements
Information needs for data or signal exchange between two elements
Material needs for material exchange between two elements

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Figure 7.6-12. Design Structure Matrix for Information - Utility Functions Trade-off

Criteria for Different Design Choices

The material domain covers compartment models (for fluids, etc) and also Markov chains
(frequently used for reliability analysis). Again these are all graphs and the universal
computational goal in each of these seeks to reduce the time searching for a solution given the
physical constraints and laws.

The idea that these nodes often interact with near-neighbors and therefore may not need
extensive interconnection implies that local computation schemes might prove useful. A synergy
exists between all these flavors of local computation, and this is the idea behind the generic
inferencing architecture described by Pouly and Kohlas [PK11]. To speed up the computations,
parallel and distributed processes schemes can be applied, while algorithmically, the properties
of valuation algebras and the application of join trees can further reduce the computational
load. This is further explored in Spatial Computing (refer to section 7.6.4.2).

7.6.1.2.7 Models of Computation and Communication

When we move from analysis to simulation, different considerations come into existence. In
general, the co-simulation models require that we pay much more attention to interface details
since they will reside in a heterogeneous environment with potentially cross-cutting multi-
physics domains.

Figure 7.6-13. Heterogeneous Interfaces

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

The computations can be heterogeneous in terms of behavior content as shown in Figure
7.6-13 or the communication channels may require different operational time-synchronization
strategies (refer to section 7.6.3.1). In META parlance, Models of Computation and
Communication (MOCC) describe the general strategy that one needs to adopt.

7.6.1.2.8 Contracts and Assume/Guarantee

Contracts (and the associate assume/guarantee strategy) are generally defined as rules in the
form of pre-conditions and post-conditions applied to some design functionality, either through
intended use or upon execution [QGP10].

Contracts = controls the use in terms of fitness for purpose
Assertions = strong controls for compile time or run-time guarantee (software in
particular)
Guards = adaptive controls for run-time usage

In the contract world, we use co-analysis models and apply co-simulation to show that a
particular design works correctly. This assumes in the best case that we can reach a top-level
guarantee of 100% correctness. Allowing a probability spread in the model’s parameters (i.e.
manufacturing tolerances, etc) or environmental conditions (i.e. temperature, vibration, etc) will
drop the Probabilistic Certificate of Correctness (PCC) to something below 100%.

The bottom-line is that if we want to say that we have a PCC of 100%, we require a strong
condition of an assume-guarantee on that particular model. The assume part is that all inputs
are within range and the environment is within operational bounds. The guarantee is that it
will work correctly over that set of ranges.

We thus incorporate an assume-guarantee strategy when we evaluate PCC on our co-
simulations (refer to 7.6.3.5).

7.6.1.2.9 Set-Based Concurrent Engineering

Also known as the “Toyota Paradox”, the concept of set-based concurrent engineering involves
a strategy of keeping open design alternatives for as long as feasible [MAP09] through the
development process. This deferral of commitment to a final design allows the possibility of
future design adaptability, which becomes a powerful form of design look-ahead.

We apply the set-based approach via tools such as ESKER and ECTo, which reason on open
alternatives and then reduce the complexity of a large state by applying design rules and
constraints as needed (refer to Figure 7.6-14).

Figure 7.6-14. Set-Based Concurrent Engineering Continuously Tracks Open

Alternatives While Culling Out Poor Design Choices

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

Set-based concurrent engineering is only a paradox in that it works against intuition that not
committing to a design early is the best possible strategy. Maintaining a robust and reflective
process flow through the DSE tools, DSM analysis, and Test & Verification PCC evaluations
though-out the ARRoW cycle is crucial to making the set-based approach work.

7.6.1.2.10 Workflow Provenance

Repeatability and regression of simulations is required to allow for reuse and adaptability. It
can often become a full-time task to maintain reasoners and their application as the design and
data environment matures. The process and composable workflow reasoners we have evaluated
will provide a provenance capability. In the traditional definition, “provenance” means to
possess knowledge of the origin or history of some object, and the current technology
definition of provenance is to use automation to guide the process and thus make the history
repeatable. This process could then become repeatable or form a regression test for the usage
of tools and data sources as shown in Figure 7.6-15.

Design Space Exploration data

Metrics

Simulation

Developers
and

Designers

Integration
and Test

tuning /
optimizing estimating /

managingDesign Space
Exploration

Data

verifying /
diagnosing

predictions /
allocations

Figure 7.6-15. A Provenance Strategy Manages Development Processes that Require

Multiple Steps

One specific approach that we highlight uses the process-based OWL-S semantics to attach
automated services to particular workflow tasks [YGD10].

7.6.1.2.11 Test-Driven Development

Test-Driven Development (TDD) is an agile process geared for software development, but
when placed in a model-based engineering environment it can provide value during the entire
cyber-physical system life-cycle.

The key to applying TDD successfully is to start integrating it into the development process at
the earliest possible opportunity. This typically corresponds to verifying the first available
instance of an operating simulation of the system (or on a concrete or abstract representation of
the system). Instituting qualitative (smoke) or quantitative tests here enables the development
team to quickly respond to regression failures caused by early design decisions that do not
emerge until higher fidelity representations become available. The regression failures often
come about due to leaky abstractions not accounted for by the design or model. It essentially

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

mitigates the risk of not having a “correct by design” system, as the later regression errors have
a much reduced chance of occurring.

We assert that this extra level of testing does not impact the development timeline since the
test plans and test cases get executed in parallel with the conventional modeling development.
In other words, these do not exist along the critical path but ride alongside it. The benefit
accrues with time as the model becomes more robust instead of more brittle as the model
representation starts to grow in scale. The tests only act as the “driver” of the development
because they provide warning signs if and when process veers off course. Experience has
shown that identifying defects as early as possible saves time and money in the long run.

The comprehensive TDD approach also aids in the continuous verification of requirements.
The key in this regard is to match use cases (i.e. derived software and system —requirements)
against test cases. A simple but effective approach is to write use cases with the attitude that
anyone can also read them as test cases. The test engineer then does not have to spend time
translating use cases into tests; thus, we can further mitigate the risk of testing from
bottlenecking the critical process path.

Figure 7.6-16. Sources of Defects that TDD Aims to Mitigate

This rigorous attitude to system verification needs to be coupled to a state-of-the-practice
automated software testing infrastructure. Automation becomes necessary because we typically
leverage virtual simulations of full vehicle behavior and the scope of the tests quickly scales to
make any manual testing out of the question. A comprehensive test infrastructure should
accommodate the automated launching, monitoring, and test data collection for dozens of
applications running concurrently within a distributed environment.4

For component-based model development, the critical aspect is to include acceptance tests for
each of the individual components and configuration manage these items as testware. The

4 Historically, the team has used the same declarative mechanisms to specify our distributed launch and
control as we do in specifying our simulation data and runtime configuration.

We build too Faulty a thing – low quality leads to more defects and or lengthy rework

We build too Complex a thing – can’t determine if (or when) acceptance criteria will be met

We try to build the Impossible – in violation of physical laws or mathematical constraints

We build the Wrong thing – product does not meet the customer's actual needs

?

We build in the Unknown – unexpected issues arise, and we can't adapt to emergent behavior

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

component test cases developed early in the life cycle get reused in future stages of the life-
cycle, such as during product-line integration. Thus, a finished project delivers two products,
the software and the testware. In META demonstrations, we illustrated how early test
promotes quality in both verification and isolating leaky abstractions. If we have appropriate
acceptance tests, the likelihood of encountering leaky abstractions decreases because the client
understands the context for the use of the components from reading the acceptance tests.

The criteria needed for objectively (verification) and subjectively (validation) evaluating the
model’s representation include: non-ambiguity, verifiability, consistency, modifiability/
adaptability, traceability, presentability, and completeness. Testing becomes a full life cycle
process that initiates when the project begins to achieve maximal effectiveness as the customer
can visualize results immediately. The test-driven development strategy applies to each of the
phases in the ARRoW process from concepting to final test.

Although each of these phases accomplishes different objectives and may use different
development teams, the underlying test and verification environment remains a constant. In
practice, for each phase of the development branch, there is a concurrent corresponding activity
on the testing branch. Putting in place automated tests in the beginning of the product
development life-cycle allows us to accelerate the process via concurrent activities, helping to
achieve the 5× speedup desired. Any volatility in requirements is handled by adapting and
refactoring of software in the virtual environment, where change is timely, cost-effective and
robust with the help of regression and other tests.

7.6.1.2.12 Parallel and Distributed Development

The ARRoW development strategy strongly recommends concurrent development to achieve a
5× speedup, especially when considered in concert with and augmentation to robust and
proactive improvements in requirements and system conceptualization.

Figure 7.6-17. Parallel Development Process Speeds Development

Contention issues can slow development for as simple a reason as bottlenecked database access
(refer to Final Report 1A and BBN metrics section). The reasoners employed allow for
concurrent development as the knowledge is contained on the developers local memory which
precludes contention problems. Other bottleneck issues are described in the META 1a report.

7.6.1.2.13 Fidelity and Abstraction Levels

Simulations used for verification necessarily require details that reflect the properties of the as-
built product. In general, high-levels of abstraction go with lower fidelity. So depth of fidelity
becomes a consideration for the abstraction level chosen. As earlier we showed how

Sequential Process

Parallel Process

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

compartmentalization can be used in analysis so to can it be useful for simulations. Co-
simulation will require clever compartmentalization to make the high-fidelity computation
solutions tractable for the deepest multi-physics problems.

RLC Circuit applied to ARROW

Systems Engineering
• Concept
• Requirements Specification
• Use Cases

SysML

Design Space Exploration
• Component Type Selection
• Constraints and Knowledge
• Concept Criteria

Inference / Expert System

1st-Order Physics Modeling
• Thermal, Acoustic
• Energy flow, bond graph
• Signal Processing

Low-Fidelity and Qualitative

Deep Physics Modeling
• Component Interaction
• Environment
• Test Cases and PCC

High-Fidelity Simulations

semantic
web/lib

objective kbase

cmlalgebra

?

T↑ P↑

Figure 7.6-18. Abstraction Levels in a Multi-Physics Domain Example

Abstractions applied to the compartments allow potential for reuse for a semantic CML
classification scheme (refer to Figure 7.6-18).

7.6.1.2.14 Sampling and Verification

For PCC calculations, the time it takes to sufficiently verify test state-spaces can often be
prohibitive. We incorporated several importance sampling [MD01] techniques and applied the
ESKER tool to explore the test-case state space and record potential failure points.

This is best illustrated by an example, whereby a PCC calculation is populated with failure
scenarios via test case generation and then importance sampled for a probability measure.

Figure 7.6-19 demonstrates the sampling approach we used on a ground vehicle ramp design
challenge problem. The PCC calculation on the results histogram detects possible elevated
drive burnout incidence from frequent sustained high torque requirements. This was caused by
soldiers exiting vehicle while the ramp is in motion. Identifying the worst cases provided an
improved basis for driving redesign.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

Figure 7.6-19. Test Space Sampling Generates a Histogram for PCC Evaluation

7.6.1.2.15 Diagnostics

As the preceding section pointed out, the most wide-open part of the reasoning strategy
involves the incorporation of diagnostic aids. Since many of these rely on a variety of statistical
tools which are fairly mature, we will defer to the Metrics Dashboard section for how these can
be plugged into the AIDE environment.

To work the vehicle ramp problem diagnostics, feedback on the PCC results were fed into a
clustering classification method (K-Means) which uncovered a qualitative failure mode. The
PCC calculation thus detected assumptions leading to failure and it provides an input to
redesign. Figure 7.6-20 suggests a storyboard of the diagnostic aid used in a demonstration.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

Figure 7.6-20. Diagnostic Aids Used to Discover a Design Problem

An iterative design is the preferred approach for complex systems and an agile diagnosis and
learning/redesign is crucial. Diagnosis provides a means to get value from inadequate PCC
scores, for example by climbing the PCC slope in design space. Or in the case of acceptable
PCCs, by progressively relaxing assumptions to detect most plausible remaining failure
scenarios.

7.6.1.2.16 Probabilistic Context

The original intent for the ARRoW process was to include qualitative simulation into the
development tool space. We extended this to not only include qualitative and quantitative
evaluation through the DSE reasoners, but include stochastic elements as well. These
stochastic elements could include subjective belief information as well as objective probabilities
derived from empirical observations and system models.

Figure 7.6-21 shows the elements of subjectivity and objectivity as applied to a migration from
co-analysis to co-simulation. The co-simulation will eventually require stochastic models to
evaluate a PCC, which is the basic premise that a PCC will need a probability as a pre-condition
in order to propagate uncertainty.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

Qualitative Analysis Quantitative Analysis

Subjective
View Tacit Knowledge, Opinion,

Belief, Hunch, Gut Check,
Executive Decision

Ranking Systems, Wisdom of
Crowds, Heuristics, Bayesian

Updates, Fuzzy Logic, DoE

Objective
View Categorization, State Space

and Diversity Estimation

Physics-based Models
(stochastic and deterministic),

Math and Logic Models

Figure 7.6-21. Paths to Stochastic Formal Verification -

Stochastic Elements Starting from Co-analysis to Co-simulation

7.6.1.2.17 Crowd Sourcing

The eventual strategy is to encourage crowd-sourcing at the level that significant progress can
be made. In the metrics report, we developed methods for monitoring development progress
based on empirical observations of algorithm development (refer to the MathWorks contest
described on page 64 of the Phase 1a final report [META11]). Progress was measured by
tracking performance and accuracy improvements in algorithm development, accomplished by
automated evaluation and recording of submissions. When used for parallel directed problem
solving, this will have benefits, but the key is to measure the asymptotic trends as the law of
diminishing returns will set in.

Crowd-sourcing improvements based on spontaneous creativity will always exist and the use of
archetypes as templates, placeholders, and alternative architectures will help spur creativity.
Individual improvements will come from the use of ontological search mechanisms and
performance enhancers such as search caching and parallel computing.

7.6.1.3 Engineering Domains

The specific areas that we chose to prototype reasoners include workflows, DSE and
concepting, synthesis, and testing. As an example, some of the domains we can consider
include:

• Component selection (use alternatives to evaluate different combinations)
• Test evaluation (use ranges to sweep through tests like we sweep through alternatives)
• Diagnostics (use declarative semantics to isolate problems, working either backwards

or forewords)
• Configuring simulations (mix and match alternative fidelity models and essentially

stitch together a virtual simulation that is executable)

7.6.1.3.1 Analysis Process and Workflows

The goal is to speed up the development process by providing data-driven automation, reusable
components and behaviors, and templates for typical designs. The specific objective is to readily
create reference architectures and archetypes that could serve as templates for design and
development activities. The templates provide hooks for various possible implementations and
components according to the underlying AMIL graph of relations and rules.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

Figure 7.6-22 illustrates an analytical workflow required for calculating a fly-out trajectory of a
projectile. The analysis steps are standard enough that an archetypal workflow can be
converted into a template and a reasoner can suggest certain compositions and ultimately guide
the execution itself.

Figure 7.6-22. Graph of Analysis Archetype for Projectile Fly-Out Simulation

As another example, the steps in verifying a fault-tolerant design show how to unify PCC,
contracts (assume/guarantee), AMIL representation, design synthesis/ composition, and reach
set or envisionment (qualitative in the sense that we have either a working element or a failed
element). We want to demonstrate these steps:

1. Show that a design has a certain PCC given the context of the real-world
2. Demonstrate how we can apply assume/guarantee
3. Express the problem in terms of an AMIL graph
4. Demonstrate a level of synthesis in either an analysis model or design model
5. Execute look-ahead or exploring failure possibilities implied by reach-sets or an

envisionment

To do #1 and #2 in one pass we only need to convince ourselves that computing a PCC is
dependent on having some level of guarantee on every component of the system. The guarantee
is that the PCC will be 100% assuming that each component meets each of its pre-conditions.
The fact that all pre-conditions are not met due to contextual externalities will drop the PCC
below 100%. This salient point provides the connection between PCC and the

Projectile Flyout

Gun Model

Gun

General
Stabilization

Algorithm

3DOF Flyout
Model

Aero Data

Aimpoint
Accuracy

Requirement

Round
Correction
guidanceInterior

Ballistics
Model

Predicted
Aimpoint
Accuracy

Stabilization
Environment

(moving vehcile,
terrain, …}

Operating
Environment
Requirement

Archetype For Accuracy Analysis

Medium Caliber
Ammunition

Drive Models

Lethality
Requirement

Weapon
Effects Model

Lethality
Data

Target
Model(s)

Either Accuracy requirements is
directly supplied or there is a
weapon effect requirement that
can be used in it’s place.
Optionally a weapons Effect
Requirement could be used to
derive an accuracy requirement
and these analysis could be
performed independently.

Pointing
Accuracy

Launch Conditions

MET Model

Target Type

Effectiveness / for comparison to Requirement

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

assume/guarantee model. We just need to have components that can be modeled as having less
than 100% guarantee given the right circumstances.

We also consider points #3 and #4 in combination. As we can reason on AMIL data at the
most essential “triple-store” graph level and then generate a design model (given some extra
rules outside of AMIL), means that we can extend what we are doing with design space
exploration. But the next step is to show how we can do a PCC from that generated design.
This leads to step #5, which is a way of generating test-cases, which can also come out of a
synthesis domain.

The canonical workflow example that we can test this unifying theory against is that of a
complex fault-tolerant configuration.

Say that we have a requirement that a subsystem has two distinct operations which have to run
in conjunction and provisions must be made to handle the case of either of the two operational
components failing. This can be specified as a graph archetype shown in Figure 7.6-23.

Figure 7.6-23. Archetypes for Analyzing a Derived Fault-Tolerant Reliability

Requirement

Here the top and bottom paths are essentially redundant paths and the path labeled “c” is for
switching over on failure. Each one of the blocks has some assume/guarantee in terms of a
reliability value.

Based on this information, we can easily express this example as an AMIL graph (the diagram
to the right) and then add some rules to enable generation of an analysis model suitable for
calculating a PCC.

We can synthesize the success paths first, such as ab, de, ace, and dcb and the
failure path as a break in the chain from 1 4.

From this point we can apply further synthesis rules, and below is the solution graph, which is
an “envisionment” of all possible failures.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

Figure 7.6-24. Auto-Generated Expansion of Reliability Block Diagram

The left-most state is the initial configuration of all components operational and the state at the
end is the situation of a critical failure. We can submit this graph to a Markov solver, executing
it automatically via AMIL, and get a PCC assuming nominal and independent failure rates of
the components. The nominal failure rates come from AMIL relations of those components
retrieved from the CML, and we can compute metrics on the complexity of the representation5

This becomes a complete and archetypal example of soup-to-nuts verification of a design.
Through automated workflow as driven by a reasoner engine this provides an excellent
example for the generic ARRoW process

.

6

For reasoning about a detailed cyber-physical design which incorporates temporal and
probabilistic reach-set analysis refer to the Appendix on the Reactive Model-based
Programming Language (RMPL section 7.9). This allows solving analysis problems at an
abstraction level closer to that of plant and controller, yet is complementary to the logical
planning reasoners and state space expansion approaches outlined here.

.

7

7.6.1.3.2 Design Space Exploration and Optimization

To understand how reasoning within the context of a knowledgebase works in general, let’s
take an example from the classic concept of automated Decision Support Systems (DSS).
Although DSS will never be completely automated due to the human element required, tools
can help intuition and to predict results, and then use the real results to confirm educated
guesses. As a result, decision makers use results from the models to develop the next step in the
thought process so as to gain a deeper insight into the problem.

Decision Support System: A model-based set of procedures for processing data and judgments to
assist a manager in his decision-making.

Construction of models thus becomes an extension of the decision maker’s ability to think about
and analyze problems, and not as a replacement of these analytical skills.

5 This approach can quickly scale into a large graph
6 This demonstrates the qualitative aspects exemplified via "working" versus "failed" states.
7 For example see the REST Modeling language described in [PRP94].

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Generally a DSS is defined in terms of three interacting components: a language system, a
knowledge system, and a problem-processing system. The language system, in this case AMIL
(which can contain a GUI such as those implemented for AIDE and a visualization graph)
allows the user of a DSS to interact with the other two components of the support system. The
knowledge component contains the declarative knowledge contributed by the decision-maker
or domain expert. This element has become identified as the Knowledge-Based Engineering
System (KBS) and it really becomes a larger semantic web of information, which will include an
interface to CML meta-information. The connective problem-processing system represents the
communication channel between the language system and the knowledge system, referred to as
an inference engine. This becomes the set of reasoners referred to as GEAR. One can take the
operational DSS definition another step by considering the data separately from the rules and
analysis models to help structure the knowledge. This merges into an ontological scheme for
data classification and storage. 8

A guide to the process of decision-making is outlined in the following steps:

1. Elicitation. Analysis of the decision area to discover applicable elements
2. Analysis. Location or creation of criteria for evaluation
3. Knowledge Engineering. Appraisal of the known information pertinent to the

applicable elements and correction for bias
4. Scoping. External connectivity and isolation of the unknown factors.
5. Tuning. Weighting of the pertinent elements, known and unknown, as to relative

importance
6. Effectiveness Optimization. Projection of the relative impacts on the objective
7. Evaluation. Synthesize into a course of action.

The key is to get to Step 3 as quickly as possible. Unlike a typical software development effort,
which this process looks like on the surface, we should start formulating rules and constraints
quickly rather than waiting for a complete specification.

Elicitation (Step 1) needs the support of all the stakeholders, so it is best to work this out in a
group or crowd-sourced setting. This should take a single session to decide what to cover
among power, weight, reliability, cost, etc.

Analysis (Step 2) is dependent on the availability of sources of information. This can become a
bottleneck if complete information is not available, so we can use heuristics and placeholders for
the elements in the elicitation step. For example, external model development can be handled
here, and placeholders used for these until the external nodes are scoped into Step 4.

Knowledge engineering (Step 3) is where the subject matter expert and coder get together and
declare their knowledge in terms of a set of facts and rules and incorporate these as a DSM
(refer to Figure 7.6-25). This is routinely a massive undertaking for developing a product the

8 DSSs tend to be defined in terms of the system needs and the way that they will be used. The
definition may not explicitly incorporate the different components of a DSS (KBS, graph database, and
GUI). Instead, the definition used is more general to include flexibility during the creation of the
candidate system. A spreadsheet solution could have everything rolled into one file, for example.
Furthermore, a DSS does not have to generate the complete decision, just enable the support for the
final decision-making process. This is in keeping with the practice of semi-structured decision making.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

size of a vehicle but progress can be measured via the usual metric of rule count. When the rule
count starts leveling off, the rule of diminishing returns starts to set in.

Figure 7.6-25. Design Structure Matrix Interactions Needed for Knowledge Engineering

Scoping (Step 4) admits to the fact that we will never complete a comprehensive
knowledgebase9

Tuning (Step 5) is where we set up optimization criteria. This can be accomplished
concurrently with Step 3 so that we always have quantitative results to show as the
knowledgebase matures. This is the latest point at which we can add a GUI before handing the
expert system to the user for evaluation.

, and that remaining subjective and objective criteria are either coupled into the
knowledgebase through external models or left blank as subjective placeholders and simple
trade-off heuristics. Constraining the set of allowable alternatives is crucial at this point to
allow optimization to take place in the next step.

Effectiveness Optimization (Step 6) is where the user can get involved with the evaluation. At
this point we should have enough sensitivity analysis and optimization algorithms in place so
that the user can execute queries without having to do any programming.

Evaluation (Step 7) is where we formally include the results of the optimization into the bigger
decision support picture. For example, the results together with a narrative description of the
knowledgebase can be included to justify a decision.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

7.6.1.3.3 KBE Template Design Synthesis

Complete synthesis of systems is a challenging proposition. The process toward that goal is
one of reusing domain knowledge and design rules so we can chip away at the feasible parts. As
a working definition:

“KBE templates are intelligent documents or features that aim at storing know-how and
facilitate its reuse.”

The knowledge is built up in terms of the
usual semantic web triplet of (subject,
predicate, object). If a predicate is “isPartOf” or
“partOfIs”, depending on the relationship
between the subject and object, then it
becomes just a natural part of the
organization of a component model library.
For an interface to a component that has
empty slots on it, we need to describe the
placeholders for other abstract interfaces. A
ramp will need a slot for a hinge, for example.

(ramp, partOfIs, hinge)

The same goes for “parameter”, which is a
predicate for some subject that will either go
to a named object or some property.

(ramp, parameter, material_steel

)

Figure 7.6-26. ARRoW’s Template-Based
Look-Ahead Concept

Drawing from CML, the approach is to fill in and instantiate the pattern matches.

• In the CML the partOfIs and parameter are left open or define types as part of an
archetype. It is a pure reusable utility function arising from the ontological
classification.

• In the Master Model the partOfIs and parameter are filled in. In many models, such as a
Pro/E tree structure you won’t even see this but it does exist, at least implicitly.

In a Design Space Exploration, the connectivity is defined by the rules and any declarative
semantics that we can pull out of the knowledgebase.

Extending this idea, KBE templates can contain suggestion rules. As examples consider the
following triples:

A contains B

and

A canContain B

The first is an imperative and says that is the way it is, part of a fixed ontology. The second one
is closer to the spirit of a design rule hint where someone has established that the two can go
together but that it is not necessarily fixed. This canContain relation will also have all sorts of
contingencies based on A and B’s specific properties, which points toward supplemental rules.

• Template-based ref inement
• Constraint-based reasoning
• Model-based design

Current Design

Possible future designs

Design
space

generation

To Qualitative
Reasoner
for rapid

design space
exploration.

Design options
DARPA003r2

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

Once composed these relationships would show a definite connectivity within the master
model.

When PTC describes templates in Pro/E, or Dassault with CATIA, this kind of reasoning
takes place, but significant amounts of clarity emerge when we tie the KBE template approach
into ideas such as ontological organization, description logic, set-based engineering concepts,
and design space exploration algorithms.

Combining ontological classification with design rules makes the synthesis more solid and
maintainable. The maintenance issues are addressed by the ontological organization and
description logic. The freedom from a strict design policy is addressed by a set-based
methodology and the multi-objective optimization iterations and DSE that we systematically
apply via the ARRoW process.

One of the reasons why EDA has worked so well in the commercial industry is that the
ontology was actually built-in to the libraries. If someone needed an OR gate, they would know
exactly what to look for, they would just specify an OR gate. That is not the case with general
engineering design, where the ontological classification can help immensely to navigate
through the variety of design choices.

7.6.1.3.4 Requirements-driven Test Archetypes

We consider several different reasoning strategies:

1. Controlled natural language conversion of requirements to tests
2. Requirements analysis archetypes
3. Verb-based tests, drawing from requirements
4. Automated testing scaffolds, such as with Maven and Phoenix Integration’s

ModelCenter.

The first two cases are discussed in section 7.1. Decomposing requirements is in general a
difficult problem because of subjectivity and the difficulty in exposing intent or the original
requirements team. The latter strategies are more amenable to automation in that test cases are
often more explicit and objective.

Test cases in the ideal situation are a set of pre-conditions followed by an expected set of post-
conditions. If we set up rules to map the pre-conditions, which could be environmental or
parametric input, against the variables and sensor inputs found in a master model, then we
could definitely use a reasoner to find potential matches. The same would be needed for the
post-condition side, where the mapping would be between the expected value and the
appropriate sensor output of the model.

So tests become object-predicate-subject triples on the input side: object-stimulates-subject; and
then a kind of complement to this on the output side: subject-provides-object. The predicates
become test-commands or verbs that often derive from the requirements vocabulary. For
example, if a requirement had an active-tense than the verb describing this tense would become
part of the test vocabulary as well.

As finding the right verb for the test situation is time-consuming without automated aids, the
archetypal rules would entail searching through the master model and the knowledgebase to
find pieces that match. The initial corpus would be the entire knowledgebase of components,
test-cases, and context models. This space would get reduced as the state of the design matures.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

7.6.1.3.5 Test Space Exploration for PCC

The flip side of design space exploration is test space exploration. The number of design
choices a development team faces will only be exceeded by the combinatorial number of
contexts that a tester will have to evaluate. Many approaches, ranging from the practice of
Design of Experiments, to usage based models can be applied here.

An example we have used for demonstrating test-space exploration for Test and Verify (T&V)
is shown in Figure 7.6-27.

Figure 7.6-27. Test Space Exploration Uses Similar Combinatorial Techniques to

Search the Test Space as Used for DSE

The ARRoW process will always have available commercial and open-source tools for testing.

7.6.1.4 Application of Reasoning Languages

7.6.1.4.1 AMIL

ARRoW Model Interconnection Language (AMIL) represents relationships between model
elements across heterogeneous models. Like the triple store, it is a foundational capability
designed for growth and extension.

As a language that describes the connections between models, AMIL can be used as the basic
structure for building a co-analysis/co-simulation model or master model, as per the “3-view”
diagram in Figure 7.6-1. At the most fundamental level AMIL will support analysis and
simulation of a partially or fully dynamic set of interconnected models.

Soldier
1

Criteria: Testing ramp load

• Ramp motor
• Ramp armorinfluences

Order of departure
generates disturbance

profile

collective influence (confluence)
Join as one set of disturbances

Influence Diagram and Qualitative State Plan

Design fixed, evaluate T&V
space by envisioning paths
for a reach set analysis.
PCC seeks the worst case.

Soldier
2

Soldier
3

Soldier
4

Soldier
5

Soldier
6

Soldier
7

Soldier
8

Combines Design of Experiments (DoE) and Reach Set Analysis (RSA)

Ramp
Motor

influence
Disturbance profile

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

Data transfer. For a master model, we do not necessarily need active nodes, because the
interconnections can be made descriptive and declarative, and we may not need the data to be
actively transferred in a static representation. However, the analysis and will need data
exchange. Analysis may require less data throughput because we may only need to evaluate
discrete modes of the system, such as for design space exploration. Simulation, and specifically
co-simulation, will often require continuous flow of data between nodes.

AMIL is capable of supporting both of these situations, although in different ways.

For co-analysis, AMIL active nodes can be used to represent relationships between model
elements across heterogeneous models. The active nodes will re-evaluate depending on the
latest set of dependencies. As the complexity of the problem grows, AMIL can be augmented
with mechanisms, such as process workflows, to assist in dealing with scale. For example, there
could be circular dependencies that will make un-orchestrated or un-choreographed updates a
challenging proposition. ESKER and ECTo have both been used to orchestrate the evaluation
of AMIL nodes.

For co-simulation, AMIL could be used as a routing table information provider. Thus, AMIL
will not partake in the actual data flow but it will configure the communications links. AMIL
can model the adaptors required for the tagged signal semantics of heterogeneous co-
simulation. So AMIL acts as a static routing and interconnect configurator and helps with the
choreography of a co-simulation.

Process Workflow. Modeling the process is important for analysis and simulation because this
will guide the flow of data and of the executing process. A workflow model is thus needed to
avoid the race conditions and recursion problems that could afflict the AMIL active nodes. The
solution for workflow lies in the analysis archetypes that describe process behavior, exemplified
by the composable workflows that we have prototyped. These can be knowledge-based in the
spirit of ESKER, the crowd-sourcing tools can include off-the-shelf approaches such as
VisTrails and Kepler or commercial tools such as ModelCenter.

Data Structures. AMIL is essentially a graph and a graph can describe a variety of data
structures. AMIL’s Neo4J data store is actually more powerful than a triple store, so it can
easily accommodate Semantic Web type data structures and any kind of directed graph. A
graph data visualizer in place for AMIL helps to navigate the structure.

Persistent Storage. When we use AMIL it operates directly with a persistent data store. This
is useful for both the development of analysis models and even more so for a master model.
Tools will be required to handle version control and controlled access.

Demonstration of Ontological Reasoning. As a demonstration of the META language
toolset, we want to apply a customized archetypal reasoner (GEAR) to help with the down-
select from a set of ECTo design alternatives using AMIL as the knowledge store.

The pre-condition is that the reasoner needs to know what part of the conceptual model to
filter on. The user of the ECTo model facilitates this by tagging those elements with a
“DESIGN_SET” property. This then gets saved into the current graph database as additional
triples to the individual elements. The “DESIGN_SET” becomes a property of its parent.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

The reasoner next accesses the graph database to get all
the relevant information needed to make a decision. It does
this by making an HTTP request to the ArrowWebServices
entry called /arrow/arrowGraphData. The response to this call
is a JSON text string that contains the representation of
the internal triple-store data (with the active content
executed). Figure 7.6-28. AMIL as a

Knowledge Store

The JSON is parsed and then stored in the GEAR reasoner’s local knowledgebase as an
equivalent set of triples (the active content has been executed so no loss of information occurs
at this point10 Figure 7.6-29). The predicate logic for doing this is in the code snippet ().

Figure 7.6-29. Code Sample 1: JSON Parser and Store Rules

This essentially scans the JSON stream, pulling out each of the AMIL data items and saving
these as (subject, predicate, object) triples. Anything not recognized in this format is discarded
(such as AMIL create, preconditions, and postconditions).

10 The underlying active semantics of AMIL involves the notion of executing a call to a remote
application depending on the evaluation of the node. This happens before we retrieve the AMIL store
because the JSOM parser can only parse.

process_triples(_, []).

process_triples(Subject, [(Pred=Obj)|Rest]) :-

 assertz(triple(Subject,Pred,Obj)),

 process_triples(Subject, Rest).

clean_triples :- retractall(triple(_,_,_)).

scan_amil([]).

scan_amil([json([A,(B=json(List))]) | Rest]) :-

 process_triples(B, [A|List]),

 scan_amil(Rest).

scan_amil([First | Rest]) :- %% If we dont understand discard

 write(user_error, First), nl(user_error),

 scan_amil(Rest).

scan_amil(_) :- write(user_error, 'Not in AMIL format\n').

stream_json(Stream) :-

 clean_triples, write(user_error, '% starting to stream\n'),

 json_read(Stream,Text), write(user_error, '% finished stream\n'),

 json_to_prolog(Text,Prolog), write(user_error, '% converting to prolog\n'),

 scan_amil(Prolog).

AMIL

ECTo GEAR

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

At this point, all the information is available locally to do sophisticated reasoning against. A
snippet of logic queries (Figure 7.6-30), the local knowledgebase for individual elements of a
“DESIGN_SET”, next reasons about specific derived properties, and then applies a set of
criteria to those properties. This is essentially a logic+control strategy, with a search through
the description logic filtered through control predicates.

For the demo, we keep it simple, with the understanding that this ontological rule can easily be
changed. For this case, we decide to filter for the design element with the largest value of mass
density.

Figure 7.6-30. Code Sample 2: GEAR Reasoner Which Finds the Maximum Density

from Elements in a Set

The logic predicates labeled get_design_set polymorphically match to the ontological
constraints of mass, volume, and density. The mass predicate looks up the mass property
directly. The volume predicate requires matches for the three dimensions of height, width, and
length and then computes the volume after successfully binding to values for each property.
The even higher-level density predicate combines the mass and volume predicates to calculate
an element density (could easily change this to a power density which is an important design criteria).

A powerful potential for reuse of rules exists via ontological classification.

A reusable rule called mazimize_value searches a set of paired tuples for the maximum value
after the meta-call findall provides a list of potential candidates.

The top-level rule “find_maximum_density(Subj, Density)” is potentially invoked as a web
service or as a command line invocation.

triple_num(Subj, Pred, Obj) :- % convert atom to number

 triple(Subj, Pred, O),

 atom_number(O, Obj).

get_design_set(S, mass, Value) :- % triple store lookup

 triple(S, parent, 'DESIGN_SET'),

 triple_num(S, mass, Value).

get_design_set(S, volume, Value) :- % lookup with computation

 triple(S, parent, 'DESIGN_SET'),

 triple_num(S, height, V1),

 triple_num(S, width, V2),

 triple_num(S, length, V3),

 Value is V1*V2*V3.

get_design_set(S, density, Value) :- % higher-level rule

 get_design_set(S, mass, V1),

 get_design_set(S, volume, V2),

 Value is V1/V2.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

For example, from this server logic, the HTTP query
http://localhost:5000/load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport

will load from the local AMIL server and http://localhost:5000/query will execute the
find_maximum_density query.

The reasoner code is high-level enough that knowledge engineers can quickly adapt design
rules and analysis archetypes as customized GEAR rulebases and store these in CML.

Figure 7.6-31. Code Sample 3: GEAR Web Server with Handlers Pointing to Rules

The division between the structural ontological world of AMIL and the inferencing world of
reasoning is given by a few analogies:

• AMIL choreographs/suggests/navigates the design
– Design elements are proposed from the ontologies and archetype available
– Possible design linkages are made available

• Reasoners in GEAR orchestrates/directs/steers the design
– Combinations of design elements that meet requirements and constraints
– Utility functions that select the most adaptable and robust combination

server(Port) :-

 http_server(http_dispatch, [port(Port)]).

:- http_handler(root(home), index_page, []).

:- http_handler(root(load), load_data, []).

:- http_handler(root(query), max_density, []).

index_page(_) :-

 reply_html_page(title('Home'),

 [h2(a(href('load?file=JSON_graph.txt'), 'Load data from a file')),

 h2(a(href('load?amil=http://wcsn262:8001/backup/JSON_graph.txt'),

 'Load data from an arbitrary web-served file')),

h2(a(href('load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport'),

 'Load data from a local AMIL server')),

 h2(a(href(query), 'Query data example'))]).

load_data(Request) :- %% File name version

 http_parameters(Request, [file(Name, [optional(true)])]),

 nonvar(Name),

 load_json(Name),

 write(user_error, Request), nl(user_error),

 reply_html_page(title('File loader'), [p(Name), p(' load completed.')]).

load_data(Request) :- %% URL version

http://localhost:5000/load?amil=http://localhost:8080/ArrowWebServices/arrow/arrowGraphExport�

http://localhost:5000/query�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

Again, the combination is that of organization via graph and then a specific search approach for
reasoning.

Thus, AMIL is well suited for working in concert with reasoners, readily supports co-analysis,
and is capable of supporting co-simulation for configuration options (refer to 7.6.3.4) and to
explore the test-space (refer to 7.6.1.3.5).

7.6.1.4.2 Ontological Rule-Based Languages

Many patterns that exist in the engineering process can be expressed as archetypes. These
archetypal patterns can exist as requirements, analysis process artifacts, design rules, and
template architectures. We need a standard way of generating the engineering products
through these archetypes, from accessing the knowledge, reasoning on data and rules, and
generating instances of the archetypes, i.e. as ectypes.

The aims for selecting a knowledgebase language suitable for reasoning include:

• To optimize expression of data and logic (i.e., rules) in the same language
• To allow graph connectivity to be expressed
• To allow rules to be integrated smoothly with the graph
• To allow statements about statements to be made (i.e., meta-logic_)
• To be as readable, natural, and symmetrical as possible

We have selected a style of reasoner development which we refer to as Onto-Logical
Programming (OLP) because it combines ontologies with logic programming. Since an ontological
schema such as OWL already uses Description Logic (DL) then enhancing this with the more
general Logic Programming allows quite a bit of flexibility for developing general purpose
GEAR archetype reasoners [SMV11].

The goal is to provide a language environment that allows us to quickly and efficiently develop
domain-specific reasoners. The data can come from ontological sources such as a dedicated
semantic web, while the rules come from tacit and declared knowledge culled from domain
experts. This eventually becomes part of the CML. This merges into DL, which used to
describe components and their relationships via OWL, a semantic web version of DL.

The fundamental idea is to express design decisions and synthesis as logic. Design decisions
have historically been expressed in natural language. Kowalski11

Description Logic by itself is extended propositional logic which has no active semantics (other
than SWRL), so we depend on the control provided by a logic programming environment

 has stated eloquently that:
Natural Language = Logic + Control. To meet this need for a logical foundation followed by a
control element, the constrained expressiveness of Description Logic extended by logic
programming seemed a natural fit.

12

11 R. Kowalski, “Logic for Problem Solving”, North-Holland, 1979.

.

12 To understand the difference between logic and control consider the following declarative pieces of
information. “Mary likes you if you give her presents and be kind to animals.” That is pure logic, but only top-
down control allows us to solve a problem. Thus a solution combing logic and control “If you want Mary
to like you then give her presents and be kind to animals.”, which has an active element of control.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

This combination allows us to mimic the human design decision process: Logically classifying
and then acting on the info, i.e. applying design rules for composition or synthesis

As a declarative approach, logic programming works well, as we first evaluated the ESKER
DSE framework with Prolog alone and then added the ontological component later. The
declarative syntax is a big plus, as queries in Prolog look like relational SQL or SPARQL, but
with more flexibility. As SPARQL views and SPARQL queries amount to the same thing in
Prolog, users can quickly get up to speed without having to learn extra syntax.

The ontological reuse benefit has shown promise from the start. Historically, critics point out
that domain knowledge is often encoded in a logic program, making it difficult to reuse13

As another reuse perspective, we see less of a need to re-implement algorithms for searching
and optimization. We can take advantage of existing expert system frameworks (like ESKER),
planning systems, theorem provers and design rule checkers, and natural language parsers.
The latter can be domain-specific, allowing non-programmers potentially easier entry, as we
can reversibly transform between the onto-logical style and controlled natural language.

.
However, patterns used with DL and ontological reasoners are standardized. This makes the
domain knowledge logic more amenable to reuse and extension. So we see a huge productivity
advantage in writing archetype-based synthesis tools via this approach.

Similar reuse advantages for Lisp and other interpreted languages with OWL interfaces, yet
Prolog contains useful search and query mechanisms out of the box14

Conciseness of programs. As a comparison of an “engine power” query in Lisp, SPARQL, and
OLP, the OLP is arguably the most concise. The box below features several DL queries
followed by an inline constraint which rules out under-powered engines. This is all specified
declaratively with the OWL queries meta-interpreted by automatically identifying name-space
keywords.

. Having parsers for JSON
and libraries available for OWL provides a fast track to solving problems.

13 Also we need to assume a closed-world for LP and can only make decisions based on data available.
Data not available will result in negation as failure. This is simple pragmatism, as we will never have
complete data and perfect knowledge.

14 Storrle, H., “A Prolog-based Approach to Representing and Querying Software Engineering
Models”, In P. T. Cox, A. Fish, and J. Howse, editors, VLL 2007 workshop on Visual Languages and Logic,
volume 274 of CEUR Workshop Proceedings, pages 71.83.

%import http://wcsn262:8001/demo/arrow.owl

%import http://wcsn262:8001/demo/CFV.owl

%import http://wcsn262:8001/demo/meta.owl

%% Rule to find component with power threshold

find_engine_with_power(Engine, Limit) :-

 meta:'Engine'(Engine),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

To query, invoke:

?-find_engine_with_power(E,12).
E='CFVEngine2'

In this example, the domain knowledge is contained in the ontological terms, making rules easy
to write and understand.

The seamless syntactic construction that distinguishes an ontological namespace query from a
logical call is quite simple. In the engine example, the ontological predicate is identified by a
colon (:) separator, indicating the ontological namespace for the predicate.

• Onto-logical call

 arrow:hasFeature(Engine, Feature)

• Logical call

 hasFeature(Engine, Feature)

In general we apply logic and control via three schemes, a classifier, a description predicate, and
a control rule.

• Classifier
meta:'Engine'(Engine)
Find individual Engine which belongs to ontological class meta:'Engine'

• Description Predicate
arrow:'hasFeature'(Engine, Feature)
Pull all features from that Engine, one will be a power rating Feature

• Control Rule
Power > Limit
Cull the Power ratings greater than some value Limit,
and top level will return the matching Engine

We can ask: What would the rule look like in a controlled natural language?

In Figure 7.6-32, the code to the left is Prolog and that to the right is a hypothetical controlled
natural language. The implications and conjunctions map fairly well and we can use the
capitalization to indicate the unbound variables quite naturally (Figure 7.6-33).

[YRG-24] Prolog Original Controlled Natural Language

%import http://wcsn262:8001/demo/arrow.owl

%import http://wcsn262:8001/demo/CFV.owl

%import http://wcsn262:8001/demo/meta.owl

find_engine_with_power(Engine, Limit) :-

 meta:'Engine'(Engine),

 arrow:'hasFeature'(Engine, Feature),

 meta:'Power'(Feature),

 arrow:'hasValue'(Feature, PowerValue),

Import http://wcsn262:8001/demo/arrow.owl

Import http://wcsn262:8001/demo/CFV.owl

Import http://wcsn262:8001/demo/meta.owl

Find an Engine with a power Limit if

 Engine is a meta:Engine and

 Engine has a feature called Feature and

 Feature is a meta:Power and

 Feature has a value called Value and

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 37 Refer to cover page for Distribution Statement.

 arrow:'value'(PowerValue, Power),

 Power > Limit.

 Value evaluates to Power and

 Power is greater than Limit.

Figure 7.6-32. Difference Between Prolog (left) and a Controlled Natural Language
(right)

Figure 7.6-33. An example of a Typical Assisted Editing Environment for Query
Development

Much of the context modeling world has adopted an ontological strategy for organizing and
classifying environmental data. For the case of an analysis archetype for aerodynamics with the
intent of verifying a PCC, we have a design model of a vehicle hull described by the META
ontology combined with a wind speed context model which uses SWEET (Semantic Web for
Earth and Environmental Terminology) for defining the environment ontology [YRG10].
These two ontologies are combined in Figure 7.6-34.

This is the tuProlog environment which we also
used for the hosting and development of ESKER
as a META design space exploration tool.

ESKER integrates models via AMIL, OLP will do
the same with the semantic web ontologies.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 38 Refer to cover page for Distribution Statement.

Figure 7.6-34. Loading META/CFV Ontologies and SWEET Ontologies

Other GEAR platforms. We have used the open source tuProlog, SWIProlog, GNU Prolog for
evaluation. Also we have evaluated AllegroLisp which contains an Allegrograph graph database,
with a query language that uses either Lisp, SPARQL, or a builtin-in Prolog interpreter for
rule processing. This may be more industrial-scale applicable. Protégé was used for populating
the ontologies, and an N3 to OWL converter for rapid ontology development.

Connection to AMIL. AMIL uses JSON syntax to describe relationships instead of RDF. By
querying the AMIL graph database and parsing the JSON, we can convert that data as triple
stores and reason with it the same as we can with OWL data. The information structure in
AMIL is equivalent to a semantic web graph, apart from the behavioral semantics for
evaluating node data (i.e. the extra semantics with respect to model node evaluation which can’t
be duplicated by RDF). The external logic programming rules can alternatively take care of the
dynamic evaluation.

Use of Meta-Logic.

With the Description Logic reasoner this meta-query:

 arrow:'hasFeature'(Engine,Feature)

gets converted to the DL API call:

 dl_query(bind_state_of_Engine, ‘arrow:hasFeature’, bind_state_of_Feature)

The overhead work that goes into this call involves determining the bindings in the triple-store
lookups and of parsing down to the namespaces. If the binding of Engine is known then we get
back Feature matches. If the binding of Feature is known then we get back Engine matches. If
all three are known it logically returns True or False. The case of the predicate not being
known is less useful because this would involve an additional level of indirection that a domain
reasoner would not have much use for (unless it was searching for predicates that were close to
the intended predicate, in which case relationships could be used to hone in on the desired
predicate) .

In general practice, the three necessary API calls include:

• dl_query(Subject,Predicate,Object)

• dl_assert(Subject,Predicate,Object)

Design model (Hull)
– HullShapeClass

• GeometricHullShape
– AeroPropertiesHullShape

» DragFactorOfHull

Context model (Wind speed)
– GeographicalLocation

• LocalWind
– TimeAveragedLocalWind

» RayleighDistributionForLocalWind
• RayleighParameterForMean

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 39 Refer to cover page for Distribution Statement.

• dl_retract(Subject,Predicate,Object)

The assert and retract only operate on the in-memory state of the knowledge. If we needed
overall knowledgebase control

Then this abstraction:

%import http://wcsn262:8001/demo/arrow.owl

transforms to

dl_load(http://wcsn262:8001/demo/arrow.owl)

and this complementary call:

dl_unload(http://wcsn262:8001/demo/arrow.owl)

7.6.1.4.3 Correct-by-Construction

Combining ontologies and formal rules merges the ideas of Correct-by-Classification with
Correct-by-Construction. The general principle is that by applying construction rules, semantic
definitions, and constraints to a problem domain we can create a Correct-by-Construction
design that we can categorize for potential re-use. That is the power of an ontological archetype
in that the built-in classification scheme allows it to be more readily searchable and therefore a
candidate for reuse.

To scope out the challenge, we take the ramp design example and look at what paths we can
take with synthesis, co-analysis, and co-simulation:

Say the premise is that the ramp has an interlock with a switch to control the drive. Further
extend this to a constraint such that the ramp can’t open if the interior lights are on and if the
vehicle is in combat mode. In simplest terms this reduces to some predicate logic based on
valuations of a remote switch, a hardware sensor reading for the light, and a state machine for
the system modes.

To generalize from this scenario, we will require domain specific language to represent these
rules. We can then extract the essential meaning as a template archetype.

A complete specification of the ramp model would include the logic, controller and plant as
shown in the figure below. AMIL would serve to configure the co-simulation component pieces,
and the T&V thread would monitor the execution if it were running in the context of a PCC
quantification test.

One interpretation of the logic specification is shown to
the right: the ramp opens if commanded to and the
predicates shown apply. The composition logic would
need to extract some meaning to indicate when to do
what. Do we open the ramp if lights are on or off? If
the lights are on and we are not in combat is it then
OK? That is essentially what the requirements state.

if InterlockSwitchOff then

 if CombatMode then

 if LightsOn then

 WaitForLightsOut

 OpenRampDoor

 else

 OpenRampDoor

 endif

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 40 Refer to cover page for Distribution Statement.

Figure 7.6-35. Correct-By-Construction Application
Involving a Heterogeneous Multi-physics Interface

Archetypal Synthesis: Following is an example of an archetype knowledgebase for building a
ramp co-simulation.

%%%% Example for Domain-Specific Archetypal Specification

%%
%% AMIL fact-base, constructed as Subject-Predicate-Object triples
%%
activates(switch, logic). %
controls(controller, ramp). %
requires(logic, state_machine). %
enables(logic, controller). %
overrides(logic, interior_lights). %
stimulates(soldiers, plant_dynamics). %
modeled_by(plant_dynamics, 'VL.Motion'). %
modeled_by(controller, 'Matlab'). %
modeled_by(logic, 'Java'). %
generates(ramp, plant_dynamics). %
visualizes(renderer, plant_dynamics). %
monitors(test_oracle, max_torque_time). %
advises(max_torque_time, pass_fail). %
produces(controller, max_torque_time). %
logs(controller, max_torque_time). %
applies(controller, state_variables). %
shares(plant_dynamics, state_variables). %

%%
%% Archetypal behavior rulebase for specifying causality
%%
+(Subject, Predicate, Object) :-
 call_with_args(Predicate,Subject,Object),
 print(Subject),print(' <<'),print(Predicate),print('>> '),print(Object),nl.

Interlock
Logic

Activate Lights

if InterlockSwitchOff then
if CombatMode then

if LightsOn then
WaitForLightsOut
OpenRampDoor

else
OpenRampDoor

endif
else

OpenRampDoor
endif

endif

Mode

Matlab
Controller

VL.Motion
Dynamics

Test Soldier
Stimulus

ARRoW
 AMIL Configure
 Launch
 PCC Monitor

start event

state variables
(1000 Hz)

pass/fail criteria

visualize

Each directed arrow is a
co-simulation data flow path

impulses

Fault
Insertion

Shared
Power

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 41 Refer to cover page for Distribution Statement.

logical_control(System) :-
 +(switch, activates, Logic),
 +(Logic, modeled_by, Exec),
 +(Logic, requires, States),
 +(Logic, overrides, Equipmemt),
 +(Logic, enables, System).

hinged_slab_dynamics(Data) :-
 +(plant_dynamics, modeled_by, Exec),
 +(Slab, generates, plant_dynamics),
 +(Forces, stimulates, plant_dynamics),
 +(Renderer, visualizes, plant_dynamics).

hinged_slab_control(State) :-
 logical_control(System),
 +(System, modeled_by, Exec),
 hinged_slab_dynamics(Data),
 +(Plant, shares, Data),
 +(System, applies, Data),
 +(System, controls, Slab),
 +(Logic, enables, System),
 +(System, produces, State),
 +(System, logs, State).

test_controller(PCC) :-
 hinged_slab_control(State),
 +(test_oracle, monitors, State),
 +(State, advises, PCC).

Execution example

| ?- test_controller(PCC).

switch <<activates>> logic
logic <<modeled_by>> Java
logic <<requires>> state_machine
logic <<overrides>> interior_lights
logic <<enables>> controller
controller <<modeled_by>> Matlab
plant_dynamics <<modeled_by>> VL.Motion
ramp <<generates>> plant_dynamics
soldiers <<stimulates>> plant_dynamics
renderer <<visualizes>> plant_dynamics
plant_dynamics <<shares>> state_variables
controller <<applies>> state_variables
controller <<controls>> ramp
logic <<enables>> controller
controller <<produces>> max_torque_time
controller <<logs>> max_torque_time
test_oracle <<monitors>> max_torque_time
max_torque_time <<advises>> pass_fail

PCC = pass_fail

Figure 7.6-36. Analysis Archetype Rules

Co-Analysis: It may also be possible to construct dynamic rules in AMIL to execute the
behavior according to results from other components.

• MainSwitch -- Activates the ramp driver

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 42 Refer to cover page for Distribution Statement.

• InterlockSwitch -- Act like a deadman switch to defeat the opening of the door
• CombatMode -- A state in the vehicle state diagram
• LightsOn -- Senses the light in vehicle for survivability, followed by a condition

variable to hold on until light is off.

AMIL is a language for interfacing to a graph database – augmentation with higher-level rules
riding on top of the AMIL layer allows us to construct this logic automatically.

Co-Simulation: AMIL could provide a routing table to, say, the remote functional response to
a CombatMode query. In this case AMIL would declare which node the states and modes
subsystem exists within. When CombatMode is queried the AMIL runtime would execute and
serialize the necessary call and response to the remote node.

The question of co-simulation is thus: Do we want to exercise AMIL so that it can make
decisions based on these kinds of rules and state data, or do we want to defer this logic to the
Simulink or other controlling simulation?

• Basic Synthesis: If we defer this to the controlling simulation, we lose the ability to
compose the model from the design elements since the development will need to be
done in the language of the controlling simulation (e.g. Java or Simulink).

• Basic Co-Analysis: If we do this composition using AMIL, then we will need
mechanisms to stitch the ramp drive, switch, sensor, and state machine together with
customized dynamic rules, and then verify that it works according to the test criteria.

• Configured Co-Simulation: The other alternative is to employ AMIL as a
conventional run-time configuration language and use the AMIL API when we need it
to call out from the controlling simulation. In this case, the Simulink code would be
comprised of many external links, one for each of the logic elements. We lose the
ability to compose but can use AMIL to pull external pieces into the main simulation.

This argument essentially places AMIL into a specific role for co-simulation - it provides us the
basic configuration file or a data path for the primary simulation language that engineers can
use.

This provides for composition in and integration ofother co-simulation languages, with an
assortment of composition knowledgebases, one for each language, i.e. a data-flow composer
for Simulink, an object-oriented one for Java and so on. This allows the generation of this kind
of decision logic without having to write the if-then-else rules.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 43 Refer to cover page for Distribution Statement.

7.6.2 Co-Analysis and Exploration

7.6.2.1 Principles behind GEAR

The prominent idea behind GEAR is to apply similar rule-based semantics in the context of
developing archetypes for analysis, design, and implementation. The goal is to extend the
information laid out in the AMIL and leave it in a symbolic format, suitable for mapping into
more concrete representations. The symbolic representation thus forms an “archetype” for the
specified behavior.

The general concept is to start with a domain model of the behavior that we want to specify.
The domain model is separated into two classes: (1) fundamental atomic actions or behaviors at
the low-level and (2) archetypal rules at a higher-level which server to stitch the actions
together. The actions at the low-level can be constructed from “subject-predicate-object”
triples, which denote causal relationships between intent and a symbolic realization. The
symbolic realization could be retained as an abstraction or a set of possible alternatives.

So a typical triple may be represented as:

 operating_environment <<targets>> destination

Here (operating_environment, targets, destination) illustrates an example of the (subject, predicate,
object) triplet pattern we have in mind. Understandably, this relationship by itself is fairly
meaningless until we place it in the context of a larger-scale behavior. So the archetypal
behavior starts in motion when several of these individual triples form a conjunction that
accomplishes a larger task and executes to show self-consistency and correctness.

The symbology of the subjects and predicates will always represent things that we can build or
reuse – whether they are software, hardware, or human actors depends on what best the
ARROW process decide that the symbols eventually map to.

7.6.2.1.1 GEAR Approach

We start out with a domain model of some sequence (potentially concurrent) of steps that may
build into a cyber-physical realization. The main theme for the sequence is that it forms a set of
behaviors that would typically reproduce a human’s action (automation) or improve on some
already automated realization. In practice, these sequences draw from typical or archetypal
behaviors that have stood the test of time. The key is that we do not want to reinvent the wheel
each time an engineering development needs to implement a behavior. Instead we can extract
from the repository of behavioral recipes and apply them to a start-up design task thereby
reducing our development time.

The need then is for a description that can generate concrete realizations based on the
behavioral archetypes and requirements.

Let’s start with an example drawn from a typical need for any vehicle equipped with a
sophisticated armament system. The need is to create a projectile fly-out model suitable for
analysis, design, and integration testing. A directed graph of the archetype for accuracy
analysis is shown earlier inFigure 7.6-22.

On its own, this directed graph provides the developer with a general flow for data and actions
to accomplish a complete weapons effectiveness analysis. What is missing from it are formal

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 44 Refer to cover page for Distribution Statement.

semantics and causal ordering relationships for the arrows. In other words, we have an idea for
the flow of data but it remains imprecise and open to interpretation, and therefore ambiguous.

The goal is to take this domain model of fly-out accuracy analysis and create an archetypal
knowledgebase from it based on AMIL subject-predicate-object triples and higher-order or
composite rules representing the main stages of the behavior.

We start by creating a set of triples describing the individual behaviors that we need to
implement in Figure 7.6-22. Starting from the left side of the diagram, we note that
(operating_environment, targets, destination) is a reasonable behavior to include. In the text box
below, we gather these low-level behaviors together with that triple as the first entry. (Note
that this is realized in a concise syntax, with the predicate leading the triple as a functor of the
subject and object). This first set forms the AMIL factbase.

Listed below the factbase, we provide a set of archetypal rules governing how the predicate
actions fit together. We have three high-level rules corresponding to the three main stages of
an analysis model – the gun pointing, the projectile trajectory fly-out, and the weapon target
lethality.

%%

%% AMIL fact-base, constructed as Subject-Predicate-Object triples

%%

targets(operating_environment, destination).

resides_on(operating_environment, terrain).

modeled_by(flyout, '3DOF').

initialized_by('3DOF', aero_data).

influenced_by('3DOF', met_data).

guided_by('3DOF', round_corrections).

generates('3DOF', aimpoint_accuracy).

stabilized_by(gun_pointing, stabilization_algorithm).

starting_on(stabilization_algorithm, terrain).

points_at(stabilization_algorithm, destination).

compensating(stabilization_algorithm, drive_model).

perturbed_by(stabilization_algorithm, moving_vehicle).

produces(stabilization algorithm, pointing accuracy).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 45 Refer to cover page for Distribution Statement.

Figure 7.6-37. Behavioral Archetype

An executable query to test the rules results in the following valid response:
?- weapon_effect(Effect).
Effect = lethality+error

This by itself is not too interesting other than it demonstrates that the set of rules is executable
and self-consistent. If we wish to add a level of introspection, we can add the following meta-
rule to describe a more natural subject-predicate-object syntax:

+(Subject, Predicate, Object) :-
 call_with_args(Predicate,Subject,Object),
 print(Subject),print(' <<'),print(Predicate),print('>> '),print(Object),nl.

Restructuring our top-level rules with this new approach following a domain-specific syntax:

%%

%% Archetypal behavior rulebase for specifying causality

%%

pointing_accuracy(Pointing) :-

 resides_on(operating_environment, Terrain),

 targets(operating_environment, Destination),

 stabilized_by(gun_pointing, Alg),

 starting_on(Alg, Terrain),

 points_at(Alg, Destination),

 compensating(Alg, drive_model),

 perturbed_by(Alg, moving_vehicle),

 produces(Alg, Pointing),

 selected(ammo, Caliber),

 conditioned_by(Caliber, gun_geometry),

 ignites(interior_ballistics_model, Caliber),

 dispersed_by(Pointing, interior_ballistics_model).

projectile_flyout(Aimpoint) :-

 pointing_accuracy(Pointing),

 selected(ammo, Caliber),

 initializes(Pointing, Flyout),

 modeled by(Flyout, DOF),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 46 Refer to cover page for Distribution Statement.

Figure 7.6-38. Alternate Rule Layout

This capability for introspection on the calls allows us to manipulate the triples and do meta-
processing on the causality chain. In this specific case, we are simply reformatting the matching
of the high-level archetypal behavior to the low-level action, changing the prefix predicate
notation predicate(subject, object) to a possibly more preferable infix style of (subject, predicate,
object).

We can also do more extensive processing, as for example in generating code, in which case an
execution of the logic will fire predicates that match against instance patterns.

| ?- weapon_effect(Effect).

ammo <<selected>> medium_caliber

medium_caliber <<causes>> lethality

operating_environment <<resides_on>> terrain

operating_environment <<targets>> destination

gun_pointing <<stabilized_by>> stabilization_algorithm

stabilization_algorithm <<starting_on>> terrain

stabilization_algorithm <<points_at>> destination

stabilization_algorithm <<compensating>> drive_model

stabilization_algorithm <<perturbed_by>> moving_vehicle

stabilization_algorithm <<produces>> pointing_accuracy

ammo <<selected>> medium_caliber

pointing_accuracy(Pointing) :-

 +(operating_environment, resides_on, Terrain),

 +(operating_environment, targets, Destination),

 +(gun_pointing, stabilized_by, Alg),

 +(Alg, starting_on, Terrain),

 +(Alg, points_at, Destination),

 +(Alg, compensating, drive_model),

 +(Alg, perturbed_by, moving_vehicle),

 +(Alg, produces, Pointing),

 +(ammo, selected, Caliber),

 +(Caliber, conditioned_by, gun_geometry),

 +(interior_ballistics_model, ignites, Caliber),

 +(Pointing, dispersed_by, interior_ballistics_model).

projectile_flyout(Aimpoint) :-

 pointing_accuracy(Pointing),

 +(ammo, selected, Caliber),

 +(Pointing, initializes, Flyout),

 +(Flyout, modeled_by, DOF),

 +(Caliber, provides, Aerodata),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 47 Refer to cover page for Distribution Statement.

medium_caliber <<conditioned_by>> gun_geometry

interior_ballistics_model <<ignites>> medium_caliber

pointing_accuracy <<dispersed_by>> interior_ballistics_model

ammo <<selected>> medium_caliber

pointing_accuracy <<initializes>> flyout

flyout <<modeled_by>> 3DOF

medium_caliber <<provides>> aero_data

3DOF <<initialized_by>> aero_data

3DOF <<influenced_by>> met_data

3DOF <<guided_by>> round_corrections

3DOF <<generates>> aimpoint_accuracy

circular_error <<required_by>> aimpoint_accuracy

aimpoint_accuracy <<derives>> error

Effect = lethality+error

In this flyout example, variants of the trajectory model could encompass the lower fidelity
3DOF model and a higher fidelity 6DOF model.

7.6.2.1.2 Applying GEAR to domains

There are several benefits to using the ontological/AMIL predicate logic approach on domain-
specific problems.

For one, the archetypal specification of a system is easily understandable –convenient naming
can be used and the specification is directly executable if something is not understood.

A single language can be applied for specifying requirements, defining architecture, behavior
modeling, as well as simulation configuration. This can be extended for specifying testing
archetypes, which essentially follows the (test_case, stimulate, system) triple paradigm.

It also meets the desire for simplicity, non-ambiguity, and completeness in a single integrated
specification. We thus have a support infrastructure that is common between tools and the
domain language.

In "Mathematical Models for Computing Science," C.A.R. Hoare states (August 1994):

• Propositional and predicate logic provide all the basic concepts needed for a systematic
engineering design methodology.

• The operation of each component can be described scientifically by a separate predicate.
• A non-deterministic product is described by the disjunction of predicates describing its

alternative modes of behavior.

By using logical constructs instead of the algebraic ones we can greatly simplify the
architecture specification and model development. Our examples illustrate several practical
applications of logical constructions leading to causal linkages between chained assumptions
and guarantees. These are the initial steps to synthesis of models via domain-specific
archetypes (i.e. a realization of the Galileo functionality for ARROW).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 48 Refer to cover page for Distribution Statement.

The supplemental exercises below provide more in-depth examples and explanation on how
this archetypal behavior modeling can be applied. The first example borrows from the planning
realm and describes a reference architecture with details on the predicate logic. The second and
third example describes a simple assembly tree construction, and suggests the path from
predicate logic to ontological logic.

Once accepted, the more elaborate reasoning tools such as ECTo and ESKER will allow quick
prototyping and automated evaluation to determine a potentially feasible and/or optimal
assembly. The plan is to apply this approach to a variety of archetypal domains.

GEAR suite

• AMIL has extra semantics with respect to model node evaluation which can’t be duplicated by RDF
– If that is not required then ESKER becomes a type of OLP, with nodes evaluated by the logic program

• The concepting reasoner visualizes spatial representations, which is difficult to do in pure logic

Ontological
Reasoner

(with RDF)

Model
Reasoner

(with AMIL)

Concepting
Reasoner

(with AMIL)

Design Space Exploration,
Analysis of Alternatives ESKER LP

Vehicle Spatial Layout ECTo

Requirements Allocation OLP

Analysis Composition OLP

Design-rule-based Synthesis OLP

Template Architectures OLP

Test Case Generator OLP

PCC Evaluation ESKER

Figure 7.6-39. Gear Suite

7.6.2.1.3 #1: Manufacturing Example

The first example is a simple industrial manufacturing scenario which we use to stretch our
understanding of how the language can be used. In this example, we show how a logic-based
requirements and architecture specification can provide an integrated framework for the
development and reuse process.15

Application Domain. Our example is set in a manufacturing domain. An abstract
representation of this manufacturing environment is shown in

 As an illustration, we will apply typical industrial decisions,
resource capabilities, and resource sharing (refer to BBN’s work) and allocation to a task
workflow.

Figure 7.6-40.

15 Logical specification does not introduce artifacts in the specification, such as complex diagrams and
symbols, unique node representations, specialized networks, complex database schema representations,
etc. Instead, it deals directly with the goals, plans, capabilities, and constraints of the application
domain. The specification does not require information modeling as the first step in developing the
specifications. Thus, there is no need for object diagrams, DFDs (Data Flow Diagrams), E-Rs (Entity-
Relationship Diagrams), STDs (State Transition Diagrams), etc. All of these representations are
implicit in the declarative-style logical specification.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 49 Refer to cover page for Distribution Statement.

Figure 7.6-40. Abstract Representation of the Operating Environment

When manufacturing orders are received, they are passed through the scheduling-dispatching
channel to the shop-control activity. One of the activities that shop control is responsible for is
'material move' operation. We will assume that the manufacturing plant uses a just-in-time
approach, where an immediate response to all of the incoming work orders is required. Thus,
when a move order is received from the shop control specifying a certain material to be moved,
the work center accepts the order if it has the necessary resources; otherwise the shop control is
notified that sufficient resources are not available and that the material move order cannot be
accepted. In the latter case the shop control will try other alternatives.

Our work center consists of small warehouse, transportation equipment, and transportation
equipment operators. To keep our illustration simple, only some of the normally available
resources will be considered.

Domain Model. A domain model specifies the behavior of the entities making up the problem
space. As such, the domain model is also the representation of the process, because it describes
what is taking place in the domain. It considers functions, data, rules, and the various entities
(objects) and their capabilities and constraints.

The primary purpose of the domain model is to describe generic problems, which can then be
represented as archetypal candidates for reuse. Our 'material move' operation can be considered
in this context, because it can represent a family of 'move' operations that have the same
generic structure, and therefore are considered archetypal.

A domain model is logical because it does not assign functions to specific components. It only
specifies the applicable interface and the information that flows through this interface.

A domain model can be specified informally (textual description), graphically (diagram
description), or formally. We started with an informal description of the manufacturing domain,
Figure 7.6-41 shows a block diagram representation with instance data, and then we will look
at the formal (logical) representation.

One immediately sees the classification of the categories Operator, Equipment, and Material
with several candidate instances associated with these classes.

Orders TaskScheduler TaskDispatcher ShopControl WorkCenter

Plans {Operators,Material,Equipment}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 50 Refer to cover page for Distribution Statement.

Figure 7.6-41. Dispatch Work Center

The next step is to represent the above model formally. The external interface of our work
center is simple. The top-level domain model for the material move function (work order
request) can be expressed as:

 move(Material)

where 'Material' is a parameter that will be specified when the move order is requested.16

Reference architecture. The reference architecture specifies the allocation of tasks needed to
meet the desired goal. It also supports the development of a family of related systems. Thus, it
is important to keep it in a generic parameterized form, so that it can be extended,
reconfigured, and reused. We can also look at the reference architecture as an extension of the
domain model. Whereas the domain model specifies WHAT is needed, the reference
architecture specifies HOW to accomplish it. The logical architecture model is potentially
layered, with each layer providing additional detail and less abstraction.

The reference architecture uses a logical specification. Instead of developing a new architecture
description language, we will use a conventional logic programming language.17

Prolog is basically a first order logic (FOL) programming language with a number of non-
logical extensions. A Prolog predicate sentence has a head (left side) and a body (right side),
separated by the symbol ':-' (meaning if). The Prolog declaration, 'p :- q,s.' states that the
assertion p is true if the assertions q and s are true. From a goal viewpoint we can interpret the
above assertion as a goal and two subgoals.

 But before we
get too far, a few comments about Prolog notations and its unique conventions are necessary.

16 The 'move' function, of course, is only one of the many functions applicable to our work center. Others
include restocking, acquisition of transportation equipment, etc.
17 Our choice in this case is Prolog, but another logic programming language could be used as well.

ShopControl

DispatchWorkCent

Reply (+ or -) Move material

OPERATORS
carl
jill
jim

EQUIPMENT
cart

crane
truck

MATERIAL
stand
parts

storage_tank

To other
work centers

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 51 Refer to cover page for Distribution Statement.

In an alternate interpretation, we could consider the goal as a responsibility and the individual
plans as obligations associated with the specific responsibilities. Yet in another interpretation,
the goal could be considered to be a strategy18

In the conventional Prolog notation, names starting with a lower-case letter represent
predicates and constants and those starting with an upper-case letter represent variables (these
are initially unbound). Lists are enclosed in square brackets. Thus [a,b,c] is a list consisting of
three elements a, b, and c. The individual elements may represent parts, equipment, etc. Lines
beginning with a '%' are comments.

.

Decomposition of problem. The solution should naturally come out of the problem domain. A
logical specification can support system decomposition at all levels of representation. Hierarchy
levels are variable and different parts of the system may not be expanded to the same level. As
we will note later, there will be both horizontal and vertical decomposition.

The same decomposition approach also provides the capabilities for including a number of
alternatives, such as alternate plans, backup tasks, or error recovery actions in the process plan.
These alternatives are selected if a goal cannot be satisfied using the primary path (normal
operating procedures). Since pre-conditions and post-conditions are implicit in the declarations,
special notation is not required. However, any applicable constraints must be declared
explicitly.

We can express the relationship between the domain model and the reference architecture as a
logical predicate:

move(Material) :- % Implicit Response T/F

 find_transport(Material,Transport),

 find_operator(Transport,Operator),

 make_assignment(Operator,Transport,Material).

The top level goal (or responsibility) is 'move(Material)'. The right hand side of the predicate
states the specific tasks (or obligations) that need to be performed to determine whether the
move request can be accepted by the work center. The goal is satisfied if we can find the proper
transport, locate an available qualified operator, and then make the move assignment (resulting
in an affirmative response. Note, that these are also the preconditions for a successful material
move operation. The above expression represents a horizontal composition, with the meaning
of the individual terms to be defined at the next lower level in the definition hierarchy.

For example, to determine if the proper transportation means are available, we have to find out
first what kind of transport is needed to move the requested material and then we have to check
if that particular transport is available. Similar considerations apply to the selection of an
operator, where we first have to determine if an operator is available and then have to check if
that particular operator has the needed operational skills.

However, if one or more of these requirements are not met, then the work center will need to
issue a negative response (i.e. an implicit failure). In a full system implementation this message

18 The specific interpretation will normally be application and user environment dependent.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 52 Refer to cover page for Distribution Statement.

would retry and go to ShopControl, where alternate means would have to be found to move the
needed material to the shop floor.

move(+Material) :-

 decline_request(+Material).

In the logical specification resource allocation constraints are defined by the rules that will
assign an operator and the appropriate transport equipment to the material move operation.
This assignment will occur only if the resource availability constraints are met.

The dispatch work center spec is presented below. The write statements are not actually part of
the specification, but are included for animation and testing purposes.

% ---------------------- Logical Specification -----------------

% Dispatch Work Station Logical Specification

% move is the responsibility; find_transport, etc. -- are obligations

move(Material) :- % Response T

 find_transport(Material,Transport),

 find_operator(Transport,Operator),

 make_assignment(Operator,Transport,Material),!.

move(Material) :- % Response F

 decline_request(Material).

find_transport(Material,Transport) :- % Response T

 move_by(Material,Transport),

 equipment(Transport,available).

find_operator(Transport,Operator) :- % Response F

 operator(Operator,available),

 operator_skills(Operator,Skills),

 have_skill(Transport,Skills).

make_assignment(Operator,Transport,Material) :- % Response T

 assign_operator(Operator),

 assign_transport(Transport),

 issue_work_order(Operator,Transport,Material).

decline_request(Material) :-

 write('resources are not available to move '),

 write(Material),nl.

assign_operator(Operator) :-

 retract(operator(Operator,available)),

 assert(operator(Operator,busy)).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 53 Refer to cover page for Distribution Statement.

assign_transport(Transport) :-

 retract(equipment(Transport,available)),

 assert(equipment(Transport,busy)).

issue_work_order(Operator,Transport,Material) :-

 assert(assignment(Operator,Transport,Material)),

 write(Operator), write(' has been assigned to move '),

 write(Material),nl.

move_completed(Operator) :-

 assignment(Operator,Transport,_),

 release_transport(Transport),

 release_operator(Operator),

 assignment_completed(Operator),!.

release_operator(Operator) :-

 retract(operator(Operator,busy)),

 assert(operator(Operator,available)).

release_transport(Transport) :-

 retract(equipment(Transport,busy)),

 assert(equipment(Transport,available)).

assignment_completed(Operator) :-

 retract(assignment(Operator,_,_)),

 write(Operator),write(' has completed move assignment'),nl.

%auxiliary logic (used to find if an operator has the needed skill)

have_skill(X, [X|_]).

have_skill(X, [_|Y]) :- have_skill(X,Y).

% -------------------- instance specification --------------------

% Sample Dispatch Work Station knowledge base facts, store as triples

% transportation needs (capabilities)

move_by(storage_tank,crane).

move_by(stand,truck).

move_by(parts,cart).

% operator availability status

operator(carl,available).

operator(jill,available).

operator(tom,available).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 54 Refer to cover page for Distribution Statement.

% operator skills (capabilities)

operator_skills(carl,[truck,cart]). %% triples with object a list

operator_skills(jill,[crane,cart]).

operator_skills(tom,[truck,cart]).

%equipment availability status

equipment(crane,available).

equipment(truck,available).

equipment(cart,available).

% -------------------- test specification -------------------------

% a simple behaviour test scenario

test:-

 move(storage_tank),

 move(parts),

 move(stand),

 move_completed(jill),

 move(parts).

% --------------------- End of Logical Specification -----------------------

Figure 7.6-42. Material Move Specification in Prolog

We note that the top level specifies the "WHAT" type requirements (responsibilities and
obligations). The "HOW" details are defined and elaborated at the lower levels in the
specification. The "WHO" question will answered during the system implementation phase.

It is important to note the "information hiding" aspects of the logical representation. In our
example 'move(Material)', declared at the top level, is the only link to the external environment
and hides the internal operations.

It is also important to note that all the potential interconnections are part of the hierarchical
representation. Thus, we see no need for a specialized module interconnect language or
separate data flow diagrams.

Our problem representation is an executable specification because it is an operational Prolog
program. To test it (using the simple 'test' predicate which is defined at the end of the
specification listing), we can load it and run it under a Prolog interpreter or compiler. For
example, using the SWI Prolog compiler, we obtain the following results:

--

Welcome to SWI-Prolog (Version 2.5.2)

Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 55 Refer to cover page for Distribution Statement.

1 ?- [msi7].

msi7 compiled, 0.17 sec, 5,624 bytes.

Yes

2 ?- listing(test).

test :-

 move(storage_tank),

 move(parts),

 move(stand),

 move_completed(jill),

 move(parts).

Yes

3 ?- test.

jill has been assigned to move storage_tank

carl has been assigned to move parts

tom has been assigned to move stand

jill has completed move assignment

resources are not available to move parts

Yes

Figure 7.6-43. Testing the Logical Specification

Examining the results of this test (actually a trace), we note that the first three move requests
are satisfied, but the fourth fails because all of the needed resources have already been allocated.
Note that although Jill is available as an operator, the cart is still in use. Thus, the fourth
request fails.

A similar approach can be used to specify other manufacturing operations. For example, we
could develop a specification for a make operation, 'make(Gizmo,Quantity)'. The higher level
specification, for example, could include a number of make and move operations. Again, the
individual tasks (goals) will be decomposed as needed.

Our example illustrated a simple approach to handling constraints and capabilities. The
constraints considered included the availability of suitable transportation equipment and a
qualified operation. In a more complex situation, we will need to consider other types of
resources that may be physical (consumable or permanent) or logical (such as support
activities). Resources also may be shared by several tasks. In this case the resource model
contains the specifications and the status of all resources -- material, equipment, as well as their
current capabilities.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 56 Refer to cover page for Distribution Statement.

In addition to resource and capability constraints, it will be necessary to specify time and
priority constraints, such as response time to a task request or the task priority level. In some
situations, response time will be expressed as a function of priority. When developing the
specifications, we must remember that all of these constraints need to be expressed in a logical
form.

Logic described in this fashion leads to architecture reusability. For example, we could modify
our dispatch example for a different application, such as machine selection. In this situation, we
would consider machine operators instead of equipment operators. A task in this case would
denote an operation performed on a machine and the skill list could specify the capabilities
associated with a specific machine or a machine operator.

Logical specifications are easily extendable (composable). For example, in our illustrative
example we did not consider material availability. However, this additional constraint can be
included by modifying the top level specification as shown below (note the added line #2):

move(Material) :-

 material_available(Material),

 find_transport(Material,Transport),

 find_operator(Transport,Operator),

 make_assignment(Operator,Transport,Material).

Figure 7.6-44. Adding Material Availability Constraint

and then adding the appropriate expansion for 'material_available(Material)'.

Implementation Architecture. The logical specification developed above is only a generic
exemplar. However, it provides the foundation for developing specific applications. The
applications-level architecture definition provides a precise statement of the specific problem, it
clearly defines components, their interconnections, specific application constraints, etc.

Implementations should not appear in the reference architecture definition apart from instance
data. This approach will permit the same abstract model to serve as a framework for
implementation in different operating environments using different architectural styles.

The development of the applications architecture is the last step in the stepwise refinement
process that starts with the domain model (highly abstract) and ends with a definition (highly
specific) that is suitable for implementation in components. This example was left in a non-
ontological format so that we can see how the transition to an ontology-based description plays
out. This is described in the next two examples.

7.6.2.1.4 #2: Structured Synthesis Archetype

Another example of an archetype is the structural formulation. The pattern is one of having a
generic blueprint for how the parts fit together within the context of an assembly tree. The
AMIL triple, denoted as an assembly, provides the subject-predicate-object low-level actions that
the higher level construction rules act on.

What this demonstrates is the concept of a variant. The variant essentially gives a several
concrete realizations to the abstract basicpart.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 57 Refer to cover page for Distribution Statement.

%%%

%%% Simple example of a bike assembly tree, with variants included in Prolog.

%%%

%%% This is partially decomposable whereby the "variant" functor is left open

%%%

%%% to invoke execute: "parts_of(bike, M)?"

%%%

%%% This will generate all the possibilities of a bicycle variant

basicpart(rim).

basicpart(spoke).

basicpart(rearframe).

basicpart(handles).

basicpart(gears).

basicpart(bolt).

basicpart(nut).

basicpart(fork).

assembly(bike,[wheel,wheel,frame]).

assembly(wheel,[spoke,rim,hub]).

assembly(frame,[rearframe,frontframe]).

assembly(frontframe,[fork,handles]).

assembly(hub,[gears,axle]).

assembly(axle,[bolt,nut]).

%% basicpart could be defined as assembly(x,[]).

variant(rim, deep_rim).

variant(rim, shallow_rim).

variant(spoke, bladed_spokes).

variant(spoke, circular_spokes).

variant(rearframe, titanium).

variant(rearframe, aluminum).

variant(rearframe, carbon).

variant(rearframe, steel).

variant(handles, drop_bar).

variant(gears, 5-gears).

variant(gears, 6-gears).

variant(bolt, steel_bolts).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 58 Refer to cover page for Distribution Statement.

variant(nut, steel_nuts).

variant(fork, Fork) :- variant(rearframe,F), atom_concat(F, '_fork', Fork).

%%% Rules

parts_of(X,P) :-

 parts_cumulative(X,Parts,[]),

 one_of_each(Parts, P).

parts_cumulative(X,[X|Hole],Hole) :- basicpart(X).

parts_cumulative(X,P,Hole) :-

 assembly(X,Subparts),

 parts_cumulative_list(Subparts,P,Hole).

parts_cumulative_list([],Hole,Hole).

parts_cumulative_list([P|Tail],Total,Hole) :-

 parts_cumulative(P,Total,Hole1),

 parts_cumulative_list(Tail,Hole1,Hole).

one_of_each([],[]).

one_of_each([H|T],[H1|Ts]) :- variant(H,H1), one_of_each(T,Ts).

The result of a run will generate a collection of all possibilities of the bike fitted with different
components. The following query represents only the first few matches for possible assemblies:

| ?- parts_of(bike,L).

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,titanium_fork,drop_bar] ? ;

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,aluminum_fork,drop_bar] ? ;

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,carbon_fork,drop_bar] ? ;

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,titanium,steel_fork,drop_bar] ? ;

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,aluminum,titanium_fork,drop_bar] ? ;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 59 Refer to cover page for Distribution Statement.

L = [bladed_spokes,deep_rim,5-gears,steel_bolts,steel_nuts,bladed_spokes,deep_rim,5-
gears,steel_bolts,steel_nuts,aluminum,aluminum_fork,drop_bar] ?

7.6.2.1.5 #3: Ontological Synthesis Archetype

The next step is to merge the above structured archetype into an ontologically structured
archetype. To do this, we first need a classification scheme which is provided by the following
OWL N3 declaration:

@prefix : <http://localhost:2000/bike.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

: a owl:Ontology .

:basicpart a owl:Class .

:structure a owl:Class .

:assembly a owl:ObjectProperty .

:rim a :basicpart .

:spoke a :basicpart .

:rearframe a :basicpart .

:handles a :basicpart .

:gears a :basicpart .

:bolt a :basicpart .

:nut a :basicpart .

:fork a :basicpart .

:concept a :structure ;

 :assembly :wheel ,

 :frame .

:frame a :structure ;

 :assembly :rearframe ,

 :frontframe .

:frontframe a :structure ;

 :assembly :fork ,

 :handles .

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 60 Refer to cover page for Distribution Statement.

:wheel a :structure ;

 :assembly :spoke ,

 :rim ,

 :hub .

:hub a :structure ;

 :assembly :gears ,

 :axle .

:axle a :structure ;

 :assembly :bolt ,

 :nut .

Then we can follow this with the declaration of the variant parts:
:deep_rim a :rim .

:shallow_rim a :rim .

:bladed_spokes a :spoke .

:circular_spokes a :spoke .

:titanium a :rearframe .

:aluminum a :rearframe .

:carbon a :rearframe .

:steel a :rearframe .

:dropbar a :handles .

:five_gears a :gears .

:six_gears a :gears .

:steel_bolts a :bolt .

:titanium_fork a :fork .

:aluminum_fork a :fork .

:carbon_fork a :fork .

:steel_fork a :fork .

:steel_nuts a :nut .

Once the classifiers and instances are defined then we can reason on the parts using an
ontological logical inference engine.

%import http://localhost:2000/bike.owl

%import http://www.w3.org/2002/07/owl

%import http://www.w3.org/1999/02/22-rdf-syntax-ns

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 61 Refer to cover page for Distribution Statement.

parts_of(X, List) :-

 findall(Parts, part_of(X,Parts), PartsList),

 one_of_each(PartsList, [], List).

part_of(X, X) :-

 bike:'basicpart'(X).

part_of(X, Y) :-

 bike:'assembly'(X, Subpart),

 part_of(Subpart, Y).

one_of_each([], List, List).

one_of_each([Type|Rest], Input, List) :-

 rdf:'type'(Obj, Type),

 one_of_each(Rest, [Obj|Input], List).

The intent is the same as the purely structural example, yet the logical code comes out more
clean and concisely because of the classification structure imposed via the OWL organization
and instancing approach. There are fewer choices allowed to describe the system according to
the description logic semantics, so that the logical rules tend to be easier to understand. There
is also a greater possibility for reuse and less maintenance requirements due to the longevity
imposed by a good classification scheme.

7.6.2.2 ESKER

This section lays out the approach that we applied to building the Expert-System
Knowledgebase Evaluation Reasoner (ESKER) as a tool for design space exploration. In
particular, we describe how we have tied together AMIL and logical semantic reasoning to
facilitate DSE, with ESKER containing the engine that drives the search. The semantic web
reasoners available use a similar inference engine (Prolog) to that which is described here.
ESKER also uses a declarative form, making it very compatible with triple-store and
description logic.

ESKER evaluates utility criteria for a given set of components selected from a set of variants.
We initially assume that the model components would fit together; a precursor archetypal
model actually establishes the specification for components that can get integrated together,
which is also what ECTo does from vehicle structural design rules.

7.6.2.2.1 Background

The approach described in this section provides a reusable pattern to optimizing systems that
require an evaluation of alternatives and design space exploration, either in terms of concepts
or of design choices.

System optimization has historically remained a challenging problem because the complexity
involved in simply choosing between alternatives of any significant number makes a purely
quantitative approach prohibitive. Although algorithmic automation approach can alleviate the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 62 Refer to cover page for Distribution Statement.

bookkeeping, several challenges remain, especially in terms of integrating results from a set of
tools that provide the intermediate decision support.

Concepting and Design Phases. The general statement of the problem is concisely framed in
a basic two-dimensional design space. The scenario typically occurs with the design of any
sufficiently detailed product, such as a ground vehicle or a weapon system and it involves
selecting alternatives with respect to some set of criteria. Within the first dimension, we have a
set of concept or design alternatives. Some examples may include:

• Capacity of vehicle in terms of different count of troops
• Tracked vs. Wheeled
• Gun Caliber
• Engine Type
• Etc.

In the second dimension we have a set of optimization criteria, in which we use to arrive at the
best choice of element alternatives. The criteria can have various requirements and constraints
associated with their description and typically fall into a set of established categories, such as:

• Cost
• Reliability
• Performance
• Weight
• Etc.

The system engineering puzzle is to choose which alternatives fit best together within a given
set of criteria. The major difficulty in doing this from a global perspective is that both the
product and optimization categories cross a broad spectrum of disciplines and we will likely
have to integrate a number of disciplines and analysis tools together to provide the most
effective solution. That is the nature of system engineering, and why a cross-disciplinary
approach is vital.

The results of this implementation shows that an expert system backed by a dynamic
knowledge base is well suited for the optimization task. We will explore the basis for this in a
bit more detail but by simply meeting the following objectives, we can provide a formal
mechanism to rationalizing the engineering decisions that we make.

• Declarative Knowledge
• Structured Decisions
• Human still in the loop
• Generate a narrative for explanation and regression (i.e. a provenance capability)

A search optimization problem. The problem boils down to optimizing among the
alternatives considering constraints, requirements, and various measures of effectiveness. Most
of these measures either come about through heuristics, analysis models, or simulation of the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 63 Refer to cover page for Distribution Statement.

alternative being studied. We definitely need an approach that will selectively lock choices to
prevent explosion of alternatives19

Take the following case under consideration and you can see how important constraining the
design space becomes:

.

• For a given concept vehicle you will have varying sets of design alternatives for every
system component.

• Each of these alternatives will have benefits in terms of some established criteria, such
as accuracy, reliability, cost, … etc.

• A ground vehicle system can easily have 200 components with an average of 3 design
alternatives per component.

• In this case, the number of evaluations required to find a global optimum with respect to
the summed criteria is 3200

• This value exceeds the number of atoms in the universe, 4×1078 by many orders of
magnitude.

• Bottom-line is that a human is still required in the loop to exercise judgment and to
prune the computational space. An optimization tool can speed the process in relative
terms.

Figure 7.6-45 outlines the optimization architecture that we have prototyped as part of this
effort.

Originally, the expert system organization was predicated on a two-stage process. The first
stage included heuristics and straightforward calculations (cost lookup, first-order rules, etc).
The second stage would feature more elaborate simulations, via connections to external tools.
The plan was to eventually allow the second stage outcomes to get adopted as first stage
heuristics as our tacit knowledge matures.

Maintaining a two-stage process requires a long-term maintenance commitment as the updates
from the external tools have to be periodically translated manually to heuristics as the basis
information changes. For that reason, we have elected to consolidate the stages as much as
possible. The figure shows the external apps that we have integrated at different times, both
commercial and open source, and in Figure 7.6-46, the figure demonstrates how an external
tool was hooked up in more detail.

19 A spreadsheet-based approach, although table-driven, is untenable since it lacks : (1) Large-scale
maintainability, with the “if-then” rules particularly difficult to implement and (2) Customizable
extensibility to outside tools. The latter strongly suggests that flexible reasoners could play a vital role.
Interesting to note that, despite decades of development of decision support systems and methodologies,
spreadsheets are still popular as primary tools for decision making.

http://en.wikipedia.org/wiki/Decision_support_system�

http://en.wikipedia.org/wiki/Spreadsheet�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 64 Refer to cover page for Distribution Statement.

Figure 7.6-45. Architecture of the Optimization Shell

Figure 7.6-46. AMIL-like Connections Between the Main Application and Server

Applications

Local Knowledge

Specs

Rules

User Interface Layout

Forms

Inference
Engine

Inference Engine Auto-Generated=

Results
window

Select
window

External
Apps

SCREAMr
ARTQUIK

GroundWars

Mockup

NABK

CML
AMIL

“web crawl”

External
Knowledge

App 1 App 2, etc.ESKB

XML f ile output

stdout

PIPE w/ env
variables

HTTP
w/ CGI

Query
response

ESKB

Server

1. Launcher

Server
CARMS

2. Other App
Server, such

as NABK

P4 launches all servers

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 65 Refer to cover page for Distribution Statement.

In general, there is no limit to the number of application servers that one could have running as
long as they provide a common way of dealing with input and generate a structured format for
the output data stream. The use of HTTP with XML and delimited data formats makes this
approach workable.

The set of servers can be launched with an execution monitoring tool. A logical launching
specification file can be used to generate the locations and ports of the servers. Since the session
file uses the same formatting as the rest of the knowledge-base, the specification can be shared
with the rest of the rules governing the communication paths. This becomes important
considering that the run location of the external simulations is independent of the domain-
specific rules used to evaluate alternatives. If the information is shared between the launch
configuration and query execution configuration, it makes the system much easier to maintain
or to migrate.

To show the proof of concept, we have generated a suite of optimization problems that run the
gamut of concepting spaces, from small to large. This suite also exercises many of the external
tools.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 66 Refer to cover page for Distribution Statement.

Table 7.6-2. List of Prototype Optimization Problems

Item Description
Ground vehicle Generates a random set of heuristics in a large concepting

space, with 23 criteria and over 150 elements with at least two
alternatives for each element

Brigade combat team vehicle A very small model to compare against
Mountain bike test Consumer application of a buy decision based on component

selection
Bradley example w/SCREAMr Tests out SCREAMr as an external tool
Jeep spare tire example Tests out CARMS as an external tool
Fire Control NABK example Tests out NABK as an external tool
Artillery Artquik example Tests out Artquik as an external tool
Ground Wars example Tests out GroundWars as an external tool
Matlab Interface example Connects to a generic Matlab executable

Typically, analysis tools such as the NATO Armaments Ballistic Kernel (NABK) can be used as
interfacing elements where the scope of the knowledgebase is not extensive enough. Where
enough information is available we can simply declare that in the local knowledgebase. So a
simultaneous path involves building a knowledgebase to enable system level trades. Queries to
the knowledgebase will therefore execute specific performance analyses, initially via heuristics,
and later via external connectivity, but will produce good relative performance metrics in each
case. The recommendation is to follow the elicitation steps described in Section 7.6.1.3.2.

7.6.2.2.2 Optimization via Expert Systems

The goal is to verify that design concept has been through a rigorous and, even better, a formal
analysis for optimality. The proven way to do this is through a set of first-order logical rules.
An analyst can accomplish this by carefully considering all the alternatives in his/her mind, but
the complexity and dimensionality of the decision space usually precludes this, save for the
simplest case of a handful of rules. By applying good decision engineering practices, one can
overcome a decision making "complexity ceiling" while maintaining a readable set of rules.
Parts of the evaluation can remain in terms of abstracted domain alternatives that exist solely
as empirical rules, heuristics, and other analysis results.

The key to making the knowledgebase approach easy to work with is in the methodical practice
of presenting all information declaratively. Thus all facts (i.e., data) and rules have clear
visibility and rely on symbolic notation. The facts are easily separable from the rules, yet you
do not need special file reading mechanisms to get started. The only thing that sets a
knowledge-based approach apart from a database query is that the database lacks rules.

Performance. Expert systems are usually not compiled. Even though interpreted rules may
reduce the performance speed, the sophistication of the decision support algorithm selected
likely has a bigger impact on the speed of the search. An optimization approach such as
Dynamic Programming is easily accomplished in a shell environment. (Large benefits via such
simple dynamic programming mechanisms as tabling and partial evaluation.) If we need even
more speed than Dynamic Programming then the rules can be recompiled as an executable.
However, compilation is not typically desired since modifying the rules and data is essential for

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 67 Refer to cover page for Distribution Statement.

interactive experiments. This is a wash in terms of what constitutes the best approach – pick
either interpreted for short build cycle or compiled for faster results.

Robustness. A benefit of a knowledgebase is that the rules and data can combine to perform
formal type checking, which makes the rules manageable as the set gets larger. In practice, this
is very easy to specify. In the example below is a set of data and corresponding rules that make
the type matching very easy to follow as we add the dimensional constraints of horsepower (hp)
and metric volume (m3):

engine_volume_per_horsepower('conventional turbo diesel', 0.0006496*m3/hp).

engine_volume_per_horsepower('AIPS diesel', 0.0003398*m3/hp).

engine_volume_per_horsepower('turbine', 0.0*m3/hp).

engine_volume_per_horsepower(_, 0.0*m3/hp).

engine_v_func(HP*hp, Powerpack_Type, Volume*m3) :-

 engine_volume_per_horsepower(Powerpack_Type, Density*m3/hp),

 Volume is HP*Density.

transmission_volume('conventional turbo diesel', 0.98826*m3).

transmission_volume('AIPS diesel', 0.98826*m3).

transmission_volume('turbine', 0.0*m3).

transmission_v_func(HP*hp, Powerpack_Type, GVW*tons, Volume*m3) :-

 transmission_volume(Powerpack_Type, Base*m3),

 Volume is 0.75*GVW/60 + 0.25*(HP/1500)*Base.

The declarative pattern matching on the caller and callee sites make it impossible to generate
an incorrect mixture of dimensions.

7.6.2.2.3 Specifying the search problem

Specifying the alternatives. Say that we boil down the problem into a simpler set of data and
rules for the sake of explanation. The following is an enumerated set of variants that we wish
to consider. Each variant (or element) has its own set of alternatives; for example the traction
on a vehicle could be either wheeled or tracked.

variant(traction, [wheeled,

 tracked]).

variant(number_of_wheels, [6*wheels,

 8*wheels,

 10*wheels]).

variant(crew_size, [2*men,

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 68 Refer to cover page for Distribution Statement.

 3*men,

 4*men]).

variant(max_speed, [40*mph,

 50*mph,

 60*mph]).

variant(engine, [diesel,

 hybrid]).

These actually thinly disguised triple stores where the object list is enclosed by brackets [], to
cut down on the verbosity. So the notional triple store is (subject, hasVariant, object).

Weighing the alternatives. Next, we can specify the outcomes of physical weight for each of
the alternatives. We have some flexibility here as the weight of the wheels can get rolled up in
the other rule. The engine rule is expressed as a simple fact.

 weight(wheeled, W) :-

 variant(number_of_wheels,L),

 member(N*wheels,L),

 W is N*100+100.

weight(tracked, W) :-

 variant(number_of_wheels,L),

 member(N*wheels,L),

 W is N*90+1000.

weight(N*men, W) :-

 variant(crew_size, L),

 member(N*men,L),

 W is N*100.

weight(_*wheels, 0).

weight(_*mph, 0).

weight(diesel, 2000).

weight(hybrid, 1500).

A similar mix of rules and facts can be assembled for the power evaluation (below). Note that
the power scales linearly with the maximum speed desired, independent of the engine type. Yet
the idling power differs for diesel and hybrid. This set of rules can be easily changed so
the max speed power distinguishes the two correctly.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 69 Refer to cover page for Distribution Statement.

power(wheeled, P) :-

 weight(wheeled,W),

 P is W*10.

power(tracked, P) :-

 weight(tracked,W),

 P is W*12.

power(N*men, P) :-

 weight(N*men,W),

 P is W*5.

power(_*wheels, 0).

power(N*mph, P) :- P is N*1000.

power(diesel, 10000).

power(hybrid, 15000).

Optimizing the alternatives. The final ingredient is to set up some evaluation rules and
optimization criteria. This is actually a very compact algorithm as the data rules that we have
declaratively specified accomplishes most of the heavy lifting. The expert system sweeps
through the set of variants in search of a subset that best meets the optimization criteria we
have selected. In this case, we want to maximize the combine weight and power according to a
weighting function. This essentially gives the worst case solution. The best case would involve
searching for a minimum. The following set of rules is an early version that gives an idea of the
recursion involved.

:- dynamic(max/2).

:- dynamic(stored/1).

max(0.0, empty_set).

criteria(W,P,T) :-

 T is W*1.5+P*1.2.

one_of_each([],[]).

one_of_each([H|T],[H1|Ts]) :- member(H1,H), one_of_each(T,Ts).

sum_terms(Goal, [],Total,Total).

sum_terms(Goal, [Item|Rest],Sum,T) :-

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 70 Refer to cover page for Distribution Statement.

 call_with_args(Goal, Item, P),

 Total is Sum+P,

 sum_terms(Goal, Rest, Total, T).

check_maximum(T, Set) :-

 max(Total,Current),

 T > Total,

 retract(max(Total,Current)),

 asserta(max(T,Set)).

optimize(_, Set) :-

 findall(V, variant(_,V), All),

 one_of_each(All, Set),

 sum_terms(power, Set, 0.0, P),

 sum_terms(weight,Set, 0.0, W),

 criteria(W, P, T),

 check_maximum(T, Set),

 fail.

optimize(Value, Which) :-

 max(Value, Which).

The rule named optimize recursively evaluates the alternatives by automatically selecting a
combination of one member from each variant and then evaluating the criteria, and finally
checking for the maximum to meet the criteria we have established. Once the set is exhausted,
the alternative optimize rule gets evaluated and it returns the max value and which elements
of the subset it contains.

optimize(Value, Which)?

Value = 125460.0

Which = [tracked,6*wheels,4*men,60*mph,hybrid]

Or we can constrain one of the outputs (traction = wheeled) and find alternative values from
the built-in pattern matching. No new programming is required due to the backward-chaining
nature of the symbolic processing. This result of such a query results in an alternate lower
value result subject to the new constraint:

optimize(Value,[wheeled,N,Men,MPH,Engine])?

Engine = hybrid

MPH = 60*mph

Men = 4*men

N = 6*wheels

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 71 Refer to cover page for Distribution Statement.

Value = 110100.0

This specific example turns out fairly trivial as this set derives from each of the heaviest
components available. In a real situation, the actual set of rules will become more complex and
the criteria for setting an optimum configuration will become less obvious to the eye. In certain
cases, the discrete choices may be expanded along a finite domain. In that case, a Finite Domain
(FD) solver comes out of the Prolog box and it allows the expert system to prune the search
space more efficiently.

7.6.2.2.4 Issues in Optimization

The looming issue that confronts us is how best to manage the set of concept alternatives. It's
a given that to formally prove that you have reached an optimum or maximum with respect to
some measure, that you have to sweep through all of the alternatives. Techniques exist that can
seek out local minimum or maximum (via gradient search, etc) yet these do not guarantee a
global extreme value. Not every problem is convex. So the options are to either scan
exhaustively or to search selectively and perhaps stop when some criteria is met20

To provide an example, say that we have 14 variant functionalities which contain 3 alternatives
each. The process of finding a peak exhaustively amongst this set requires 314=4,782,969
unique selection to be evaluated (subject to all the values having an independent effect on the
solution, otherwise this number can be reduced). This rather modest set is perfectly acceptable
to evaluate on a stock computer. Yet, what path should we take when we provide 20 variants
instead of 14 and find that the number jumps to 320=3,486,784,399, or if we add an another
alternative to each of the variants, then it goes to 420 ~ 1 trillion computations? This results in
excessive computational complexity as the search combinatorially explodes.

.

The combinatorial space on the table below is 260 * 314 * 43 = 3.5*1026 for a total of 77 element
classes. Interesting to consider that two valid options are to either have a feature or not have it.
This can grow the space greatly even when variants are not considered.

Element Class Variant 1 Variant 2 Variant 3 Variant 4

traction tracked wheeled

wheels 4*4 6*6 8*8 10*10

power_train mechanical hydraulic hydro_mechanical

troops 4*soldiers 6*soldiers 8*soldiers 10*soldiers

turret manned unmanned

gun gun_a gun_b

battery lead_acid hybrid_battery

engine diesel turbo_diesel hybrid_electric

final_drive 3*ratio 4*ratio

loader auto_loader manual_loader

range_device laser_ranger lidar_ranger

crew 1*crew 2*crew 3*crew

20 The technique of simulated annealing via Monte Carlo sampling is often used for this purpose

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 72 Refer to cover page for Distribution Statement.

Element Class Variant 1 Variant 2 Variant 3 Variant 4

armor armor_a armor_b

fuel_tank 200*gallons*fuel 300*gallons*fuel

afes crew_compartment weapons_compartment engine_compartment all_compartments

width 2.5*m*width 3.0*m*width 3.5*m*width

height 3.5*m*height 4 4*m*height 5*m*height

length 7*m*length 8*m*length 9*m*length

chassis material_1 material_2

kit optional_kit no_kit

clearance 0.25*m*clear 0.5*m*clear 1*m*clear

payload 800*rounds 1000*rounds 1200*rounds

water bottled synthesized

vision direct indirect

hatch manual_hatch no_hatch

coolant 30*gallons*coolant 40*gallons*coolant 50*gallons*coolant

voltage 15*v 28*v

high_voltage 270*vdc 500*vdc

skirt with_skirt without_skirt

horsepower 800*hp 1000*hp 1200*hp

oil_capacity 15*gallons*oil 20*gallons*oil 25*gallons*oil

fuel_type diesel_fuel jet_fuel

engine_displacement 15*liters 20*liters 25*liters

suspension suspension_a suspension_b

generator primary with_backup

crew_stations 1*station 2*station

compartment isolated non_isolated

ignition laser_ignite other_ignite

egress easy_out hard_out

ingress easy_in hard_in

software 500000*loc 1000000*loc

firmware firm no_firm

auxiliary_power_unit primary_apu backup_apu

drive_by_wire dbw no_dbw

night_vision night no_night

secondary 20*caliber 50*caliber

prognostics onboard offboard

diagnostics software_diagnostic bit

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 73 Refer to cover page for Distribution Statement.

Element Class Variant 1 Variant 2 Variant 3 Variant 4

gps gps no_gps

ins ins no_ins

iru iru no_iru

fire_control reuse_fire_control custom_fire_control

powerpack fixed_powerpack removable_powerpack

pmcs pmcs no_pmcs

ietm ietm no_ietm

power_distribution networked_power fixed_power

periscopes viewer windshield

crew_position forward_crew aft_crew

weapon_view weapons_camera no_weapons_camera

obstacle_avoidance ans no_ans

gun_stow forward_stow reverse_stow

route_follow ans_follow guided_follow manual_follow

methods los blos

emplacement aided_emplace no_emplace

planning offboard_plan onboard_plan

scheduling auto_schedule no_schedule

local_security crew_assisted_security auto_security

touch_screens touch bump

yoke joystick wheel

noise_suppression noise_suppress no_noise_suppress

sleeping_provisions sleep no_sleep

heads_up_display hud no_hud

resupply_mode auto_resupply manual_resupply pda_resupply

towing tow_provisions no_tow

pivot_steer pivot no_pivot

amphibious amph no_amph

driver_redundancy driver_backup no_driver_backup

signature suppression no_suppression

So the implications for optimization are significant if we can’t control the state space. This also
holds for sensitivity analysis. In the case of the most rudimentary analysis, the variants should
include a subset of lower-range, nominal, and upper-range values. This will trend at least
according to 3N. So that if we combine concept alternatives with sensitivity alternatives the
sweep volume can grow unmanageable.

Limiting Scope. The explosion of states has always been the problem with DSE. Clearly we
can reduce the space by constraining most of the states to nominal values and then varying the

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 74 Refer to cover page for Distribution Statement.

rest. The Catch-22 in all this is that if we knew that we could optimize by adjusting one
variable while keeping all the other variables constant, this would also mean that we actually
knew what the optimal frontier was before we got started. Yet if we knew the optimal region
initially, we wouldn't need the assistance to begin with! In this case, intuition provides all the
optimization we would ever need, and extra sweeping is overkill. All we are doing is testing
the optimization gradient around a minimum or maximum of some criteria. It wouldn't take
that long to do this by hand. So the issue boils down to whether we think we will ever have
sufficient intuition to arrive at an efficient optimization frontier without doing at least some
sweep searching.

Many of the complex calculations can reduce easily to interpolations over a design space.
Calculating recoil and the interactions with stroke length and volume displacement is a good
case in point. Everything about the calculation is deterministic so you may need to do it for a
number of configurations, and then interpolate as necessary.

A DSE tool will not always reconcile certain design criteria such as lethality and survivability
with all the other criteria that are missing, chief among them reliability and cost. Reliability is
potentially even more challenging than the Newtonian analysis because it consists of
probabilities, and interpolations don't work for probabilities. And cost can be a subjective
criteria. So collectively the only way around this is to make the criteria and alternatives fairly
uniform, and to often keep them mushy at a heuristic level. So we have to essentially normalize
the rules to promote fair-play. If we ever get a situation that one calculation causes an
execution bottle-neck on the order of seconds, the total execution time will grow quickly.

When a logic program generates results or makes calls to external tools, it can selectively
apply the concepts of Dynamic Programming to avoid spending too much time re-computing
unnecessarily. This will lay out all the design choices made with respect to some measures of
optimality, and further allows one to control the complexity and performance constraints of the
search space. So, if we ever get into a bind where we have to trade-off too much computation
against the use of mushy heuristics, we will have a path laid out.

The Role of Heuristics and Partial Calculations. The issue comes up that we may have to
iterate to determine some optimal criteria, and the times it takes becomes the basis for when to
use dynamic programming and tabling techniques. The example given is determining the
number of wheels needed to support a vehicle weight. Since the wheels themselves will add to
the weight then you might naively imagine that some iteration needs to be performed to
calculate the optimal configuration. In fact, this is plain linear algebra that can be worked out
instead of using some iteration scheme.

7.6.2.2.5 Prototyping

For a knowledgebase that consists of 23 criteria and 78 design elements with between 2 and 3
alternative designs each, we generated about 4,000 rules to test against. That set of data is too
large to be able to run a full optimization, so for testing we ran in a partial optimization setting
before it started to execute too slowly. This is always a combinatorial problem so once it hits a
threshold the slowdown is apparent.

The majority of the design elements were left fixed, so as an example we take only 10 of the
elements as unknown alternatives. This query took less than 20 seconds in gprolog to execute in
an interpreted shell, and less than 10 seconds in a compiled shell. For only 2 or 3 unknowns it

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 75 Refer to cover page for Distribution Statement.

runs in well under 1 second. Adding more sophisticated rules won't add much to the running
time, so unless it invokes external calls, the response time should be tolerable.

As an illustration of how sensitive the optimization performance is, we used a different expert
system shell, eclipse, and it returned the same answer for 10 unknown variables but it took
only 1.5 seconds instead of 18 seconds. With this shell it can optimize for 16 unknowns in 95
seconds before the combinatorial blow-up occurs.

Also any constraints and requirements that will eventually be added should shorten the
running time by pruning the results. The UTRC META team apply constraint pruning as a
valid approach to reducing the state space. Working smart and dealing with compartmentalized
sets as described in section 7.6.1.2.6 is the solution to combinatorial problems.

7.6.2.2.6 Example of Optimization Query input

We initially prototyped an HTML page for the inputs. Once this was done, the data within the
page was auto-generated from the knowledge-base so that it does not require extra coding
besides the HTML boilerplate and some JavaScript and CGI.

The basic structure for the knowledgebase resides in a "vehicle-kbase.pro" file which consults
three other files (1) "engine.pro" which contains the inference engine, (2) "vehicle-specs.pro"
which contains the schema spec for criteria and elements, and (3) "vehicle-rules.pro" which
contains the set of rules. A "vehicle.xml" main page pulls together the boilerplate form entry
from an XML stylesheet and specific form elements in "vehicle-form.html". As default, it uses
a generic web server and gprolog for evaluation.

The following is an example of an optimization query input form. For each element, a set of
radio buttons is provided to allow one to select from a list of alternatives. If the ? radio button
is selected, this is an unbound choice and it will be optimized with respect to the criteria
represented in Figure 7.6-47. According to the rules in the expert system, all inputs in lower
case are constraint and capitalized variables are unbound inputs and will generate a query
output. This form was generated automatically from the knowledgebase specification and an
XML stylesheet template.

Figure 7.6-47. Part of the Prototyped HTML ESKER Query Interface

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 76 Refer to cover page for Distribution Statement.

7.6.2.2.7 Elicitation Table

The objective is to come up with an optimal configuration of design elements based on
objective criteria. These criteria could be constraints, requirements, or quantitative measures of
effectiveness.

Fundamentally, there is little difference between a constraint and a requirement. The only
distinction that matters is that a constraint has a direct connection to the reality of the
environment around us, whereas a requirement is an artificial gauge of what needs to be done.
Thus a constraint can be considered an environmental requirement.

Constraints

Red Force

Mission Time

Terrain

Soil

Temperature

W
ind

Humidity

Latitude

Gap Obstacle

Pitch

Roll

Pressure

Atmosphere

Human
Percentile

Ford

Clearance

Side Slope

W
all

Obstacle

Gun Traverse

Gun
Elevation

Tunnel W
idth

Air Drop

Requirements

Range

Accuracy Stationary

Accuracy Moving

MTBF MSCP

X - Country Speed

Highway Speed

Response Time

MPG

Transport

Survive

W
eight Curb + Loaded

Cost

Remote

First Shot Out

MROF

Deploy

Un - deploy

SROF

Op Temp

Turn Radius

Mine

HP/ W
eight

Upgrade P3I

Resupply

Target Cross Section

BLOS

All the quantitative measure of effectiveness need to be aggregated and constrained to the
requirements. Each design element or part on board the system contributes to some
effectiveness measure (otherwise it should not be on board the vehicle) and these need to be
quantitatively evaluated. In certain cases, a qualitative intangible needs to be included. The
following PartCrit table (Table 7.6-3) serves as a checklist to determine which elements we
need to include.

Cells: A part will either be applicable or not-applicable with respect to some optimization
criteria. So during the elicitation stage of knowledge engineering, we need to place an X in the
cell if it is measurable. If it is not measurable or doesn't apply, we place a—or N/A. If
something can be handled by an outside tool, then we can indicate that within a cell by S or
some other marker. If it is indirectly used by another cell, then I indicates an influence
relationship.

Part List: If no credible alternatives exist for a part, then there is no use compiling the measure
for that part as it is an invariant with respect to the other measures. So we need at least two
numbered alternatives for every part. It is also possible that the alternative is not to include
such a part; that would then give the two required alternatives. Qualitatively, if a row is
completely solid corresponding to a part, then that element is likely very critical across all
criteria.

Criteria List: Looking at the criteria, if a column is sparse after analysis, then that particular
optimization criteria is very narrowly applied to certain design elements. For example,

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 77 Refer to cover page for Distribution Statement.

trainability may prove to have a minimal impact on an optimal solution, as it will only draw
from specific elements.

This table does not tell the whole story. For example, the causal structure and effects implied
by how the design elements fit together needs to be taken care of by rules added to the
knowledgebase. The rules therefore will generate the quantitative measures that we will
optimize against, and the requirements that we need to comply with. The reason that we do not
extend this table into a spreadsheet is that the rules are unwieldy if kept to within the confines
of a cell. The requirements also will cause this table to grow to a third dimension. In other
words better abstraction mechanisms are available, such as the influence diagrams described in
7.6.1.2.6. We use this table only for elicitation of optimization criteria.

Table 7.6-3. Elicitation Table

Design Elements with Optimization Criteria

Part \ Crit

P
ow

er

W
eight

R
eliable

L
ethal

Survive

T
ransport

Sustain

C
ost

Speed

M
obility

F
uel

U
sability

P
erform

anc
e

V
olum

e

Safety

C
om

plexity

C
om

m
on

M
aintain

L
ogistic

A
dapt

T
rain

A
utom

ate

Intangible

Traction

1. Tracked

2. Wheeled

× × × × × × × × × × × × × × × × × × × N/A

Wheels

1. 4x4

2. 6x6

3. 8x8

4. 10x10

× × × × × × × × × × × × × × × × × × ×

Power Train

1. Mechanical

2. Hydraulic

3. Hydro-
Mechanical

× × × -- × -- × × × × × -- × × × × × × ×

Troops

1. 4

2. 6

3. 8

4. 10

× × -- -- × -- -- × × × × -- × × × -- -- -- -- × ×

Turret

1. Manned

2. Unmanned

3. Fore/Aft

 × S S × -- × × × -- × × × × × × × ×
×

Gun

1. Single

2. Double

× × × S S × × -- -- -- × × × × × × × × × × × ×

Battery

1. Lead Acid

2. Hybrid

× × × -- × -- × × × × × × × × × × × × × × × -- ×

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 78 Refer to cover page for Distribution Statement.

Engine

1. Diesel

2. Hybrid

× × × × × -- × × × × × × × × × × × × × × × ×

Final Drive

1. 4:1
 × × -- × × × × × × × -- --

Loader

1. Auto

2. Manual

× × × × × -- × × × -- -- × × × × × -- × × × × ×

Ranging

• Laser

• PTS

 × × -- -- × -- -- -- × -- × × × -- ×

Guidance

1. Yes

2. No

 × × -- × -- -- -- × ×

Crew

1. 1

2. 2

3. 3

× × × × × -- -- × × × × × × × × × -- × × × × × ×

Fuel Tank

1. 300 gallon

2. 200 gallon

× × × × × × × × × × × × × × × × -- × × -- × --

AFES

1. Crew

2. Weapons

3. Engine

4. All

× × × -- × -- × × -- -- -- × -- -- × × × × × -- × ×

Width

1. 3 meters × × × × × × × × × × -- -- × -- -- --

Part \ Crit

P
ow

er

W
eight

R
eliable

L
ethal

Survive

T
ransport

Sustain

C
ost

Speed

M
obility

F
uel

U
sability

P
erform

anc
e

V
olum

e

Safety

C
om

plexity

C
om

m
on

M
aintain

L
ogistic

A
dapt

T
rain

A
utom

ate

Intangible

Height

2. 4 meters
 × × × × × × × × × × -- -- × -- -- --

Length

1. 8 meters

2. 7

 × × × × × × × -- × × -- -- × -- -- --

Chassis

3. Metal 1

4. Metal 2

 × × × × × × × × × × -- × × × -- -- × -- --

Kit

1. Optional

2. None

 × × × × × × × × × × -- × × × -- × × × --

Clearance

1. 0.5 meter
 × × × × -- × × × × -- × × × -- -- × × -- --

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 79 Refer to cover page for Distribution Statement.

Payload

1. 100 rounds
 × S S × × × × × × -- × × × × × -- --

Water

1. Refilled

2. Generated

× × × -- × × × × -- -- × × -- × × × × × × × ×

Vision

1. Indirect

2. Direct

× × × × -- -- × × × × × × -- × × -- -- × × --

Hatch

1. Yes

2. No

 × × × × -- -- × × × × × × × × × -- × × × -- ×

Coolant

1. 40 gallons
 × × -- -- -- × × -- -- × -- -- -- × -- × × -- -- --

Voltage

1. 28 VDC
× × × -- -- -- × × -- -- × -- -- -- × × × × × -- -- ×

High Voltage

1. 270 VDC
× × × -- -- -- × × -- -- × -- -- -- × × × × × -- -- ×

Skirt

1. With

2. Without

 × -- × × × × × × -- × × -- -- × × -- --

Horsepower

• 1000 hp
× × × × × × × × × × × × × × × × × × × -- -- --

Oil Capacity

• 20 gallons
-- × × -- -- -- × × -- -- -- -- -- × × × × × -- -- --

Fuel Type

1. Diesel
 × × × -- × × × × -- -- × -- × -- -- -- -- ×

Displacement

1. 20 liters
 × × × -- -- × × × × -- × × -- -- -- --

Generator

1. 1+1
× × × × × × -- × × × × × × × × × -- ×

Crew stations

1. 2

2. 3

× × × × × -- -- × -- × -- × × × × × -- × × × × × ×

Compartment

1. Isolated

2. No iso

× × × -- × × -- × -- -- × × × × -- × × -- -- ×

Ignition

1. Laser
× -- × × × -- -- × -- -- -- × × -- × × × × -- -- ×

Egress

1. Easy

2. Hard

 × -- × -- × × -- -- -- × × × × -- × × -- × -- ×

Ingress

1. Easy

2. Hard

 × -- × -- × × -- -- -- × × × × -- × × -- × -- ×

APU

1. 1
× × × × -- × × × -- × × × × × × × -- ×

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 80 Refer to cover page for Distribution Statement.

Part \ Crit

P
ow

er

W
eight

R
eliable

L
ethal

Survive

T
ransport

Sustain

C
ost

Speed

M
obility

F
uel

U
sability

P
erform

anc
e

V
olum

e

Safety

C
om

plexity

C
om

m
on

M
aintain

L
ogistic

A
dapt

T
rain

A
utom

ate

Intangible

Drive by wire

1. Yes

2. No

× × × × × -- × × × × × × × -- × × × × × × × ×

Night Vision

1. Yes

2. No

× -- × × × -- -- × × × -- × × × × × × × × ×

Secondary

1. 20 cal

2. ?

× × × × × × -- × -- -- × × × × × × × × × ×

Prognostics

1. On-board

2. Off-board

× -- × -- × -- × × -- -- -- × × -- × × × × × ×

Diagnostics

1. Software
× -- × -- × -- × × -- -- -- × -- -- × × × × × ×

GPS

1. Yes
× × × × × -- × × × × × × × × × × × × × × × ×

INS

1. Yes
× × × × × -- × × -- × × × × × × × × × × × × ×

IRU

1. Yes
× × × × × -- × × -- × × × × × × × × × × × × ×

Fire Control

1. Reused

2. Common

3. Custom

× -- × × × -- -- × -- -- -- × × -- × × × × × × × × ×

Powerpack

1. Fixed

2. Removab

× × × -- × × × × × -- × × -- × × × -- × × × -- --

PMCS

1. Yes
× -- × -- × -- × × -- -- -- × -- × × × × × ×

IETM / EPSS

1. Yes
× -- × -- -- × × -- -- -- × -- -- × × × × × × ×

Power Dist

1. Networked

2. Fixed

× × × -- × -- -- × -- -- -- × × × × -- × × × -- ×

Periscopes

1. Viewer

2. Windshield

 × × × × -- -- × × × × × × × × × × × × × -- ×

Crew position

1. Turret

2. Hull

 × × × × × × × × × × × × × × -- × × × -- ×

Weapon View

1. Camera

2. None

× × × -- × -- × × -- -- -- × -- × × × × × × -- × × ×

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 81 Refer to cover page for Distribution Statement.

Avoidance

1. Obstacle

2. ANS

× -- × -- × -- -- × × × × × × -- × × × × -- × × ×

Gun lock

1. Forward

2. Reverse

 × -- × × -- × × -- × × × × -- -- × -- -- --

Route Follow

1. Full ANS

2. Hints

3. Manual

× -- × × × -- × × × × × × × -- × × × -- -- × × × ×

Methods

1. LOS

2. BLOS

 S S -- -- -- -- × × -- × × ×

Emplacement

1. Aided

2. None

 -- × × × -- -- × -- -- -- × × -- -- × × -- -- × × × ×

Part \ Crit

P
ow

er

W
eight

R
eliable

L
ethal

Survive

T
ransport

Sustain

C
ost

Speed

M
obility

F
uel

U
sability

P
erform

anc
e

V
olum

e

Safety

C
om

plexity

C
om

m
on

M
aintain

L
ogistic

A
dapt

T
rain

A
utom

ate

Intangible

Planning

1. Onboard

2. Offboard

× -- × × -- × × -- -- -- × × -- × × × × -- × × × ×

Scheduling

1. Auto

2. None

× -- × × -- × × -- -- -- × × -- × × × × -- × × × ×

Local Security

1. Crew

2. Auto

× × × × -- × × -- -- -- × × × × × -- × × × × ×

Touch Screens

1. Yes

2. Bump

× × × × × -- × × -- × -- × × × × × × × × × × × ×

7.6.2.2.8 Demo Configuration

The vehicle ramp design model of Figure 7.6-9 was used as a demonstration. The
communication between ESKER and external applications is through either web services or
external AMIL stores. Knowledge is served from local Prolog facts, AMIL immediate stores, or
through ontological queries. The latter can be extended to web-services via OWL-S, SSWAP,
or customized services.

The element set and optimization criteria were kept to a minimum to show the interactions
most clearly. The term element was used instead of variant for the alternatives, and the criteria
were equally weighted at the top-level.

% Set of triple-stores to reason against

%

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 82 Refer to cover page for Distribution Statement.

criteria(power,1).

criteria(weight,1).

criteria(survivability,1).

element(ramp_thickness, [0.5*inch,1*inch,2*inch]).

element(ramp_motor_size, [rating_168, rating_268]).

The rules were then expressed by cross-coupling the individual criteria to the current set of
alternatives, transcribing the influence diagram of Figure 7.6-9 into logical rules Figure 7.6-1:
% AMIL Nodes to Model Library

% ---------------------------

calculate_weight_of_ramp(Thickness, Weight) :-

 % Replace this with URL to ProE

 Weight is Thickness*1000. %% TODO: Placeholder value from model

calculate_survivability_of_ramp(Thickness) :-

 % Replace this with URL to Armor model

 Thickness is 4. %% TODO: Placeholder value from model

% Generic Rules

% -------------

constraint(Rule, 1) :- call(Rule), !. % general constraint rule giving unity weighting if TRUE

constraint(_, 0).

% Constraints

% -----------

weight_rating(rating_160, 5500). % Motor rated 160 has a smaller weight handling capability

weight_rating(rating_260, 11000).

weight_margin(100). % Provide a weight margin for soldiers, too low 1st go round

 % Then up the number for second go round

% Element Rules

% -------------

power(ramp_thickness:_,_:X) :- X is 0. % example of a don't care, i.e. N.A.

power(ramp_motor_size:Motor,L:X) :- % which motor to use for ramp

 member(T*inch, L), % depends on ramp weight selected

 calculate_weight_of_ramp(T, W),

 weight_rating(Motor, Weight_Limit),

 weight_margin(Weight_Margin),

 constraint(((W + Weight_Margin) < Weight_Limit), X). % Only allow values that meet constraints

weight(ramp_thickness:T*inch,_:X) :- % Weight of ramp from parametric ProE model

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 83 Refer to cover page for Distribution Statement.

 calculate_weight_of_ramp(T, Weight),

 X is 1/Weight. % For optimizing, reduced weight is increasing

weight(ramp_motor_size:rating_160,_:1). % Simple lookups for motor weights

weight(ramp_motor_size:rating_260,_:0.5).

survivability(ramp_thickness:T*inch,_:X) :- % Survivability of ramp from armor model

 calculate_survivability_of_ramp(Thickness),

 constraint(T > Thickness, X). % Only allow values that meet constraints

survivability(ramp_motor_size:rating_160,_:1). % The two motors are equally survivable.

survivability(ramp_motor_size:rating_260,_:1).

The placeholders for external calls were left in place and the initial set was evaluated within a
web-served engine.

Figure 7.6-48. Web-Served Version of ESKER Used to Populate the Knowledge Base

The version of ESKER used for the demonstration was recompiled into a Java server
executable via the tuProlog Java class library and evaluation data was retrieved through AMIL
stores, either immediate or externally computed.

This proved the concept of embedding AMIL into a design space exploration reasoner. The
conversion to an ontologically-friendly engine is trivial, as the essential data elements are all
based on triple-stores.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 84 Refer to cover page for Distribution Statement.

DSE in practice. A generic DSE starts from an arbitrary set of top-level design elements that
we are interested in, along with a few decision criteria and weighting factors. Then an
automated User Interface (UI) builder pulls out the element variants from CML and generates
the place-holders for rules. This would be the kick-start for having a limited crowd-source of
engineers to fill out decision rules that calculate criteria values.21

decision criteria = weighted contracts

 Eventually, the rules can go
back into the CML repository as weighted contracts that can get reused.

Thus, we generate contracts that are not iron-clad but that have weighting attached to them
that allow components to be evaluated for fitness-of-purpose and down-selecting.

7.6.2.3 Ontology-based Logic Reasoners

The ESKER application provides an example of a design space exploration reasoner. The
general utility of reasoners lies in their applicability to a variety of engineering problem-
solving areas. This section demonstrates several examples of the ontological pattern that we
initially formulated in Section 7.6.1.4.2.

The uniform approach we take is illustrated in Figure 7.6-49. The pattern is one of importing a
set of ontologies, applying a description logic reasoner API to extract the triple-store data, and
then applying further reasoning through customized Prolog rules. The top meta-layer
maintains a clean and transparent separation between ontological data and the local knowledge
contained within the reasoner.

21 This beats a single spreadsheet that is under the control of a single person.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 85 Refer to cover page for Distribution Statement.

GEAR Logical Programming
Architecture

MetaLayer / Prolog

Prolog Knowledgebase (Rules)

Description Logic Reasoner

OWL/DL Ontologies

load

GEAR
functionality

suite

semantic queries

The MetaLayer consists of interpreted Prolog rules that understands
interactions with the ontology namespaces and the semantic reasoner.

produces an
Onto-Logical Program

Figure 7.6-49. Ontological Reasoners Follow a Similar Pattern of Encapsulating the

Deeper Semantic with a Uniform Logical Front-end

Because of the overall similarity among all of these reasoners, we gather them together as the
GEAR suite, useful for a knowledge engineering framework.

7.6.2.3.1 Weight, HorsePower, Speed Example

This is a more extended example with declarative semantics, i.e. we can calculate whether a
specific engine with weight and horsepower rating will meet a specific speed criteria. This rule
embeds aerodynamic drag to first order but could also include rolling resistance

Figure 7.6-50 shows a mock-up ontology written in N3 and the equivalent knowledgebase that
would generate.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 86 Refer to cover page for Distribution Statement.

Figure 7.6-50. N3 Ontology for Engine and the Equivalent “invisible” Triples They

Represent (To the Right)

The rules operating on this ontology are shown below. This uses declarative semantics to the
effect of providing the same interface for querying a horsepower given a speed criteria as for
querying a speed given a horsepower criteria.

find_engine_with_criteria(Eng,HP,50.0,1.0,vehicle(8000.0,1.0),context(F,A)).

find_engine_with_criteria(Eng,80.0,V,1.0,vehicle(8000.0,1.0),context(F,A)).

% c:'Engine'(engine1).

% c:'Engine'(engine2).

% c:'Engine'(engine3).

% c:'Engine'(engine4).

% c:'hasWeight'(engine1, 1.0).

% c:'hasWeight'(engine2, 1.1).

% c:'hasWeight'(engine3, 1.2).

% c:'hasWeight'(engine4, 1.3).

% c:'hasHorsePower'(engine1, 1000.0).

% c:'hasHorsePower'(engine2, 1100.0).

% c:'hasHorsePower'(engine3, 1200.0).

% c:'hasHorsePower'(engine4, 1300.0).

% c:'Chassis'(nominal).

% c:'hasAero'(nominal, 234.0).

@prefix : <http://wcsn262:8001/backup/c.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
.

: a owl:Ontology .

:Engine a owl:Class .

:hasWeight a owl:DataProperty .

:hasHorsePower a owl:DataProperty .

:Chassis a owl:Class .

:hasAero a owl:DataProperty .

:engine1 a :Engine,

 owl:NamedIndividual ;

 :hasWeight 1.0 ;

 :hasHorsePower 1000.0 .

:engine2 a :Engine,

 owl:NamedIndividual ;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 87 Refer to cover page for Distribution Statement.

Figure 7.6-51. Weight, Horsepower, Speed Reasoner

7.6.2.3.2 CML Example

This example shows interactions with CML ontology. We invoke a query to the CML
repository to find all models associated with a given component. This uses a built-in rule called
findall which collects the (component, model) pairs and then prints out the results as a side-
effect.

If we run the goal query: print_all_components_with_hifi_model?

This results in the output:

[cfv,'CFVRamp2'] has a [cfv,'CFVRampSimulinkModel']

[cfv,'CFVRamp1'] has a [cfv,'CFVRampSimulinkModel']

%import http://wcsn262:8001/backup/c.owl

%import http://wcsn262:8001/backup/sweet.owl

%%% Query with unknown HP but desired speed, V, or unknown speed but given HP

% find_engine_with_criteria(Eng,HP,50.0,1.0,vehicle(8000.0,1.0),context(F,A)).

% find_engine_with_criteria(Eng,80.0,V,1.0,vehicle(8000.0,1.0),context(F,A)).

calculate_horsepower(Speed,EffWind,AeroFactor,Weight,EffG,HorsePower) :-

 nonvar(Speed),

 SpeedWithWindDrag is Speed + EffWind,

 Drag is (SpeedWithWindDrag*AeroFactor)**3.0,

 HorsePower is (Drag+EffG)*Weight.

calculate_horsepower(Speed,EffWind,AeroFactor,Weight,EffG,HorsePower) :-

 var(Speed),

 Drag is HorsePower/Weight - EffG,

 SpeedWithWindDrag is (Drag ** (1.0/3.0))/AeroFactor,

 Speed is SpeedWithWindDrag - EffWind.

find_engine_with_criteria(Engine,HorsePower,Speed,Margin,

 vehicle(Weight,Aero), context(Region,Time)) :-

 sweet:'Gravity'(Gravity),

 sweet:'gravityValue'(Gravity, G),

 sweet:'Region'(Region),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 88 Refer to cover page for Distribution Statement.

Figure 7.6-52. CML Query Example

7.6.2.3.3 Parts Repository Example

The following is an example of a query to a semantic database for information on availability of
engines from vehicle parts suppliers. We add a constraint that only parts with the certification
'MIL_Cert' get returned. The print debugging reveals that parts with other certification levels
are considered but the final result will match only 3 instances.

%import http://wcsn262:8001/demo/arrow.owl

%import http://wcsn262:8001/demo/CFV.owl

%import http://wcsn262:8001/demo/meta.owl

%% Rule to find a component with a hifi model, this searches Meta for possible model

%% classes and Arrow to make modeling associations to the CFV library

%%

hifi(Component,Model) :-

 meta:'HighFidelityDynamicsModel'(Model),

 arrow:'hasModel'(Component,Model).

%% Utility to report on all hifi models

%%

print_all_components_with_hifi_model :-

 findall((C,M), hifi(C,M), List),

http://wcsn262:8001/demo/arrow.owl�

http://wcsn262:8001/demo/CFV.owl�

http://wcsn262:8001/demo/meta.owl�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 89 Refer to cover page for Distribution Statement.

Figure 7.6-53. Parts Repository

7.6.2.3.4 Environment Example

The logic code to the left
demonstrates calls using the
SWEET ontology. SWEET is
useful for classifying earth science
data for vehicle context modeling.

Figure 7.6-54. Call to the SWEET Ontology

7.6.2.3.5 Model Classification Example

%import http://www.kirkman-enterprises.com/sites/kirkman-enterprises.com/files/MSDL/MSDL-
Fullv1.owl

pr(A:B) :- print(A), print(':'), print(B).

p(A:B) :- print(B).

search_for(engines(E),supplier(S),certification(C)) :-

 'Ontology1236208666':'EnginesAndTurbines'(E),

 'Ontology1236208666':'hasProductFocus'(S,E),

 'Ontology1236208666':'hasCertification'(S,C),

 print('Supplier '),p(S),print(' has '),p(E),print(' with certification '),p(C),nl,

 C = _:'MIL_Cert'.

% Expected results on print out, but only 3 of these have constraints of MIL_Cert

%

% Supplier ThuroMetalProducts has PartsforGoodsOfClassesEngineAndTurbine with certification
AS9100_Cert

% Supplier ThuroMetalProducts has PartsforGoodsOfClassesEngineAndTurbine with certification
ISO9001_2000

% Supplier WoolfAircraft has DieselEngines with certification ISO9001_2000

% Supplier WoolfAircraft has DieselEngines with certification MIL_Cert

% Supplier TXStateMfgCo has DieselEngines with certification ISO9001_2000

% Supplier TXStateMfgCo has DieselEngines with certification MIL_Cert

% Supplier BoyerMachine has FuelSystemComponents with certification ISO9001_2008

% Supplier BoyerMachine has FuelSystemComponents with certification ISO9001_2000

% Supplier OhioMachinedProducts has FuelSystemComponents with certification ISO9001_2000

% Supplier InnovativeMetal has Manifolds with certification MIL_Cert

%import http://sweet.jpl.nasa.gov/2.2/sweetAll.owl

%import http://open-meta.com/process.owl.xml

earth_query(C,M) :-

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 90 Refer to cover page for Distribution Statement.

The logic code to the right
demonstrates a query to
ontologies of available
mathematical modeling
tools. The classification
returns only those tools
that provide the capabilities
indicated by the successive predicates. In this case, the SPIN, UPPAAL, and CBMC tools fit
these categories. This is a classic SPARQL query as well.

A more extensive situation using the CML models is shown below. The library is populated
with meta-information of modeling information related to particular engines (refer to Figure
7.6-55). Then a query is made to return a set of models associated with a specific engine type
(refer to Figure 7.6-56). Note that this query will predictably fail if a model from each category
is not found. Providing default behavior for queries must always be considered since Prolog
operates under the closed-world assumption, that if it is not available it does not exist.

%import http://www.irit.fr/~Mounira.Kezadri/Ontologies/VVO.owl

model(A) :-

 'VVO':'V&V'(A),

 'VVO':'Analysis'(A),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 91 Refer to cover page for Distribution Statement.

Figure 7.6-55. Component Model Library N3

@prefix : <http://wcsn262:8001/backup/cml.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

: a owl:Ontology .

:Engine a owl:Class .

:has_reliability_model a owl:DataProperty .

:has_maintainability_model a owl:DataProperty .

:has_diagnostics_model a owl:DataProperty .

:has_thermal_model a owl:DataProperty .

:has_logistics_model a owl:DataProperty .

:engine1 a :Engine,

 owl:NamedIndividual ;

 :has_reliability_model "engine1_reliability_model";

 :has_maintainability_model "engine1_maintainability_model";

 :has_diagnostics_model "engine1_diagnostics_model";

 :has_thermal_model "engine1_thermal_model";

 :has_logistics_model "engine1_logistics_model".

:engine2 a :Engine,

 owl:NamedIndividual ;

 :has_reliability_model "engine2_reliability_model";

 :has_maintainability_model "engine2_maintainability_model";

 :has_diagnostics_model "engine2_diagnostics_model";

 :has_thermal_model "engine2_thermal_model";

 :has_logistics_model "engine2_logistics_model".

:engine3 a :Engine,

 l N dI di id l

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 92 Refer to cover page for Distribution Statement.

Figure 7.6-56. CML library query

7.6.2.3.6 Process Workflow Example

The following are snippets of OWL-S process-service groundings. These are intentionally
made similar as the process-to-service logic follows a pattern independent of the application.
That is what makes automation of web-services practical in the sense that if the flow of data is
predictable and it needs to be in a certain format, then automation can help.

%import http://wcsn262:8001/backup/cml.owl

%% Example workflow

% We have a set of engine components that we want to analyze comprehensively.

% Domain models can be attached to the different components.

% The domains span a range of Design-For-X considerations.

get_models_for_engine(Engine, [RM,MM,DM,TM,LM]) :-

 cml:engine(Engine),

 cml:has_reliability_model(Engine, RM),

 cml:has_maintainability_model(Engine, MM),

 cml:has_diagnostics_model(Engine, DM),

 cml:has_thermal_model(Engine, TM),

 cml:has_logistics_model(Engine, LM).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 93 Refer to cover page for Distribution Statement.

Figure 7.6-57. Book Ordering

The composable query for finding a book (above) is similar to that for looking up a terrain slope
(below). This similarity and regularity in patterns allow composable workflows to be created.
The Web Service Composer from http://mindswap.org uses a SWI-Prolog reasoner to
compose a workflow from base ontologies and then generates the dynamic web service requests
to execute queries.

%import http://www.mindswap.org/2004/owl-s/1.1/BookFinder.owl

%% OWL-S is the process-based ontology useful for generating workflows

pr(A:B) :- print(A), print(':'), print(B).

p(A:B) :- print(B).

find_book_process(P,B,I,S,G,A) :-

 process:'AtomicProcess'(P),

 process:'hasInput'(P,B),

 process:'hasOutput'(P,I), % ObjectProperty

 process:'Input'(B), % Just a check

 service:'describes'(P,S),

 service:'supports'(S,G),

 grounding:'hasAtomicProcessGrounding'(G,A),

 grounding:'WsdlAtomicProcessGrounding'(A),

 grounding:'owlsProcess'(A,P),

 print('Applied a '), p(P), print(' to '), p(B), print(' giving '), p(I), nl,

 print('We can use a '), p(S), print(' to instantiate a '), p(G), print(' using '), p(A), nl.

%%% Expected output for unbound query:

%

% Applied a BookFinderProcess to BookName giving BookInfo

% We can use a BookFinderService to instantiate a BookFinderGrounding using
BookFinderProcessGrounding

http://mindswap.org/�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 94 Refer to cover page for Distribution Statement.

Figure 7.6-58. Terrain Querying Similar to Book Ordering

Figure 7.6-59. The Web Service Composer Will String Together a Sequence of Service
Calls from an Ontology to Allow Flexibility in the Creation of a Composable Workflow

7.6.2.3.7 Design Deployment Example

Including adaptable Intelligence, Surveillance, Target Acquisition & Reconnaissance (ISTAR)
capabilities on vehicles allows matching of mission sensing requirements with available sensor
technologies [RKT05].

%import http://www.laits.gmu.edu/geo/ontology/owls/ap/v2/slope_precondition.owl

%% Example of OWL-S used in a context model for finding terrain slopes

pr(A:B) :- print(A), print(':'), print(B).

p(A:B) :- print(B).

find_slope(P,B,I,S,G,A,Ref) :-

 process:'Process'(P),

 process:'hasInput'(P,B),

 process:'hasOutput'(P,I), % ObjectProperty

 service:'describes'(P,S),

 service:'supports'(S,G),

 grounding:'hasAtomicProcessGrounding'(G,A),

 grounding:'WsdlAtomicProcessGrounding'(A),

 grounding:'wsdlOperation'(A,Ref),

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 95 Refer to cover page for Distribution Statement.

Figure 7.6-60. ISTAR Query (from [SMV11])

7.6.2.3.8 Deep Inference Example

The reasoning illustrated in this example involves inferring extra information from limited
meta-data. Consider the problem of estimating the mass of parts with the only information
available limited to dimensions and properties such as density.

%import http://wcsn262:8000/istar.owl

getConfigurations(T,[P|S]):-

 deployablePlatform(T,P),

 extendSolution(T,P,[],S).

deployablePlatform(T,P):-

 istar:'Platform'(P),

 not((istar:'requiresOperationalCapability'(T,C),

 not(istar:'providesCapability'(P,C)))).

extendSolution(T,P,Prev,Next):-

 requireSensor(T,P,Prev,X),

 % istar:'mounts'(P,X),

 A=[X|Prev],

 extendSolution(T,P,A,Next).

extendSolution(T,P,S,S):-

 not(requireCapability(T,P,S,_)).

requireSensor(T,P,S,X):-

 requireCapability(T,P,S,C),

 istar:'providesCapability'(X,C).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 96 Refer to cover page for Distribution Statement.

Figure 7.6-61. Ontology for a Set of Components with Properties

Figure 7.6-61 is a N3 OWL ontology for a “comp” hierarchy which consists of components
with specific properties.

Figure 7.6-62 is a reasoner which can determine the mass of each of the components, but can
only get this information indirectly by inferring the mass from other properties available. Thus
if a component has a length, width, and height specified, then the reasoner assumes it is block
shaped and computes the mass from the density of the material. If, on the other hand, a radius is
specified, then a different formula for mass is used. This is an example of deeper reasoning than
is available from pattern matching.

@prefix : <http://wcsn262:8001/comp.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

: a owl:Ontology .

:component a owl:Class .

:system a owl:Class .

:isHomogeneous a owl:Class .

:hasLength a owl:DataProperty .

:hasWidth a owl:DataProperty .

:hasRadius a owl:DataProperty .

:hasHeight a owl:DataProperty .

:hasDensity a owl:DataProperty .

:partOf a owl:ObjectProperty .

:sys a :system.

:a a :component,

 :isHomogeneous,

 owl:NamedIndividual ;

 :hasLength 1.0 ;

 :hasWidth 1.0 ;

 :hasHeight 1.0 ;

 h D it 1 0

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 97 Refer to cover page for Distribution Statement.

Figure 7.6-62. Reasoner Which Understands How to Derive Mass from Shape

Properties

%import http://wcsn262:8001/demo/comp.owl

%% Example of an analysis archetype for finding the weight of a colllection

%% of components comprising a system.

%% Depending on what a component has for sizing dimensions, a different weight

%% calculation will get invoked. It is polymorphic, but guided by constraints

calc_weight(System, Weight) :- %% weight for a block

 comp:'component'(A),

 comp:'partOf'(A, System),

 comp:'isHomogeneous'(A),

 comp:'hasLength'(A, L),

 comp:'hasWidth'(A, W),

 comp:'hasHeight'(A, H),

 comp:'hasDensity'(A, D),

 print('block '), print(A), nl,

 Weight is D*L*W*H.

calc_weight(System, Weight) :- %% weight for a cylinder

 comp:'component'(A),

 comp:'partOf'(A, System),

 comp:'isHomogeneous'(A),

 comp:'hasLength'(A, L),

 comp:'hasRadius'(A, R),

 comp:'hasDensity'(A, D),

 print('cyl '), print(A), nl,

 Weight is D*L*3.1415*R*R.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 98 Refer to cover page for Distribution Statement.

7.6.2.4 ECTo

The Early Concepting Tool (ECTo) guides a vehicle design process by applying abstract
components that fit together a priori as a result of applying archetypal rules. Any down-select
process that excludes incompatible components is made possible by doing DSE as a successor
stage. The ECTo concepting reasoner encodes and visualizes spatial representations, complex
space claims, and articulations, which are difficult to represent and reason with in pure logic.

As a system design tool ECTo enables editing of a master model primarily through the
hierarchical assembly and manipulation of components from the CML. It is focused primarily
on empowering a designer in the early design phase to be able to incorporate and manipulate
major design drivers and rapidly assess the qualities of system concepts. The resultant concepts
can be used as the basis for more detailed design.

7.6.2.5 Co-Analysis Flow using GEAR

For the example of a vehicle ramp design, we included automated elements along the control
flow axis as well as the data flow axis (refer to Figure 7.6-63). The data flow followed from
ontological sources of data as well as tacit facts stored in a knowledgebase. The control flow is
orchestrated by reasoners which do design space exploration and the test-space exploration.

Req

Problem
Setup

Arch DSE

Exec DSE

T&V

Exec
T&V

PCC

Supplier Constraints
Customer Requirements

Testable
Requirements

Templates
Components
AMIL Info

Gathered Data and
Strawman Archetype

Reusable Rules
Filled Templates

Knowledgebase

Synthesis Strategy
Constraints and
Knowledgebase

Test Template

Test Strategy
Test Vectors

Down-selected Architecture
Alternate Look-Aheads

Qualitative State Space
Test Configuration

Results Distribution

Statistics
Metrics

Value

Diagnose, Adapt, Anticipate

Automation elements

Control Flow
Data Flow

ramp-spec

ramp-rules

SysML

s-spec

s-rules

down-select

margin
change

tested

graph

engine

Figure 7.6-63. Flow of Co-analysis from Initial Requirements Using Automation where

Possible

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 99 Refer to cover page for Distribution Statement.

This sets the stage for the co-simulation required to shake-out and verify the concepts and
optimized designs.

7.6.3
To understand the needs of co-simulation and how it differs from co-analysis, consider a typical
AMIL-based architecture in

Co-Simulation and T&V

Figure 7.6-64. The executable models in the analysis are wrapped
with AMIL-aware plug-ins as needed so that they can communicate with the main graph
database.

= Model app

= AMIL plugin

= AMIL immediate nodes
= AMIL external nodes

Distributed
co-analysis
boundary

Figure 7.6-64. AMIL Nodes Serve as Plug-Ins Within a Distributed Co-Analysis

The boundary of the co-analysis includes immediate nodes, external nodes, and whatever
plugins are required for execution. Structurally, this differs little from the service-oriented
architecture shown below, which can be used as a pattern for a workflow composed via OWL-S
and SSWAP elements:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 100 Refer to cover page for Distribution Statement.

= Model app

= Embedded web services
= Predicates

= Service calls

Figure 7.6-65. Composable Workflow Analysis Which is a Loosely-coupled, Service-

Oriented Architecture

The mechanisms for co-simulation differ in that the models often need to communicate directly
with one another as opposed to through an intermediary of a graph database (in the case of
AMIL) or through a reasoner and its knowledgebase (in the case of a composable workflow). A
real co-simulation architecture will thus align more closely to Figure 7.6-66.

= Model app

= Communication ports
= Configuration nodes

Figure 7.6-66. Typical High-speed Co-simulation Network with Direct Data Paths

Between Communication Ports

Note that the nodes are replaced with communication ports and the simulation model
applications have direct communication links to provide the least amount of latency and the
highest throughput possible. The links to any part of the graph database or knowledgebase are
restricted to configuration nodes. The co-simulation has now transformed into more of a
choreographed exercise than the orchestrated co-analysis.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 101 Refer to cover page for Distribution Statement.

The choreography is evident in that the individual models know what to do because they are
simulating the actual design execution and the appropriate environmental context, and
synchronizing these interconnects will happen at the cyber-physical level. This also becomes
the environment for test and verification, as we move from a highly-abstracted world to a high-
fidelity world. In other words, the orchestrated hand-holding of co-analysis is no longer
operable, and we need realistic mechanisms to be simulated for determining a PCC.

This more restrictive architecture is not a limitation to how we apply AMIL. For example, a
co-simulation model for AMIL can potentially be based on a Distributed Command Pattern
(DCP) for data communication and synchronization. The DCP is very simple yet powerful in
that it can generate basic building blocks for Models of Computation and Communication
(MOCC) in any object-oriented base language (Java, C++, etc.). The significant advantage for
the ARRoW process is how well it fits in with the AMIL framework, particularly as a routing
table for distributed nodes. If the throughput of AMIL is insufficient for direct heterogeneous
and multi-physics computing applications, it will be certainly useful for a DCP application, as
this requires an intelligent and organized routing configuration, something which AMIL excels
at providing.

7.6.3.1 MoCC and Heterogeneous Simulation

The fact that heterogeneous simulations have an unbelievably rich set of possible interactions
leads to the META concept known as Models of Computation and Communication (MoCC).
Referring to this set as MoCC allows us to categorize the ways in which simulations have been
architected. For a typical cyber-physics problem, each simulation may need to talk to a
concurrently executing simulation, so that a path toward making the communications as
uniform or adaptable as possible is a good one to follow.

Figure 7.6-67. MoCC Applied to Modeling of a Drivetrain

7.6.3.2 Tagged Signal Model

7.6.3.2.1 AMIL for Co-Simulation

The language semantics behind AMIL allow a model developer to access the underlying graph
database, which contains information on the computational nodes comprising an extended
model, and of the edges/links connecting these nodes.

When a model tries to emulate the behavior of something as substantial as a complete vehicle
operation with associated multi-physics, the demands placed on the interconnect language
grow accordingly. The complete vehicle simulation is difficult enough to construct that the
simulation developer does not want the interconnect layer to become an additional hindrance.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 102 Refer to cover page for Distribution Statement.

Instead, it should be based on a pattern as simple as writing a procedural call or tapping into a
data stream.

So we want a messaging pattern that fits in with the simplicity of AMIL. Let us consider first
the DCP, which has particular relevance to an interconnected model. The elegance of the
pattern stems from the conciseness of its use. The typical invocation takes two lines of code:
 msg Object.Command;
 DCP.Send(msg);

The first line declares the desired command as a message and the second line sends the
message. The routing table configuration is opaquely hidden to the client software by the DCP
dispatching logic (what is referenced within the Send procedure), so that only the problem
domain is exposed and not the solution domain.

The routing configuration is simple as well and isolated from the static program code by a
knowledgebase, or an AMIL graph database. A typical set of routing configuration rules may
look like the following, where the destination address is given by a logical node number.
 connection(object:command, 2).
 host_node(2, ‘192.168.10.1’).

This information is accessed at run-time only, and it essentially instructs the DCP dispatcher to
send all messages of class object.command to a node logically defined as 2 (which then
maps onto an IP address in this example).

The interconnect language is powerful in that it will allow general pattern matching. Thus, if
we wanted to indicate that all commands owned by object resided on node 2, we would declare
this:
 connection(object:_, 2).

The underline (‘_’) character indicates a wild-card match for all messages belonging to this
object.

The language can also incorporate sophisticated rules. For example, say that the object needs
to co-reside on the same node as a specific server object. Then we can declare the rule by the
predicate logic:
 connection(object:_, Node)
 connection(server:_, Node).

This says to pattern match the node number for the object against the node that the server
resides on. We only need to declare the server elsewhere, as the implication follows a rule:
 connection(server:_, 4).

Fail-over semantics are accomplished by providing an alternate route should the main
connection fail:
 connection(object:_, 2).
 hot_backup(object:_, 3).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 103 Refer to cover page for Distribution Statement.

In our variation of the DCP the Node labeled 0 has special meaning. It is reserved to indicate
that a message is routed to a local object. For this reason, all executables are assigned a Node
number; they then can perform introspection on their own routing behavior and not invoke
distributed communication unless needed.

7.6.3.2.2 Tagging for Synchonization

The DCP message depends on inheritance from a specific base class. A refined message can add
data elements so that information can be transmitted along with the command. Therefore
variants of the basic DCP message can include pure commands, queries (i.e., request-replies),
and status requests (i.e. output only).

Since the messages can contain extended information, they fit in well with the Tagged Signal
Model (TSM) advocated by Lee and Sangiovanni-Vincentelli. TSM was introduced to address
the problems brought on by heterogeneous modeling and co-simulation. The heterogeneous
environment defined a set of mix and match computational models which can include
combinations of:

• Continuous time with discrete time
• Sequential with concurrent, etc.

A foundational consideration exists behind TSM. Making heterogeneous simulations work
efficiently boils down to a need for a general adaptive mechanism to uniformly communicate
between models. This is related in scope to the DCP strategy, which applies polymorphism of
data-types to implement message passing between models. As we will demonstrate, message-
passing facilitates not only distributed computing, but the fundamental polymorphism allows
us to exercise many other TSM-like behaviors, such as synchronization, signaling, re-entrant-
safe data handling, etc.

Figure 7.6-68. The tagged-signal model allows interoperability of different MOCC.

The basic entity in the tagged signal model is an event, which is a value/tag pair. The value is
essentially the data that a message can contain and the tag establishes the name and unique
class that the message belongs to.

Based on their classification, tags can establish ordering relationships in time, and so different
models of time appear as structure imposed on the intersection between sets of all possible tags.
Describing a process can then appear as relations between signals as sets of events, for
example, a synchronized transaction can occur if a condition variable is attached to a tagged
signal.

The character of such relations follows from the type of process it describes. The figure below
represents a categorization of temporal systems that can fall under the TSM umbrella.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 104 Refer to cover page for Distribution Statement.

Figure 7.6-69. The Tagged-signal Model Encompasses a Family of

Simulation Behaviors (from Lee and Sangiovanni-Vincentelli).

According to the categorization, the family of tagged signal models intuitively consist of
processes that run concurrently, which is what you would expect in a co-simulation.
Constraints imposed on the shared signals’ set of tags define communication among the
processes. Tags can represent a broad range of annotated relations, such as total orders in
timed systems and partial orders in untimed systems.

Consider a few examples from typical system simulations. In the first case, we may want to
interface an event-driven base simulation to a continuous time simulation such as what
Simulink can produce. These data-flow systems typically solve differential equations, so they
operate on intervals of time, Δt. One could set up the Simulink simulation to generate a step-
wise solution by requesting a result at a Δt interval in advance, or one could advance the clock
and request a solution for the current time. Even though the time interval is generally small,
not factoring in the temporal shift and ordering properly can lead to mismatches in expected
output of a heterogeneous simulation. A tagged signal model can account for this as the hand-
shaking built-in to the connection can adapt to the difference. For that reason, the TSM
connections can include what are called adaptors.

Another case involves the modeling of edge detection as would happen in the simulation of
digital logic systems. Logic gates typically synchronize of rising edges of binary signals, so the
synchronization of multiple gates in a circuit consisting of clocks and cascading logic is critical.
The referenced paper describes in detail the semantics of a modeled digital signal which
effectively emulates that which would be found in a VHDL simulator. [PL07]

The combination of message-passing and tagged-signals turns out to be very powerful in that
remote and local variations of synchronization are easy to model. We thus have no problem
modeling and simulating the following types of synchronizing behaviors:

• Read-modify-write
• Bounded/unbounded buffered FIFO (e.g., mailboxes)
• Rendezvous

These kinds of behaviors are the bread-and-butter building blocks for designing cyber-physical
systems that have any degree of automation.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 105 Refer to cover page for Distribution Statement.

7.6.3.2.3 Merging TSM and DCP

Importantly, we can unify the separate notions of tagged signals and distributed commands.
Consider distributed commands as objects which possess a homing instinct based on the unique
identity of their tag. Thus we can assert several properties of a tagged distributed command:

• Tagging allows messages to dispatch to their correct destinations
• Tags can be used as an index to route to computational nodes
• Tags are built into OOP languages via virtual dispatch tables, i.e., vtables

This leads to the declaration of a routing configuration table as we described earlier. The
names declared in the text correspond precisely to the names uniquely defined for the tagged
signals, with the object dot notation used to define the names. Combining the tagged DCP
with the tagged synchronization primitives allows a large diversity in realizations.

• Different computational models hosted in appropriate threads and processes
• Synchronization primitives define temporal behaviors

This approach has been prototyped in a kind of middleware library we refer to as the patterned
AMIL command environment. This uses the distributed-command pattern as a foundation. All
messages are tagged with an object identity and contain time ordering slots encapsulated in
their base class. Messages at the most basic level can refer to signaled events, hence the
correspondence to the Tagged Signal Model.

A co-simulation becomes an agent-driven process network with all message-passing and
synchronization semantics based on passive or active objects derived from tagged types. A
wide variety of MoCC systems can be invoked with fundamental tagged patterns. As with the
basic distributed command pattern above, the patterns at most involve a few lines of code; in
particular:

• Concurrency
• Mailboxes, rendezvous, publish-subscribe, etc.
• Discrete Event Engine (Degas[LP06]) hybrid cyber-physical systems

A possible configuration to demonstrate involves AMIL-controlled dispatching to objects
across remote clusters. The idea is to maintain variants of objects in different clusters
depending on how we want to experiment with performance, fidelity of representation, or
design space exploration. In the figure below, we show two possible configurations which each
connect four active objects. Considering this in the context of a design space exploration, a
total of 81 combinations are possible via DCP reconfiguring.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 106 Refer to cover page for Distribution Statement.

Tagged Runtime Polymorphism

Select 4 objects () from 3 groups (A,B,C). Number of combinations = 34 = 81

A B C

A B C

dispatch
path

Figure 7.6-70. Tagged Signal Runtime Polymorphism

The tagged signal model lies at the heart of an integrated simulation. As objects refer to a
message containing a full informational record, it has general expressiveness to capture many
relevant behaviors. The generality of the synchronization environment allows various levels of
behavioral polymorphism, such as dataflow, time-triggered, discrete-event (through DEGAS),
communicating sequential processing, process networks, and push-pull messaging.

The connection to AMIL is now very apparent as AMIL allows us to map the connectivity of a
co-simulation:

• The distributed command pattern allows destinations to occur on any node of the
network.

• A connection-oriented configuration approach comes along with the pattern.
• The configuration describes a run-time modifiable routing table.
• By encoding the configuration to reside within a knowledgebase, we have a set of rules

to enable sophisticated pattern matching techniques to be employed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 107 Refer to cover page for Distribution Statement.

Figure 7.6-71. A Typical Architecture of an Agent-Based Co-Simulation

The full co-simulation consists of actors or agents that work concurrently and cooperatively,
which emulates the architecture of a ground vehicle. The combination of an AMIL
configuration with run-time polymorphism through tagged signals disambiguates intent in
both information transfers and behaviors initiated. This becomes an ideal heterogeneous
computing environment for analysis and migration toward a virtual prototype and that can
support various models of computation.

A natural extension is to incorporate design space exploration and adaptability into this
architecture, with very little additional effort. As per Figure 7.6-14, we may need to
successively investigate a sequence of alternatives and how they may best reduce the
complexity of the state space.

As one approach to take, consider that the design-space exploration is really just a concise
application of a distributed command pattern with supplemental decision rules. This is an
excellent exercise in demonstrating dynamic CML loading because we can use the command
pattern dispatching mechanisms to insert the appropriate component in our environment.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 108 Refer to cover page for Distribution Statement.

Figure 7.6-72. Distributed Command Pattern for Selecting Among Alternative

Implementations

As only a few options exist for performing automated design space explorations, the primary
enabler in this case is to concentrate on components and functionality that work plug-
compatibly and have contract-style interfaces. As similar connection configuration rules play a
part in the operation of the DCP architecture, the implication is that design space exploration
can be analyzed in terms of a heterogeneous simulation, and very late in the game. This has
significant benefits considering that set-based concurrent engineering and adaptability are
important factors for META.

7.6.3.2.4 Evaluation

7.6.3.2.5 Evaluation

The co-simulation of a vehicle-scale cyber-physical system will definitely contain complexity,
but the building blocks benefit from simple patterns.

• Advanced distributed command-pattern middleware
• Embedded knowledgebase (AMIL) for distributed communication
• Heterogeneous tool integration
• Integrated launching environment
• Hybrid Discrete Event Simulation and Testing Framework
• Design-space exploration
• Advanced 3-D visualization (refer to ECTo) and collision checking
• Run-time instrumentation and post-processing of artifacts
• Potential additions such as High-Level Architecture (HLA) integration

By combining the capabilities in different ways, we can accomplish combined goals. For
example, we can consider design-space exploration as an application of a distributed command
pattern with a front-end emphasis on expert system reasoning and integration. This also
demonstrates dynamic Component Model Library loading as we can use the command pattern
dispatching mechanisms to get to the correct component in our environment.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 109 Refer to cover page for Distribution Statement.

7.6.3.2.6 Patterned AMIL Command Environment

This section contains a list of adaptors and synchronization primitives that certainly apply to a
practical distributed co-simulation. The communication problem we want to generalize is to
provide a rich set of service adaptors for inter-process communication as shown below.

Figure 7.6-73. The Application of Middleware

If we were to define a paradigm for how distributed command patterns typically fit together, a
passable description may be to call the end result a “class-based messaging architecture”. The
specific variation is to lean on a class-based command pattern, which also has the potential for
language interoperability (especially with common vtable implementations among open-source
compilers). Such an essential pattern provides benefits in (1) instrumenting code and (2)
allowing for other building block patterns to be constructed. What we call the set of PACE
patterns combines inheritance and class-wide operations on the base message classes. The base
classes contain time stamps, task IDs, and other identifiers which can be used to trace
execution. This is the basic architectural pattern that would provide the infrastructure for a
MOCC co-simulation, intended to support both discrete event simulation and real-time
simulation. Other patterns evolved based on needs of simulating a real cyber-physical design,
rich with concurrent constructions.

The Tagged Signal Model at the heart of the messaging consists of a set of attributes that are
inherited by all derived messages. These include node numbers (for routing), thread ID’s,
synchronization and delivery enumerations, and time measures (absolute and relative). More
attributes can be added to specialize the services, but these are the essential ingredients in
combining a distributed command pattern with a tagged signal model.

Description of Patterns. The Apache open source project uses an integration framework
called Camel. The basic mechanisms are described as a set of Enterprise Integration Patterns.
They are fairly comprehensive for the application domain of social communication that they
have targeted, but it falls well short of the intended application domain of tool co-simulation.
The following provides a set of possible PACE patterns presented is the same fashion as the
Apache Camel patterns. The code snippets attached to each entry demonstrates the intended
conciseness of pattern usage, with the icon representing a tagged signal pattern and
representing a task or process.

 Command (or Message) Pattern

http://camel.apache.org/enterprise-integration-patterns.html�

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 110 Refer to cover page for Distribution Statement.

Command messages are declared in a module specification, with at least one of the three
available primitive dispatching operations also specified. The module implementation
requires the filled-out operational code for the selected primitives.

type Msg_Name is new Pace.Msg with ...; // defined in Msg_Name_Module

procedure Input (Obj : in Msg_Name); // optional primitive #1

procedure Inout (Obj : in out Msg_Name); // optional primitive #2

procedure Output(Obj : out Msg_Name); // optional primitive #3

In formal terms, the automatically inherited operations include Input, Output, and
Inout. Depending on the parameter mode desired (whether data is "in", "out" or "in
out"), one or more of these operations can be declared for each subclass'ed command
Msg. The command pattern is also mentioned in the “Gang of Four” patterns book, but
different language can implement it slightly differently, particularly with respect to
pointer manipulation. On the client side, instancing of command messages is
straightforward.

use Msg_Name_Package;

Msg : Msg_Name;

Input (Msg);

In many cases, a "class-wide" procedure declaration is used in conjunction with a
command message. The class-wide to primitive operation dispatching allows further
bulding block utilities to be created from the command pattern. These utilities include
such patterns as Trace and Proxy.
In terms of contract-style programming the mutability of the command pattern data
flow indicates its use.

“inout” General queries (with potential side effects)

“input” Commands (state changes)

“output” Monitoring (no side effects or state change)

The purely functional style is missing from the command pattern.

 Dispatched Command Pattern
This pattern is a slight variation of the client-side invocation of the command pattern.
Instead of calling the primitive operation directly, a class-wide operation is used which
effectively enables redispatching to the appropriate primitive. The target of the
indirection can be changed by registering a different class-wide callback.

Msg : Msg_Name_Package.Msg_Name;

Pace.Dispatching.Input (Msg);

Note that these first two patterns are the essence of the architectural DCP paradigm.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 111 Refer to cover page for Distribution Statement.

 Trace (or Instrumentation) Pattern
The library contains class-wide utilities which apply to any derivation of Pace.Msg. One
of these, the class-wide operation called Pace.Log.Trace provides a convenient way to
instrument the code, as it accepts instances of the class-wide Pace.Msg as its parameter.

procedure Input (Obj : in Msg_Name) {

 Pace.Log.Trace (Obj);

};

On trace output some of the synchronization semantics can be logged, which may
include: => simple, >> synch, -> asynch, <> release following SysML notation.

 Unit Identification Pattern
This pattern allows one to declare a character string identifier which automatically
matches the enclosing module name. This is typically declared in a body.

function ID is new Pace.Log.Unit_ID;

In general, placing character strings in code to identify packages is a poor idea; for
example if maintenance occurs the strings may need to be updated. This provides an
automated approach.
Along the same lines, PACE uses object tags in hash tables to textually associate data
with messages. This can be demonstrated by combining the Tag Identification Pattern
and Message Lookup Patterns.

 Agent (or Task) Identification Pattern
This pattern allows one to register the name of a task. Use this with the Unit
Identification pattern. All tasks are released when the default Pace.Log.Agent_ID is
called from the main procedure.

function ID is new Pace.Log.Unit_ID;

task Agent {

 Pace.Log.Agent_ID (ID);

 ...

 Tag Identification Pattern
If the need arises to get the character string representation of a command message, use
the following pattern:

procedure Input (Obj : in Msg_Name) {

 Pace.Log.Put_Line (Pace.Tag (Obj) & " called");

}

 Log Exception Pattern
Log a descriptive string without blocking, allowing a concurrent task to monitor. In
practice, each task exception handler calls Pace.Log.Ex with an optional text string.
The monitoring task needs to call the function Pace.Log.Wait_For_Ex to retrieve
strings placed on the queue.

exception when E : others =>

 Pace.Log.Ex (E, "extra info");

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 112 Refer to cover page for Distribution Statement.

In practice it is useful to log all exceptions, and make sure there is an exception handler
in every task.

 Synchronized Message Passing (Rendezvous) Pattern
Based on C.A.R. Hoare’s communicating sequential processes, if the implementation of
Input makes a call to a task rendezvous, the transaction is synchronized.

// Agent Task

//

task Agent {

 accept Input (Obj : in Msg_Name) {

 Pace.Log.Trace (Obj);

 };

 ...

};

// Client Task

//

procedure Input (Obj : in Msg_Name) {

 Agent.Input (Obj); // Transfer control and data to Agent

};

The calling Client must not be the same task context as the Agent, otherwise the
execution will deadlock. In practice, this does not cause a problem because it is practical
to detect deadlock through either code inspections or executable tests.

 Surrogate (Asynchronous) Message Passing Pattern
This pattern uses a surrogate task to emulate an asynchronous message passing
protocol, this is also often referred to as "send and forget" semantics. If a dispatching
operation called Input is declared, then the Asynchronous send pattern can be applied.
There are two flavors to this pattern, one that uses a dedicated task and one that uses a
pool of surrogate tasks. Both approaches call the dispatching operation named Input.
Note that since the asynchronous protocol does not require a return, neither Output
and Inout calls are applicable since they do
The easiest flavor of the pattern to use is the pooled variation. One task in the task pool
calls the class-wide operation as determined in the Pace.Surrogates package.

 expect data back from the called primitive.

Msg : Msg_Name;

Pace.Surrogates.Input (Msg);

The other variation is to use a dedicated task to manage the handoff from the client to
the surrogate, who can then asynchronously deliver the message.

package Async is new Pace.Surrogates.Asynchronous (Msg_Name);

...

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 113 Refer to cover page for Distribution Statement.

Msg : Msg_Name;

Async.Surrogate.Input (Msg);

The recommendation is to always use the pooled version pattern since it requires less
code. A configuration variable PACE_MAX_SURROGATES controls the number of
tasks in the pool.

 Mailbox Pattern
This pattern pairs up sending and receiver tasks via a command message. Application
developers typically won't use this pattern directly this but it is needed by the Notify
pattern. It is thus more of a building block pattern for use by other PACE abstractions.

package Mailbox is new Pace.Msg_IO (479); // prime number for hash table size

// Server side

Msg : Msg_Name;

Mailbox.Await (Msg);

// Client side

Msg : Msg_Name;

Mailbox.Send (Msg);

 Notify Pattern
This simple but very powerful pattern provides a trigger/suspend pair on a message.
The message has two pre-built operations (Input and Inout) built up from the Mailbox
pattern. The inherited Inout primitive will suspend on the subscription message, while
the inherited Input provides a built-in trigger (or publish) mechanism from a
concurrently executing task.

type Msg_Name is new Pace.Notify.Subscription with

 {

 Data_Field : ...

 };

// Server-task suspend

task Agent {

 Msg : Msg_Name;

 Inout (Msg);

 Msg.Data_Field := ...

// Client-task trigger

Msg : Msg_Name;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 114 Refer to cover page for Distribution Statement.

Msg.Data_Field := ...

Input (Msg);

This is useful to allow the task rendezvous mechanism to be extended to regions outside
the task body.

 Queue and Guarded Queue Pattern
The Guarded Queue pattern provides a re-entrant safe mechanism to pass constrained
data.

package Q is new Pace.Queue (Item_Type);

package Guarded is new Q.Guarded;

Guarded.Get (Item); // Task #1

Guarded.Put (Item); // Task #2

The queue operations Guarded.Put and Guarded.Get are available.

 Mutex Pattern
This pattern protects data from simultaneous access via an automatically scoped
semaphore object. This is a fairly common textbook mutual exclusion pattern.

My_Mutex : aliased Mutex;

...

// Lock

L : Lock (My_Mutex'Access); // Task #1 access locked data until end of scope

...

// Contend

L : Lock (My_Mutex'Access); // Task #2 access locked data until end of scope

 Pooled Resource Pattern
This pattern provides a pool of guarded keys that can be used to access task or re-
entrant critical data. Currently, it is used as a building block pattern for other PACE
abstractions, such as the Pace.Socket module.

type Pool_Range is range 1 .. 10;

package Pool is new Pace.Resource (Pool_Range);

Key : Pool_Range;

Key := Pool.Get;

// access locked data until end of scope

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 115 Refer to cover page for Distribution Statement.

Pool.Free (Key);

 Single Event Wakeup Pattern
Instance a Pace.Signals.Event protected type in a package body that has access to
multiple threads of control.

Evt : Pace.Signals.Event;

...

Evt.Suspend; // Task #1

...

Evt.Signal; // Task #2 which wakes up suspended Task #2

 Multiple Event Wakeup Pattern
For waking up multiple threads of control. An enumerated type or other ranged scalar
type can be used to specify the desired signalling states.

type Colors is (Black, Red, Blue);

package Evts is new Pace.Signals.Multiple (Colors);

Three variations of multiple signal control exist. The first specifies waiting on a specific

Evts.Await (Black); // Task #1

enumeration value:

...

Evts.Signal (Black); // Task #2 wakes up suspended Task #1

The second describes waiting on any

Color : Colors;

 enumeration:

Evts.Await_Any (Color); // Task #1

/ post-condition -> Color returns Black

...

Evts.Signal (Black); // Task #2 wakes up suspended Task #1

The last variation describes waiting on all

Evts.Await_All; // Task #1

 enumerations:

...

Evts.Signal (Red); // Task #X

...

Evts.Signal (Blue); // Task #Y

...

Evts.Signal (Black); // Task #Z which finally wakes suspended Task #1

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 116 Refer to cover page for Distribution Statement.

 Data Wakeup Pattern
This is another pattern to use instead of a rendezvous. To use this pattern, first instance
a Pace.Signals.Shared_Data protected type in an implementation that has access to
multiple threads of control.

Obj : aliased Msg_Name;

...

Data : Pace.Signals.Shared_Data (Obj'Access);

task Agent { // Task #1

 Msg : Msg_Name;

 Data.Read (Msg);

exception

 when Pace.Signals.Data_Mismatch => // Uh-oh, types don't match

};

Msg : Msg_Name; // Task #2 wake up Read by calling Write

Data.Write (Msg);

Of all the patterns defined so far, this one has the potential for data type mismatches. If
the reader waits on a message that doesn't match the type of the writer, an exception will
be raised. Compare this to the Synchronized Message Passing or Notify pattern and you
can see that the extra complexity of the Shared Data Wakeup pattern makes the type-safe
rendezvous or notify a much better choice.

 Task Wakeup Pattern
This pattern uses built-in task identifiers to associate waiting tasks with triggering
clients (TID stands for Task ID).

Id : Pace.Thread; // Static variable

...

task Agent { // Task #1

 Id := Pace.Current;

 Pace.Signals.Tid.Wait;

...

Pace.Signals.Tid.Signal (Id); // Task #2 wakes up suspended Task #1

The Agent Wakeup pattern is used in the Pace.Signals.Buffers service. Each
subclassed Msg contains a TID field which is used to pass thread identifiers between
active objects. This is a direct application of the Tagged Signal Model.

 Channel (Unconstrained Command) Pattern

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 117 Refer to cover page for Distribution Statement.

This pattern allows heterogeneous and unconstrained command messages to be mixed
in a safe and controlled way. The convenience operator "+" is defined to allow simple
construction of the "channel" messages.

Msg : Msg_Name;

Chan : Pace.Channel_Msg := +Msg;

...

Input (+Chan); // Dispatches to primitive operator

The Channel pattern is used in the Pace.Signals.Buffers service and in the command
callback pattern.

 Buffered Command Pattern
This pattern uses the Channel pattern and the Agent Wakeup pattern to enable
synchronized passing of heterogeneous/unconstrained data. This is accomplished by
buffering messages in a protected queued data structure.

type Msg_Name is new Pace.Msg with

 {

 Char : Character;

 };

Queue : Pace.Signals.Buffers.Buffer; // Contains Class-wide Queue

task Agent { //

 Item : Pace.Channel_Msg; // Single Class-wide element

 Pace.Signals.Buffers.Get (Queue, Item);

 // Convert from class-wide to specific type

 Pace.Log.Put_Line ("Char = " & Msg_Name (+Item).Char);

 ...

Msg : Msg_Name; // other task

Msg.Char := 'c';

Pace.Signals.Buffers.Put (Queue, Msg);

The Buffered Command pattern is useful for composing Command messages out of
other Command messages, where the components can be heterogeneously defined. On
the receiving end, the individual channeled components can be dereferenced and then
polymorphically dispatched to their primitive command operation.

 Proxy (Socket) Pattern
This simple pattern creates a Proxy to enable message sending via a socket. The
interface is structurally similar to the pooled asynchronous call, but the class-wide
operation redirects to the socket IPC protocol instead before dispatching at the remote
site.

Msg : Msg_Name;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 118 Refer to cover page for Distribution Statement.

...

Pace.Socket.Send (Msg); // use the Ack flag if synching is important

The protocol is two-way if the Send_Inout or Send_Out is used and either synchronous
or asynchronous if the Send operation is used.
Run-time configuration is provided by the AMIL configuration knowledgebase. Refer to
the separate section 7.5.3.4 on this topic. Good use of patterns eliminates the need for
"wizard" code-generation algorithms. Whereas marshalling of data is a difficult
problem, a command-based proxy pattern is simple to implement and simple to enforce
via coding guidelines.

 Publish-Subscribe (Asynchronous Notify) Pattern
Publish-Subscribe is effectively a second-order pattern that requires an extra level of
protocol on top of the basic command Input pattern. The subscription protocol is much
like the Notify pattern; however an intermediate step for maintaining a subscription list
is required. To identify the protocol, we subclass a Subscription message from
Pace.Msg.

package Status_Pkg ..

 type Status is new Pace.Msg with

 {

 Data : ...;

 };

 procedure Input (Obj : in Status);

-- In the body, implement the subscription list:

List : Pace.Socket.Publisher.Subscription_List (Max_Subs); -- Max defaults to 1

procedure Input (Obj : in Status) {

 Pace.Publisher.Subscribe (List, Obj);

}

task Agent {

 Local_Status : Status;

 Local_Status := ... // update the locally persistent state information.

 Pace.Publisher.Publish (List, Local_Status);

On the client-side, we must subclass from the server message. This can be done in the
implementation:

type My_Status is new Status with null record;

procedure Input (Obj : in My_Status);

procedure Input (Obj : in My_Status){

 // Grab the data

};

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 119 Refer to cover page for Distribution Statement.

-- To subscribe, create instance of My_Status, but (important!) convert to Status

Msg : My_Status;

 Status_Pkg.Input (Status (Msg)); -- Locally subscribe

Only one task is explicitly involved in this pattern, since in the local Agent the task
itself is responsible for invoking the callback Command message.
To subscribe the client remotely, replace the following:

procedure Subscribe is new Pace.Socket.Observer

 (Remote => Status_Pkg.Status, -- Needed for remote IPC

 Local => My_Status);

Subscribe; -- Remotely subscribe

The communication pattern is reliable in that it uses TCP sockets when interprocess
exchange occurs. Other than that, use this pattern with careful justification in that it can
be prone to race conditions if used excessively. The worst-case example of this condition
is where every object publishes data asynchronously but there is no central level of
synchronized control. The giveaway for this predicament is the liberal use of delay
statements to try to mitigate race conditions.
The publish-subscribe pattern is popular but simpler patterns exist. As an alternative,
blocking of command pattern events ala the Notify pattern is an easy to code and may
find more widespread usage.

 URL Command Pattern
Sending a text command to the PACE-friendly web server uses the tagged type
semantics in a novel way to do transparent dispatching. If ASCII encoded data is also
attached to the text (i.e. URL) message, the protocol pattern is essentially CGI or XML
RPC (remote procedure call), REST, or SOAP (simple object access protocol)
programming.

 // Declare a subclass derived from Pace.Server.Dispatch.Action

 type Msg_Stimulus is new Pace.Server.Dispatch.Action with null record;

 procedure Inout (Obj : in out Msg_Stimulus);

 procedure Inout (Obj : in out Msg_Stimulus) {

 Pace.Log.Put_Line ("Stimulus received : " & +Obj.Set);

 };

 // Register through Save_Action either in a task or at the elaboration section

 Save_Action (Msg_Stimulus'(Pace.Msg with Set => +"OK"));

The internal web server keeps track of all registered action requests. A typical URL
Action Request looks like:

http://wcss239:5601/PKG.MSG_STIMULUS?set=OK

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 120 Refer to cover page for Distribution Statement.

The bolded part is the salient PACE interpreted URL. Note that whatever package that
the Msg_Stimulus dispatching primitive is defined in, this name has to prepended to the
URL. In so doing, the pattern becomes easy to maintain.
The URL pattern allows a backdoor interface to allow the injection of external sensor
messages into the executable. In some programming circles, the Save_Action call is
part of a factory or a registration pattern, since these objects are created in a factory line
fashion, each one stamped out prior to use. Note that the command pattern in general
has no such restriction, because by definition they have been registered prior to use by
the language run-time. However, when external messages are considered, the run-time
has had no chance to create an object instance before the external tag arrives; thus the
requirement for the registration process. Moreover, providing this registration allows
us to set defaults, as in the "OK" example above.

 Message Lookup (Tag Hash) Pattern
Provides a lookup (i.e. hash or set) table to Msg tags. The internal tag of a message is
convertible to an external tag (human readable) through the signal tag utilities.
Although one can instance this pattern directly, it is used more often in other pattern
utilities than on its own.

// Instance a Lookup table with hash size.

package Hash is new Pace.Lookup (479); -- Prime number is best

Obj : Msg_Name;

// set a value in Lookup table corresponding to a message tag

Hash.Table.Set (Msg_Name'Class'Tag, +Obj);

// get value and dispatch

Pace.Dispatching.Input (+Hash.Table.Get (Msg_Name'Class'Tag));

Note that this uses the Channel Command pattern which manages the memory
automatically. Use a Mutex pattern if more than one task will access this; refer to
Pace.Server.Dispatch for a complete example.

 Callback Command Pattern
Provides a means to attach a class-wide dispatching callback to a command. The
callback is contained as a Channel component to the message.

-- Server

type Msg_Name is new Pace.Msg with

 {

 Callback : Pace.Channel_Msg;

 };

procedure Input (Obj : in Msg_Name);

procedure Input (Obj : in Msg_Name) {

 Pace.Socket.Send (+Obj.Callback); // respond on callback

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 121 Refer to cover page for Distribution Statement.

sg

Msg : Msg_Name;

Msg.Callback := Pace.To_Callback(CB);

Pace.Socket.Send (Msg);

Note that no data components can be attached to the callback message because the
server can only see the anonymous wrapper; the Channel_Msg "+" operator does the
dereferencing on the response callback. If one wishes to add data or simplify the
representation, adopt the Notify pattern and think in terms of synchronized "in out"
message passing. Or use the Publish Subscribe pattern for multiple responses. This
pattern essentially falls out of the command pattern and no extra library code is
involved; i.e. it's a freebie.

 Persistent Command Pattern
Provides a means to save commands to a persistent storage device, i.e. disk.

procedure Input (Obj : in Msg_Name) {

 Copy : Msg_Name;

 Pace.Persistent.Put (Obj); // Save to the Data Store

 Pace.Persistent.Get (Copy); // Retrieve from the Data Store

 // Post-Condition : Copy = Obj

The command message is saved in a file which has the same name as the full external
tag name of the command message.

 External Stream Representation Pattern
Sometimes we may want to override the built-in marshalling (via a Streams library) of
the Proxy pattern. We can either compress the data by using block binary transfer, thus
overriding the standard byte protocol. Or we can create an ASCII text representation of
the stream data to interface to external programs, which may not know all the internal
data representations (such as floating point representation).

type Status is new Pace.Msg with

 {

 Data : ...;

 };

procedure Input (Obj : in Status);

package Fast is new Pace.Stream.Binary (Status);

// Input is inherited.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 122 Refer to cover page for Distribution Statement.

Use the binary pattern with caution since it may not reconstruct controlled elements or
XDR representations. The text pattern is more involved but important for language
interoperability.

 Configuration Data Pattern
The guts of this pattern will be covered in detail in a section related to using the Pace to
AMIL knowledge base, but this gives the basics.

 Multicast Pattern
This is based on an unreliable protocol and should only be used for transient data, such
as video or graphics updates. The Receiver object contains a task that dispatches to the
correct command destination. The Sender object is a protected object that guards
against reentrancy.

// loopback example, both sender and receiver in the same context

RX : Pace.Socket.Multicast.Receiver

 := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs"));

TX : Pace.Socket.Multicast.Sender

 := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs"));

procedure Send_Update (Obj : in Pace.Msg'Class) {

 Pace.Socket.Multicast.Send (TX, Obj);

};

 Shared Memory Pattern
This pattern was developed for UNIX. It effectively demonstrates how a O/S specific
interface can be abstracted away to look like a simple memory access.

type Data_Type is

 {

 Int : Integer := 0;

 Flt : Float := 0.0;

 };

type Data_Block is access Data_Type; // A pointer

Pool : Pace.Keyed_Shared_Memory.Block (Key => 700);

for Data_Block'Storage_Pool use Pool;

// To access memory, dereference the instance

Value : Data := new Data_Type;

The Key and Size values need to be identical across applications.

 6DOF Pattern
A concrete example of a command message used to interface to an external 3D
visualization tool via the multicast pattern. The tool it was originally used for was ProE
dvsMockup.

// Server Side

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 123 Refer to cover page for Distribution Statement.

type Position is new Pace.Msg with

 {

 Assembly : Str;

 X, Y, Z : Float;

 A, B, C : Float;

 };

procedure Input (Obj : in Position);

// body implements the graphics update

// Client Side

TX : Pace.Socket.Multicast.Sender

 := Pace.Socket.Multicast.Create (Pace.Config.Get ("multicast_address", "dvs"));

Msg : Position;

Msg.Assembly := (Str("gyrator"), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

Pace.Socket.Multicast.Send (TX, Msg);

This example gives the flavor of the pattern. Typically, we may abstract the client-side
send into a library-level service call, since many concurrently executing objects will
ppdate the graphics server simultaneously.

 HLA command pattern.
The FOM representation of messages includes the equivalent of tags. These tags are
used to dispatch from the appropriate HLA interactions or object to the command
patterns that these represent. The need for sophisticated HLA code builders is
substituted for by clever use of the command pattern.

 Discrete Event Simulation Pattern
The two PACE timers (relative delay and absolute delay) can be switched to a discrete
event simulation mode by setting a configuration variable

Time : Duration = Pace.Now;

Pace.Log.Wait_Until (Time + 100.0); // Wait 100.0 s after the clock time

Pace.Log.Wait (10.0); // Wait 10.0 s from invocation

The call Pace.Now returns the current time in seconds from the start of the simulation.
For absolute wait, call Wait_Until with time in seconds (starting from start of sim).
For relative wait, call Wait with time in seconds.
If the need arises to set up a timer on a thread, use the Timer_Start and
Timer_Expired services. Like the Wait services these are guaranteed thread reentrant;

procedure Timer {

 Expired : Boolean;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 124 Refer to cover page for Distribution Statement.

 Pace.Log.Agent_ID;

 Pace.Log.Timer_Start (9.0);

 Pace.Log.Wait (10.0);

 Expired = Pace.Log.Timer_Expired;

 -- Post-Condition: Expired = TRUE

}

Server Instancing. Other container abstractions that can be included in the set of patterns
include lists, ring buffers, and specialized server task applications. We keep the latter separate
from the other patterns, in that they are not typically used repeatedly in the code, at least not
enough to warrant being called a pattern.

 Web Server Instancing
Instancing a multi-tasking web server in the main program is needed to use the URL
Command pattern. The number of reader tasks is configurable.

Pace.Server.Home.Create (Number_Of_Readers => 3, Storage_Size_Per_Reader => 100_000);

An embedded web server works very effectively as a stimulator. The URL command
pattern provides back-door stimulus to code behaviors. The intent is that prototyped
GUI interface code to the PACE application can then be invoked through a browser.

 Knowledgebase Instancing and Use
Co-simulations will likely require local manipulation of the knowledgebase so that other
applications will not interfere with its operation and leave it in an inconsistent state.
Further, an AMIL interface needs to be re-entrant safe to allow use as a concurrent API
(refer to section 7.5.1.4.1). One way to do this is to wrap the data access within a thread
and then provide synchronized access to the API. This kind of server thread has
flexibility in that it allows for manipulation of the knowledge locally without requiring
calls to the global store. This is extended to the inference engine, as per the ESKER
demo, we used the Java-friendly embedded tuProlog to provide a conduit to AMIL.
Either query calls to Prolog or the AMIL API can then used to retrieve information
from the server thread. For example, the direct query

KB.Query (Name, V);

asks if there are any matching predicates starting with the lower case Name and followed
by the variable list V. The first argument in the variable list V(1) happens to be bound
to the value Id. The unbound argument V(2) returns the matched knowledgebase
value. If a value was not found, then the exception No_Match is raised.
The complement of a query is an assertion. An assertion can be formulated:

Fact : String = F("switch", "power"+"off"); // "switch(power, off)."

KB.Assert (Fact).

The Assert call always succeeds. Once a fact is asserted, it can be retrieved through the
query:

V : Variables [1..2];

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 125 Refer to cover page for Distribution Statement.

V(1) = +"power";

KB.Query ("switch", V); // converts to "switch (power, V2)?"

PutLine (+V(2));

 Logical Node Instance
Each executable in a co-simulation collection needs a unique identifier so that it can be
distinguished on a network. A configuration variable called PACE_NODE takes on an
integer value which is used to distinguish between executing simulations. The nodes are
typically numbered starting import PACE_NODE=1. The socket-based
communication patterns use this node numbering scheme to determine routes. If
PACE_NODE=0, then the executable is stand-alone and it is routed internally. Refer
to 7.5.3.4

External Application. A typical integration of the PACE patterns with a co-simulated
application is shown in Figure 7.5-83. This used the S-function external API of Simulink to link
to the distributed command pattern. The rules for creating an S-function are amenable to
template-based automation so a reasoner would work well for adapting such external
applications

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 126 Refer to cover page for Distribution Statement.

Matlab/Simulink
Model

Subsystem B

S-function

Subsystem A

S-function

PACE DLL
Distributed
Simulation

• Template
• DLL lookup

• DLL export
• Messaging
• Scheduling

Shared Address Space

Figure 7.6-74. Use of Distributed Pattern in Co-simulated Multi-physics Regime

7.6.3.3 Multi-Physics and Compartmentalization

To have a chance of working highly-dimensional applied physics problems, a co-simulation will
need to be adequately compartmentalized. Without a divide and conquer strategy the
dimensionality and fine-grained nature of the problem domain will consume time and increase
complexity. The well-known method of coarse-graining abstraction can help to improve efficient
computation. One recommendation is to do more with first-order models, lumped parameter
approximations, and applying principles like energy conservation and entropy maximization.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 127 Refer to cover page for Distribution Statement.

Figure 7.6-75. Multi-Physics Data Flow and Integration

Ideally, we should be able to argue for breaking down any multi-physics problem into separable
pieces. They either separate because the actual interactions are small, or that the scales are
significantly different, either in time or physical dimension, so that we can safely encapsulate
the effects. For multi-scale problems we don’t have many options because the computational
grids will never overlap across the dynamic range (refer to Figure 7.6-76).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 128 Refer to cover page for Distribution Statement.

Figure 7.6-76. Multi-Physics Behavior Often Occurs Over Non-overlapping Time

Intervals, Allowing a Separation of Concerns

Breaking down these processes into workflows, both concurrent and sequential, is critical. We
don’t necessarily have to always solve the problems collectively, but rather organize them into
computational blocks. The blocks could have interfaces with minimal interactions, annotated
with rationale explaining why an interaction is minimized. They form the preconditions or
assumptions of the assume-guarantee contracts that we will eventually want to employ.

A good example from the META challenge problem is the Rijke tube RLC problem as a
partitioned multi-physics exercise, separating out the electrical behavior from the acoustic
behavior.

The other strategy is to lay out some other possible approaches that can span domains and do
multi-physics. One of the potential ways of thinking about the problem is through generalized
N2 diagrams. The following slide is at least a start in that it categorizes the approaches where
DSM and N2 are used. When the information aspects get into it the mix, it then becomes a
cyber-multi-physics problem (c.f. 7.6.4).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 129 Refer to cover page for Distribution Statement.

Figure 7.6-77. DSM for Compartmentalizing

AMIL is a strong candidate for a multi-physics configuration and routing description language.
It matches well to the idea of adaptors and the tagged signal model, where the specifications of
the data and synchronization are as important as the actual network connectivity. It then gets
passed to a run-time for efficient control. AMIL is like the description logic of the Semantic
Web, it describes, and is extended by an orchestration or choreography layer, which is
described by the workflow archetypes.

7.6.3.4 AMIL Configuration and Specification

The table below indicates configurations in which AMIL can be applied across various co-
simulation and co-analysis modes and contexts.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 130 Refer to cover page for Distribution Statement.

Table 7.6-4. Categorization of Configuration Parameters for Co-simulation and Co-
analysis

Configuration Mode AMIL parameters

Static data
sources

Co-simulation Master model parameters
Context model parameters.
Items like inventories, plans, routes, etc.
Ground truth information like location, heading, etc.
Constraints and requirements like max speed, timing
durations, etc.
Debug flags, logging declarations

Co-analysis Decision support rules
Model invocations

Run-time
dynamics

Launching Necessary environment variables, command line parameters.
Work directories, executable names.
Node declarations
— Numbered and named hosts
— Numbered ports
Sequencing and launching order
— Sequential
— Parallel groups
Time scale
— Run in real time
— Run as discrete-event simulated time model
Shutdown and cleanup

Control Flow Routing
— Direct or Point-to-point
— Name-server based
— HLA messaging patterns
— Web services
— Local routing
Fail-over
Execution
— Large-scale simulation is choreography as the primary
entities have internal dynamics which control execution
— DSE is orchestration, reasoners such as ESKER make the
decisions based on valuations.

Monitoring Health
Diagnostics
— Peak
— Poke

Automated Test Replicated from the static and run-time configuration

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 131 Refer to cover page for Distribution Statement.

testing
environment

configuration

Scripting and
test criteria

These were not necessarily based on the same
knowledgebase because testing is an independent verification
of the system-under-test.

In this table, we note that AMIL handles data configuration for co-simulations and co-analysis
such as DSE.

For launching applications, the general idea of using AMIL to configure co-simulations is to
associate applications with logical names and then use those as indexing into the run-time
configuration requirements.

Figure 7.6-78. Launching co-simulation apps

The top-level triple is indicated as: ("logical_name", represents, "application")

The logical_name-to-application relation provided is enough to be able to index to the rest of
the application information by navigating the ontological knowledgebase graph.

We have retrieved an example from previous work where we used a similar configuration
knowledgebase and launching environment called P4 (P4 is similar in intent to ModelCenter
and was applied to previous large scale vehicle integration efforts). The idea was to represent
our distributed applications (i.e. "apps") by logical names, and then at the command line have
a convenient way to specify computer host names in which the apps resided or were launched in
(refer to Figure 7.6-47 where it was used to describe an ESKER launch configuration).

Then a collection of apps were simply launched by this invocation:

env test=localhost other_test=host2 P4

This is an elegant approach because the apps involved were only the ones explicitly referenced
at the command line and the connection to the internal triple-store was enabled dynamically
through environment variable matching. The rest of the semantic information, related to
launch directories, expanded command line parameters, port routing, etc was represented in a
more persistent knowledgebase (the equivalent of an AMIL graph).

The challenge is how best to organize the required app information below the top-level logical
names/application representation. We ended up using a rules-based approach that would
automatically construct secure shell invocations that could then be launched and monitored by
the P4 environment.

The box below describes a fragment from a typical session configuration for a vehicle
simulation used in an interactive environment.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 132 Refer to cover page for Distribution Statement.

Figure 7.6-79. Logical Triples and Tuple Configuration

The logicals represent the triple mapping from names to applications. The app rules are
specified by the tuples:

(envVars, relativeDir, application, commandLineParams, logicalInstance)

A combination of AMIL lookups and a workflow process reasoner allows us to automate the
configuration and lauching environment. This approach is nicely aligned with the goals of co-
simulation and T&V in general and having a semantic web information store in particular.

7.6.3.4.1 Collapsing a Co-Simulation

The META goal is to rapidly create a contextual simulation of a vehicle that a team of
engineers can reason about and use to work out design issues. This simulation must expand to
incorporate details that will have real effects on the development direction, but can also
contract to address top-level requirements constraints. This section describes a Model of
Computation and Communication (MoCC) pattern to accomplish this goal.

The concept and dilemma of distributed time. Constructing a large simulation will always
confront the developers with an interesting dilemma – does the simulation grow to serve the
purpose of incorporating as many heterogeneous design elements as possible, or does it limit its
extent to allow quick-turnaround experiments that better answer high-level requirements and
concept of operations questions? Or is it possible to do both?

The classic case of the latter is that of a vehicle performance timeline model. A timeline model
serves as a reference simulation that substantiates that a current design is operating within
requirements specifications. In a realistic situation this may involve an extended period of
operation, yet the purpose of the simulation is to generate quick feedback to indicate how well
the concept works within the intended design. The intended design is thus referred to as the
reference architecture. This idea also comes up in the EDA world, whereby a large VHDL
model has to provide complete verification of the digital logic and do that efficiently.

apps :-
 logicals("ctdb", "bin/Linux/ctdb_server"),
 logicals("otf", "bin/Linux/otf"),
 logicals("nabk", "bin/Linux/obj/nato_abk_server"),
 logicals("ssom", "cannon_main_inc1"),
 logicals("test", "cannon_setup.py"),
 logicals("crew", "cannon.py"),
 logicals("crew", "../../../bin/Linux/cannon").

%%----------------
%% TEST LAYER

app(Env, ".", "cannon_setup.py", [""], Instance):-
 getenv(Instance, Host),
 Env = ["PYTHONPATH" = "../../Common/ssom/pym/",
 "LD_LIBRARY_PATH" = "../../Plugin/i686-linux/python-2.6.2/lib",
 "PATH" = "../../Plugin/i686-linux/python-2.6.2/bin:.",
 "TEST_DEBUG" = 0,
 "MODEL_HOST" = Host,
 "MODEL_PORT" = 5601].

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 133 Refer to cover page for Distribution Statement.

The objective then is to generate a simulation that fully addresses the complexities of the actual
design, with all the attendant context models and high-fidelity component simulations, while at
the same time able to compress or contract down to a level of fidelity amenable to quick
turnaround studies.

We have documented a simulation approach that enables this kind of “morphability” 22

The Node-0 model. A large simulation when constructed as a heterogeneous mix of
components will typically get spread around a set of computing nodes. These nodes could
reside on different computers or as different processes on the same computer. The nodes are
usually identified by logical entities, typically by names or numerical addresses dependent on
communication mechanisms. As the simulation grows, the number of components will likely
get spread amongst the nodes to relieve processing demand or for architectural reasons (say a
dedicated server is situated on a certain computing node).

. This
adapts well to the ideas of the ARRoW architecture we have in place, in particular with the
AMIL structure, and also to the MoCC that is advocated by other META participants. For the
time being, let us refer to the approach as the Node-0 model.

Unfortunately, this dispersion of computational or simulation resources makes it difficult to
execute discrete-event type models that can potentially complete with a quick turnaround time.
The notable issues have to do with network communication overhead and the lack of an
efficient distributed simulated clock.

The solution to this problem is to collect all the distributed nodes into the base node, which we
call Node-0, and then execute simulations in this more limited and monolithic context. This is
straightforwardly accomplished through a few elementary architecture patterns – in the past
we have applied the distributed command pattern to provide the dual simulation approaches.

Figure 7.6-80. The Distributed Simulation is Collapsed into the

Monolithic Model “Node-0”

In the most general case, the idea is to reroute communication paths that leave the main
simulation and instead redirect the destination to objects that reside locally. In the specific case

22 In the past, the team used an AMIL-similar semantic layer which we called the “rule processor” or
“KBase” to do model data configuration, model interconnect routing form the distributed command
pattern, and model launching, monitoring, and shut-down. So it essentially could choreograph the
entire distributed simulation from startup to shut-down. It could also do automated system testing and
allowed for the Node-0 model.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 134 Refer to cover page for Distribution Statement.

of the distributed command pattern, the utility function send_message that all messages get
routed through simply has to realize that it is running on the specially-named “Node 0” and
then the message gets dispatched locally. A stub or low-fidelity simulation of the destination
object is all that is required to maintain the model.

The key to successfully implementing this approach is to assign enough high level system
coordination logic to certain objects such that the simulation executes real behaviors and
scenarios. Then when the time comes to expand the simulation to a distributed context, these
objects remain and they simply exchange information with their higher fidelity representations.

This could turn into just another potential architectural approach if not for its compatibility
with the AMIL semantics for defining nodes and edges. The intent of AMIL is to potentially
not have to call remote nodes if valuations are available locally, either through cached values or
via a simpler representation. In this case the edge points to a local destination for a resource
and the distributed overhead disappears.

Whether we can use this mechanism or alternatively use the AMIL graph database as a
distributed command pattern routing table, we will get the same architectural benefit, which is
to straightforwardly reduce our simulation scope to a more compact context.

This application of the distributed command pattern fits well with the tagged signal model and
the contract-based components championed by the IBM META-II team.

7.6.3.5 Probabilistic Certificate of Correctness

One of the primary objectives of a detailed co-simulation is to provide a basis to calculate a
PCC, or how to reason about the assume-guarantee contract of a PCC. In one sense, the latter
is an inverse of the PCC calculation, such that we can use environmental data to describe
appropriate operating regimes. For the case of vehicle mobility and operational regimes, the
obvious case is to exclude regions of ridiculous extremes, such as >70 degree slopes. The
assumption then is to provide that constraint along with a probability distribution of the
inner/lower range. The verification of drawing from this distribution will then guarantee
results with a given PCC.

7.6.3.5.1 Basis for a PCC

Assume a probability distribution P(x) for some parameter variant x. This parameter is
exogenously defined and is known to affect the vehicle or system design. To determine its
impact, draw a sample from P(x), such that x will feed into a parametric design model and thus
result into a potential degradation in performance or correctness.

Next, choose a probability level P1 that the design should withstand under expected operating
conditions and a spread in variant values. After collecting enough samples from P(x) to obtain
sufficient statistical certainty, determine whether the sampled data P exceeds the threshold set
by P1.

If P does not exceed P1 then make the new assumption that the variant cannot exceed a value
x′. Next redraw from the truncated distribution P′(x) which excludes parameters outside the
range of x′. Iterate until the sampled data P′ does not exceed P1. This will provide a means of
generating an assume-guarantee contract with PCC=P1 for the exogenous parameter of
interest. This is a sufficiently general technique to apply to a number of stochastic variates with
well-characterized and credibly modeled probability distributions, whether or not they follow

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 135 Refer to cover page for Distribution Statement.

normal Gaussian distributions. For multi-variate problems, such as the RLC problem identified
as a challenge problem, the approach is straightforwardly extended (refer to Figure 7.6-81
below).

RLC Circuit characterized by Q Factor
Sensitive to selection of R,L,C component values

Q Factor Sensitivity

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2

Q Factor

N
 s

am
pl

es

45 sample
approximation

10,000 sample
Monte Carlo

skewed
tail

Metrics Write-Up
“Ratio Distribution”
describes related

asymmetric
distributions caused

by multiple parametric
variations

Figure 7.6-81. A Multivariate PDF Drawn from 3 Normal Distributions and Applied to
Solving a Quality Factor, Q

This is similar to how the 95th percentile calculations are done for human factors designs. The
specifications exclude the top 5% height soldiers as an assumption and then guarantee that the
design will work with the bottom 95% soldiers with a PCC=1. Making the PCC less than 1 for
this case will allow a wider range of soldier heights, but with the lower PCC as a caveat.

7.6.3.5.2 Generic Test Space Exploration

The general approach to including uncertainty (both aleatory and epistemic) is to sample from
probability distributions which map to the system under study. For practical PCC purposes,
probabilities can only arise in a limited set of ways:

1. Due to variations of design parameters that are not handled digitally by software. So
this can include manufacturing variations and quality variations (i.e. why the part is
cheap)

2. Due to failure mechanisms in the design which can occur randomly.
a. Can include wear-and-tear and spontaneous failures
b. Can include random failures built in by the engineer, and thus covers software flaws

to a degree.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 136 Refer to cover page for Distribution Statement.

3. Due to excursions in the contextual environment that occur randomly and are outside
the design envelope.

4. Due to human operational error, slow reaction times, etc. (which may be the same as #3
if the human is considered context)

5. Due to uncertainties of the epistemic variety arising from poor statistics, etc.

For the ramp challenge problem, we followed these steps:

• Set up model of environmental stimulus as a disturbance profile
• Choose samples both nominal and extreme to capture state space
• Apply model to state space points to establish importance sampling scaling
• Select Pass/Fail criteria for the subject under test

– Example:
– Full Simulink model of drive (control) and ramp (plant)
– Torque limit on drive establishes Pass/Fail
– Disturbance profile from state space supplants the plant model

• Single pass sweep
– Finds worst case across the stimulus state space
– While continuously updating the PCC

7.6.3.5.3 Sampling Approaches for Verification

The limitation of importance sampling is that it does assume a convex optimization problem
and the set of situations that this intersects is not comprehensive. In many concave problem
domains, which can contain many nooks and crannies, significant amounts of computational
horsepower is required to verify the full ergodic state space, simply because of the
combinatorics involved. For the ramp problem, we minimized the test space (refer to Figure
7.6-19) to reveal potential problems. The ESKER tool was used to sample the outcomes of a
Simulink simulation, injecting different input disturbances for each trial, while at the same time
keeping track of a Bayesian update of the final PCC (refer to Figure 7.6-82). The disturbances
were importance sampled based on a prior likelihood of operation occurrence. This is in the
spirit of the qualitative state plan (QSP) formulated by Hofmann, Robertson, and Williams.
The QSP is converted to a PCC with the introduction of simulation results and quantitative
priors for the context model of soldier disturbances.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 137 Refer to cover page for Distribution Statement.

Qualitative Quantitative
expansion

System under test

HiFi
Model
exec

For illustration: UI view similar to DSE

Figure 7.6-82. Test Space Evaluation Using ESKER to Map Importance Sampled Test
Cases

The algorithm contained in the importance sampled Bayesian reasoner is shown below.

Figure 7.6-83. Bayes Update of PCC Applied During Reasoning

% general constraint rule giving unity weighting if TRUE

binary_constraint(Rule, 1) :- call(Rule), !.

binary_constraint(_, 0).

bayes_update(Rule,Likelihood) :-

 binary_constraint(Rule, Value),

 current_pcc(Current, N),

 M is N + Likelihood,

 Result is (Current*N + Value*Likelihood)/M,

 retract(current_pcc(Current,N)),

 asserta(current_pcc(Result,M)).

%% example: bayes_update(X<Max,P)?

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 138 Refer to cover page for Distribution Statement.

7.6.4 Distributed Computing Speed-Up Potential

We anticipate that new architectures would be required as the computational space for co-
analysis and co-simulation grows. We consider two views below, with the second placing
emphasis on the generic and uniform expression of the computations.

7.6.4.1 Spatial Computing

Spatial computing defines a network space that takes advantage of near-neighbor topology
which can conceivably improve computational efficiency for co-analysis and co-simulation. It
allows a large space of potential human interactions that can affect a vehicle’s design and
operation to be programmed as a continuous space and compiled to discrete software agents in
an agent-based simulation. The description of spatial computing within the context of a
prototyping tool called Proto and a visualization engine called Unity is discussed in another
apendix This becomes an alternate strategy to the co-simulation approaches.

7.6.4.2 Generic Inferencing

Related to the concept of spatial computing, certain problems can be expressed as a network of
local computations [PK11]. The network is constructed to meet some objective such as
solving a problem of near-neighbor interactions, or of computing optimization or performing
inferences such as occurs in design space exploration. These are particularly well-suited for
probability formulations, as that is the best way to add uncertainty to an inference problem.
Figure 7.6-84 represents the ultimate goal of creating a simulation model that can solve
multiple classes of design and verification problems.

Heterogeneous
Behavioral

Model

Design
Space

Exploration

Probability-
based
Model

Monolithic Aggregate

• PACE belongs to a MoCC referred to as local computation **
• Computational classes called valuation algebras can

generically work out optimization and inferencing problems.

** Pouly, Kohlas “Generic
Inference: A Unifying Theory
for Automated Reasoning”

Figure 7.6-84. Generic Reasoning Allows Several Different Approaches to Potentially

Be Unified

The unified view encompasses the concept of valuation algebras which have an associated
notion of a solution, best or preferred value with respect to some criteria:

• In logic, whether a proposition evaluates to true

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 139 Refer to cover page for Distribution Statement.

• With constraints, if it satisfies the requirements
• In optimization, solution leads to maximum or minimum values
• Under uncertainty, if sufficient margin exists from the worst case to failure

In terms of a design structure matrix, all interactions or influences take place over edges.

Figure 7.6-85. Valuation Algebras Used in Generic Inferencing Run the Gamut of

Decision Theory

Once certain utility functions are created and normalized to create a multi-objective criteria
this can support virtually any kind of inferencing, as shown in Figure 7.6-85.

Using the same approach for incorporating a range of utility functions leads to the notion of a
generic framework for decision support (DSE) and PCC evaluation. The validity of this concept
was demonstrated as evaluations for both DSE and PCC evaluation23

 were accomplished with
the same tool: as a combination of AMIL + ESKER suggested that GEAR reasoners can provide
a generic inference framework.

23 The valuations considered propositions + hard constraints + continuous values + probabilities

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 140 Refer to cover page for Distribution Statement.

7.6.5 Bibliography

 [AUK10] Aksamija, A, Ue, K., Kim, H., Grobler, F., Krishnamurti, R. (2010) “Integration of
knowledge-based and generative systems for building characterization and prediction”,
Artificial Intelligence for Engineering Design, Analysis, and Manufacturing, vol 24, pp. 3.16.

[BC00] Baldwin, C., Clark, K., (2000), Design Rules: The Power of Modularity, MIT Press.

[BCW97] Barley,M., Clark. P., Williamson, K., and Woods, S., (1997), “The Neutral
Representation project”, AAAI Spring Symposium on Ontological Engineering.

[BL08] Bunus, P., Lunde. K., (2008), “Supporting Model-Based Diagnostics with Equation-
Based Object Oriented Languages”, 2nd Intl. Workshop on Equation-Based Object-Oriented
Languages and Tools.

[GW06] Garber, R. Wassim, J., (2006) "Control and Collaboration: digital fabrication
strategies in academia and practice", International Journal of Architectural Computing,
Volume 4, Issue 2, pp 121-143.

[HDJ08] Heinecke, H., Damm,W., Josko,B., Metzner, A., Kopetz, H., Sangiovanni-Vincentelli,
A., Di Natale, M., (2008),“Software Components for Reliable Automotive Systems”,
Design, Automation and Test in Europe.

[JP05] Pearl, J. (2005), “Influence Diagrams – Historical and Personal Perspectives”, Decision
Analysis, Vol. 2-4, pp 232-234.

[KDG11] Kuhn, O., Dusch, T., Ghodous, P., and Collet, P. (2011), “Knowledge-Based
Engineering Template Instances Update Support”, Lecture Notes in Business
Information Processing, Springer, Volume 3, page 151-164.

[KKM09] Kim, A., Kang, M., Meadows, C., Ioup, E., Sample, J. (2009), “A Framework for
Automatic Web Service Composition”, Naval Research Lab, DTIC ADA499917.

[LEH67] Hargrave, L.E., (1967) Application of Redundancy Study, Voyager Project, NASA CR-
89703 (N67-40411), Jet Propulsion Laboratory

[LS09] Lukacsy, G. and Szeredi, P., (2009), “Efficient description logic reasoning in Prolog:
The DLog System”, Theory and Practice of Logic Programming, vol.9 (3), pp. 343-414.

[LP06] Ludwig, L. and Pukite, P., (2006). “DEGAS: discrete event Gnu advanced scheduler”,
Proceedings of the 2006 annual ACM international conference on SIGAda, ACM
SIGAda Ada Letters, Vol XXVI Issue 3 , ISBN 1-59593-563-0.

[MAP09] Malak, R., Aughenbaugh, J.M., and Paredis, C.J.J., (2009), “Multi-Attribute Utility
Analysis in Set-Based Conceptual Design”, Computer-Aided Design, Volume 41 Issue 3.

[MD01] Denny, M., (2001), “Introduction to importance sampling in rare-event simulations”,
European Journal of Physics, vol.22, pp. 403-411.

[META11] META (2011), Phase 1a Final Report: “META Adaptive, Reflective, Robust
Workflow (ARRoW)”, TR-2683 .

[PE94] Pimler, T.U., Eppinger S.D., (1994) "Design Theory and Methodology", ASME
Conference, Minneapolis.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.6 - Advanced Reasoning and Extended
Applications of ARRoW Technology

© BAE Systems 2011. All rights reserved. 141 Refer to cover page for Distribution Statement.

 [PK11] Pouly, M. Kohlas, J., (2011), Generic Inference: A Unifying Theory for Automated
Reasoning, Wiley .

[PRP94] Pukite, P.R.. (1994), “Advanced Design Tools for Evaluating Fault-Tolerant
Systems”, NASA Langley Research Center, contract NAS1-20035,
http://foia.larc.nasa.gov/contracts.cgi

[PL07] Pukite, P., and Ludwig, L., (2007). “Generic discrete event simulations using
DEGAS::application to logic design and digital signal processing”, Proceedings of the
2007 ACM international conference on SIGAda, ACM SIGAda Ada Letters, Vol XXVII
Issue 3, ISBN 978-1-59593-876-3.

[PTM03] Pukite, P. R., Thomas, B. E., Mostek, C. M., Challou, D. J., Quinn, M. A.,
Wentland, C. J., Sallman, W. K., (2003). “A Comprehensive M&S Strategy To Speed
FCS Software Development”, submitted to SMART Conference, Dearborn, MI

[QGP10] Quinton, S., Gaf, S., Passerone, S., (2010), “Contract-Based Reasoning for
Components Systems with Complex Interactions”, Verimag Research Report.

[RK06] Krishnamurti, R., (2006), “Explicit design space?”, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 20, 95–103.

[RKT05] Russomano, D.J., Kothari, C.R., and Thomas, O.A., (2005), “Building a Sensor
Ontology: A Practical Approach Leveraging ISO and OGC Models”, The 2005
International Conference on Artificial Intelligence, Las Vegas, NV.

[SMV11] Şensoy, M., Mel, G., Vasconcelos, W. W., Norman, T. J.. (2011), “Ontological
logic programming”. In Proceedings of the International Conference on Web Intelligence,
Mining and Semantics (WIMS '11), ACM

[YGD10] Yue, P., J. Gong, L. Di, (2010), “Augmenting Geospatial Data Provenance through
Metadata Tracking in Geospatial Service Chaining”, Computer and Geosciences. Volume
36, Issue 3, pages 270-281.

 [YRG10] Yang, C., Raskin, R., Goodchild, M., and Gahegan, M., (2010), “Geospatial
Cyberinfrastructure: Past, present, and future”, Computers, Environment, and Urban Systems.
Vol. 34, pp 264-277

[ZZZ05] Zhao, Y.Z.; Zhang, J.B., Zhuang,L. and Zhang, D.H. (2005), “Service-oriented
architecture and technologies for automating integration of manufacturing systems and
services”, 10th IEEE Conference on Emerging Technologies and Factory Automation

http://foia.larc.nasa.gov/contracts.cgi�

		Advanced Reasoning and Extended Applications of ARRoW Technology

		7.6.1 Applying ARRoW to Automation

		7.6.1.1 The Goal of Reducing Complexity

		7.6.1.1.1 ARRoW and the Design Cycle

		7.6.1.1.2 Graph and Search

		7.6.1.1.3 Organization of Models and CML

		7.6.1.1.4 Correctness versus Agility

		7.6.1.1.5 The Conductor’s Role

		7.6.1.2 Complexity Reducers

		7.6.1.2.1 Knowledgebase Engineering

		7.6.1.2.2 Reasoners and Archetypes

		7.6.1.2.3 Components

		7.6.1.2.4 Ontologies and Semantic Constraints

		7.6.1.2.5 Declarative Semantics and Logic

		7.6.1.2.6 DSM and Influence Diagrams

		7.6.1.2.7 Models of Computation and Communication

		7.6.1.2.8 Contracts and Assume/Guarantee

		7.6.1.2.9 Set-Based Concurrent Engineering

		7.6.1.2.10 Workflow Provenance

		7.6.1.2.11 Test-Driven Development

		7.6.1.2.12 Parallel and Distributed Development

		7.6.1.2.13 Fidelity and Abstraction Levels

		7.6.1.2.14 Sampling and Verification

		7.6.1.2.15 Diagnostics

		7.6.1.2.16 Probabilistic Context

		7.6.1.2.17 Crowd Sourcing

		7.6.1.3 Engineering Domains

		7.6.1.3.1 Analysis Process and Workflows

		7.6.1.3.2 Design Space Exploration and Optimization

		7.6.1.3.3 KBE Template Design Synthesis

		7.6.1.3.4 Requirements-driven Test Archetypes

		7.6.1.3.5 Test Space Exploration for PCC

		7.6.1.4 Application of Reasoning Languages

		7.6.1.4.1 AMIL

		7.6.1.4.2 Ontological Rule-Based Languages

		7.6.1.4.3 Correct-by-Construction

		7.6.2 Co-Analysis and Exploration

		7.6.2.1 Principles behind GEAR

		7.6.2.1.1 GEAR Approach

		7.6.2.1.2 Applying GEAR to domains

		7.6.2.1.3 #1: Manufacturing Example

		7.6.2.1.4 #2: Structured Synthesis Archetype

		7.6.2.1.5 #3: Ontological Synthesis Archetype

		7.6.2.2 ESKER

		7.6.2.2.1 Background

		7.6.2.2.2 Optimization via Expert Systems

		7.6.2.2.3 Specifying the search problem

		7.6.2.2.4 Issues in Optimization

		7.6.2.2.5 Prototyping

		7.6.2.2.6 Example of Optimization Query input

		7.6.2.2.7 Elicitation Table

		7.6.2.2.8 Demo Configuration

		7.6.2.3 Ontology-based Logic Reasoners

		7.6.2.3.1 Weight, HorsePower, Speed Example

		7.6.2.3.2 CML Example

		7.6.2.3.3 Parts Repository Example

		7.6.2.3.4 Environment Example

		7.6.2.3.5 Model Classification Example

		7.6.2.3.6 Process Workflow Example

		7.6.2.3.7 Design Deployment Example

		7.6.2.3.8 Deep Inference Example

		7.6.2.4 ECTo

		7.6.2.5 Co-Analysis Flow using GEAR

		7.6.3 Co-Simulation and T&V

		7.6.3.1 MoCC and Heterogeneous Simulation

		7.6.3.2 Tagged Signal Model

		7.6.3.2.1 AMIL for Co-Simulation

		7.6.3.2.2 Tagging for Synchonization

		7.6.3.2.3 Merging TSM and DCP

		7.6.3.2.4 Evaluation

		7.6.3.2.5 Evaluation

		7.6.3.2.6 Patterned AMIL Command Environment

		7.6.3.3 Multi-Physics and Compartmentalization

		7.6.3.4 AMIL Configuration and Specification

		7.6.3.4.1 Collapsing a Co-Simulation

		7.6.3.5 Probabilistic Certificate of Correctness

		7.6.3.5.1 Basis for a PCC

		7.6.3.5.2 Generic Test Space Exploration

		7.6.3.5.3 Sampling Approaches for Verification

		7.6.4 Distributed Computing Speed-Up Potential

		7.6.4.1 Spatial Computing

		7.6.4.2 Generic Inferencing

		7.6.5 Bibliography

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 – Metrics (BBN)

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)
Phase 1b Final Report
TR-2742

Appendix 7.7 – Metrics (BBN)

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011
Contract Number: HR0011-10-C-0108

Prepared For:
Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

Prepared by:
BAE Systems Land & Armaments L.P. (BAE Systems)
4800 East River Road
Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 – Metrics (BBN)

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.7 BBN Resource Contention ... 1

7.7.1 BBN Metrics and Modeling Language Activities ... 1
7.7.1.1 Metrics Definition .. 1
7.7.1.2 Resource Contention Complexity Metric ... 1
7.7.1.3 Process Complexity Metric ... 2
7.7.1.4 Component Model Language .. 4
7.7.1.5 Resource Sharing Concept ... 4

7.7.2 Categories and Attributes... 5
7.7.2.1 Resource Provisioning .. 6
7.7.2.2 Resource Availability .. 7
7.7.2.3 Resource Consumption ... 7
7.7.2.4 Assessment of Resource Usage ... 7

7.7.3 Shared Resource Ontology ... 8
7.7.3.1 Shared Resource Ontology Classes .. 8
7.7.3.2 Shared Resource Ontology Object Properties .. 9
7.7.3.3 Shared Resource Ontology Data Properties ..11

7.7.4 Extending the Shared Resource Ontology for Contention Complexity12
7.7.5 Example Applications of the Shared Resource Ontology Extended to

Contention Complexity ...13
7.7.5.1 RLC Toy Problem ...13
7.7.5.2 Preliminary Ontology for Hybrid Vehicle Battery Use and

Maintenance Analysis ...14
7.7.6 Prototype Toolchain for Metric Evaluation ..16

7.7.6.1 GAMETE Executable Framework ...17
7.7.6.2 Unified Data Representation ...18
7.7.6.3 Metrics Supported by GAMETE ...20
7.7.6.4 Metric Evaluation Demonstration ...21
7.7.6.5 Integration of GAMETE with Toolchains ..22

7.7.7 Conclusion ..22

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 – Metrics (BBN)

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Figures
Figure 7.7-1. A Tree Representation of the Ontology Class Hierarchy .. 8
Figure 7.7-2. A Tree Representation of the Ontology Object Property Hierarchy. 10
Figure 7.7-3. Class and Object Property Relationships. ... 11
Figure 7.7-4. A Tree Representation of the Ontology Data Property Hierarchy 12
Figure 7.7-5. RLC circuit ... 13
Figure 7.7-6. Chart Showing Contention Complexity for Multiple Battery Types and Depths
of Discharge .. 16
Figure 7.7-7. GAMETE Architecture Design and Toolchain Interface .. 17
Figure 7.7-8. The Experiment/Simulation Engine feeds data from diverse sources for online
or offline processing. ... 18
Figure 7.7-9. Measurement storage format in the Unified Data Representation. 19
Figure 7.7-10. Representing signals, graphs, and resource-consumption in the UDR maximizes
the applicability of implemented metrics. .. 20
Figure 7.7-11. Two control signals, one from a high-gain controller with periodic steady-state
behavior and one from a low-gain controller with DC steady-state behavior. 21

List of Symbols, Abbreviations, and Acronyms
Symbol,

Abbreviation,
Acronym

Definition

FTE Full Time Equivalent

GAMETE General Adaptable Metric Execution Tool and Environment

OWL Web Ontology Language

QoS Quality of Service

TCP Transmission Control Protocol

UDR Unified Data Representation

UIR Uniform Resource Identifier

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.7 BBN Resource Contention
7.7.1 BBN Metrics and Modeling Language Activities

This portion of the report covers the BBN activities to support metrics and modeling language
activities. In particular, we:

1. Review our phase 1a work on metrics for resource contention complexity and process
complexity that we use as a basis for our component model language and prototype
capability to host and evaluate metrics.

2. Define a component model language.
3. Develop a prototype capability to host and evaluate metrics.

The component model language and prototype capability to host and evaluate metrics are
alternate approaches to the BAE metric framework. These alternative approaches were
explored to investigate additional considerations for future work in these areas based on a
semantic approach to utility analysis.

7.7.1.1 Metrics Definition

In this section we review our Phase 1a notions of resource contention complexity and process
complexity inspired and informed by prior work to define a utility metric for Quality of Service
(QoS) maintenance. This work forms the basis of our component model language and our
General Adaptable Metric Execution Tool and Environment (GAMETE) software we
developed under Phase 1b.

7.7.1.2 Resource Contention Complexity Metric

The contention complexity of a system can be decomposed based on resources. I.e., the
contention of one resource does not directly impact the contention of a different resource.
Hence, we define each resource to have its own resource complexity measure. We codify these
and other motivating hypotheses of contention complexity as follows:

1. Entities/subsystems/components in a system use multiple resources. Entities have
varying levels of criticality for using specific resources.

2. Contention complexity is a function of the potential for contention due more requests
from entities to use limited resources.

3. Contention complexity can be decomposed and expressed for specific resources.
Contention complexity is the sum of the contention complexities of resources. The
contention complexity of a resource is a function of the potential for contention of that
resource from entities to use that resource.

4. Contention complexity of a resource is a function of:
a. The number of entities that could request that resource. (A resource with more

users leads to more contention complexity.)
b. The level of usage required for use of the resource. This is measured in terms of %

usage level * amount of time per usage. (Higher usage level means more
contention, more time per usage means longer queues and more contention.) The
higher this product is, the higher likelihood of contention.

c. More critical uses of limited resources implies more contention complexity.

We define our contention complexity metric as the sum of contention complexities for specific
resources.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

We then define the contention complexity of a resource as:

To reason about these tradeoffs and the impact they have on contention complexity, we define
the following variables which are used in the above definitions:

• %𝑙𝑒𝑣𝑒𝑙 represents the percentage commitment for a resource by a consumer. For
instance, if 20 watts are needed, but entities request 30, then there is an over-
commitment of 10 watts, resulting in a 50% over-commitment.

• 𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛(𝑟) represents all entities that depend on a resource r.
• 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑒𝑛𝑡𝑖𝑡𝑦) represents the criticality of an entity. We assume criticality is on

the scale between 0 and 1.

7.7.1.3 Process Complexity Metric

Process complexity is important to measure because unknown delays in tasks in a process can
lead to problems and perturbations in a system’s design or operation. The propensity of tasks in
a process to be delayed can depend on various measurable task properties including difficulty,
quality requirements, schedule requirements, etc. These measures can be difficult measure until
tasks are joined together to form a process and can vary for tasks between processes

We codify our hypotheses that inspire our process complexity definition as the follows:
1. A process depends on multiple, possibly repeated tasks. Some tasks cannot be started

until the completion of prior tasks. We call these relationships as logical dependencies.
A schematic of task dependencies for a process can be seen in Figure 7.7-1 where a
process has several initial tasks, a single final task and multiple dependencies shown as
arrows.

2. Each task has its own complexity, called task complexity. Task complexity is a function
of several variables including difficulty, process maturity, schedule and quality, among
others. Difficulty represents the amount of skill and resources required to complete a
task. Process maturity represents how mature the process is to accomplish a given task.
Schedule represents the likelihood of being able to accomplish a task before its deadline.
Quality represents the needed quality of work required to accomplish tasks successfully
for a given process.

3. Process complexity is directly proportional to the complexity of the processes’ tasks and
the number of dependency relationships. As the complexity of tasks increases, the
complexity of a process increases. As the number of dependencies increase, the
complexity of a process increases.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

We define our process complexity metric by first defining a task complexity metric. We define
our process complexity metric as a summation of task complexity where the form of
summations depends on the structure of the dependency relationships.

Process complexity is a function of task complexity and the dependency structure of tasks
within a process. Consequently, we define process complexity iteratively with respect to the
weighted accumulation of task complexities in a process. More specifically, we define the
process complexity at every task in a process as the sum of the task complexity and the
complexity of all tasks it immediately depends on. We define process complexity as the process
complexity of the final task.

To express this definition of process complexity with respect to a task, we use the expression
()iP to represent all parents of a task i. In our example, dependency schematic in Figure 7.7-1,

Task 6 has Tasks 3 and 4 as parent tasks. We define the process complexity of a task I as
follows:

() ()
()
∑
∈

+=
iPj

i jPCTCiPC

We define task complexity as a function of the difficulty and maturity of processes used to
complete a task and the schedule and quality requirements imposed by the process on the task.
It is important to note that various processes can be used to complete a task, and process
selection involves engineering tradeoffs that impact the ability to complete tasks on schedule
and with a given quality.

To reason about these tradeoffs and the impact they have on process complexity, we define the
following variables:

• D(t): difficulty of task t – Measured by number Full Time Equivalents(FTEs), for
example

• M(t): maturity of task t – Measured by number of years, for example

• Q(t): quality requirement of task t – Measured on scale of 1-100%. This is a user-
defined parameter. Could represent importance of high quality or how much
functionality is provided if task fails

• S(t): schedule pressure of task t – Measured by schedule slack in days, for example.
(This could also be a stochastic measure.)

The exact equation for ()⋅⋅⋅⋅ ,,,TC will vary based on application, but a good initial candidate is:

()
() () ()tStQtM

tDTC
**

=

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

Note that when our iterative definition of process complexity is expanded to be an expression
of just task complexities, so tasks are weighted more heavily than others if there are many tasks
that are dependent on them. This is by design as our intuition is that process complexity
should be heavily weighted by the complexity of more dependent tasks. We use this approach
to compute process complexity as a weighted sum of task complexities. As such, we can expand
the complexity definition for implementation as follows in a tool where the weight on any task
complexity is the number of sink-source paths from the task to the final task:

∑=
j

jjTCwPC

Our intention is to develop tools that compute task complexities during design time based on
either estimates, simulations, or evaluations of the task complexity data (difficulty, maturity,
quality, schedule.) The accuracy of the task complexity computations depends on the accuracy
of these estimates.

An issue with this metric is that some of its useful applications can be difficult due to the need
to quantify task complexity. For example, a task in a vehicle design process that depends on
humans (i.e., the design of user interface aspects or human-in-the-loop operations) may be
highly variable due to the skill of the humans involved. The risk mitigation is that the metric
does not have to capture everything about how to measure task complexity, simply that the
process complexity measure changes with task properties and requirements.

7.7.1.4 Component Model Language

In this section we introduce a component model language to capture shared resource
interactions. In particular, we describe a Web Ontology Language (OWL) ontology we
designed to describe resource sharing scenarios and how general metrics are assessed in these
scenarios. This resource sharing ontology and its context-specific extensions are used to build
composed models of systems components that interact both through directed communications
and implicit and explicit resource sharing. Our intention is that this ontology should be
modifiable and extensible for scenarios describing resource sharing metrics, allocation and
consumption algorithms, consumption models and so forth.

After we outline general resource sharing concepts, we identify general categories of attributes
of shared resource languages that should be captured in the ontology. We describe the
ontology and discuss ontology extensions for specific resource sharing scenarios such as the
assessment of resource sharing complexity. We provide several examples of using the
ontology to model applications, such as an RLC circuit and the preliminary approach for the
assessment of the complexity of maintenance resource sharing over the lifetime of a hybrid
vehicle.

7.7.1.5 Resource Sharing Concept

Our general shared resource concept is informed by our perception that systems (whether
cyber, physical, cyber-physical, or otherwise) are comprised of resources and system actors that
interact with and through the resources. This interaction can affect the efficacy and efficiency
of the system and therefore must be considered in the design, development, and testing phases
of system creation. When interactions are not considered early in system creation, e.g., during
the design phase, then they must be tested for during the system verification and validation

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

phase, which is costlier, or there is a risk that they will be discovered after system deployment,
where unanticipated resource interactions and contention that affect the system operation or
performance can lead to even more costly system failure or retrofitting. One of the goals of the
META program, and the ARRoW project, is to incorporate aspects like resource contention
earlier in the system design, to reduce the cost of later phases of system development, testing,
and maintenance. In this section we describe the various entities that should be incorporated in
developing a shared resource modeling language. These entities are formalized in our shared
resource ontology that we describe below.

Resources may include, for example, engine power, fuel, communication bandwidth and cooling
capacity. System actors include resource consumers, resource providers and resource
allocators. Resource consumers use resources – for example an internal combustion engine
consumes fuel, or network cards use bandwidth. Note that we consider that resources may be
transformed and disappear due to consumption (such as fuel), or resources may be used, but not
disappear due to use (such as bandwidth.) Resource providers generate resources that are
consumed, e.g., an alternator attached to an engine generates electrical energy or a sensor may
provide information about object detections. Resource allocators decide which resources are used
by which consumers. For example, an engine control module determines the rate of fuel flow
to an engine and a Transmission Control Protocol (TCP) implementation determines the use of
bandwidth used by nodes communicating on an intranet.

Various measurements can be made of system behavior, including the behavior of resources and
actors. Those measurements can be used to assess various aspects of system performance.
These assessments may be used by the system actors to alter their behavior, or by users to
assess system health. For example, a resource allocator such as an engine control module uses
measurements including engine speed, temperature, and atmospheric density to assess engine
performance and allocate fuel to an engine. Similarly, TCP uses measurements of packet
sequence numbers to assess congestion. In the example we discuss below, we assess a metric
called resource sharing complexity over various measurements to assess the propensity for
resource contention.

The system actors, measurements, and assessments do not necessarily operate continuously
like a centrifugal governor operating on a steam engine. Most often system actors,
measurements, and assessments are implemented digitally and update either on a clock cycle or
when driven by external events. As such, system interactions, measurements and assessments
need to be modeled and coordinated with respect to event occurrences which may include clock
ticks.

7.7.2 Categories and Attributes

Depending on the application, system actors (such as resource consumers, resource providers,
and resource allocators) primarily interact through more than shared resources. Components
could interact through directed communication, but these kinds of engineered/designed
interactions are implemented through resource sharing interactions such as the use of
communication buses. Our insights in this document are driven primarily by experience and
published reports on developing and using resource sharing models to architect component
interactions in information management systems. Based on our experience, (explicit or
implicit) shared resource interactions are difficult to capture and express. We see the need for a
resource sharing interaction language that would be extensible and compatible with component
modeling languages.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

Selecting the attributes for a component model language for shared resources requires the
selection of an appropriate level of abstraction. Although users of modeling languages may
sometimes want or need to understand the inner operations of components, it is often sufficient
to exclusively model aspects of component interactions, even when these interactions do not
occur through explicitly specified interfaces. Furthermore, it is necessary to abstract from
many of the details of the inner operations in order to reduce and manage the complexity
involved in system modeling, design, and development. Since components at a given level of
abstraction interact explicitly and implicitly through shared resources, a component model
language for shared resources needs to capture the relevant properties of resource interactions.
We focus on resource interactions because many component interactions can be described as
interactions by the components through shared resources.

In this section, we describe the primary functional attributes and categories of attributes that
should be captured in a shared resource modeling language. These primary attributes are
formalized in our shared resource ontology that we describe below.

We identify four general categories of attributes for shared resource model languages:
Resource Provisioning, Resource Availability, Resource Consumption Models, and Resource
Usage Assessment. In the section immediately following we motivate and provide an overview
of these selections of attribute categories. For each of these categories of attributes, we discuss
several attributes with examples that should be included in component model languages for
shared resources.

We should note that the attributes and categories we discuss are intended to be representative,
and are by no means exhaustive or exclusive. We intend for our taxonomy of attributes and
the attribute language schema to be a guide that is further customized for specific applications
and systems. The attribute categories we discuss are:

1. Resource provisioning attributes: these attributes cover how the resources are allocated.
2. Resource availability attributes: these attributes cover how the availability of the

resources may change after provisioning.
3. Resource consumption attributes: these attributes cover how the resources are

consumed by component operation.
4. Resource assessment attributes: these attributes cover how the consumption of the

resources are typically evaluated.

All of the attribute categories we list include some aspect of resource constraints. In fact, most
of the attributes describe some aspect of constraints on the behavior and use of the resources
that need to be expressed in the resource models. These constraints limit the behaviors that
need to be accounted for in composing model components through resource interactions.

7.7.2.1 Resource Provisioning

The resource provisioning attribute category contains attributes that describe how resources
are allocated. These attributes include:

1. Resource Shared: This attribute captures whether the resource is shared or private.
2. Allocation Decider: This attribute captures who decides on the allocation of resources.

Possible values include the system designer, system user, or the system for
autoconfiguring systems.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

3. Allocation Mechanism: This attribute captures how the allocation is decided, whether
by directed allocation from a human-in-the-loop (such as a designer or user), a
supervisory controller, or a collaborative resource allocation system in peer-to-peer
environments.

4. Allocation Dynamism: This attribute captures whether the allocation is performed only
once, or whether reallocation occurs during runtime.

5. Reallocation Trigger: When resource allocations are dynamic, this attribute captures
how reallocation is triggered – whether from a clock tick, a feedback control
mechanism, or driven by an external event like changes in missions.

7.7.2.2 Resource Availability

The resource availability attribute category contains attributes that describe how resource
availability changes over time and how resource consumers and allocators observe those
changes in availability. These attributes include:

1. Resource longevity: This attribute captures whether the resource has permanence (like
physical space), it is consumed constantly (like time), or its consumption is a function of
usage properties (like how fuel is consumed based on performance demands.)

2. Resource availability observability: This attribute captures whether the resource
availability is directly observable, partially observable, or unobservable to various
entities including consumers, providers and allocators.

7.7.2.3 Resource Consumption

The resource consumption attribute category contains attributes that describe how resource
consumption occurs. These attributes include:

1. Resource consumption predictability for consumer: This attribute captures how
predictable resource consumption is for consumers – whether it is schedulable (such as
fuel availability due to consumption), partially schedulable (such as ammunition for
weapons), or un-schedulable (such as armor plating.)

2. Resource consumption predictability for allocator: This attribute captures how
predictable resource consumption is for allocators.

3. Resource consumption controllability: This attribute captures whether the resource
consumption is fully controlled (like fuel usage), partially controlled (like heat
dissipation capability), or uncontrollable (like time.)

4. Resource usage correlation: This attribute identifies when consumption of particular
subsets of resources are positively or negatively correlated.

7.7.2.4 Assessment of Resource Usage

The resource assessment attribute category contains attributes that describe how resource
consumers and allocators observe both the consumption and need for additional resources.
These attributes include:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

1. Uses for online resource usage feedback: This attribute identifies the resource
consumption assessments that are useful for runtime reallocation and tuning. These
assessments include performance utility, control error terms, safety margins, etc.

2. Uses for design-time assessment: This attribute identifies resource attributes to be
considered during design-time. These assessments include resource complexity, etc.

7.7.3 Shared Resource Ontology

We have designed an ontology to capture the above attributes and categories of attributes of a
shared resource language. We followed general ontology design principles to make the
ontology as simple as possible so that it is as extensible as possible and widely applicable.

We call this ontology the shared resource ontology and assigned it the following Uniform
Resource Identifier (URI):

http://meta.bbn.com/ont/2011/04/shared-resource-ont.owl

The ontology incorporates the system entities such as resources, system actors, measurements
and performance assessments. These entities and several others are represented as classes in
the ontology. The ontology also incorporates object and data properties that represent the
attributes and attribute categories we discussed above.

7.7.3.1 Shared Resource Ontology Classes

A schematic of the ontology class hierarchy can be seen in Figure 7.7-1.

Figure 7.7-1. A Tree Representation of the Ontology Class Hierarchy

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

There are several main classes of entities in the ontology – Resource, SystemActor,
Measurement, PerformanceAssessment, Equation, and Event.

The Resource class represents resources. We define two subclasses – ExclusiveResource and
SharedResource to represent resources that are used exclusively by one consumer or multiple
consumers, respectively. We expect that shared resources will be prevalent in applications that
use this ontology, but that representations of exclusive resources will be necessary for scenarios
where some resources are exclusive assigned to safety-critical systems, such as life support in
pressurized-cabin air-vehicles.

The SystemActor class represents the system actors. Subclasses include ResourceAllocator,
ResourceConsumer and ResourceProvider that represent, respectively, actors that allocate,
consume, and provide resources as discussed above. Subclasses of ResourceAllocator include
Controller, SystemDesigner, SystemInfrastructure, and SystemUser. Subclasses of
ResourceConsumer include SystemInfrastructure and SystemUser. SystemInfrastructure is
also a sub-class of ResourceProvider. Controller represents resource allocation controllers
such as the engine control module discussed above. SystemDesigner is the system designer
and is used when the system designer allocates resources. For example, a designer may decide
that some engine designs have a restricted fuel flow to limit power output and increase
longevity. SystemUser represents possibly multiple system users which both allocate resources
through command decisions and consume resources. For example, the driver of an automobile
consumes engine power by accelerating the vehicle. The driver also allocates fuel resources to
the engine by adjusting the throttle. SystemInfrastructure represents the system which
inherently allocates provides, and consumes resources. For example, modern computer
motherboards allocate and provide electrical power to chip components, while also consuming
electrical power.

The Measurement, PerformanceAssessment, and Equation classes have no subclasses. Although not
introduced earlier, Equation represents mathematical expressions that are used by
PerformanceAssessment objects, among others.

The Event class represents discrete points in time that may drive the taking of measurements,
running performance assessments, changing allocations and so on. These events may be
repeated or not, hence the RepeatedEvent and NonRepeatedEvent classes. Events could occur
at clock ticks (repeated or not), or when a measured value or assessment passes some threshold,
as is usually the case when using a performance assessment to decide when to perform a
resource allocation – when the expected benefit of a reallocation surpasses the expected benefit
of not changing a resource allocation, a controller should use this threshold passing to decide to
perform a reallocation of resources.

7.7.3.2 Shared Resource Ontology Object Properties

A schematic of the ontology object property hierarchy can be seen in Figure 7.7-2.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Figure 7.7-2. A Tree Representation of the Ontology Object Property Hierarchy.

The identification of the property relationships should be fairly self-explanatory because of the
naming conventions we used. As such, we only describe a subset of these properties. Note that
the object properties are generally broken into pairs to represent inverse relationships. For
example, consumes is used to identify which resources a consumer consumes, while isConsumedBy
is used to identify which consumers consume a resource.

A high-level sketch of object property relationship between entities can be seen in Figure 7.7-3.
To simplify Figure 7.7-3 and make it more informative and less confusing, we do not show
inverse properties whose use can be easily inferred from naming conventions. For example,
allocates is an inverse property of isAllocatedBy. We also do not show some subclass entities
whose specialized property usage can be easily inferred from naming conventions and the
properties of superclasses. For example, exclusivelyConsumes is a subProperty of consumes which
is used with ExclusiveResource objects instead of normal Resource objects.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

Figure 7.7-3. Class and Object Property Relationships.

We do not have many subProperty relationships in the shared resource object property
hierarchy. Most of these object properties are used to identify resource consumptions and
availabilities with special exclusivity and observability properties. For example, a monitor
connected to a video card frequently exclusively consumes the information flowing from the
card. Similarly, in a ground vehicle such as a HMMWV, the engine control unit has the
exclusive ability to observe atmospheric pressure in order to regulate the air-fuel mixture into
the engine.

We defined the sharesResourceWith property and its subproperties to identify resource
consumers that share resources. This sharing may be implicit, explicit or coordinated, so we
defined subclasses to capture these scenarios.

We defined hasTrigger properties to identify events which trigger when events are allocated or
consumed, or when performance is assessed.

7.7.3.3 Shared Resource Ontology Data Properties

A schematic of the ontology data property hierarchy can be seen in Figure 7.7-4.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

Figure 7.7-4. A Tree Representation of the Ontology Data Property Hierarchy

The identification of the property relationships should be fairly self-explanatory because of the
naming conventions we used. Most of the data properties represent either times, or they
represent strings to describe objects. The time properties include time and period which
respectively represent a time when an event occurs and the amount of time between events.
The description string properties include resourceDescription, resourceDynamism and most others.

7.7.4 Extending the Shared Resource Ontology for Contention Complexity

As a demonstration of the extensibility of our shared resource ontology, we now discuss an
extension of this ontology for an ontology we call the contention complexity ontology. We
gave this ontology the following URI:

http://meta.bbn.com/ont/2011/04/contention-complexity-ont.owl#

Contention Complexity is a metric that assesses the propensity for a resource to experience
contention. We define each resource to have its own resource complexity measure. We codify
these and other motivating hypotheses of contention complexity as follows:

1. Entities/subsystems/components in a system use multiple resources. Entities have
varying levels of criticality for using specific resources.

2. Contention complexity is a function of the potential for contention due to more
requests from entities to use resources than can be accommodated by the limited
resources.

3. Contention complexity can be decomposed and expressed for specific resources.
Contention complexity is the sum of the contention complexities of resources. The
contention complexity of a resource is a function of the potential for contention of that
resource from entities to use that resource.

4. Contention complexity of a resource is a function of:

 The number of entities that could request that resource. (A resource with more
consumers leads to more contention complexity.)

 The level of usage required for use of the resource. This is measured in terms of
% usage level * amount of time per usage. (Higher usage level means more contention, more
time per usage means longer queues and more contention.) The higher this product is, the
higher likelihood of contention.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

 More critical uses of limited resources imply more contention complexity.

This metric is expressed as the following equation:

We extended the shared resource ontology by defining a subclass of PerformanceAssessment
called ContentionComplexity. We then defined three subclasses of Measurement:
VariancePercentResourceUsage, ExpectedPercentResourceUsage and Criticality. We defined a
new object property forResource that associates ContentionComplexity objects with specific
resources. Finally, we define a single individual, ContentionComplexityEquation that
expresses the above equation for contention complexity.

With this very small set of changes, we were able to adapt our general shared resource
ontology to a much more specific and still useful ontology for a specific metric that can be
further refined.

7.7.5 Example Applications of the Shared Resource Ontology Extended to Contention
Complexity

We now explore the use and usefulness of the extended Contention Complexity ontology with
two specific examples: a toy RLC circuit problem and a hybrid battery problem.

7.7.5.1 RLC Toy Problem

We now consider the application of our contention complexity ontology to the RLC circuit in
Figure 7.7-5.

Figure 7.7-5. RLC circuit

In this circuit, the voltage source (VS) is a resource provider and provides a resource of
electrical energy. The RLC circuit (without the power source) is both a resource consumer and
an allocator. The RLC circuit consumes some energy and determines how much energy at each
frequency to transfer to any consumer connected at the VO output port. Anything that
connects to the output port VO is both a resource consumer and an allocator because it can
influence how the power output of VS is allocated across the frequency domain and hence
consumed by the RLC circuit. To follow normal electrical engineering convention, associated
with VS is a time-varying current IS(s) that represents the current flowing from the voltage
source to the resistor. When the VO output port is not open, the current that flows through the
output port from the resistor to the capacitor, parallel to the inductor is denoted as Io(s).

V
O

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

We designed an application-specific ontology for this example that imports the contention
complexity ontology. We call this application-specific ontology the RLC-contention-
complexity ontology and gave it the following URI:

http://meta.bbn.com/ont/2011/04/RLC-contention-complexity-ont.owl#

The amount of resource provided at a given frequency s is a function of the voltage VS(s) and
the current through the voltage source IS(s). This provided electrical energy is allocated by the
system designer to the RLC components and an output port which provides a voltage VO(s) and
a variable current IO(s) that is a function of the systems connected to the output port. We
assume that the voltage source has some max power output Wmax. The power output at a
given frequency is VO(s)*IO(s) and the integral of this product over the frequencies from 0 to
infinity is the total power output.

With this analysis, we designed the application-specific RLC ontology by adding just a few
individuals to the imported contention complexity ontology. We added:

• The SourcePowerContention individual which is of type ContentionComplexity. This
individual uses measurements of the source voltages and currents, the output voltages
and currents, and the RLC circuit parameters to compute contention complexity.

• The SourcePowerOutput individual is of type Resource. It is the resource consumed by
the RLC circuit and any other consumer attached to the VO port.

• The VoltageSource individual is of type Resource Provider. It provides the
SourcePowerOutput resource.

• The RLCCircuit and RLCOutput individuals which are of types ResourceAllocator and
ResourceConsumer. The RLCCircuit individual has associated data on the RLC values.

• The VS, IS, VO, IO measurements which are used to computed the resource
consumptions.

Based on parameterizations of RLCCircuit, VS, RLCOutput, VO, or IO, the RLC-Contention-
Complexity ontology can be used to automate the assessment of the contention complexity in
the toy circuit.

7.7.5.2 Preliminary Ontology for Hybrid Vehicle Battery Use and Maintenance Analysis

Similar to our extension of the Contention Complexity ontology to the RLC application
domain, we can apply similar techniques to more complicated cyber-physical systems such as an
example of the complexity introduced into the hybrid vehicle lifecycle due to the contention for
resources needed to maintain a particular choice of battery. For this problem, the more often a
battery needs to be replaced, the more resources it will use (e.g., manpower and money) that
could be used to maintain other systems. We want to use this metric to select a battery and
battery configuration (i.e., the depth of discharge used in the hybrid vehicle’s charge/discharge
control algorithm) to minimize the maintenance resources needed by the battery over a
vehicle’s lifecycle for a variety of vehicles based on parameterizations of vehicle weight, battery
capacity, the battery charging control, and the vehicle use patterns.

Note that this example is simplified. It does not include other factors that would be involved in
the selection of a battery, such as the battery’s weight, power density, disposal costs, and safety.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

To compute the metric for this example, we need an expected value for the level of demand for
the resource (which in this case is the cost to replace the battery) and the variability of that
demand. For this example, the depth of discharge has an effect on the demand for the resource.
A battery has to be replaced (i.e., demands the resource) after a certain number of charging
cycles. A deeper discharge minimizes the number of charging cycles but a shallower discharge
enables more cycles before the battery needs to be replaced.

For this scenario, we define two individuals which are of type Resource: PowerStoredInBattery
and MaintenanceResources. These individuals respectively capture the ability of the resource
to recharge over real or simulated terrains and the requirements for resources for battery
maintenance.

There are two individuals of type ResourceProvider that provide the PowerStoredInBattery
resources: EnginePower, Battery and RegenerativeBraking. Because maintenance resources
are part of the nominal system infrastructure and must be provided for vehicle use, we consider
maintenance to be provided finite and provided by the system infrastructure for the purposes of
our analysis. Larger analysis might include multiple vehicles of various types to analyze
maintenance requirements.

There are two individuals of ResourceConsumer type: Battery and VehicleDrive. The battery
has multiple properties associated with it including the cycle capacity for a given depth of
discharge which is represented as a PerformanceAssessment individual. Each battery is
associated with BatteryType and PowerCapacity properties. Vehicle drive is parameterized
with performance requirements.

The BatteryController individual is of type ResourceAllocator and allocates power for either
the discharging or recharging of the battery.

They are multiple events that are used to control the allocation of resources based on whether
the engine turns on or off, whether the vehicle is drawing power from the battery, and whether
the vehicle needs motive power or not. These measurements are used by the battery charger to
decide when to charge the battery. The control operation is ultimately measured by a
Measurement individual for the battery: the number of recharging cycles experienced by the
battery.

The battery control algorithm is based on a straightforward Energy Transfer Model. Basically,
going up a hill at a particular speed uses a certain amount of energy (potentially provided by
discharging the battery) and going down a hill transforms potential energy into kinetic energy
that can be regeneratively stored in the battery as electro-chemical energy. We designed our
simple control algorithm so that the battery will be used for motive power until it is fully
discharged (to its prescribed depth of discharge), then it would charge until it is fully charged –
either by the engine or regenerative charging system.

Our intention is that this ontology we are sketching for hybrid vehicle battery maintenance is
used to analyze the maintenance requirements for individual vehicles or fleets of vehicles. We
see it being used to compute the lifecycle replacement cost for batteries’ replacement. We used
an early version of this ontology to run simulations for multiple batteries at 10 different depth
of discharge levels (10% through 100%), with each simulation run covering 10,000 hours of
vehicle operation, and kept track of how many charging cycles occurred over the 10,000 hours

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

of operation. The graph in Figure 7.7-6 shows preliminary results of the computed metric
graphed for each battery and depth of discharge on a logarithmic scale.

Figure 7.7-6. Chart Showing Contention Complexity for Multiple Battery Types and

Depths of Discharge

We should be careful to note that as currently designed, assessments using the ontology will
always admit some error because, for reasons of tractability and abstraction to simplify
analysis, the ontology does not include all the factors that should go into the battery choice.
For example, our approach does not account for safety concerns. (Li-ion battery are known to
be explosive when engulfed in flames.) But in this simplified example, the computation of the
metric would show that the choice of the Lithium Ion battery with a depth of discharge
between 30% and 50% provides the minimal resource contention complexity (informally, the
minimal maintenance cost over the battery’s lifetime). Interestingly to us is that these
preliminary results align well with real-world results that we discovered from automakers after
performing these experiments.

7.7.6 Prototype Toolchain for Metric Evaluation

We now describe our General Adaptable Metric Execution Tool and Environment (GAMETE)
to host and evaluate metrics. We developed GAMETE during META Phase 1 to evaluate
general classes of metrics as part of the design and Verification and Validation (V&V) of
complex engineered systems. GAMETE identifies system designs that are less complex, more
efficient, less likely to fail, less costly, and that have higher performance, and evaluates the
behavior of designs during experimentation or simulation for V&V. We have demonstrated
GAMETE with complexity metrics of our own design and from several general classes of

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

metrics provided to us by other META and META II performers. By design, GAMETE is
easily integrated with larger design toolchains. We have already integrated GAMETE into
the BAE Systems ARRoW toolchain as part of META. The benefits of GAMETE include:

• Great increases in the scale and breadth of metrics and experimental data sets supported
through the GAMETE evaluation infrastructure.

• Improved interactive capabilities of GAMETE by supporting automated online data
ingest and online metric evaluation as experiments are run.

• Aiding the identification of primary and secondary impacts of design alternatives by
automating the evaluation of metrics over design alternatives.

7.7.6.1 GAMETE Executable Framework

A diagram of the GAMETE architecture and design tool interface is shown in Figure 7.7-7.

GAMETE enables the META design and V&V toolchain vision by supporting the evaluation
of general classes of user-selected metrics on user-selected design variations and user-selected
data. GAMETE is highly-extensible and adaptable to many larger tool chains because its
metrics, coverage, and experiments are specified as pluggable components so they can be added
and managed orthogonally to metric evaluation and analysis. The evaluations are output to the
user or other consumers in external toolchains as part of either design or V&V activities.

Figure 7.7-7. GAMETE Architecture Design and Toolchain Interface

Key benefits of the GAMETE approach not seen in other solutions for metric evaluation
include (1) our unified data representation design to enable the evaluation of metrics over large
and diverse classes of data, and (2) support in our analysis engine to evaluate similarly large
and diverse classes of metrics. Although GAMETE is a prototype, we have demonstrated the
unified data representation and metrics library capabilities on a variety of data from the META

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

and META-II programs and have integrated GAMETE with the BAE Systems ARRoW
toolchain.

7.7.6.2 Unified Data Representation

A central part of GAMETE capabilities and extensibility derives from the only assumption we
make on experimentation/simulation engines – that they are generic processes that can commit
data directly to a consumer such as GAMETE or directly to a consumer after persisting the
data in a datastore. An example experimentation/simulation engine is shown in Figure 7.7-8
that hosts these data sources. The experimentation/simulation engines supported by
GAMETE include engineered systems that generate data directly from (i) sensors such as those
that might monitor aspects of system behavior during testing or that gather information
during design, (ii) simulations that might generate data over multiple runs, (iii) deterministic
evaluations of possibly coupled equations, and (iv) model representations, such as graph models
or equations. GAMETE is designed to semi-automate the collection of data as needed from all
of these either online or offline data sources.

Figure 7.7-8. The Experiment/Simulation Engine feeds data from diverse sources for

online or offline processing.

The distinguishing factor of our GAMETE approach is our Unified Data Representation
(UDR). The UDR models the reporting/storing of experimental/simulation and model data
that enables the pluggable metrics and experiments to be developed in the execution
framework. Recognizing that experimental data is collected from a number of different
methods, using different tools with varying frameworks and languages, the UDR provides an
easily-supported framework to interface the analysis engine with experiments and simulations
over which metrics are evaluated. Refer to Figure 7.7-9.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

Figure 7.7-9. Measurement storage format in the Unified Data Representation.

The UDR is developed around a measurement as sketched in Figure 7.7-10 which shows the
recording of a value (e.g., 9 volts) of some Observable component (e.g., a battery) at a given
time. Solid blue arrows represent inheritance relations, dotted purple lines show composition.

Figure 7.7-10 shows the usefulness of the UDR for resource-consumer problems as graphs,
and graph nodes/edges as signals, thus maximizing the applicability of implemented metrics.
The key insight in the UDR is that the data types that need to be stored for the META metrics
application domains are hierarchically ordered. This insight allows metrics to be applied in
interesting new ways such as representing resource-consumer relationships in graphs and
applying graph-based behavioral metrics to analyze the complexity of resource-consumer
relationships.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

Figure 7.7-10. Representing signals, graphs, and resource-consumption in the UDR

maximizes the applicability of implemented metrics.

7.7.6.3 Metrics Supported by GAMETE

We have successfully demonstrated GAMETE with metric libraries as part of META Phase 1.
We demonstrated GAMETE with complexity metrics of our own design and from several
general classes of metrics provided to us by other META and META II performers.

An example metric we defined and implemented with GAMETE is resource contention complexity.
This metric assesses the propensity of processes to become resource starved and focuses on the
interaction of dynamic components in complex engineered systems over time. The intuition is
that vehicle designs in which there is greater propensity for resource contention are more
complex and costly over their lifecycle than designs in which there is less propensity for
contention. Few designs capture all the potential for resource contention, which can include
obvious contention for resources like power or processor time and less obvious ones, such as
heat dissipation, maintenance resources, and physical space. We developed simulation models in
Python of battery maintenance in hybrid powertrain military vehicles and used GAMETE to
evaluate resource contention complexity over our custom simulation environment.

We implemented metrics designed by other META and META II performers, including signal
complexity metrics from the BAE META team and behavioral metrics from the PARC META
2 team. We evaluated these metrics over Simulink and graph model outputs, respectively, of
the ramp example developed by BAE for META to assess the complexity of several designs.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

7.7.6.4 Metric Evaluation Demonstration

As a demonstration example for using GAMETE to evaluate signal complexity, we considered
the control signal output by two different control designs for the BAE ramp model. The
control signal in the ramp model controls the amount of torque output by the ramp motor.
One control design corresponds to a low-gain controllers and another control design
corresponds to a high-gain controller. Figure 7.7.11 shows the two control signals from these
two different controllers. The low-gain controllers has a nearly constant output at steady-state
while the high-gain controller has a periodic output even at steady state because its high-gain
control signal causes the controlled system to overshoot its desired operating point before the
system can converge. We used the two control signals in Figure 7.7-11 as input to GAMETE
and we evaluated the signal complexity metric for these two signals. The control signal from
the low-gain controller has a signal complexity 40% lower than the control signal from the
high gain controller. This makes intuitive sense because the high gain controller generates a
periodic actuator input signal rather than constant steady-state signal which requires lower-
cost control circuitry and maintenance.

Figure 7.7-11. Two control signals, one from a high-gain controller with periodic

steady-state behavior and one from a low-gain controller with DC steady-state behavior.

The hierarchical relationship we impose through the UDR of resource-consumers, graphs, and
signals allows for metrics to be applied in GAMETE in useful and interesting new ways. For
example, since resource-consumer relationships are represented in graphs, the graph-based
behavioral metrics can be computed to analyze the complexity of resource-consumer
relationships. Furthermore, since the graph nodes and edges represent signals, signal metrics
can be applied to each edge and node of the corresponding graph. This capability is partially
why GAMETE is a best-of-breed technology that has the effectiveness, general
applbosticability and promise for continued cost-effective improvement in the META
Maturation Phase.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.7 - BBN Resource Contention

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

7.7.6.5 Integration of GAMETE with Toolchains

Besides the UDR, the GAMETE architecture uses thin data interfaces between the GAMETE
analysis engine and the data sources, which makes GAMETE easily integrated with larger
design frameworks and toolchains. As part of our META activity with the BAE META team,
we designed the thin data interfaces to easily “plug-and-play” new data sources into GAMETE
so that the new data can be ingested through the UDR. Besides the ARRoW activity, we have
also ingested PARC META 2 electrical system data. Our testing, demonstration, and
evaluations have shown that GAMETE has promise for being an important part of a vehicle
and CPS design toolchain, further investment to mature and integrate the prototype system
would enable this promise to become a reality. In the next section, we describe some areas for
focus under the META Maturation Phase that we propose to do.

7.7.7 Conclusion

Taken together, our metrics definition, component language and GAMETE metric evaluation
framework work provide a key aspect of an end-to-end design tool chain. The metrics
definition identify aspects used for the verification and analysis of complex military system
design. The component language is used to design systems from sub-systems and propagate
the complexity analyses. The GAMETE evaluation framework makes these advances real and
usable by design engineers.

By design, GAMETE is easily integrated with larger design toolchains. We have already
integrated and incorporated GAMETE functionality into an integrated META tool-chain,
providing complexity management features necessary for AVM design goals. We will expand
upon this activity during the maturation phase to mature GAMETE and integrate with other
providers’ toolchains.

		7.7 BBN Resource Contention

		BBN Metrics and Modeling Language Activities

		7.7.1.1 Metrics Definition

		7.7.1.2 Resource Contention Complexity Metric

		7.7.1.3 Process Complexity Metric

		7.7.1.4 Component Model Language

		7.7.1.5 Resource Sharing Concept

		7.7.2 Categories and Attributes

		7.7.2.1 Resource Provisioning

		7.7.2.2 Resource Availability

		7.7.2.3 Resource Consumption

		7.7.2.4 Assessment of Resource Usage

		7.7.3 Shared Resource Ontology

		7.7.3.1 Shared Resource Ontology Classes

		7.7.3.2 Shared Resource Ontology Object Properties

		7.7.3.3 Shared Resource Ontology Data Properties

		7.7.4 Extending the Shared Resource Ontology for Contention Complexity

		7.7.5 Example Applications of the Shared Resource Ontology Extended to Contention Complexity

		7.7.5.1 RLC Toy Problem

		7.7.5.2 Preliminary Ontology for Hybrid Vehicle Battery Use and Maintenance Analysis

		7.7.6 Prototype Toolchain for Metric Evaluation

		7.7.6.1 GAMETE Executable Framework

		7.7.6.2 Unified Data Representation

		7.7.6.3 Metrics Supported by GAMETE

		7.7.6.4 Metric Evaluation Demonstration

		7.7.6.5 Integration of GAMETE with Toolchains

		7.7.7 Conclusion

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.8 – BBN Spatial DSE

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.8 Spatial Design Space Exploration ... 1

7.8.1 Motivation: Design Space Exploration .. 1

7.8.2 META Accomplishments: Lightweight Agent Simulation Specifications (LASS) .. 3

7.8.3 Proto/Unity Integration ... 9

7.8.4 Deliverables ... 10

7.8.5 Bibliography .. 10

List of Figures
Figure 7.8-1. By using LASS in design space exploration, potential environment-specific

human-vehicle interaction issues can be addressed earlier in the design process. 2
Figure 7.8-2. Proto uses the amorphous medium abstraction, in which a discrete network
(right) is viewed as an approximation of a continuous space (left), allowing simpler distributed

system programming, greater robustness, and increased scalability. ... 4
Figure 7.8-3. Example use-case scenario for LASS: egress through an IFV rear ramp/gate

(right) similar to that of a Bradley IFV (left) ... 6
Figure 7.8-4. Example of design change evaluation in LASS: as the passenger bat changes size
(down to 4 passengers on right, up to 16 passengers on left), the number of warfighter agents

needing to egress can automatically adjust, along with the agent program controlling them. ... 7
Figure 7.8-5. Example of design change evaluation in LASS: a more complex door structure
(right) intended to provide better cover to egressing warfighters than the standard door
structure (left). Agent-based simulation can provide a rough quantification of the benefit in safe

deployment. .. 8
Figure 7.8-6. LASS combines the realistic physics and interactive terrain modeling of game

engines with Proto’s robust and scalable agent control in a rich simulation environment. 9

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms

Symbol,
Abbreviation,

Acronym
Definition

API Application Programming Interface

DSE Design Space Exploration

IFV Infantry Fighting Vehicle

LASS Lightweight Agent Simulation Specifications

MRAP Mine Resistant Ambush Protected

ODE Ordinary Differential Equations

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.8 Spatial Design Space Exploration

During META, we have produced a prototype of Lightweight Agent Simulation Specifications
(LASS), a design-space exploration tool that radically reduces the cost of incorporating
capability requirements into the early design process. The capability requirements for every
vehicle include its interactions with humans in its environment (e.g., deployment of passengers
under fire, coordinated operations with dismounted infantry, navigation of populated areas).
These can significantly influence the lifecycle viability, maintenance, and cost of a system,
because users can interact with a system in a wide range of unanticipated ways (such as soldiers
exiting a vehicle before its ramp is fully deployed), but these have traditionally been extremely
hard to evaluate in early design phases, before a physical prototype exists, due to lack of cost-
effective simulation tools to accurately model the large range and unpredictability of human
interactions.

LASS fills this necessary gap in cyber-physical and vehicle system design using two state-of-
the-art technologies. Spatial computing allows the large space of potential human interactions
that can affect a vehicle’s design and operation to be programmed as a continuous space and
compiled to discrete software agents in an agent-based simulation. The result is that LASS will
radically reduce the cost of constructing agent-based simulations and including simulations of
human-interaction in design-space exploration. These simulations are a key part of a vehicle
design tool-chain, making it easier to detect potential problems early and avoid costly redesigns
in the later stages of design and deployment. LASS combines our unique and open-source
Proto spatial computing language for specifying scalable and adaptive agent-based simulations,
with commercially available physics simulation, game-based simulation, and scenario authoring
tools. Because Proto simulation specifications are scalable and adaptive, a capability test
scenario can evaluate a wide range of variable vehicle designs without any further intervention
from a simulation engineer.

Our key achievements during META are:

 Development of the LASS concept and use case scenarios.

 Proof-of-concept demonstration of importing a vehicle design specified in terms of rigid
bodies and joints, and use of differently scaled versions of this design in a use case
scenario.

 Development of a prototype LASS system that connects Proto with the Unity
simulation engine, and uses the combination to create proof-of-concept scalable and
adaptive capability test scenarios.

7.8.1 Motivation: Design Space Exploration

In response to a 2011 congressional request to evaluate the challenges confronting the fielding
of ground combat vehicles [KLS11], The RAND Corporation stated, ―Current efforts to keep
up with rapidly changing requirements on the battlefield are struggling.‖ Without a method for
incorporating battlefield requirement exploration into the design process, identification of
potential issues is often left to soldiers in the field, resulting in a lengthy and costly redesign
process.

Design changes become radically more expensive in later stages of development. Coarse-
grained simulation of emerging operational scenarios is vital for achieving fast and effective
design space exploration, allowing design options to be evaluated against an array of potential
scenarios early in the design process. While it is now becoming common practice to include

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

environmental model simulations in the design cycle (e.g., various weather conditions and
terrain types), these models still ignore the human-vehicle interaction that is a critical
component of any successful combat vehicle. One key reason for this failure to include human-
vehicle interaction is the prohibitive cost and difficulty of creating and maintaining scenarios
with conventional agent-based simulation authoring tools.

Any effective vehicle design process needs to incorporate lightweight agent simulations,
which allow human-vehicle interaction scenarios to be created inexpensively and then used to
evaluate a wide range of vehicle design options without any need for human adjustment of the
simulation. An evolving vehicle design can then be evaluated against the operational
constraints of soldiers and civilians, identifying both potentially fatal issues and possible design
tradeoffs long before the first vehicle reaches the battlefield. If these simulations are
lightweight, in the sense that they are simple to construct and can self-adapt to many types of
design changes, then they can be used early and throughout the process (refer to Figure 7.8-1),
enabling designers to maintain a clear connection, throughout the design process, between
their design decisions and the required field capabilities.

Figure 7.8-1. By using LASS in design space exploration, potential environment-specific
human-vehicle interaction issues can be addressed earlier in the design process.

The addition of lightweight agent-based design-space exploration to a design tool-chain can:

 Improve the overall design process through iterative design-evaluate cycles.

 Reduce costly downstream changes by identifying potential human-vehicle interaction
issues earlier in the design life cycle.

 Streamline tool-chain evaluation through automatic adaptation of interaction scenarios
and parameters.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

7.8.2 META Accomplishments: Lightweight Agent Simulation Specifications (LASS)

We view the problem of human-vehicle interactions through the lens of agent-based
simulation. A potentially complex simulation can be decomposed into a network of interacting
agents where each simulated human in the vehicle’s environment may be represented by an
agent, which attempts to act in accordance with its orders and own interests.

There are three key ideas in our approach, which we call Lightweight Agent Simulation
Specifications (LASS):

 Refine capability requirements instead of setting physical requirements.
Historically, high-level capability requirements (e.g., ―deploy quickly and safely under
fire‖) are refined into detailed physical requirements (e.g., ramp/gate drive
specifications). These physical specifications may conflict with the design of alternate
solutions. Under the LASS approach, wherever possible, capability requirements are
refined to simulations with metrics independent of the physical realization of the design.
This provides much more flexibility in how a design is realized, as well as the possibility
of a holistic evaluation of design decisions.

 Integration of agent-based simulations within the design framework. Manually
evaluating how agents interact within the physical design is likely to be infeasible for
the human design team. By integrating the construction of capability simulations with
the vehicle design process, the system will be able to provide meaningful capability
feedback during each iteration of the design loop.

 Spatial computing creates simple, adaptable simulations of agent interactions.
When a simulation is viewed as a network of agents, many interactions happen between
agents that are physically near one another. For example, disembarking soldiers may
physically get in one another’s way, and within a vehicle heat and vibration spread
through local interactions. We may thus view such a network of interacting agents as a
spatial computer. Our spatial computing technology allows agents to be programmed as
a scalable aggregate, rather than as a collection of individuals, allowing simulations to
be specified simply and to automatically adapt to many classes of design change.

 The LASS approach exploits these ideas to extend simulation-in-the-loop design to
incorporate high-level capability requirements for the interaction of a design with
humans in its environment. Fast, lightweight simulation will allow enhanced design
exploration. For a human designer or automated design tools, LASS exposes trade-offs
that are otherwise difficult or impossible to detect due to information lost when
capability requirements are reduced to physical design constraints. At a higher level of
decision-making, project managers could use LASS to evaluate the sensitivity of a
design to proposed changes in capability requirements.

7.8.2.1 Spatial Computing enables LASS

Our LASS approach is founded on spatial computing, and is enabled by the Proto spatial
computing language and simulator. In this section, we present a brief introduction to spatial
computing and Proto; for a more detailed introduction, see [BB06, BBM10] .

When a simulation is viewed as a network of agents, it is often the case that most interactions
happen only between nearby agents. We may thus view such a network of interacting agents as
a spatial computer—a collection of devices embedded in a (usually physical) space such that
interactions between devices are mostly local in space [BS10, DGG07].

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

Viewing the system in such a way allows us to apply the scalable aggregate programming
techniques that have been developed in the Proto spatial computing language [BB06, BBM10].
The key insight enabling Proto’s continuous spatial approach is the recognition that there are
many systems where the focus is best placed not on the devices that make up the system, but
rather on the space through which the devices are distributed. Sensor networks are a
prototypical example: e.g., the point of a target-tracking network is to monitor the movement
of entities through an area. The fact that this involves observations made by and at particular
devices is only of interest so far as it contributes toward that goal. Multi-robot systems and ad-
hoc mobile networking are good examples as well, e.g., the point of a robot coverage algorithm
is to examine all points in a space of interest, and the point of an ad-hoc routing algorithm is to
move information across space to where it is needed. These latter systems are closely related to
agent-based simulation of interaction between a vehicle and humans in its environment.

If devices interact primarily over short distances, then the aggregate structure of the agent
interaction network forms a discrete approximation of the structure of the space of interest.
Combining these two observations allows us to view the network using an abstraction that we
call the amorphous medium [JB04]. An amorphous medium is a Riemannian manifold1 with a
computational device at every point, where every device knows the recent past state of all other
devices in a local neighborhood (Figure 7.8-2). A network of locally communicating devices can
thus be viewed as a discrete approximation of an amorphous medium, with each device
representing a small region of nearby space and messages sent between nearby devices
implementing the information flow through neighborhoods.

Figure 7.8-2. Proto uses the amorphous medium abstraction, in which a discrete
network (right) is viewed as an approximation of a continuous space (left), allowing

simpler distributed system programming, greater robustness, and increased scalability.

1 A manifold is a mathematical object that looks like Euclidean space locally, but globally may be
different. For example, the surface of the Earth is a 2-dimensional manifold: locally it looks flat, but if
you keep going in a straight line, you will return to your starting location. A Riemannian manifold also
guarantees the availability of other key geometric building blocks such as angle, distance, area and
volume, curvature, and gradients (generalized derivatives). For a good introductory text, see

[MPC92].

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

With carefully chosen computational primitives and a means of combining those primitives,
such as those provided by Proto [BB06, JL02], it is possible to maintain a tight relationship
between an abstract computation specified for a Riemannian manifold and an actual
computation being carried out on a real network that is distributed through that space, so that
a program written to execute over continuous space can be approximated on real devices.

Applying this approach to capability simulations for design space exploration, we see a number
of potential advantages:

 Proto makes it simple to create agent-based simulations. The continuous aggregate
model used by Proto means that much of the details of constructing distributed software
programs, such as interacting agent models in an agent-based simulation, is implicit.
This means that complex agent control patterns can often be implemented with only a
few simple lines of code.

 Continuous-abstraction simulations can self-adjust for many design changes. The
amorphous medium abstraction means that Proto programs are typically formulated in
terms of geometric operations and information flows through regions of space. When
done correctly, this produces extremely flexible and scalable programs: changes in
number or distribution of devices are reflected simply as changes in the manifold on
which the program is being executed, which implicitly adjusts the result of geometric
operations, automatically causing a program to self-adjust for its changed environment.
This is discussed in detail in [BS10]. In the design space exploration context, this
capability can be used to create simulations that adapt to changes in design without a
need for human intervention.

 Agent-based simulations are generally parallelizable. An agent-based simulation
models the world as a network of independent devices that interact through a well-
defined set of messaging or physical interfaces. As a result, it is typically relatively
straightforward to parallelize agent-based simulations for faster execution.

We thus see that a spatial computing approach to capability simulation, implemented with
Proto, is likely to give us the lightweight agent simulations that we desire for evaluating
capability specifications of a vehicle’s interaction with humans in its environment.

With cheap, self-adaptive, and parallelizable simulation of vehicle capabilities, we are also given
the possibility for automated design look-ahead. It is valuable for a designer to know not just
how good a particular design variant is, but whether the changes being made are increasing the
fragility of the design to further changes. One evaluation method approach is to take the
current design and its previous version, then parameterize them to create a linear function for
blending from one to the other. The system could then evaluate the design at a number of
intermediate points, as well as continuing beyond the current design in an extrapolation of
what might happen if the design continues to be varied in the same way. In this way, the
sensitivity of a capability to design change might be evaluated, with a warning given if the
capability slope near the current design is significantly more negative than the slope near the
previous version.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

7.8.2.2 Illustration of Design Import into Use-Case Scenario

For our initial investigation of the LASS concept, we began by applying it to the design of an
Infantry Fighting Vehicle (IFV) rear ramp/gate, with an aim to demonstrate integration of a
mechanical design model with a Proto-driven use-case scenario. We chose the ramp/gate
scenario, of the three main examples that were then under discussion in the ARRoW project,
because it has a capability specification that engages directly with warfighters using the vehicle
and other humans in the surrounding environment.

We have focused on egress of passengers through the ramp/gate (Figure 7.8-3). In particular,
our mock-up scenario has:

 An IFV with a rear ramp/gate

 A number of warfighters inside waiting to disembark

 Optional enemies scattered around outside, intending to shoot disembarking
warfighters.

Figure 7.8-3. Example use-case scenario for LASS: egress through an IFV rear
ramp/gate (right) similar to that of a Bradley IFV (left)

Each simulation was specified with two components: a scenario and an agent model. The
scenario is contained in an XML file that specifies the current IFV design (including the
ramp/gate structure), the distribution of warfighters within the IFV, and the distribution of
enemies (if any) outside of the IFV. The agent model is a Proto program that specifies a
controller for the design and the agents that will interact with it. In this case, the design
controller opens the ramp/gate, the warfighters try to protect themselves from enemy fire
while dispersing outward, and the enemy fires suppression fire at the area of the IFV
ramp/gate.

In this mock-up system, this was implemented by means of a plug-in for the MIT Proto
simulator. This plug-in extended the existing free software plug-in for running Ordinary
Differential Equations (ODE) simulations in MIT Proto, in order to be able to support scenario
scripting, models of combat interactions, virtual sensors needed by the controller, and
computation of design performance metrics. The whole system can be invoked with a set of
command-line options to the MIT Proto simulator, and runs either in interactive mode for
exploration and debugging or in a batch mode for distributed bulk computation of performance
and design sensitivity metrics. Figure 7.8-3 shows a screen shot of a ramp/gate design in our
mock-up system. Note that this system has since been superseded by the Unity LASS
implementation described below.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

Once constructed, a scenario allows direct (simulated) measurement of the high-level mission
capabilities of the design. We are currently considering two metrics in a mock-up egress
scenario:

 Number of seconds for all passengers to complete egress

 Number of casualties (when under enemy fire)

Each of these metrics would be measured on many instances of the simulation, so that
stochastics of the simulation do not have an undue impact. We currently envision measuring
mean and variance of performance over a batch of 20 simulations. Measuring variance can also
help in determining when the simulation can meaningfully aid in distinguishing between
proposed designs.

Once a LASS simulation has been set up, design variants can be easily evaluated, to within the
accuracy of the simulation. In our mock-up system, we have been exploring this concept by
developing two examples of design change: changing the size of the IFV passenger bay and
changing the design of the ramp/gate.

Changing the size of the IFV passenger bay changes the number of warfighters that can be
aboard as passengers (Figure 7.8-4). Such a change might be caused by an overall change of the
vehicle size, or by space reallocation between the passenger bay and other adjacent components
of the IFV design. Whatever the cause, when the bay changes in size, it changes the number of
warfighter agents that need to egress, and therefore may change the time it takes for egress.
Changing the size of the ramp/gate may also change its size and effective profile or its opening
time, and therefore the vulnerability of warfighters as they deploy.

Figure 7.8-4. Example of design change evaluation in LASS: as the passenger bat
changes size (down to 4 passengers on right, up to 16 passengers on left), the number of

warfighter agents needing to egress can automatically adjust, along with the agent
program controlling them.

Changing the size of the IFV passenger bay changes the number of warfighters that can be
aboard as passengers (Figure 7.8-4). Such a change might be caused by an overall change of the
vehicle size, or by space reallocation between the passenger bay and other adjacent components
of the IFV design. Whatever the cause, when the bay changes in size, it changes the number of
warfighter agents that need to egress, and therefore may change the time it takes for egress.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

Changing the size of the ramp/gate may also change its size and effective profile or its opening
time, and therefore the vulnerability of warfighters as they deploy.

A LASS simulation that fills the passenger bay with a given density of warfighter agents will
automatically adjust to these changes in design, increasing or decreasing the number of
warfighter agents as the size of the passenger bay changes, thereby allowing exploration and
evaluation of design alternatives without any cost in simulator adjustment.

Some types of design change, however, will require modification of the simulation. An example
would be changing the design of the ramp/gate from a single rectangular piece that swings
downward to a trapezoid that swings downward and two ―wings‖ that swing sideways instead
to provide better cover for egressing warfighters (Figure 7.8-5). This possible variant trades
increased ramp/gate complexity for a possible improvement in egress safety. Besides the
obvious change to the IFV design model, investigating this design change may also require
changes to the controller for the ramp/gate, if the ―wings‖ are to open on a different schedule
than the main ramp/gate section. The simulation then allows a rough quantification of the
benefit that the additional cover would provide for the high-level capability requirement for
safe egress.

Figure 7.8-5. Example of design change evaluation in LASS: a more complex door
structure (right) intended to provide better cover to egressing warfighters than the

standard door structure (left). Agent-based simulation can provide a rough
quantification of the benefit in safe deployment.

7.8.2.3 3D Game-Engine Based Simulation

When simulating the human-vehicle interaction, the addition of physics models into the
evaluation is essential to ascertain the effectiveness of the design. Without the ability to detect
collisions, analyze the effects of gravity or determine how the rigid body dynamics of the
vehicle alter the interaction, the results of the simulation would be meaningless.

To include high-quality physics models without the high barrier of developing a Newtonian
physics model [JL02] to achieve this level of detail, we have chosen to use a 3D game-engine
as part of our simulation environment. By leveraging an off-the-shelf game engine, we can
reduce the complexity of the simulations, allowing the game engine to handle the low-level
physics details associated with movement and interaction in a simulated world context. In
addition to a robust physics model, leveraging a game engine also provides us with:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

 Geo-Typical terrain models. Leveraging the ability to execute the simulation in terrain
similar to the deployed environment, the simulator can determine the effects of the physical
environment on the complete interaction. If the vehicle design results in an exit door not
fully opening due to rugged terrain, a chokepoint could result, compromising the safety of
disembarking soldiers. By including terrain based simulations into the design cycle,
potential issues typically not observed until deployment, can be identified and addressed
early in the process.

 Robust Application Programming Interface (API) for environment interaction.
Modern 3D game environments come packaged with a set of authoring tools and
programming interfaces for working with the environment. These APIs include
functionality such as line of sight, and distance calculations that are essential components of
the agent-based simulation. By leveraging the APIs provided, a designer can focus on
analyzing the design and not on implementing the interactions between the vehicle and the
environment.

7.8.3 Proto/Unity Integration

As part of the META project, we integrated Proto into the off-the-shelf game engine Unity 3D.
By linking Proto with the game engine, we were able to blend the benefits of LASS with the
rich physics model, geo-typical environment and authoring toolkit provided by the game
engine.

Through a combination of game-engine scripting and a native-library bridge, we were able to
develop a framework for conducting human-vehicle evaluations within a game-based simulation
environment (Figure 7.8-6). With the inclusion of spatial computing to the game engine
environment, we can quickly alter the troop size and tactics of the AI characters in the
simulation, allowing for a range of evaluations to occur on a design with minimal modification
to the tool-chain.

Figure 7.8-6. LASS combines the realistic physics and interactive terrain modeling of
game engines with Proto’s robust and scalable agent control in a rich simulation
environment.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.8 - BBN Spatial DSE

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Through the use of the Unity GUI framework, we were able to quickly insert various 2D
displays for controlling various aspects of the scenario, including the insertion and modification
of different Proto programs in realtime.

7.8.4 Deliverables

 To demonstrate how Proto and Unity can work together creating a simulation environment
for evaluating human-design interactions, we developed a sample application containing 30
Proto controlled agents randomly placed within a geo-typical scene. The agents are situated
around an MRAP (Mine Resistant Ambush Protected) vehicle, and are controlled via the
provided Proto program.

In this demonstration application, the user is free to control various aspects of the simulation
such as camera angles, camera position and agent network visualizations. The demonstration
tool also provides controls for redistributing the agents within the scene and also the ability to
change / modify the Proto code controlling the agents.

7.8.5 Bibliography

[BB06] Beal J., Bachrach, J. ―Infrastructure for engineered emergence in sensor/actuator
networks‖ IEEE Intelligent Systems, pages 10–19, March/April 2006.

[BBM10] Bachrach J., Beal J., McLurkin. J., ―Composable continuous space programs for
robotic swarms‖, Neural Computing and Applications, 19(6):825–847, 2010.

[BS10] Beal, J., Schantz, R. ―A spatial computing approach to distributed algorithms‖, In 45th
Asilomar Conference on Signals, Systems, and Computers, November 2010.

[DGG07] DeHon, A., Giavitto J-L, Gruau, F. 06361 abstracts collection – computing media
languages for space-oriented computation. In André DeHon, Jean-Louis Giavitto, and
Frédric Gruau, editors, Computing Media and Languages for Space-Oriented Computation,
number 06361 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

[JB04] Beal, J. ―Programming an amorphous computational medium‖, in Unconventional
Programming Paradigms International Workshop, September 2004.

[JL02] Lewis, M., Jacobson J., ―Game engines in scientific research‖, Communications of the
ACM, Vol. 45, No. 1, pages 27-31, 2002.

[KLS11] Kelly, P., Landree, M., Steeb, M., The U.S. Combat and Tactical Wheeled Vehicle Fleets,
Issues and Suggestions for Congress, The RAND Corporation, 2011.

[MPC92] do Carmo, M. P. Riemannian Geometry, Birkhauser Boston, 1992.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.9 - RMPL

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.9 Reactive Model-based Programming Language (RMPL) ... 1

7.9.1 Introduction and Overview ... 1
7.9.2 Basic Structure of an RMPL file .. 2
7.9.3 RMPL for Plant Models .. 3

7.9.3.1 Field Definitions .. 4
7.9.3.2 Value Definitions... 6
7.9.3.3 Well Formed Formula ... 6
7.9.3.4 Method Definitions... 7
7.9.3.5 Transition Definitions ... 8
7.9.3.6 Constructor Definitions ... 9
7.9.3.7 Examples .. 10

7.9.4 RMPL for Control Programs/Temporal Plans/QSPs and Kirk 11
7.9.4.1 RMPL Combinators .. 11

7.9.5 Whenever ... 15
7.9.5.1 Always .. 15
7.9.5.2 Repeat ... 16
7.9.5.3 Choose .. 16
7.9.5.4 Temporal Bound .. 17
7.9.5.5 do within { A } ... 18
7.9.5.6 slack sequence { A1; A2; …} ... 20
7.9.5.7 slack parallel {A1; A2; …} ... 21
7.9.5.8 optional {A} .. 22
7.9.5.9 soft parallel {A1; A2; …} ... 23
7.9.5.10 Temporal Constraints between Subexpressions ... 23

7.9.6 Supporting Reachset Analysis with RMPL ... 25
7.9.6.1 Basic Goals for the Hybrid Language Extensions ... 25
7.9.6.2 Brief Overview of Modes in RMPL ... 26

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms

Symbol,
Abbreviation,

Acronym
Definition

DLP Dynamic Linear Programming

DS1 Deep Space One

ESL Executive Support Language

ME Mode Estimation

MILP Mixed Integer Linear Programming Solver

MPL Model-based Programming Language

ODE Ordinary Differential Equations

POMDPs partially observable Markov decision processes

QSP Qualitative State Plan

RA Remote Agent

RMPL Reactive Model-based Programming Language

WFF Well Formed Formula

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.9 Reactive Model-based Programming Language (RMPL)

In this appendix we begin with an overview of the Reactive Model-based Programming
Language (RMPL) modeling language including a historical perspective. We then describe the
specific changes that were made to the RMPL language in support of Meta including the
interface with the reachset analysis system.

RMPL is a general modeling language that permits the definition of automata, the connections
between components in a complex system and the constraints placed on the system both in
terms of the state variables of the models of the components and temporal constraints.
Additionally, as a result of the extensions added for Meta we are able to specify constraints on
the (hybrid) dynamics of the modeled components as well.

RMPL models can be broadly divided into two categories, the plant models that describe the
capabilities of a plant and the control program that models the way in which the plant is driven
through its states.

RMPL works with a number of back-end solvers that include technology for using the models
described in RMPL to perform useful functions. Some of these solvers include temporal
planners (Kirk), some involve Mixed Integer Linear Programming Solver (MILP)/ Dynamic
Linear Programming (DLP) solvers (Sulu), some involve diagnosing the state of a plant and
generating sequences of commands that will get the plant into a desired state and keep it there
for a period of time (Titan) and the list continues to grow. In support of these uses of RMPL as
a modeling language there are a variety of internal automata representations that are brought
into play -- some of these solvers and representations are mentioned in this appendix.

For Meta the key changes have been the extension of the RMPL modeling language to include
dynamics equations, the ability to represent hybrid constraints (instead of discrete state
constraints), and the connection of RMPL to the reachset analysis capability and later to the
OPSAT solver in support of design space exploration.

7.9.1 Introduction and Overview

Numerous highly-autonomous aerospace systems, such as NASA's Deep Space One (DS1)
spacecraft, the next generation of space telescopes, and various Mars Rover prototypes, are
being deployed that leverage many of the fruits of Artificial Intelligence research in automated
reasoning: planning and scheduling, task decomposition execution, model-based reasoning and
constraint satisfaction. Yet a likely show stopper to widely deploying this level of autonomy is
the myriad of languages employed for the numerous software tasks running on a spacecraft
processor.

These tasks include sequencing, system monitoring, system reconfiguration, planning, and low-
level control.

As a solution to this problem, we introduce the Reactive Model-based Programming Language
(RMPL), which combines probabilistic, constraint-based modeling with reactive programming
constructs, and offers a simple semantics in terms of partially observable Markov decision
processes (POMDPs). RMPL can express a rich set of mixed hardware and software behaviors,
and thus will provide a foundation for developing a unified model-based framework for
autonomous robot/spacecraft control, providing integrated sequencing, monitoring and fault
protection capabilities.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

RMPL represents a significant evolution from the Model-based Programming Language
(MPL) used in the Livingstone mode estimation and reconfiguration system flown as part of
the Remote Agent (RA) on DS-1. RMPL is an object-oriented language that, like MPL,
describes co-temporal interactions between subsystems (constraints), and the evolution of these
interactions over time. Like MPL, it provides a language for specifying, at a commonsense
level, the behavior of complex embedded systems that react to external and internal stimuli.
Using RMPL, plant models can be described both in terms of their nominal behavior, and their
behavior under failure.

In addition to allowing specification of plant models, RMPL provides a suite of reactive
programming constructs, similar to those in Esterel, or the Executive Support Language (ESL)
used to develop the RA Smart Executive. These constructs can be used to write control
programs, which are specifications of the desired system behavior, and which operate directly
on the hidden plant states described in the plant model. A model-based program is executed by
automatically generating a control sequence that moves the physical plant to the states
specified by the control program.

7.9.2 Basic Structure of an RMPL file

An RMPL file is a sequence of class definitions rather like a Java program is.

class Name1 {

…

}

class Name2 {

…

}

…

class Namen {

…

}

A class has a domain of values over which it ranges, a set of callable methods that may change
the value of the class instance and related/connected instances, and a set of un-commanded
transitions. The body of a class definition consists of, in no particular order, field, mode,
method, constructor, and transition, definitions. Value definitions define values that instances of
the class can take on. Fields provide the ability for the component to have state and to refer to
other components. Constructor definitions allow components to be connected together by
assignment, transitions define how a method can autonomously transition to new values and
methods define primitive commands supported by the component and non-primitive methods
for controlling the process of achieving a desired new value. The start definition supports to
describe general probability distribution of start modes.

class MyClass {

 value definitions

 field definitions

 method definitions

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

 transition definitions

 constructor definitions

 start definitions

}

By convention class names start with an upper case letter. Field and Value names begin with a
lower case letter and constructors must be the same name as the class (and thus begin with an
upper case letter). These are just conventions to aid in readability and the language does not
enforce them.

7.9.3 RMPL for Plant Models

A plant is a collection of components connected together to make the system which is the plant.
In RMPL each component is represented by an instance of a class. An RMPL class therefore
represents a class of components that can be instantiated and used in a plant definition. The
class instances can be connected together by using a constructor method. A class can define
fields that can refer to other class instances. A class defines what values the component can
have and how it can transition between those values. A switch component could for example
have values ‗On‘ and ‗Off‘. We would represent such a switch object as follows:

 1: class DigitalValues { value high; value low; }

 2:

 3: class Switch {

 4: DigitalValues output;

 5: initial value off =(output==low);

 6: value on =(output==high);

 7: }

The first class defines a set of values (high and low in this case). These values can be assigned
to a field of type DigitalValues. The second class Switch introduces a component with state. It
has a single field called output whose type is DigitalValues. It in turn defines a value ‗off‘ that
is true if the ‗output‘ field is ‗low‘. The prefix ‗initial‘ in the value definition says that the switch
is initially in the ‗off‘ state in which the field ‗output‘ has the value ‗low‘.

A second value definition defines a value ‗on,‘ which is true if the output field has the value
‗high‘. The switch therefore defines two values that it can take on, ‗off‘ and ‗on‘. These values
are defined by constraints over the values of fields in the component.

The above example introduces class definitions, value definitions, and field declarations. A field
can take on any of the values that are defined in that class so in the above example fields of
type DigitalValues can take on ‗high‘ or ‗low‘ and fields of type Switch can take on values of ‗off‘
and ‗on‘. The DigitalValues class defines a simple set of values whereas the Switch class also
defines two values (‗on‘ and ‗off‘) but in the case of the switch these values constrain the state of
fields within Switch by virtue of the constraints specified in the value definitions. Value
definitions can take modifiers. So far we have seen the ‗initial‘ modifier. The ‗initial‘ modifier
indicates the starting value of the Switch. A class can have at most one value modified by
‗initial‘.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

So far our switch is not very useful because it is either on or off and there is no way for it to
change its value. Given that its initial value is off, it will always be off because we have
specified no way for it to change its value.

A component can change its value in two ways. It may be commanded to change its value by
invoking some primitive method on that class or it may simply change state autonomously, that
is, without commanding. Imagine a switch that sometimes falls into the off state for no
particular reason.

We can specify methods and transitions that govern how the switch changes state. In the
following example we expand the definition of switch to support explicit ‗turnOn‘ and ‗turnOff‘
methods, whereby the switch can be commanded to change its value. We also introduce a new
failure value for the Switch. Our switch will operate normally when commanded, except
occasionally, when it will take on the ‗fail‘ value (autonomously).

 1: class Switch // The Switch component type

 2: {

 3: DigitalValues output; // Output pin value – field

 4: // representing output value

 6: // The OFF value. If the Switch is OFF, the output pin is low.

 7: initial value off = (output==low) {

 8: primitive method turnOn () => on;

 9: }

11: // The ON value. If the Switch is ON, the output pin is high.

12: value on = (output==high);

13: primitive method turnOff () on => off;

15: // This is the fault value that occurs when the observations do

16: // not satisfy the new state constraints anticipated from the

17: // commanded transition.

18: failure value broken = True; // Unconstrained

19:

20: transition fail True => broken with probability: 0.005;

21: }

Line 8 adds a method for turning on the switch when it is off. The method definition is
preceded by the modifier ‗primitive,‘ which indicates that the method is a primitive capability of
the switch component and is not defined by a method body. The trunOn method takes no
arguments and causes the switch to take on the value ‗on‘. The syntax ‗=> on‘ says that the
result of executing the turnOn method is that the switch takes on the value ‗on‘. The starting
value of switch when the turnOn method is invoked must be ‗off‘. This is indicated by placing
the turnOn method in the body of the value ‗off‘ definition. This says that the ‗from‘ value of
the switch must be ‗off‘‘ in order for the turnOn() method to cause the switch to take on the
value ‗on‘.

In the following subsections we discuss each major element of a class definition in detail.

7.9.3.1 Field Definitions

From inside class Camera, power_in can be referred to as power_in. As an example of external
reference, consider a variable my_camera of type Camera, which has been initialized to an
instance of Camera. The power_in field of my_camera can be accessed as my_camera.power_in,
as long as power_in has been declared to be public.

class Power {

 …

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

}

class Camera {

 Power power_in;

 Shutter shutter;

 …

}

If a field is declared as private, then it can‘t be externally accessed. If the access (public or
private) is not specified for a field, then it defaults to private.

private Aclass aField; [default]

Aclass aField; [same as above]

public Aclass aField;

7.9.3.1.1 Variables

When a field is declared in a class, it represents an object instance of the declared class. Each
field, which is either input by the constructor or created new, is a variable used in state
constraints or transition guards.

7.9.3.1.2 Flexible Templates

For convenience, a special type of fields is introduced. Using ―String‖ field and constructor, it is
allowed to declare the constraints dynamically, in other words, the state constraints or
transition guards in the same class can be different depending on input of its constructor. For
example, ―zone‖ is a special field which is connected to the input argument of ―Worker‖. In
―Main‖ class, we can initial two objects with different state constraint by inputting different
arguments ―zone1‖ or ―zone2‖.

class WorkerLocation { value zone1; value zone2; }

class Worker {

 WorkerLocation location;

 String zone;

 Worker(String zone) {

 zone = zone;

 }

 value off = (location != zone);

 value on = (location == zone);

 transition t1 off => on;

 transition t2 on => off;

}

class Main{

 Worker worker1;

 Worker worker2;

 observable{

 worker1.location;

 worker2.location;

 }

 Main(){

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

 worker1 = new Worker("zone1");

 worker2 = new Worker("zone2");

 }

}

7.9.3.2 Value Definitions

In order for Mode Estimation (ME) to estimate the likelihood that a component has a given
value, a value must have a constraint associated with it. The example below associates a
constraint with the value ccc. The constraint is expressed as a logical formula,, called a well-
formed formula (WFF); its syntax is described below.

value ccc = ((camera == off) &&

 (radar == off) &&

 (brake != failed));

7.9.3.2.1 Hierarchical

In PCCA, a value definition in a class represents a mode of a component. Each component
contains several modes, and all modes are only a symbol indicating the status of the component.
However in PHCA, hierarchical structure is allowed. A component contains several modes, and
one of these modes may be also a component containing its modes. The following example
shows how to encode hierarchical plant models. Specially, ―power‖ is a mode of the component
―Camera‖, but ―power‖ is also a component ―Power‖ with its modes ―off‖ and ―on‖.
 class Power {

 value off;

 value on;

 …

}

class Camera {

 …

 value off = True {

 primitive method turnOn () => power;

 }

 value broken = True;

 initial value unknown = True;

 value Power power = (switch == on);

}

7.9.3.3 Well Formed Formula

Well formed formulae allow is to build propositions that must be true for different modes of a
component. Simple well-formed formulae are simple identifiers indicating a value, True,
False, and an equality formula:

7.9.3.3.1 Simple WFF’s

True

False

fred

foo==bar

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

More complex propositions can by constructed by composing simple WFFs using conjunction
(&&) disjunction (||) negation (not of !) and parenthesized expressions.

7.9.3.3.2 Composed WFF’s

not wff, !wff, foo != bar

(wff && wff && …)

(wff || wff || …)

(wff -> wff)

7.9.3.3.3 Enhanced (variable == variable)

A general WFF equality in RMPL allows a variable as the left side and a value as the right
side. For convenience, current RMPL allows the equality with variables on both left side and
right side. The PHCA compiler will translate it into corresponding constraints.

class Valve {

 Flow outflow;

 Flow inflow;

 value open = (inflow == outflow);

 …

}

7.9.3.4 Method Definitions

The methods of a class describe the commanded transitions that instances of the class can
make.

The signature of a method describes when the method is applicable, as well as the effect that
the method has on the class instance and related instances. Method signatures have the
following attributes:

1. Precondition: state that must be true for the method to be applicable. (default: True)

2. Postcondition: state that will be accomplished by the end of the method's execution.

(default: True)

3. Invariant: state that must hold throughout the execution of the method. The

precondition must imply the invariant. (default: True)

4. Arguments: the types of arguments that are passed to the method, and the classes that

the arguments must be instances of.

A method definition may be preceded by a qualifier that modifies the method definition.

The qualifier if present may be one of the following:

primitive

public private protected

controllable uncontrollable

Notes: Public, private and protected are mutually exclusive (default is private). Controllable
and uncontrollable are mutually exclusive (default is controllable).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

A primitive method has no body and is implemented by the component primitively. Primitive
methods are associated with commands. Public, private, and protected methods may be
referred to, respectively, from outside the class, from inside the class only, and from within
subclasses of the class, as well as the class.

A user-defined method supplies a method body, in addition to the method signature. The
results of a successful execution of the method body should imply the method's postcondition.

The reason to write a user-defined method is to enforce a particular strategy to achieve the
postcondition, rather than letting mode reconfiguration / planning attempt to achieve the
postcondition unfettered. This ability to override mode reconfiguration is called adjustable
autonomy, it allows the modeler to spell out specific steps in some cases, while leaving other,
potentially unanticipated cases to be solved by mode reconfiguration.

There is a small number of control constructs that make up a user-defined method body; these
are described in the section on control programs.

7.9.3.4.1 Control Variables

In RMPL, control variables are encoded as primitive methods.

 primitive method turnOn();

 initial value off = True;

 value on = True;

transition t1 off => on with guard: turnOn();

There is another alternative style:
initial value off = True {

 primitive method turnOn () => on;

 }

 value on = True;

7.9.3.5 Transition Definitions

7.9.3.5.1 Simple Transitions

Uncommanded transitions have a name, a precondition, and a postcondition, similar to those of
methods. The probability given for the postcondition is the likelihood that the transition is
invoked at each time step. Uncommanded transitions are introduced with the transition
keyword. The following declaration specifies that the transition named ―fail‖ may occur with
.1% probability at each time step from ―on‖ to ―failed‖ mode.

transition fail on => failed with guard: True,

 probability: .001;

There are two styles to specify transitions. The 1st style of transition specifies a source with a
guard, multiple branches from the source to a set of targets with a probability respectively. It is
called ―And-Or Tree‖. The 2nd style of transition specifies a source with a probability, multiple
branches from the source to a set of targets with a guard respectively. It is called ―Or-And
Tree‖. The simple transition can be compiled as an And-Or Tree.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

7.9.3.5.2 And-Or Tree

And-Or Tree specifies a source with a guard, multiple branches from the source to a set of
targets with a probability respectively. It is mainly used in PCCA.

transition t1 broken => {

 off with probability: 0.8;

 power with probability: 0.2;

 } with guard: (switch == off);

7.9.3.5.3 Or-And Tree

Or-And Tree specifies a source with a probability, multiple branches from the source to a set of
targets with a guard respectively. It is mainly used in PHCA.

transition t1 off => {

 broken with guard: (switch == off);

 power with guard: (switch == on);

 } with probability: 0.8;

7.9.3.6 Constructor Definitions

A constructor method is a method that is invoked once, only when an instance of the class is
created. The constructor may only contain assignments to fields of the class and instantiations
of other classes. A constructor may not contain method invocations. Constructors are the way
in which components are connected together, in order to make a system. The constructor
name must be the same name as the class that it is a constructor for.

The example below implements a simple two input OR gate. Each input and output can be a
DigitalValue. The class supports two values, nominal, in which the OR gate operates in
accordance with OR gate semantics, and broken. With a low probability the gate may fail
autonomously. Most of the time the gate can be returned to nominal operation by issuing a
reset command.

OrGate Example

class OrGate

{

 // Inputs

 DigitalValues input1; // input pin 1

 DigitalValues input2; // input pin 2

 // Outputs

 DigitalValues output; // Observed output pin

 // The nominal value. If both input pins are low,

 // the or-gate output pin is low and if either

 // input pin is high, the output pin is high.

 initial value nominal =

 ((((input1==high)||(input2==high))

 &&(output==high)) ||

 (output==low));

 // This is the fault value that occurs when the

 // observations do not satisfy the state

 // constraints of the or-gate.

 failure value broken = True;

 primitive method reset() broken => off

 with probability .99;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

 transition fail True => broken

 with probability: 0.001;

}

The example below builds a simple system using two switches and an Or gate. A constructor is
used to connect together the components of the systems.

Simple Circuit

class SimpleCircuit

{

 Switch switch1;

 Switch switch2;

 OrGate orGate;

 SimpleCircuit ()

 {

 switch1 = new Switch();
 switch2 = new Switch();
 orGate = new OrGate(switch1, switch2);
 }

}

class Main // The main class specifies the root.

{

 SimpleCircuit ourCircuit;

 Main ()

 {

 ourCircuit = new SimpleCircuit();
 }

}

7.9.3.7 Examples

class Switch {

 value off;

 value on;

}

class Power {

 value off;

 value on;

 transition t1 off => on with guard: True, probability: 0.7;

 transition t2 on => off;

}

class Camera {

 Switch switch;

 initial {off} with probability: 0.9;

 initial {broken} with probability: 0.1;

 value off = True {

 primitive method turnOn () => power;

 }

 value broken = True;

 initial value unknown = True;

 value Power power = (switch == on);

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

}

class Main{

 Camera camera;

 Main(){

 camera = new Camera();

 }

}

7.9.4 RMPL for Control Programs/Temporal Plans/QSPs and Kirk

The simplest statement is a method call. A call to a method that is defined in the same
component is performed simply by using the name of the method, followed by parameters, if
any, separated by commas in parentheses. This is just like Java:

method1(1, foo);

If the method is defined in another component, the method can be invoked using dotted
notation, just like in Java:

otherComponent.method2(3, bar);

Statements can be composed using one of the combinators described below.

7.9.4.1 RMPL Combinators

The following RMPL combinators are based on the paper - B. C. Williams, et al., "Mode
Estimation of Model-based Programs: Monitoring Systems with Complex Behavior,"

7.9.4.1.1 Sequence

The simplest way to compose statements is to combine them into a sequence. There are two
syntactic ways of constructing a sequence:

sequence {A1; A2; … }

creates a sequence that consists of A1, A2, etc. Since a sequence is such a common expression,
the following abbreviation is supported:

{ A1; A2; … }

Below is an example of a sequence that is contained in a method:

class Main {

 FOO foo;

 method run () {

 sequence {

 foo.action1();

 foo.action2();

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

 foo.action3();

 }

 }

}

class FOO {

 method action1() {

 }

 method action2() {

 }

 method action3() {

 }

}

7.9.4.1.2 Parallel

A parallel composition follows a similar syntactic pattern:

parallel { A1; A2; … }

Parallel also has an abbreviated syntactic form:

|{A1; A2; … }|

Below is an example of a parallel construct, contained in a method:

class Main {

 FOO foo;

 method run () {

 parallel {

 foo.action1();

 foo.action2();

 foo.action3();

 }

 }

}

class FOO {

 method action1() {

 }

 method action2() {

 }

 method action3() {

 }

}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

7.9.4.1.3 Achieve

The program asserts that constraint is true at the initial instant of time. For example:

class Status {

 value On;

 value Off;

}

class Main {

 Status status;

 method run () {

 (status == On);

 }

}

7.9.4.1.4 If (…else…)

If the wff evaluates to true, the process statement will be executed. For example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 if (status == On) {foo.action1();} else {foo.action2();}

 }

}

class FOO {

 method action1() {

 go1();

 }

 method action2() {

 go2();

 }

}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

7.9.4.1.5 Unless

If the wff evaluates to false, the process statement will be executed. For example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 unless (status == On) {foo.action1();}

 }

}

class FOO {

 method action1() {

 go1();

 }

 method action2() {

 go2();

 }

}

7.9.4.1.6 When

At the first time step in which the wff evaluates to True, the given process statement is
executed in parallel with the enclosing process. The when clause is activated at most once (i.e.
the first time the wff evaluates to true) during the lifetime of the enclosing process statement,
for example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 when (status == On) {foo.action();}

 }

}

class FOO {

 method action() {

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

 go();

 }

}

7.9.5 Whenever

The wff is evaluated at every time step, and whenever it evaluates to true, the given process-
statement is spawned in parallel, if it is not already active. For example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 whenever (status == On) {foo.action();}

 }

}

class FOO {

 method action() {

 go();

 }

}

7.9.5.1 Always

For example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 repeat {foo.action();}

 }

}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

class FOO {

 method action() {

 go();

 }

}

7.9.5.2 Repeat

Repeat is like ‗Always‘ except that ‗A‘ is only executed sequentially and no multiple markings
can occur as a result of using ‗repeat‘. ‗Always‘ spawns ‗A‘ on every clock cycle and causes
multiple markings.

For example:

class Status

{

 value On;

 value Off;

}

class Main {

 Status status;

 FOO foo;

 method run () {

 repeat {foo.action();}

 }

}

class FOO {

 method action() {

 go();

 }

}

7.9.5.3 Choose

Sometimes we want a statement to be selected by the program executive so as to maximize
reward or minimize cost. Sometimes choices are made autonomously, for example, by the
physical environment, based upon a probability assignment. The Choose construct implements
this.

Choose allows costs, rewards, and probabilities to be specified (but at most one). This is a bug,
it should allow any combination of cost, reward, and probability to be specified.

Below is a mixed example that illustrates the ways in which a choice can be made:

choose {

 with reward: 45 { … }; // specify a reward

 with cost: 34 { … }; // specify a cost

 with probability: 0.3 { … }; // specify prob.

 with choice: { … }; // no guidance.

A

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

}

For example (specifying costs):

class Main {

 FOO foo;

 method run () {

 choose {

 with cost: 10 [0,1] foo.action1();

 with cost: 15 [1,2] foo.action2();

 with cost: 20 [2,2] foo.action3();

 }

 }

}

class FOO {

 method action1() {

 }

 method action2() {

 }

 method action3() {

 }

}

For example (specifying probabilities):

class Main {

 FOO foo;

 method run () {

 choose {

 with probability: 0.1 [0,1] foo.action1();

 with probability: 0.3 [1,2] foo.action2();

 with probability: 0.6 [2,2] foo.action3();

 }

 }

}

class FOO {

 method action1() {

 }

 method action2() {

 }

 method action3() {

 }

}

7.9.5.4 Temporal Bound

Any statement, primitive or composed, can be given an optional temporal constraint, by
preceding it with a temporal bound, specified within square brackets, like this:

[0, 7] method1(1, foo);

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

A temporal bound specifies the lower and upper bound on the time for method1 to complete. In
the above example, method1 can take between 0 and 7 time units to complete.

A bound without a following statement, means do nothing; for example:

[0, 7];

7.9.5.4.1 Derived Constructs

Each of the following constructs can be considered ―syntactic sugar‖ for combinations of
existing RMPL constructs.

1. do within {A1; A2; … An }

2. slack sequence {A1; A2; … An }

3. slack parallel {A1; A2; … An }

4. optional { A }

5. soft sequence { A1; A2; … An }

6. soft parallel {A1; A2; … An }

We will consider each of the above in turn, by looking at their
expansion. We group them into two classes: slack constructs
(1-3) and soft constructs (4-6).

Execution of Expressions with Slack in Execution Time

In the expressions discussed thus far, one subexpression begins
as soon as the preceding expression ends. For many
applications there exists temporal slack in the execution time of
activities; the program executive can then choose to execute
these activities at the time with greatest utility. For example, a
time window may be specified in which an expression must be
executed, but the executive may choose to sit idle before
starting the expression, as long as the time to completion is
satisfied. Likewise it might be best to idle after the expression,
or between successive expressions, as long as the time to
completion is satisfied. To model this behavior we introduce
three constructs: do within, slack sequence and slack parallel.

7.9.5.5 do within { A }

The statement do within allocates a time window, and specifies
that an expression A must be started and completed sometime
within that window. The do within expression completes at the
end of the window. In particular, the expression:

[lb, ub] do within { A }

is equivalent to:

parallel {

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

[lb,ub] noop();

 sequence {

 [0, inf] noop();

 A;

 [0, inf] noop();

}

}

An example of its use is as follows, which mean do A somewhere within the temporal bounds
[lb, ub] allowing slack on either side of A. Consider the following example:

class main {

Rover foto;

method run () {

[0,10] do within {

 [0,1] foto.move1();

 [1,2] foto.move2();

 }

 }

 …

}

In this example, foto.move1 and foto.move2 can occur anywhere within the interval [0, 10],
Note, however, that move1 and move2 cannot have a gap between them.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

7.9.5.6 slack sequence { A1; A2; …}

Executes a sequence of activities, while permitting optional gaps
between successive activities. The expression:

[l, u] slack sequence { A1; A2; …}

is equivalent to:

[l, u] sequence {

[0, inf] do within {A1};

 [0, inf] do within {A2};

 …

}

This expression means that successive activities Ai and Ai+1 can be
separated by an arbitrary gap within [l, u].

Below is an example, along with its graphical depiction to the right.

class main {

Rover foto;

method run () {

[0,10] slack sequence {

 [0,1] foto.move1();

 [1,2] foto.move2();

 }

}

}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

7.9.5.7 slack parallel {A1; A2; …}

Slack parallel is the analogue of slack sequence, but for parallel composition. In particular,
slack parallel is similar to parallel, but permits idle time both before and after each of the
parallel activities, while enforcing the constraint that all activities complete within the time
bound of the slack parallel expression.

In particular, an expression of the form:

[lb, ub] slack parallel {A1; A2; …}

is equivalent to:

parallel {

[lb, ub] do within { A1 };

[lb, ub] do within { A2 }; …

}

An example application of slack parallel is
shown below, together with its graphical
depiction, which means that A1 and A2 which
are executed in parallel are each allowed to vary
within their specified temporal window.

class main {

Rover foto;

method run () {

[0,10] slack parallel {

 [0,1] foto.move1();

 [1,2] foto.move2();

 }

 }

}

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

Execution of “Soft” Expressions, Containing Optional
Activities

Above we introduced constructs that exploit temporal slack within
a system. Conversely, for many applications, the set of activities
specified to be performed is overly optimistic; however, completion
of many of these activities may not be essential to mission success.
In this case we would like the executive to drop activities, in order
to ensure overall mission success; we refer to these as soft activities.
To model this behavior we introduce three constructs: optional,
soft sequence and soft parallel.

7.9.5.8 optional {A}

specifies that the execution of A is optional. This is equivalent to:

choose {

with choice {[0,0]};

 with choice{ A };

}

and means to either do A or continue on immediately.

The following is an example of the use of optional.

class main {

Rover foto;

method run () {

optional {

 [0, 1] foto.move1()

 }

 }

 …

}

7.9.5.8.1 soft sequence {A1; A2; …}
Soft sequence is similar to sequence, but permits any number of
activities in the sequence to be dropped; for example, in order to
ensure that the sequence terminates within its time-bound. An
expression of the form:

[l, u] soft sequence {A1; A2; …}

is equivalent to:

[l, u] sequence {

optional {A1};

 optional {A2};

 …

}

The following is an example of the application of soft sequence,
together with its graphical depiction to the right, which means that
either or both of A1 and A2 may be dropped (goal shedding) in

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

order to meet the temporal constraints. If rewards are provided for the activities, the planner
will select what to drop on the basis of total reward.

class main {

Rover foto;

method run () {

[0,10] soft sequence {

 [0,1] foto.move1();

 [1,2] foto.move2();

 }

 }

7.9.5.9 soft parallel {A1; A2; …}

Soft parallel is the analogue of soft sequence, but for parallel composition. In particular, soft
parallel is similar to parallel, but permits any number of activities in the parallel to be dropped;
for example, in order to ensure that each parallel activity terminates within the time-bound of
the slack parallel.

In particular, the expression:

[lb,ub] soft parallel { A1; A2; … }

is equivalent to:

[lb,ub] soft parallel {

optional { A1 };

optional { A2 };

…

}

The following is an example of the use of soft
parallel, together with its graphical depiction
to the right, which means that the activities
are executed in parallel but either or both of
them may be dropped in order to meet
temporal constraints.

class main {

Rover foto;

method run () {

[0,10] soft parallel {

 [0,1] foto.move1();

 [1,2] foto.move2();

 }

 }

}

7.9.5.10 Temporal Constraints between
Subexpressions

It is often sufficient to specify temporal
constraints in terms of bounds on the
execution time of an expression. However, in
many important applications, we need to

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

specify temporal constraints between the start and end times of the subexpressions that appear
within some expression. We accommodate this need through the introduction of ―constrained‖
expressions.

A constrained expression augments the expressions, defined above, with a set of temporal
constraints. A constrained expression allows the start and end events of its subexpressions to
be labeled. A set of temporal constraints between the start and end times of these
subexpressions is then specified, in terms of these labels.

In particular, two special operators, startof and endof, are introduced to refer to the start and
end events of any labeled subexpression. Constraints are then specified as inequalities between
any two labeled events within the constrained expression.

For a given constrained expression, all labeled subexpressions whose labels appear in temporal
constraints of the constrained expression must appear within the constrained expression. Note,
however, that the label may appear at any nesting level. In addition, any subexpression may be
labeled.

A special syntax allows gaps to be constrained. ―startof(name3) - endof(name2) in [lb, ub]‖
means that the activity name2 must end no less than ―lb‖ after activity name3 begins and no
longer than ―ub‖ after name3 begins.

Examples:

constrained parallel {

name2: [0, 5] parallel {

 lab1: foo();

 lab2: baz();

}

 name3: [0, 10] sequence {

 lab3: bar();

 }

}

(startof(lab1)<endof(lab3),

 endof(name3)>endof(name2),

 startof(name3)-endof(name2) in [lb, ub])

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

7.9.6 Supporting Reachset Analysis with RMPL

In order to support the use of RMPL models by the reachset analysis code it was necessary to
do two things. First, it was necessary to build a new back end for the RMPL compiler that
would target (emit) the models in Matlab, and second it was necessary to extend the RMPL
modeling language to support hybrid models.

The extension of RMPL to support hybrid was done in a manner consistent with the overall
goals of the language as a general modeling language. This permits models to be exported to a
variety of solver back ends beyond the immediate need of Reachset Analysis. In particular it
has allowed us to integrate RMPL with OPSAT in order to experiment with design space
exploration.

7.9.6.1 Basic Goals for the Hybrid Language Extensions

We wished to extend the RMPL language to support hybrid models. Our goals included some
that were specific to Reachset Analysis and some that were more general.

Goals:

1. We wished to enable the encoding within a full plant/control model all parameters and
values that were handled through a separate file. for example, in Sulu we augment the
RMPL model with a separate file that contains parameters. We wished to be able to
support all such needs within a common linguistic framework. There is still a role for
parameter files because one doesn't always want to encode the values in the model – but
often we do.

2. The Matlab code implementing reachset analysis used external tools that required the
dynamics equations to be represented in the for Ax+By+C where A, B, and C are
matrices. While this is a requirement for the reachset analysis code it is also a common
requirement. Since RMPL is not a matrix based language it would have been a strange
departure from regular RMPL syntax to directly incorporate the matrix notation into
RMPL. Instead, as shown below, we opted to extend RMPL to represent dynamics
equations in a normal RMPL-like equation syntax and have the RMPL compiler
construct the matrix reformulation of the equations.

3. It has been the practice of RMPL users to build a single file that contains the plant
model as well as the control program, or Qualitative State Plan (QSP). this has long
been an annoyance because ideally one would like to have a collection of separate
RMPL plant models representing a library of parts and to have the control
program/QSP include the parts that it wanted. This would enable new QSP's to be
generated automatically that simply referred to the plant models that it used and it
would facilitate the interchange of plant models such as when replacing one part, say a
solenoid, with another part with slightly different properties such as we might want to
do with design exploration. To support this need we introduced the simple notion of an
include file such as is familiar to C++ programmers.

4. Model variables can be divided into several categories, broadly we can characterize the
variables and endogenous variables having no connection outside the model and
exogenous variables that represent the inputs and outputs to the model. Some earlier
versions of RMPL had maintained the distinction explicate in the syntax whereas the
current incantation of RMPL has offered no support in the syntax to distinguish them.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

We found the need to re-introduce syntax into RMPL to allow state variables to be
annotated as exogenous or endogenous so that the compiler could use this information
in generating the Ax+By+C formulation of the dynamics equations for the reachset
analysis.

5. Reachset analysis as implemented by the MIT code base requires that the dynamics
models be linear. While we wouldn't want to impose that restriction on RMPL in
general it is important that RMPL be able to impose that constraint so as to provide
useful feedback to the RMPL user that his model has strayed out of the bounds of what
the solver will support.

7.9.6.2 Brief Overview of Modes in RMPL

A plant in RMPL has modes and each mode specifies a proposition that is true in that mode. A
plant has state variables that may be either boolean or a defined discrete value type.

For example:

 1: class DigitalValues { value high; value low; }

 2:

 3: class Switch {

 4: DigitalValues output;

 5: initial value off =(output==low);

 6: value on =(output==high);

 7: }

On line 1 we define a discrete type DigitalValues that can take on the values 'high' or 'low'.
The switch, defined from line 3 to line 7, has an initial value of 'off' defined as output==low and
a value on defined as output==high.

For hybrid models, we extended the value types that RMPL supports as follows:

1. Built-in support for numeric types.

2. Numeric inequalities.

3. Full equation syntax (same as Java).

4. Full support for computing the value of constant expressions.

5. Support for representing ODE's

6. Support for representing linear programming (LP) models.

7. A compile time arithmetic expression interpreter to fold constant expressions.

For numeric datatypes, initially we have implemented Real, and Integer. At some later time we
may need to add Complex.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

A location contains a set of differential and algebraic equations and one invariant that defines
continuous behaviors while the automaton is executing in the location. One goal is to support
the use of LP solvers such as in Sulu. For an LP solver we need to be able to express the model
in terms of linear equations and constraints. An LP solution requires that the model be
compiled into a set of variables representing values at different time points. A recurrence
relation representation is ideal for such compilation.

A differential equation has the form:

 ẋ is understood as the first derivative of x with respect to time.

Our new syntax uses the differential(x)= <formula> to represent the differential equation.

An algebraic equation has the form:

Here the simple syntax x = <formula> is sufficient.

The invariant is a proposition, as is presently the case, but with the addition of a full inequality
syntax over real and integer values.

The main addition here is the ability to specify an equation that models the evolution of the
variable value over time. If such an equation is not provided, the value is assumed to be

constant while the automaton is at that location. That is, the equation = 0 is assumed for
every such variable. For each location, we have to ensure that the set of algebraic equations has
a uniquely well-defined solution. This is guaranteed by requiring that the variable dependency
relation for algebraic equations is not circular.

Instead of representing system dynamics as an Ordinary Differential Equations (ODE) it is
often convenient to express them as recurrence relations. We added t his syntax to support
recurrence relations as follows:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

Example: recurrence position[+] = position[.]+dt*velocity[.]

The keyword recurrence introduces a recurrence relation over state variables. Within a

recurrence relation state variables are followed by either [+] or [.]. [+] means the value at

the next time step and [.] means the value at the current time step. Additionally a pseudo

variable dt is added to quantify the time step.

Here is an example taken from one of our recent demos of this new capability the new syntax is
shown in bold.

State variables are introduced as before but they may now be qualified with either
endogenous, exogenous, input, or output. Unqualified state variables are assumed to
be endogenous. input and output qualifiers both indicate exogenous.

The RMPL version of the current demo would look like this:

// Plant Model

class Ramp

{

 // Constants

 constant real g=9.81;

 constant real m=1000;

 constant real rcg=3;

 constant real Ir = 1;

 constant real Kr = 1; // what value is required here?

 // State variables

 state real position; // angular position

 state real velocity; // angular velocity

 // Input Variables

 input real torque;

 // Output Variables

 output real outp;

 real initPosMin;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

 real initPosMax;

 real initVelMin;

 real initVelMax;

 real goalPosMin;

 real goalPosMax;

 real goalVelMin;

 real goalVelMax;

 real torqueMin;

 real torqueMax;

 // Initializing the Ramp

 // This involves calculating and setting the input constraints

 Ramp (real theta_nom)

 {

 torqueMin = -1000;

 torqueMax = 1000;

 }

 run (real initMinPos, real initMaxPos, real initMinVel, real initMaxVel,

 real goalMinPos, real goalMaxPos, real goalMinVel, real goalMaxVel)

 {

 initPosMin=initMinPos;

 initPosMax=initMaxPos;

 initVelMin=initMinVel;

 initVelMax=initMaxVel;

 goalPosMin=goalMinPos;

 goalPosMax=goalMaxPos;

 goalVelMin=goalMinVel;

 goalVelMax=goalMaxVel;

 }

 // Ramp modes

 value stopped=(velocity==0);

 initial value moving={

 recurrence position[+] = position[.]+dt*velocity[.],

 recurrence velocity[+] = -dt*g*m*rcg*sin(theta_nom)*position[.]/Ir -

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

 Kr*velocity[.] + dt*torque[.]/Ir-

 dt*g*m*rcg*cos(theta_nom)/Ir +

 dt*g*m*rcg*sin(theta_nom)*theta_nom/Ir,

 velocity>0

 };

}

In order to support the separation of plant models from QSP's we introduced the include
syntax that works much as it does in C++. Here is an example of a QSP that refers to the plant
model by using an include:

// Control Plan (QSP)

#include "C:/meta/RMPLRampMeta/ExampleRampGeneratePlantv1.rmpl2"

class Main

{

 Ramp Activity79;

 Ramp Activity215;

 Ramp Activity261;

 Main ()

 {

 Activity79 = new Ramp(0.0);

 Activity215 = new Ramp(0.25);

 Activity261 = new Ramp(1.5);

 }

 method run ()

 {

 sequence {

 [4.0, 6.0] Activity79.run(-5.0, 5.0, -5.0, 5.0, 0.15, 0.35, 0.07,

0.13);

 [9.0, 11.0] Activity215.run(-4.75, 5.25, -4.9, 5.1, 1.15, 1.35, 0.07,

0.13);

 [4.0, 6.0] Activity261.run(-3.75, 6.25, -4.9, 5.1, 1.4, 1.6, -0.03,

0.03);

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

 }

 }

}

// End of generated QSP

The include statement includes the plant model shown before. The QSP shown above was
generated automatically from an envisionment from Parc along with a magic number file that
provided all of the necessary numbers that are not present in the Parc generated envisionment.

The compilation of the above generates the following output files for use with the matlab based
reachset-analysis described elsewhere:

Here is the command line output from the run:

Including file: C:/meta/RMPLRampMeta/ExampleRampGeneratePlantv1.rmpl2

Exiting include file

Compiling RMPL 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2'.

Generating XML 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2.xml'.

RMPL read in as XML...

Compiling RMPL 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2' to Matlab...

Done!

Generating Matlab file 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_events.m

Generating Matlab file

'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_plantmodels.m

Generating Matlab file 'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_pm.m
Generating Matlab file
'C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1_qsp.m

We will look at the last two generated files here (shown in bold above).

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

First the QSP file:

%%

% Automatically Generated and emitted from RMPL Compiler

% Source file: C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2

%%

function [qsp_set] = ExampleRampGenerateQSPv1_qsp()

Ramp_g = 9.81;

Ramp_m = 1000;

Ramp_rcg = 3;

Ramp_Ir = 1;

Ramp_Kr = 1;

% State variables for this model:

% [Ramp_position, Ramp_velocity]

% Input variables for this model:

% [Ramp_torque]

% Output variables for this model:

% [Ramp_outp]

% Activity 1 parameters:

parameters.theta_nom = 0.0;

activity_1 = ExampleRampGenerateQSPv1_Activity([4.0, 6.0], [-5.0, 5.0], [-5.0, 5.0], [0.15,
0.35], [0.07, 0.13], parameters);

% Activity 2 parameters:

parameters.theta_nom = 0.25;

activity_2 = ExampleRampGenerateQSPv1_Activity([9.0, 11.0], [-4.75, 5.25], [-4.9, 5.1],
[1.15, 1.35], [0.07, 0.13], parameters);

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

% Activity 3 parameters:

parameters.theta_nom = 1.5;

activity_3 = ExampleRampGenerateQSPv1_Activity([4.0, 6.0], [-3.75, 6.25], [-4.9, 5.1], [1.4,
1.6], [-0.03, 0.03], parameters);

% Insert activities into QSP

qsp.plant_vector(1).activities(1) = activity_1;

qsp.plant_vector(2).activities(1) = activity_2;

qsp.plant_vector(3).activities(1) = activity_3;

% Events

[qsp.events, qsp.temporal_constraints] = ExampleRampGenerateQSPv1_events(3);

qsp_set = [qsp];

Next the plant model file:

%%

% Automatically Generated and emitted from RMPL Compiler

% Source file: C:\meta\RMPLRampMeta\ExampleRampGenerateQSPv1.rmpl2

%%

function [sysStruct, probStruct] =

 ExampleRampGenerateQSPv1_pm(delta_t, inputbounds, probbound, qsp,

index_plant)

Ramp_g = 9.81;

Ramp_m = 1000;

Ramp_rcg = 3;

Ramp_Ir = 1;

Ramp_Kr = 1;

% State variables for this model:

% [Ramp_position, Ramp_velocity]

% Input variables for this model:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

% [Ramp_torque]

% Output variables for this model:

% [Ramp_outp]

% Modes and Dynamics Equations:

Ramp_stopped_Mode = 0

Ramp_moving_Mode = 1

Ramp_Mode = Ramp_moving_Mode;

parameters = qsp.plant_vector(index_plant).activities(1).parameters;

Ramp_theta_nom = parameters.theta_nom;

Ramp_stopped_DYNAMICSA = [1, 0; 0, 1];

Ramp_stopped_DYNAMICSB = [0; 0];

Ramp_stopped_DYNAMICSf = [0; 0];

Ramp_moving_DYNAMICSA =

 [1, delta_t; -

delta_t*Ramp_g*Ramp_m*Ramp_rcg*sin(Ramp_theta_nom)/Ramp_Ir, -Ramp_Kr];

Ramp_moving_DYNAMICSB = [0; delta_t/Ramp_Ir];

Ramp_moving_DYNAMICSf =

 [0;

delta_t*Ramp_g*Ramp_m*Ramp_rcg*sin(Ramp_theta_nom)*Ramp_theta_nom/Ramp_Ir-

 delta_t*Ramp_g*Ramp_m*Ramp_rcg*cos(Ramp_theta_nom)/Ramp_Ir];

sysStruct.A = Ramp_moving_DYNAMICSA;

sysStruct.B = Ramp_moving_DYNAMICSB;

sysStruct.C = eye(2);

sysStruct.D = zeros(2, 1);

sysStruct.f = Ramp_moving_DYNAMICSf;

% WHERE DOES THIS COME FROM

inputbounds.umax = inputbounds.umax-probbound;

inputbounds.umin = -inputbounds.umax;

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.9 – RMPL

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

sysStruct.ymin = [-1000000; -1000000];

sysStruct.ymax = [1000000; 1000000];

sysStruct.umin = [inputbounds.umin];

sysStruct.umax = [inputbounds.umax];

% WHERE DOES THIS COME FROM

input_cost_weight = 0.01;

probStruct.Q = zeros(2, 2);

probStruct.R = eye(1) * input_cost_weight;

probStruct.norm = 2;

probStruct.subopt_lev = 0;

probStruct.tracking = 0;

The dynamics equations are shown in bold for the stopped and moving modes of the system in
Ax+By+c form as matrices.

Several other files are also generated that involve hooking the QSP and plant models into the
reachset analysis system but we have not included them here because they are only intelligible
by someone with a deep understanding of the reachset analysis code.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.10 - Verification using Hybrid Models with State and
Temporal Flexibility

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011
Contract Number: HR0011-10-C-0108

Prepared For:
Defense Advanced Research Projects Agency

3701 North Fairfax Drive
Arlington, VA 22203-1714

Prepared by:
BAE Systems Land & Armaments L.P. (BAE Systems)
4800 East River Road
Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement

Table of Contents
7.10 Verification using Hybrid Models with State and Temporal Flexibility 1

7.10.1 Executive Summary ... 1
7.10.2 Motivating Examples ... 2

7.10.2.1 Automatic Transmission Vehicle .. 3
7.10.2.2 Hill Climbing Vehicle ... 5
7.10.2.3 Elevator ... 6
7.10.2.4 Infantry Fighting Vehicle Ramp ... 7

7.10.3 Verification Process Overview ... 7
7.10.3.1 Use of Hybrid Model in Verification Process ... 8

7.10.4 Simple Example of Hybrid Model ... 9
7.10.5 Formal Specification of Hybrid Timed PCCA .. 13

7.10.5.1 PCCA .. 13
7.10.5.2 Extension to Hybrid .. 14
7.10.5.3 Extension to Timed ... 15

7.10.6 Mode Specifications ... 15
7.10.7 Verification through Qualitative Simulation using Hybrid Timed PCCA 15

7.10.7.1 Qualitative Simulation Problem Definition ... 17
7.10.7.2 Qualitative Simulation Examples ... 18
7.10.7.3 Compilation of Hybrid Timed PCCA .. 27
7.10.7.4 Qualitative Simulation of a Compiled Hybrid Timed PCCA 30

7.10.8 Bibliography .. 39

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. ii Refer to cover page for Distribution Statement.

List of Figures
Figure 7.10-1. Mode transition diagram for vehicle with automatic transmission. 3
Figure 7.10-2. Use cases for automatic transmission example. ... 4
Figure 7.10-3. Hybrid model representing vehicle that goes up and down hills. 5
Figure 7.10-4. Use case representing vehicle that goes up and down hills. 6
Figure 7.10-5. Simple elevator door example with upper temporal bound on Door Open mode. 6
Figure 7.10-6. Verification Process. ... 9
Figure 7.10-7. Simple elevator door example. ... 10
Figure 7.10-8. Flow tube for door open. .. 11
Figure 7.10-9. Flow tube for door open, with door closed initial constraint. 12
Figure 7.10-10. Model of elevator movement between three floors. .. 13
Figure 7.10-11. Simple elevator door example with upper temporal bound on Door Open mode.

 ... 16
Figure 7.10-12. Simple velocity limited system for getting from one position to another. 19
Figure 7.10-13. Simple velocity limited system for getting from one position to another. 23
Figure 7.10-14. Simple velocity limited system for getting from one position to another. 25
Figure 7.10-15. Set bounds cover a percentage of the noise distribution. 35
Figure 7.10-16. Set bounds on noise are translated to safety bounds on the input. 36
Figure 7.10-17. Flow tube set for two successive activities, assuming no disturbances. 37
Figure 7.10-18. Flow tube set for two successive activities, with input disturbances. 38

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. iii Refer to cover page for Distribution Statement.

List of Symbols, Abbreviations, and Acronyms
Symbol,

Abbreviation,
Acronym

Definition

HTPCCA Hybrid Timed PCCA

OPSAT Optimization Solver

PCCA Probabilistic Concurrent Constraint Automata

QSP Qualitative State Plan

RMPL Reactive Model-based Programming Language

STN Simple Temporal Networks

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.10 Verification using Hybrid Models with State and Temporal Flexibility
7.10.1 Executive Summary

For this project, MIT has developed capabilities in two areas: design verification, and design
optimization. Additionally, we have advanced and adapted the RMPL (Reactive Model-based
Programming Language) for use in these capabilities.

Design Verification

We have developed a verification capability for the design of dynamic electro-mechanical
systems, such as vehicles. This capability combines recent advances in qualitative simulation,
reach set analysis, optimization, and hybrid systems modeling. In particular, we have developed
hybrid models that appropriately capture the state and temporal limits of the mechanism being
designed, as well as the flexibility limits on tasks they are required to perform. This provides a
powerful foundation for analysis of a design’s performance.

Our system is intended primarily for use during the requirements analysis/conceptual design
phases of a project. This is where the most important decisions are made. Also these phases
often take more time and effort than the detailed design and implementation; the Bradley
fighting vehicle project is one example of this. Detailed design typically requires specialized
tools, such as CAD systems and detailed nonlinear simulations, which are beyond the scope of
our system. Further, good tools for detailed design already exist, but tools for requirements
analysis are less well developed. Therefore, most of the opportunity for improvement is in the
upstream phases of a project. Our focus is in line with the overall META goal of resolving
important decisions early in the design process, thereby dramatically shortening project time.

A key feature of our approach is the ability to evaluate a design of an electro-mechanical system
based on the physical design limits, independently of design of a control policy. This is in
contrast with standard existing techniques that use randomized forward simulations, which
require implementation of both a model of the design, as well as a control policy. This is
problematic for two reasons. First, designers may want to defer control policy implementation
decisions and focus on the electro-mechanical design. Second, by introducing the control aspect,
the design optimization problem becomes more complicated, as both electro-mechanical design
and control policy are being optimized simultaneously. By using novel, recently developed
reach set analysis technology, we are able to decouple electro-mechanical design optimization
from control policy design optimization.

A second key feature of our approach is a specialized abstraction of quantitative model
information into qualitative models. This abstraction is crucial in that it allows for fast
verification, but maintains sufficient quantitative information, represented as qualitative
regions, to allow for meaningful analysis. It is our experience that qualitative simulations that
are devoid of quantitative information are not useful for design verification. In particular, due
to the complex interplay between discrete and continuous constraints in typical designs, the
omission of quantitative information results in an in-sensitivity to design parameters. The
result is that the qualitative simulations are always the same; they have the same outcome for
different design parameter settings. Our system avoids this by keeping sufficient quantitative
information, abstracted into qualitative regions.

A third key feature of our approach is minimizing the information that users have to specify in
test cases for the design. For example, the user shouldn’t have to specify the details of plant
models and detailed task goals for each test case. By maintaining much of this information in

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

the hybrid model, which is shared by all test cases, the need for repetitious and needless
specification of "‘magic numbers"’ and other information in test cases is minimized.

Design Space Analysis and Optimization

When building a design, one is frequently faced with the challenge that the problem is over
constrained and that as stated there is no way to achieve the requirements. To resolve this
impasse it is necessary to relax some of the constraints (requirements). Our goal with design
space exploration is to provide a tool that enables designers to explore the space of constraint
relaxations and the impact that they have upon requirements. The approach hinges upon two
key capabilities: (a) an explanation capability; and (b) a means of representing conditional
preferences for the requirements.

The explanation capability produces an abstraction of a diagnosis of the failure to produce a
solution as a set of diagnosis kernels that implicate a collection of conflicts that in turn suggest
relaxations of the requirements. In order for the tool to be useful to a team of design engineers
it is necessary to be able to suggest, in order of preference, relaxations that would yield a
design solution. To support this, the designers provide a conditional preference representation.

Our work in this area leverages previous work in our lab on design optimization, combinatory
optimization, and mixed logic linear programming. We have previously developed an
optimization solver called OPSAT, which we have used to optimize hybrid discrete/continuous
designs. The focus of our work in this area for this project was integration of RMPL with
OPSAT, to provide a more convenient method for specifying problems.

Language Support

We have developed two back-ends for the RMPL language that produce output compatible
with the Matlab reachSet analysis code and the other that produces models in the OPSAT
solver format for use in design space exploration. The RMPL backend for OPSAT is a first step
towards the Design Space Analysis capability by bringing RMPL modeling to the OPSAT
solver and explanation capabilities.

The following sections provide more details on our work in all of these areas.

7.10.2 Motivating Examples

Before going into the details of the verification system, we introduce a set of motivating
examples, some of which will be used later to illustrate concepts.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 3 Refer to cover page for Distribution Statement.

7.10.2.1 Automatic Transmission Vehicle

Figure 7.10-1 shows a mode transition diagram for a vehicle with an automatic transmission.
The modes correspond to the gear that the vehicle is in. Transitions between modes are
achieved through a combination of input commands, and satisfaction of guard conditions. In
this case, transitions between modes 1, N, and R are determined solely by input commands.
Transitions between modes 1, 2, and 3 are determined by the guard conditions on vehicle
velocity, v.

Figure 7.10-1. Mode transition diagram for vehicle with automatic transmission.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 4 Refer to cover page for Distribution Statement.

For example, suppose that the vehicle is in mode 2 (2nd gear). Transition to mode 3 occurs
when v>25, and transition to mode 1 occurs when v<4. Thus, allowable speeds in mode 2 range
from 4 to 25. The evolution of position and velocity state in mode 2 is determined by the
dynamics associated with the mode, and by limits on the acceleration control input. These
constraints impose limits on how a guard can be achieved, and they implicitly define the valid
state trajectories for achieving the guard. As we will see, reach set analysis techniques can be
used to determine valid state trajectories that end in a guard state being satisfied. The result is
an explicit representation of the valid state trajectories, called a flow tube. These flow tubes only
have to be computed once, for the model, rather than for each of possibly many use cases,
because they don’t depend upon the user provided use case. These flow tubes compile out the
limits of what the plant with its constraints is capable of doing (independent of any particular
use case). Models like this can also incorporate probabilistic transitions and noise models.

In order to verify that a design will work, a set of use cases must be specified against which the
design model will be tested. Figure 7.10-2 shows how a form of qualitative simulation can
generate detailed use cases given a user specified high level case. We can enumerate these in an
interesting way such as in order of simplicity (number of mode changes) and we can abandon a
use case as soon as we know during its elaboration that it has no solutions.

Figure 7.10-2. Use cases for automatic transmission example.

At the top of Figure 7.10-2 is a requirement that specifies in just enough detail what the user is
trying to achieve including constraints on time, speeds, etc. This is the high level use case.
Many detailed use cases can be enumerated from the model, but this should be done
automatically. In this example, out of the 4 cases enumerated only one is viable given the user
requirements.

Case 1 uses a single gear in a saw tooth approach. Case 2 involves a single gear for a
trapezoidal model. Case 3 uses two gears, and case 4 uses three gears. Case 1 is not feasible,
based on the model constraints, because the top speed will be 5 mph (in gear 1), so the vehicle
will not reach 20 miles in the allotted 40 minutes. Case 2 fails for the same reasons. Case 3 fails
too because even at the maximum speed of 25 mph for the entire route we can only get a 16 2/3
miles in 40 minutes. Case 4 can work as long as we can get to third gear long enough and keep
it there long enough to get our average speed up to 30 mph or higher. The temporal bounds of
the modes and the bounds on inputs for the modes can be extracted from bounding
computations on the composition of the flow tubes.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 5 Refer to cover page for Distribution Statement.

7.10.2.2 Hill Climbing Vehicle
We can extend the automatic transmission vehicle model to include dynamics associated with
going up and down hills. Hybrid discrete and continuous model aspects for this are shown in
Figure 7.10-3.

Figure 7.10-3. Hybrid model representing vehicle that goes up and down hills.

An example user-specified use case is shown in Figure 7.10-4. This use case specifies a set of
intervals with different hill grades. Temporal constraints on overall completion time, or on
times for individual intervals, could also be specified.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 6 Refer to cover page for Distribution Statement.

Figure 7.10-4. Use case representing vehicle that goes up and down hills.

7.10.2.3 Elevator
Consider the operation of an elevator door. This can be modeled using four discrete modes:
door shut, door open, door shutting, door opening, as shown in Figure 7.10-5.

Figure 7.10-5. Simple elevator door example with upper temporal bound on Door Open
mode.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 7 Refer to cover page for Distribution Statement.

In general, there are interesting interactions between actuation limits, plant dynamics, and
temporal constraints. Consider the door open mode. For simplicity, we assume a first-order
model, where the state, x, is door position, the input, v, is door velocity, and there are
constraints on the input (there is a minimum and maximum velocity).

Most real elevator doors close after a particular, specified duration. This can be accomplished
by adding a temporal upper bound, u

2
, to the mode specification for the Door Open mode. This

is a constraint imposed by the designer, which is combined with constraints imposed by the
plant.

7.10.2.4 Infantry Fighting Vehicle Ramp
The Bradley Infantry Fighting Vehicle has a door at the back that opens to allow entry and exit
of troops. When the door opens, it folds down, forming a ramp down which the soldiers can
run. A simple, linear equation of motion for the ramp is given by the following torque balance
equation:

 I
R
̈Θ=−g m

R
 r

cg
+τ

R
 (1)

where I
R
 is the (scalar) inertia of the ramp, Θ is the ramp angle, g is gravitational acceleration,

m
R
 is the mass of the ramp, r

cg
 is the center of mass of the ramp, and τ

R
 is the actuator torque

exerted on the ramp about its hinge. A key assumption here, made to make the system linear, is
that Θ will be small. If this is not true, then a more complex model, with piecewise linearization
and more QSP activities should be used (see subsequent sections). Force disturbance terms, due
to loading from footsteps, can be added to the above formulation.

A use case for opening the ramp would consist of three activities. The first corresponds to
acceleration of the ramp angular velocity to its maximum value. The goal region for this
activity should be some range around the target velocity, and possibly, also some goal region
for angular position. The second activity corresponds to movement at a steady angular
velocity. A goal region about the reference angular velocity could also be included. The third
activity corresponds to deceleration of the ramp angular velocity to zero. The goal region for
this activity should be some (small) range about 0 for angular velocity, and some (small) range
about the final target position.

7.10.3 Verification Process Overview

The MERS MIT component of the DARPA META project involves development of a
verification capability for the requirements and preliminary designs of electro-mechanical
systems. Current approaches to this type of verification involve the development of custom
spreadsheets. Thus, the goal of this project is to develop a superior capability that is focused on
requirements and preliminary design verification, but not on verification of detailed designs.
This focus is important because requirements analysis phases of large projects typically
consume a significant portion of the time and resources. Therefore, capabilities that improve
the requirements analysis process and make it more efficient have high impact. Furthermore,
mistakes made during requirements analysis (for example, not recognizing that the
requirements pose an infeasible problem) result in expensive wasted design and development
time, until the mistake is recognized and addressed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 8 Refer to cover page for Distribution Statement.

A key requirement for this capability is that it be able to verify designs based on the physical
limits of the electro-mechanical design, without requiring the user to also design and develop a
control policy. This rules out the use of a monte-carlo forward simulation methods, since these
require both a plant model and a control policy to run a simulation. For this reason, we use
reach set analysis to compute families of state trajectories that the electro-mechanical design
can achieve, based on a plant model alone. These are then tested against use cases representing
the requirements.

In order to verify a design, we use the plant model, and associated reach set analysis, as a basis
for Qualitative Simulations [WK91]. Each Qualitative Simulation produces a trajectory of
Qualitative States, which are an abstraction of the full quantitative state trajectory, but which
nevertheless have sufficient information content to allow for checking whether a use case
requirement is satisfied. This approach supports fast verification of a design with respect to a
potentially large and diverse set of use cases.

The following discussion first gives an overview of the verification process. After this, we
describe the design of a Hybrid Model, based on Probabilistic Concurrent Constraint Automata
(PCCAs) [MWI05], for use in verification applications. Key distinguishing features of this
model are that it incorporates concepts of temporal flexibility into transitions, and that it uses
flow tubes to represent the relation between state, input, and temporal constraints. Note that
the focus here is on a model. The model information is used by the qualitative simulation to
generate trajectories consistent with the use case requirements.

After definition of the plant model, we describe use case representation, as a partially specified
Qualitative State Plan (QSP) [HW06]. Subsequently, the process of Qualitative Simulation
based on the plant model, and satisfying the use cases, is described.

7.10.3.1 Use of Hybrid Model in Verification Process
Figure 7.10-6 shows the data structures and operations of the verification process. There are
three inputs: 1) the Hybrid Timed PCCA (Hybrid Model), 2) the Mode Specification, and 3) the
Partial QSP. There is one output: a set of Qualitative State Trajectories.

The Hybrid Model represents the capabilities and limitations of the plant. The plant is the
electro-mechanical device being controlled. Limitations may include temporal constraints, and
also dynamic constraints on state evolution due to saturation limits on control inputs like
velocity or acceleration. The Mode Specification contains additional temporal and state space
constraints that are not inherent in the plant, but rather, are imposed by the designer on the
model. These specifications are general to the model; they are not specific to particular use
cases. The Partial QSP (Partial Qualitative State Plan) represents a use case specified by the
designer. It must include at least a specification of the initial and goal qualitative states for valid
Qualitative State Trajectories. It may also include temporal and state space constraints, as well
as required partial trajectories.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 9 Refer to cover page for Distribution Statement.

Figure 7.10-6. Verification Process

The verification process consists of two distinct operations: model compilation, and qualitative
simulation. The model compilation process combines the constraints from the HTPCCA and
the Mode Specification, and generates qualitative abstractions of the quantitative dynamics
information, resulting in a compiled model. These qualitative abstractions are based on reach set
analysis, which is used to construct flow tubes [HW06] representing families of valid
trajectories. The compilation process also combines and compiles temporal constraints, so that
the compiled model becomes an efficient basis for qualitative simulation.

The qualitative simulation uses the compiled model to generate trajectories. It performs an
efficient search to find trajectories that satisfy the Partial QSP use case requirements, and to
quickly prune out ones that do not.

The next section presents a simple example of a Hybrid Model, which will be used throughout
the discussion. Subsequent sections describe the data structures and operations of the
verification process in more detail.

7.10.4 Simple Example of Hybrid Model

Consider the operation of an elevator door. This can be modeled using four discrete modes:
door shut, door open, door shutting, door opening, as shown in Figure 7.10-7.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 10 Refer to cover page for Distribution Statement.

Figure 7.10-7. Simple Elevator Door Example

In general, there are interesting interactions between actuation limits, plant dynamics, and
temporal constraints. Consider the door open mode in the figure. For simplicity, we assume a
first-order model, where the state, x, is door position, the input, v, is door velocity, and there
are constraints on the input (there is a minimum and maximum velocity.

A flow tube for this mode is shown in Figure 7.10-8.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 11 Refer to cover page for Distribution Statement.

Figure 7.10-8. Flow tube for door open.

Cross sections for three durations, d1, d2, and d3, are shown in gray. The green region to the
right is the goal region; the small range of positions for which the elevator door is considered
open. Because the dynamics are simple, the flow tube can be easily computed analytically:

x
max

 ()d =max ()x
goal

−v
min

d

x
min

 ()d =min ()x
goal

−v
max

d (2)

Suppose that we now impose an additional constraint: that the mode must begin with the door
in a closed position. Figure 7.10-9 depicts this situation. The red line on the x axis shows x

init
,

the small range of positions for which the elevator door is considered closed. The pink
rectangular region shows the valid initial states and durations for this mode. Note that a

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 12 Refer to cover page for Distribution Statement.

duration less than d
1
 is not possible, because the initial region does not fully overlap a cross

section with a shorter duration. This is because there is a maximum permitted velocity. Note
also that a duration greater than d

2
 is not possible, for the same reason. This is because there is

a minimum permitted velocity. Thus, d
3
 is not a possible duration.

Figure 7.10-9. Flow tube for door open, with door closed initial constraint.

This simple example shows how the interaction of actuation limits, plant dynamics, and initial
and goal region requirements can result in temporal constraints. The interactions are more
complex with higher order systems, but the basic principle is the same. (Think about transition
sequence fragments in the automaton, and how these can be used to impose constraints on
QSPs.)

Consider, next, another elevator related example, shown in Figure 7.10-10. This shows a
hybrid model representing movement of the elevator between three floors. In this model, the
modes going up and going down have multiple exit transitions. Flow tubes are used to derive
temporal constraints that are different for the different exit transitions.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 13 Refer to cover page for Distribution Statement.

Figure 7.10-10. Model of elevator movement between three floors.

We assume, again, simple dynamics. In this case, the state variable is vertical position of the
elevator, and the input is the vertical speed. The going up mode has an exit transition at the
second floor, and one at the third floor. The guard conditions for these exits include goal
regions for vertical position. Given that the initial region for the going up mode is the first
floor, then the dynamics impose different temporal constraints on the second and third floor
exit transitions. This is because it takes longer to go from the first to the third floor, than from
the first to the second floor.

7.10.5 Formal Specification of Hybrid Timed PCCA

7.10.5.1 PCCA
A Hybrid Timed Probabilistic Concurrent Constraint Automaton is based on a Probabilistic
Concurrent Constraint Automaton (PCCA). We define the latter first, and then extend this to
achieve a complete specification of the former.

A PCCA [MWI05] consists of a set of automata, where an automaton for component
"‘a"’ is defined by the tuple:

A
a
= < > ∏

a
 ,M

a
,T

a
,P

T
a
,Pτ

a
.

∏
a

 = ∏ m
a
∪ ∏ r

a
 is a finite set of discrete variables for component "‘a"’, where each

variable π
a
∈ ∏

a
 ranges over a finite domain D ()πa

. ∏ m
a
 is a singleton set containing mode

variable x
a
, whose domain D ()x

a
, is the finite set of discrete modes in A

a
. Attribute variables

∏ r
a
 include inputs, outputs, and any dependent variables used to specify behavior.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 14 Refer to cover page for Distribution Statement.

M
a
 maps each mode assignment (x

a
=v

a
) to a finite domain constraint c

a
 ()x

a
=v

a
.

T
a
 is a set of transition functions. Given a current mode assignment (x

a
=v

a
) and guard

g
a
, each transition function τ

a
 ()x

a
=v

a
,g

a
 specifies a target mode assignment that the automaton

could transition into in the next time step.

P
T

a
 is a transition probability distribution. For each mode variable assignment and

guard, there is a probability distribution across all transitions into target modes defined by the
set of transition functions.

An entire system (plant) is modeled by composing such automata, resulting in a PCCA model.

7.10.5.2 Extension to Hybrid
The extension of a PCCA automaton to be hybrid is accomplished through the introduction of
continuous variables and constraints. The constraints can include both numerical equalities and
inequalities. The constraints can be used to express differential, as well as algebraic relations.
We assume that the constraints are all linear. Further, for any particular mode assignment, we
assume that the numerical constraints are convex.

In order to make a PCCA automaton hybrid, we associate with each mode assignment, (x
a
=v

a
),

a set of continuous variables, c. These include state variables, x, input variables, u, and output
variables, y. Additionally, we associate with the mode assignment a set of initial constraints, a
set of goal constraints, and a set of operating constraints. The initial constraints represent
guards, over c, that must be satisfied in order to make a transition into the associated mod.
Thus, the initial constraints are entry constraints for the mode. The goal constraints represent
guards, over c, that must be satisfied in order to make a transition out of the associated mode
into a new mode. Thus, the goal constraints are exit constraints for the mode; they become part
of the transition function, τ

a
 ()x

a
=v

a
,g

a
, defined for PCCAs, where they augment the discrete

domain guard conditions g
a
. The operating constraints represent requirements, over c, that

must be satisfied in order for the associated mode to be marked. If the operating constraints are
not satisfied, the automaton exits out of the associated mode immediately, usually to an error
mode.

The initial and goal constraints are linear algebraic equality and inequality constraints of the
form

f ()c =c
1

g ()c ≤c
2
 (3)

where c
1
 and c

2
 are vectors of constants. It is assumed that the initial and goal constraint sets

are each convex.

The operating constraints are also of the form of (4), and are convex. In addition, operating
constraints can include dynamic constraints in the form of linear difference equation
constraints. Specifically, these constraints are expressed as

x ()k+1 =Ax ()k +Bu ()k y ()k =Cx ()k +Du ()k (4)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 15 Refer to cover page for Distribution Statement.

where A,B,C,D are matrices of appropriate dimensions.

Difference engine constraints represent the dynamic state evolution over time, and can be used
to compute constraints on this state evolution. For example, suppose that the state vector, x,
consists of position and speed of a car moving on a straight line. Suppose, further, that the
control input vector, u, consists of the acceleration, which has limits. The limit on the input,
combined with the dynamic constraints, results in limits on the evolution of the position and
velocity state. If the maximum acceleration is 1m/s2

This also shows the relationship between dynamic constraints on state evolution, and temporal
constraints on duration of a mode. In the above example, if a guard condition requires the state
to be in a certain region (at position 10m, for example), then the dynamic constraints may
impose limits on how long it takes to get there.

, then the car can’t go from 0 to 10m/s in
one second. It also can’t go from position 0m, velocity 0m/s to position 10m in one second.

7.10.5.3 Extension to Timed
As discussed in the previous subsection, dynamic constraints may result in implicit temporal
constraints on mode duration. We now extend the model to also allow for explicit temporal
constraints, provided by the user. For example, the upper temporal bound u

2
 in Figure 7 is a

specified bound on the maximum time the elevator door can remain open before it starts to
close.

The extension of a PCCA automaton to include explicit temporal constraints is accomplished
through the introduction of explicit lower and upper bounds on duration. Thus, we associate
with each mode assignment, (x

a
=v

a
), a temporal bound []l,u

As will be discussed subsequently, the interaction of implicit and explicit temporal bounds is of
great interest in verification, and is an important contribution of this work.

, where l specifies the minimum
feasible duration for the mode, and u specifies the maximum.

7.10.6 Mode Specifications

Mode specifications are temporal and state space constraints imposed by the designer for
modes in a Hybrid Timed PCCA. They represent additional constraints, beyond the ones
inherent in the plant being modeled. This results in a tightening of constraints in the combined
system. The temporal and state space constraints in the Mode Specifications have the same
form as corresponding constraints in the Hybrid Timed PCCA.

Consider the simple elevator door example in Fig. 7. As shown in the Figure, the door can
remain open for an infinite duration (according to the plant model). Most real elevator doors
close after a particular, specified duration. This can be accomplished by adding a temporal
upper bound, u

2
, to the mode specification for the Door Open mode. This is a constraint

imposed by the designer. When combined with the plant model, the following automaton
representing both plant model and mode specifications can be inferred.

7.10.7 Verification through Qualitative Simulation using Hybrid Timed PCCA

A Hybrid Timed PCCA can be used to generate a qualitative simulation of the possible state
evolution trajectories. In this case, the inputs to the qualitative simulator component are the
compiled Hybrid Timed PCCA, and a partial QSP representing use case requirements, as shown

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 16 Refer to cover page for Distribution Statement.

in Figure 7.10-11. At a minimum, the partial QSP must specify initial and goal qualitative
states, but it may also specify intermediate qualitative states and activities that lead from the
initial to goal states. The output of such a simulation is a sequence of mode assignments
(qualitative states), with associated duration ranges for each mode. An additional byproduct of
the forward simulation is a probability indicating the likelihood of the trajectory.

Figure 7.10-11. Simple elevator door example with upper temporal bound on Door Open

mode.

A key advantage of this qualitative simulation approach, versus a full forward simulation with
full continuous dynamics, is that it caches continuous dynamics information in flow tubes, so
that this doesn’t have to be repeated. This flow tube abstraction is not sufficient to compute
individual trajectories the way a full continuous dynamics simulation would. However, the flow
tube information does define the boundaries of valid trajectory sets, which is sufficient for

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 17 Refer to cover page for Distribution Statement.

verification. A second key advantage of this qualitative simulation approach versus full forward
simulations is that the latter require the user to provide a control policy, while the former (our
approach) does not. This is significant, especially during the requirements and early design
phases of an electro-mechanical system. The analysts and designers working during these
phases are primarily concerned with the capabilities and limits of the electro-mechanical design,
and do not want to have to worry about a control policy in addition to this. Our approach
allows such users to specify limits of the design, such as maximum speed, maximum actuation
force, etc., and to base verification analysis on these limits alone, without having to also develop
a control policy.

7.10.7.1 Qualitative Simulation Problem Definition
In order to define the qualitative simulation problem more formally, consider again Figure
7-10-6, which shows the data structures and operations of the verification process. There are
three inputs: 1) the Hybrid Timed PCCA (Hybrid Model), 2) the Mode Specification, and 3) the
Partial QSP. There is one output: a set of Qualitative State Trajectories. Each such trajectory is
represented as a sequence of HTPCCA modes, with associated durations.

It is important to note two important aspects of this output. First, unlike typical qualitative
simulations, which are simply mode sequences, this output incorporates metric time,
represented as the associated durations. This is crucial for meaningful verification. Second, the
modes in the sequence have associated quantitative information: the compiled flow tubes in the
HTPCCA modes, which represent an abstraction of the system dynamics. Inclusion of this
(abstracted) quantitative information is also crucial for meaningful verification.

The HTPCCA forms a graph where the nodes are modes, and the edges are transitions. The
qualitative simulation problem, and the verification process itself, is defined as one of searching
this graph to produce a mode sequence (Qualitative State Trajectory) that satisfies the Partial
QSP. The qualitative simulation is accomplished by deciding mode transitions, and duration in
each mode. Thus, qualitative simulation amounts to assignments to two kinds of discrete
decision variables (mode, and duration), subject to logical (discrete) and numeric (continuous)
constraints. Note that a discrete time approach is used in modeling the continuous dynamics.
This is consistent with commonly used standard controller synthesis and verification analysis
approaches.

Before describing the algorithm that performs the verification process, it is useful to gain
understanding through a series of simple examples that illustrate the key concepts.

After these examples, we describe the algorithms of the verification process. As described
previously in the overview section, the verification process has two main steps: model
compilation, and qualitative simulation. We begin the algorithm description with a discussion
of the model compilation process. This is followed by a discussion of the algorithms for
qualitative simulation. As will be explained in more detail, the qualitative simulation uses a
generate and test search, where a candidate mode sequence and duration schedule is generated,
and then checked to determine whether all qualitative and temporal constraints are satisfied.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 18 Refer to cover page for Distribution Statement.

7.10.7.2 Qualitative Simulation Examples

7.10.7.2.1 Qualitative Simulation Example 1

The first example uses a simple model and partial QSP, as shown in Figure 7.10-12. In this
case, the use case partial QSP is actually fully specified. It represents going from Start to Finish
within duration bounds [l,u].

The qualitative simulation process begins at a mode in the model that satisfies the initial mode
requirements of the partial QSP. Recall that the partial QSP, even if it isn’t fully specified, must
specify the initial and final state. In this example, the initial mode for the partial QSP is
"‘Start"’, and this matches the mode "‘A"’ in the model.

The search process investigates possible exit transitions out of the initial mode. For this
example, there is one exit transition in the model: to the mode "‘Move"’. This matches the
"‘Move"’ mode in the QSP.

To achieve a match, it is typically necessary to attempt to adjust the flow tube computed for the
model so that it satisfies the requirements of the use case QSP. This is because the model
provides a template description of dynamic behavior in each mode, which can be adapted during
Qualitative Simulation to a wide range of possible use cases. This adjustment must be made in
such a way that the inherent dynamic information in the flow tube is not altered.

Flow tube adjustment requires parameterized flow tubes, which are discussed in more detail in
Section 7.4.1. A simple adjustment, which can always be accomplished easily, is a shifting of a
flow tube in position. This type of adjustment will be used extensively in the following
examples.

Use of parameterized flow tubes in this way supports the key concept of computing flow tubes
once for the model, and then re-using them extensively in the qualitative simulation to
determine possible trajectories. This avoids needless re-computation of flow tubes, especially
when there is a large set of complex use cases.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 19 Refer to cover page for Distribution Statement.

Figure 7.10-12. Simple velocity limited system for getting from one position to another.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 20 Refer to cover page for Distribution Statement.

For the model in this simple example, the flow tube representing the movement is computed
based on the velocity limits. Problems with more complex dynamics, such as acceleration
limited dynamics, require a more sophisticated flow tube computation, as will be discussed
further in Section 7.3.1. The simple velocity-limited flow tube computation is used here for
illustrative purposes, though it can also be usefully applied to a wide variety of problems.
Suppose that the nominal goal in the model is x

g
=[x

gmin
,x

gmax
]=[−2,2] , where x

g
 is the

goal position. Suppose that the velocity limits are in the range v
lim

=[v
min

,v
max

]=[1,2] . The
flow tube, as a function of duration back from the goal can be expressed as

x
max

=x
gmax

−v
min

d

x
min

=x
gmin

−v
max

d (5)

Here, d corresponds to duration. For a discrete time system, d is a multiple of the time
increment, δt. Assuming a time increment of δt=1, the flow tube cross sections for each d are as
shown below.

x
max

 x
min

 d

2 -2 0

1 -4 1

0 -6 2

-1 -8 3

-2 -10 4

-3 -12 5

-4 -14 6

-5 -16 7

-6 -18 8

We assume in this example that the maximum duration specified in the model is 8.

Suppose, now, that the goal in the QSP is specified to be x
gqsp

=[x
gqspmin

,x
gqspmax

]=[8,12] .
Shifting the model flow tube by 10 causes the goal range in the shifted model flow tube to
match the goal in the QSP: x

g
+10=x

gqsp
. Thus, the shifted flow tube cross sections are

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 21 Refer to cover page for Distribution Statement.

x
max

 x
min

 d

12 8 0

11 6 1

10 4 2

9 2 3

8 0 4

7 -2 5

6 -4 6

5 -6 7

4 -8 8

This simple example shows how a flow tube in the model is adjusted to meet the requirements
of the QSP. When this can be done, then the transition out of the mode in the model is valid,
and the qualitative simulation search can proceed along that branch.

Once a transition has been established, the next step is to check whether state constraints cause
a tightening of the duration range. In the model and shifted flow tubes, the duration range is
[0,8]. Suppose now that the initial position range specified in the QSP is
x

initqsp
=[x

initqspmin
,x

initqspmax
]=[5,7] . Checking against the shifted flow tube cross sections,

this means that durations of 2, 3, 4, and 5 are valid. A duration of 1 doesn’t work if the initial
position state is 5. A duration of 6 doesn’t work if the initial position state is 7. Thus, the
tightened duration range is [2,5], which is less than the original duration range of [0,8]. Note
that this tightening can result in a duration range that is empty. For example, if
x

initqsp
=[15,17] , then none of the shifted flow tube cross sections match, and the tightened

duration range is empty. This implies that the transition actually can’t be accomplished, and
that the search branch should be pruned.

At this point, we have a qualitative simulation trajectory that matches the state requirements of
the QSP. The final step is to check temporal constraints, to make sure that the tightened
temporal constraints in the qualitative simulation trajectory are consistent with temporal
constraints specified in the QSP. This is generally accomplished using STN analysis techniques
(see thesis, Stedl). In this simple example, suppose that the QSP temporal constraint is
[l,u]=[1,4]. Combining this with the tightened temporal constraint from the flow tube results
in an overall temporal constraint of [2,4] for the "‘move"’ mode in the qualitative simulation.
This is a further tightening, resulting from the user specified temporal constraint in the QSP.
In this case, the duration is non-empty, so the qualitative simulation trajectory is valid. If the
QSP temporal constraint is [l,u]=[6,8], then the tightened duration range is empty, and the
qualitative simulation trajectory is not valid.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 22 Refer to cover page for Distribution Statement.

In this example, the goal range of the model flow tube perfectly covered the goal requirement
specified in the QSP. This will not always be the case. For example, if the goal range of the
model flow tube were [−1,1] instead of [−2,2], then the model flow tube cross sections are too
small; they constrain the trajectory set too tightly. This may result in failure to cover the initial
region constraint. If, on the other hand, the goal range of the model flow tube were [−3,3],
then the model flow tube cross sections would be too large; they do not sufficiently constrain
the trajectory set. This may result in admission of infeasible trajectories.

We address this problem in two ways: adjustment, and relaxation. Just as the goal position was
shifted in the previous example, it is often possible to efficiently adjust the model flow tube so
that its goal range matches that of the QSP. This is always possible for position goal range,
even with higher-order flow tubes.

In some cases, it is prohibitively expensive to adjust the model flow tube adequately. In this
case, a relaxation of the problem is first solved to obtain a preliminary qualitative simulation
trajectory. If this trajectory is feasible, further analysis is performed to solve the full (un-
relaxed) problem. The relaxation is obtained by finding a model flow tube (possibly through
efficient adjustment) that represents an "‘outer"’ approximation. In the previous example, this is
the model flow tube with goal range [−3,3], resulting in flow tube cross sections that are too
large. The representation is therefore complete, but not sound; it will admit some infeasible
trajectories (that is why it is a relaxation). If the qualitative simulation trajectory resulting
from this relaxed flow tube is not feasible, then the corresponding search branch can be pruned
and need not be investigated further. If the trajectory is feasible, further analysis is needed to
confirm that the un-relaxed problem requirements are also satisfied by the trajectory. This
analysis amounts to a full re-computation of the trajectory flow tubes, based on goal ranges
that match the QSP requirement exactly. This full re-computation is what we originally did for
META. The point is that the relaxation filter should prune out the majority of branches so that
a full flow tube re-computation is only rarely necessary. Use of relaxations is a well known
approach in the solution of complex problems. Our use of it in this case is an interesting and
novel application of this technique.

This issue is complex, and is introduced in summary here first. See Appendix x for further
details on flow tube adjustment through use of parameterized flow tubes. Further details of the
relaxation approach will be presented subsequently.

7.10.7.2.2 Qualitative Simulation Example 2

In the next example, shown in Figure 7.10-13, the QSP is slightly more complicated; an
intermediate waypoint (WP1) has been added before the goal. Note, however, that the model
stays the same. This is a key concept: many different QSP’s, representing many different use
cases, can share the same model, and thus, the flow tubes in the model. This allows for
evaluating a design (as described by the model), for a large number of use case. This allows for
the evaluation to be both thorough and time efficient.

Suppose that the goal in the QSP for WP1 is specified to be x
gqsp

=[8,12] , and the goal to
finish is x

gqsp
=[16,20] . Working backwards from the finish goal, the shifted flow tube for

Move 2 has cross sections

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 23 Refer to cover page for Distribution Statement.

x
max

 x
min

 d

20 16 0

19 14 1

18 12 2

17 10 3

16 8 4

15 6 5

14 4 6

13 2 7

12 0 8

Figure 7.10-13. Simple velocity limited system for getting from one position to another.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 24 Refer to cover page for Distribution Statement.

The goal for WP1 becomes the initial region for mode Move 2. Checking against the shifted
flow tube cross sections, this means that durations in the range [4,8] are valid. The shifted
flow tube for Move 1 is the same as the one for Move in the previous example. Thus, we have
possible durations of [2,5] and [4,8] for Move 1 and Move 2 respectively. The possible
duration range for the sequence is therefore [6,13]. Suppose that the QSP temporal constraint
is [l,u]=[4,10]. The tightened temporal range is then [6,10], which is non-empty, so the
trajectory is feasible.

This example could be extended with many more waypoints, and the same approach, with the
same model, would be used. This shows how flow tubes computed for the model are used
repeatedly in evaluation of the use case.

7.10.7.2.3 Qualitative Simulation Example 3

In the next example, shown in Figure 7.10-14, the model provides two paths to the finish. The
discrete mode variable "‘Gear"’ has value 1 in mode "‘Move 1"’, and has value 2 in mode "‘Move
2"’. These two modes have different velocity constraints (second gear has higher minimum and
maximum velocities than first gear).

Two use case QSP’s are shown. One specifies that the "‘Move 1"’ path should be used
(indicating that the movement should be in first gear). The other specifies that the "‘Move 2"’
path should be used (indicating second gear). Thus, in this case, the discrete mode variable
"‘Gear"’ is fully specified.

Suppose that the velocity limits are v
lim

=[v
min

,v
max

]=[1,2] for "‘Move 1"’, and
v

lim
=[v

min
,v

max
]=[2,4] . The cross sections of the model flow tube for "‘Move 1"’ have been

shown previously. The cross sections of the model flow tube for "‘Move 2"’ are

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 25 Refer to cover page for Distribution Statement.

Figure 7.10-14. Simple velocity limited system for getting from one position to another.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 26 Refer to cover page for Distribution Statement.

x
max

 x
min

 d

2 -2 0

0 -6 1

-2 -10 2

-4 -14 3

-6 -18 4

-8 -22 5

-10 -26 6

-12 -30 7

-14 -34 8

Suppose, now, that the goal in both QSP’s is specified to be x
gqsp

=[x
gqspmin

,x
gqspmax

]=[8,12] ,
and that the initial range in both QSP’s is x

initqsp
=[x

initqspmin
,x

initqspmax
]=[5,7] , as was the

case in Example 1. The shifted flow tube for "‘Move 1"’ is as was shown in Example 1, and the
valid duration (from the valid cross sections) is [2,5], as before. The cross sections for the
shifted flow tube for "‘Move 2"’ are

x
max

 x
min

 d

12 8 0

10 4 1

8 0 2

6 -4 3

4 -8 4

2 -12 5

0 -16 6

-2 -20 7

-4 -24 8

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 27 Refer to cover page for Distribution Statement.

Valid durations are 1 and 2, so the valid duration range is [1,2]. The duration ranges may then
be further tightened based on the [l,u] specification in the QSPs.

7.10.7.3 Compilation of Hybrid Timed PCCA

There are two major steps in this compilation process. In the first step, a flow tube is computed
for each mode. This computation is based on the initial, goal, and operating constraints for the
mode. The resulting flow tube is a representation of the allowed state evolution of the
continuous state of the mode over time. In the second step, temporal constraints implied by the
flow tubes are combined with explicitly specified temporal constraints, resulting in an overall
tightening of mode duration constraints. The compilation process results in flow tubes, and
tightened temporal constraints, both of which are useful for performing qualitative simulations,
and other kinds of analysis.

7.10.7.3.1 Flow Tube Compilation

The flow tube is an abstraction, and a relaxation, in that it replaces the dynamics (difference
equation constraints, actuation limits), which imply state evolution, with an explicit
representation of the envelope of state evolution over time. Thus, for each time increment in
the duration of a mode, the flow tube contains a convex set of feasible points in the continuous
state space. The flow tube does not, however, provide detailed trajectory information about
how a particular point in state space evolves, as specified by the difference equations.

Flow tubes can be used to determine whether a set of initial, goal, and operating constraints for
a mode is consistent, and to establish duration bounds for the mode implied by the dynamics. In
particular, flow tubes represent durations for which the initial, goal, and operating constraints
are feasible. They are thus very useful for a variety of verification tasks.

A flow tube consists of a set of cross sections, where each cross section represents the feasible set
of states at a particular duration increment. Each cross section is represented by a convex
polytope of the form

Hx≤K

The initial and goal regions of a mode are specified in this form as well. The algebraic portion
of the operating constraints is also specified in this form.

 (6)

Pseudocode for an algorithm for computing a sequence of cross sections, using backward reach
set analysis is shown below.

ComputeModeFlowTubes(mode M) {
 for each goal region, g, in a M's transition function {
 ComputeGoalFlowTube(g, M);
 }
}

ComputeGoalFlowTube(g, M) {
 flow_tube = {};
 p1 = g;
 kmax = increment index corresponding to u(M);
 l_implicit = -1;
 u_implicit = -1;
 for k = 1 to kmax {
 p1 = ComputeOneStepBackwardReachSet(p1, dynamics(M));
 insert {k, p1} into flow_tube

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 28 Refer to cover page for Distribution Statement.

 if (l_implicit < 0) { // Hasn't been set yet
 if (intersection(p1, init(M) == init(M)) { // if p1 covers M completely
 // The duration is valid
 l_implicit = k;
 }
 }

 if (not(l_implicit < 0) and u_implicit < 0) { // l_implicit set, but
u_implicit not set
 if (not (intersection(p1, init(M) == init(M))) {
 // The duration is not valid
 u_implict = k - 1;
 }
 }
 }

 // Result to be cached for g is flow_tube, l_implicit, and u_implicit
}

ComputeOneStepBackwardReachSet(p1, dynamics, M) {
 extreme_inputs = ExtremeInputCombinations(M);
 backward_vertices = {};

 for each extreme_input, inp, in extreme_inputs {
 for each vertex, v, in p1 {
 backward_vertex = OneStepBackwardDynamics(v, inp, dynamics);
 insert backward_vertex into backward_vertices;
 }
 }

 p_ret = ConvexHull(bacward_vertices);
 return p_ret;
}

The function ComputeModeFlowTubes computes a flow tube, and implicit temporal bounds,
for each goal region associated with an exit transition of the mode. ComputeModeFlowTube
computes the flow tube for a particular goal. It accomplishes this by stepping through the
discrete durations, limited by u(M), the explicit bound on maximum duration for the mode. For
each such duration, starting with 1, it computes the previous reach set (cross section) from the
current one. Initially, the current reach set is the goal region. It checks if the duration is valid
based on whether the reach set fully covers init(M), the initial region for the mode. It then uses
this information to set the implicit lower and upper bounds (l implicit, u implicit). It is assumed
that there are no gaps in this interval where the duration is not valid.

The function ComputeOneStepBackwardReachSet computes the reach set in the backward
direction, from a current reach set, and the dynamics of M. ExtremeInputCombinations returns
the (cached) set of all possible combinations of extreme inputs (inputs where constraints are
active for all elements). For each vertex in the current (specified) reach set, and for each input
combination, it computes the backward vertex. It then takes the convex hull of all the backward
vertices and returns that.

The function OneStepBackwardDynamics computes the backward vertex. Starting from the
forward dynamics:

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 29 Refer to cover page for Distribution Statement.

x ()k+1 =Ax ()k +Bu ()k

Then the backward dynamics are:

 (7)

x ()k =A−1 ()x ()k+1 −Bu ()k

This is used by OneStepBackwardDynamics to compute a state at increment k, given a state at
increment k + 1, and a control input at k.

 (8)

A problem with the above algorithm is that the polytopes grow exponentially in complexity as
duration increases. This is because all combinations of input extreme values is exponential in
the number of input elements. One way to circumvent this problem is to choose a fixed set of
vertex directions for the polytopes. This limits the complexity of the polytopes, but the
approximations will not be complete, and may miss significant regions of state space. This can
be mitigated by using a large set of directions.

Suppose that we have decided on a set of directions: { }r
1
,r

2
,...r

m
. Each direction is a unit

vector in ℜn

Computation of the scalars is accomplished using an addition at the end of
OneStepBackwardDynamics. The convex hull computed by OneStepBackwardDynamics is
represented by

. Using this approach, a flow tube cross section is the set of scalar values associated
with each direction. The set of vertices for the cross section are { }s

1
r

1
,s

2
r

2
,...s

m
r

m
, where s

i
 is

the scalar for direction i.

Hx≤K

The problem formulation then involves maximizing each scalar s
i
 subject to the constraints

 (9)

x=s
i
r

i

Hx≤K
 (10)

or

Hr
i
s
i
≤K (11)

Each row of this is solved separately for s
i
 as if the inequality were an equality (to get the

maximum), and then the minimum of these solutions is used as the value of s
i
.

After the scalars for each direction have been computed, all vertices of the reach set are known,
and this is returned.

7.10.7.3.2 Temporal Constraint Compilation

There are two points in the validation process where temporal constraint compilation is
performed. The first is for the model, independently of any use cases. For this, the compilation
is very simple. Because the model represents possible transitions, but not the actual transition
sequence for an entire plan, the most that can be done here is to tighten the temporal bounds
specified in the model based on the temporal bounds implied by the flow tubes.

The second point where temporal constraint compilation is performed is during the qualitative
simulation process, when the model is used to generate a mode sequence that satisfies a use
case. When a candidate mode sequence is generated, temporal bounds from both the model and
the use case have to be applied. This can imply a further tightening of temporal constraints for

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 30 Refer to cover page for Distribution Statement.

each mode duration. To make this implied tightening explicit, we use a temporal constraint
compilation technique based on Simple Temporal Networks (STN) [MMT98, HOF05]. This is a
fast compilation technique that provides explicit tightest bounds on all mode durations. This
allows the qualitative simulation to efficiently determine feasible duration schedules.

7.10.7.4 Qualitative Simulation of a Compiled Hybrid Timed PCCA

After the model is compiled, the compiled HTPCCA is used go generate a qualitative
simulation of the possible state evolution trajectories. As described previously, the inputs to the
qualitative simulator component are the compiled HTPCCA, and a partial QSP representing
use case requirements, as shown in Figure 7.10-6. The output is a sequence of mode
assignments (qualitative states), with associated duration ranges for each mode. An additional
byproduct of the forward simulation is a probability indicating the likelihood of the trajectory.

The qualitative simulation is accomplished by deciding mode transitions, and duration in each
mode. Thus, qualitative simulation amounts to assignments to two kinds of discrete decision
variables (duration index, transition index), subject to logical (discrete) and numeric
(continuous) constraints. Valid mode transitions are determined by the guard (exit) conditions,
which include the continuous goal regions. Valid mode durations are constrained by the
tightened lower and upper temporal bounds for each mode.

Pseudocode for the qualitative simulation algorithm is shown below.

QualSim(HTPCCA model, QSP useCase) {
 // model is the compiled HTPCCA model.
 // useCase is a QSP representing use case requirements.

 Boolean satisfied = false;
 InitializeCandidateGenerator();
 while ((not satisfied) & (candidate = GenerateCandidateTrajectory(model,
useCase)) {
 satisfied = CheckCandidateTrajectory(candidate, model, useCase);
 }

 if satisfied
 return candidate; // Return successful candidate, if one exists.
 else
 return failure;
}

InitializeCandidateGenerator() {

 InitializeModelGraphSearch();

}

CandidateTrajectory candidate = GenerateCandidateTrajectory(HTPCCA model, QSP
useCase) {

 // This uses two data structures that are maintained statically within this
function

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 31 Refer to cover page for Distribution Statement.

 // to represent the current state of the search.

 // The two data structures are currentModeSequence, which represents the
state of the

 // search through the model's mode graph, and currentSchedule, which
represents the state

 // of the search through the possible schedules for the mode sequence
represented by

 // currentModeSequence.

 if ((currentModeSequence) & (MoreSchedules currentSchedule)) {

 candidate.modeSequence = currentModeSequence;

 candidate.schedule = GetNextSchedule();

 return candidate;

 } else if (MoreModeSequences) {

 candidate.modeSequence = GetNextModeSequence();

 ApplyTemporalConstraints(candidate, useCase); // Apply additional
temporal constraints from use case.

 candidate.schedule = GetFirstSchedule();

 return candidate;

 } else {

 return empty; // No more candidates

 }

}

Boolean satisfied = CheckCandidateTrajectory(CandidateTrajectory candidate,
HTPCCA model, QSP useCase) {

 for mode in candidate.modeSequence {

 as nextMode = GetNextModeInSequence(mode, candidate.modeSequence);

 as transition = GetTransition(mode, nextMode);

 as ft = transition.flowTube;

 as rInit = nextMode.initialRegion;

 as rGoal = ft.goalRegion;

 FormulateLinearConstraint(rGoal subset of rInit);

 // Incorporate constraints from useCase

 if ((activity = GetActivityInUseCase(mode)) exists) {

 activityInit = activity.initialRegion;

 activityGoal = activity.goalRegion;

 if (activityInit exists) {

 FormulateLinearConstraint(rInit subset of activityInit);

 }

 if (activityGoal exists) {

 FormulateLinearConstraint(rGoal subset of activityGoal);

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 32 Refer to cover page for Distribution Statement.

 }

 }

 }

 return CheckLinearConstraints();

}

The current implementation of the algorithm uses a relatively simple, brute-force candidate
generator. A more sophisticated approach, which would likely yield more efficient generation of
good candidates, is to use the candidate generation algorithm in Conflict-directed A* [WR03].

The following sub-sections provide detailed information on two important aspects of the
verification problem: 1) adaptation of model flow tubes to use case requirements; and 2)
determination of probabilistic certificates of validation.

7.10.7.4.1 Adapting Model Flow Tubes to Use Case

As introduced previously in Section 7.2.1, flow tubes in a model provide a template or
prototype of the model’s dynamic behavior. The use case requirements typically do not match
the template exactly. Therefore, an attempt is made to achieve a match by adjusting the model
flow tubes (template) so that they satisfy the use case requirements. Such adjustment must not
compromise the dynamic behavior expressed by the flow tube.

In the example in Section 7.2.1, the model specifies distance limits between points A and B,
based on the dynamics and temporal limits. Suppose that in the model template, A is set to the
origin. In this case, B can be thought of as representing the distance that can be achieved, not
an absolute point. The use case QSP in this example has initial region requirements that are not
at the origin, and goal region requirements that do not include point B. However, through a
simple shift of position of the model flow tube, a match is achieved without compromising the
dynamic constraints expressed in the flow tube.

A full discussion of parameterized flow tubes is beyond the scope of this document. However,
we will describe a specific type of parameterization, position shifting, which can always be used,
and which is useful for many types of problems. Position shifting was introduced in the
example of Section 7.2.1 for simple velocity-limited flow tubes, but it can be extended to
general polytope flow tube representations.

In order to understand how position shifting is accomplished for general flow tubes, consider
the previous pseudocode for the function CheckCandidateTrajectory. It involves formulating a
set of linear constraints, and then checking them. The formulations are for subset relationships
between polytopes. Suppose that we have two polytopes, P

1
, and P

2
, and we wish to formulate

linear constraints that require P
1
⊂P

2
. The two polytopes are represented by sets of linear

constraints of the form

H
1
x≤K

1

H
2
x≤K

2
 (12)

Let v
1
=v

11
,v

12
...v

1p
 be the vertex set for P

1
. Then, the subset check for P

1
⊂P

2
 is formulated as

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 33 Refer to cover page for Distribution Statement.

H
2
v

11
≤K

2

H
2
v

12
≤K

2

...H
2
v

1n
≤K

2

 (13)

The first of these constraints is expanded as

H
2
(1;1)v

11
(1)+H

2
(1;2)v

11
(2)+...+H

2
(1;n)v

11
(n)≤K

2
(1)

H
2
(2;1)v

11
(1)+H

2
(2;2)v

11
(2)+...+H

2
(2;n)v

11
(n)≤K

2
(2)

...
H

2
(m;1)v

11
(1)+H

2
(m;2)v

11
(2)+...+H

2
(m;n)v

11
(n)≤K

2
(m)

 (14)

Now, suppose that we want to allow P
1
 to shift in position in order to achieve the subset

condition. We accomplish this by introducing a shift variable, s, into 14, where s is associated
with the coefficients corresponding to position (in this case, the first column of H

2
).

H
2
(1;1)s+H

2
(1;1)v

11
(1)+H

2
(1;2)v

11
(2)+...+H

2
(1;n)v

11
(n)≤K

2
(1)

H
2
(2;1)s+H

2
(2;1)v

11
(1)+H

2
(2;2)v

11
(2)+...+H

2
(2;n)v

11
(n)≤K

2
(2)

...
H

2
(m;1)s+H

2
(m;1)v

11
(1)+H

2
(m;2)v

11
(2)+...+H

2
(m;n)v

11
(n)≤K

2
(m)

 (15)

This can be expressed as

H
2
(:;1)s≤C

2

where C
2
 is the vector K

2
−H

2
v

11
. Similar constraints are formulated for the other vertices in 16.

In this way, constraints are formulated that can then be checked to validate whether the flow
tube constraints are satisfied. The constraint formulation makes use of the position shifting
flexibility, but the dynamic constraint information in the flow tubes is preserved.

7.10.7.4.2 Obtaining a Probabilistic Certificate of Validation

In order to compute a probabilistic certificate of validation using reach set analysis, we take
probability distributions representing uncertain variables, and we set-bound them. This
converts a probabilistic problem into a deterministic one. Uncertainty is propagated by
propagating the set bounds according to the dynamics model. For example, a set bound on
inputs implies set bounds on state according to the dynamics model. This approach is based on
previous related research on reach set analysis incorporating uncertainty [APLS08, RLML06].

Our dynamic models are represented as linear difference equations.

x ()k+1 =Ax ()k +Bu ()k

We introduce uncertainty in two places, corresponding to the right-hand side of (17). First, we
model disturbances in the inputs by adding a probabilistic component to the input vector u.
Thus, each element of u becomes a random variable with some probability distribution. For
purposes of analysis, we replace the distribution with a set bound, which is easier to propagate.

 (17)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 34 Refer to cover page for Distribution Statement.

For a typical vehicle model, inputs correspond to forces acting on the vehicle, such as torque
exerted by the engine on the wheels, wind gusts blowing against the vehicle, and bumps over
which the vehicle rolls.

When there are multiple inputs, each may have its own probability distribution. Thus, a row in
(17) is

x ()k+1 =a
11

x
1
 ()k +a

12
x

2
 ()k +...+a

1n
x

n
 ()k +b

11
u

1
 ()k +b

12
u

2
 ()k +...+b

1p
u

p
 ()k (18)

Here, A has n columns, and B has p columns. Each element of u is given a set bound that covers
some percentage of its probability distribution. This percentage of probability corresponds to
the "‘success"’ contribution of that variable. In other words, it is a necessary condition for the
variable to be within its set bounds for the plan to succeed. The probability of being within the
set bounds is the percentage of the probability distribution that is covered. We refer to this
individual success probability as p

s
 ()u

i
. Figure 7.10-15 shows a block diagram of the input

noise model, and how set bounds are used to cover a percentage of the probability distribution.

Figure 7.10-16 shows how set bounds on noise are translated into safety bounds on the input.

Since each of the input variables must be within its set bounds, the overall probability of
success is the product of the individual probabilities.

p
s
= ∏

i=1

p
 p

s
 ()u

i
 (19)

This assumes that each input element is independent of the others (don’t need joint probability
distributions). This is not always true.

The success probability given by (18) is really just the success probability for a single time
increment in an activity. Expanding over all time increments requires multiplying the
probabilities for each time increment.

p
s
= ∏

k=1

K

 ∏
i=1

p
 p

s
 ()u

i
 (20)

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 35 Refer to cover page for Distribution Statement.

Figure 7.10-15. Set bounds cover a percentage of the noise distribution.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 36 Refer to cover page for Distribution Statement.

Figure 7.10-16. Set bounds on noise are translated to safety bounds on the input.

Figure 7.10-17 shows an example flow tube sequence corresponding to two successive
activities. It is assumed, for this figure, that there are no disturbances, so there is no input
uncertainty. The goal region is shown in red, the green cross sections are for the second
activity, and the light blue cross sections are for the first.

Figure 7.10-18 shows an example flow tube sequence where there is uncertainty due to input
disturbances. The figure on the left shows the flow tube sequence without uncertainty, as
before, and then, superimposed, shows the more conservative cross sections in dark blue. The
cross sections are computed to guarantee a 0.95 chance of success. The figure on the right is
similar, but with a 0.68 chance of success. The conservative cross sections are shown in purple.
Note that these are bigger than the ones for the 0.95 success case, because more failure is
allowed.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 37 Refer to cover page for Distribution Statement.

(a) Flow tube set with no uncertainty, view 1.

(b) Flow tube set with no uncertainty, view 2.

Figure 7.10-17. Flow tube set for two successive activities, assuming no disturbances.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 38 Refer to cover page for Distribution Statement.

(a) Flow tube set with uncertainty, probability of success = 0.95.

(b) Flow tube set with uncertainty, probability of success = 0.68.

Figure 7.10-18. Flow tube set for two successive activities, with input disturbances.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.10 – Verification

© BAE Systems 2011. All rights reserved. 39 Refer to cover page for Distribution Statement.

The formulation can easily be extended to handle model disturbances. These correspond to
some level of uncertainty in the elements of A and B. Thus, each element has its own
probability distribution, which may be computed using the uncertainty propagation techniques
in the papers that Johan sent. This overall approach is analogous to that used in Kalman
filtering, and in Lars Blackmore’s work.

As with the input elements, the parameters are converted into random variables. The difference
here is that the state variables are not probabilistic; there is only one true state. This is a little
trickier than the input case. For the input case, the set bounds are on the input variables, not
the coefficients of B. For the model disturbances, the probability is associated with the
coefficients of A, and possibly also of B.

The simplest way to model this is with one or more additional random variables added at the
end of (18). These are then set bound, resulting in a success probability for each one. These
probabilities are then multiplied, as before, to get an overall probability.

7.10.8 Bibliography

 [APLS08] Abate, A. Prandini, M. Lygeros, J. Sastry, S. (2008) “Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems”, Automatica,vol. 44, number 11,
pages 2724–2734, Elsevier

[HOF05] Hofmann, A.G. (2005) Robust execution of bipedal walking tasks from biomechanical
principles, Ph.D. Thesis, MIT

[HW06] Hofmann, A.G. Williams, B.C., (2006) “Exploiting spatial and temporal flexibility for
plan execution of hybrid, under-actuated systems”, Proc. AAAI

[MMT98] Muscettola, N. Morris, P. Tsamardinos, I., (1998) “Reformulating temporal plans
for efficient execution”, In Principles of Knowledge Representation and Reasoning

[MWI05] Martin, O.B. Williams, B.C. Ingham, M.D., (2005) “Diagnosis as approximate belief
state enumeration for probabilistic concurrent constraint automata”, PROCEEDINGS
OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol 20,
number 1, AAAI Press

[RLML06] Rakovic, S.V. Kerrigan, E.C. Mayne, D.Q. Lygeros, J., (2006) “Reachability
analysis of discrete-time systems with disturbances”, Automatic Control, IEEE
Transactions on, vol. 51, number=4, pages=546–561

[WK91] Williams, B.C. Kleer, J., (1991) “Qualitative reasoning about physical systems: a
return to roots”, Artificial Intelligence, vol 51, number 1-3, pages 1–9

[WR03] Williams, B.C. Ragno, R.J., (2003) “Conflict-directed A* and its role in model-based
embedded systems”, Journal of Discrete Applied Mathematics

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.11 – Programmatics

© BAE Systems 2011. All rights reserved.

META Adaptive, Reflective, Robust Workflow (ARRoW)

Phase 1b Final Report
TR-2742

Appendix 7.11 - Programmatics

13 October 2011

Reporting Period: 10/14/2010 through 10/13/2011

Contract Number: HR0011-10-C-0108

Prepared For:

Defense Advanced Research Projects Agency

3701 North Fairfax Drive

Arlington, VA 22203-1714

Prepared by:

BAE Systems Land & Armaments L.P. (BAE Systems)

4800 East River Road

Minneapolis, MN 55421-1498

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.11 – Programmatics

© BAE Systems 2011. All rights reserved. i Refer to cover page for Distribution Statement.

Table of Contents
7.11 Programmatic Summary .. 1

7.11.1 Financial Data .. 1

7.11.2 Schedule ... 2

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.11 – Programmatics

© BAE Systems 2011. All rights reserved. 1 Refer to cover page for Distribution Statement.

7.11 Programmatic Summary

7.11.1 Financial Data

The financial data below reflects the data available as of September 30, 2011. The data for
Phase 1a (CLIN 0001) and 1b (CLIN 0002) is included for convenience; however, the scope of
this report is Phase 1b (CLIN 0002) only.

META ARRoW Phase 1b Final Report—13 October 2011 Appendix 7.11 – Programmatics

© BAE Systems 2011. All rights reserved. 2 Refer to cover page for Distribution Statement.

7.11.2 Schedule

The schedule above indicates the date that each of the milestones on the chart, depicted as
small blue triangles with a date in the lower right corner, were achieved. All milestones (which
reflect reviews and product deliveries) and the deliverables required along with them
(presentation material, demonstrations, and software) were completed and delivered on time.
Bi-weekly review meetings with DARPA program management were held from October 2010
through April 2011. At the Principal Investigator Meeting in May 2011, Paul Eremenko
informed the META community that the bi-weekly review meetings would be replaced with
meetings between the Principal Investigator of each of the META program teams and DARPA
program management, to be scheduled at the discretion of DARPA program management.
Dr. Steven Bankes met with Paul Eremenko on June 21, 2011 to discuss various topics, and
again on August 9th, 2011 to discuss the overall technical approach formulated by the
BAE Systems team.

Milestones

2010 2011

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

META Phase 1b

Phase 1b ATP

Monthly R&D Status Reports

Spiral Development Reviews

Initial Review

Concept Review

Architecture

Tool Design Review

Modeling Language & Library
Requirements Review

Notional Demo System
Application Review

Phase 1b Final Review

Toolset Delivery

Phase 1b Final Report

10/14

1/12

9/13

7/19

10/13

10/13

9/13

7/19

5/23

3/23

12/1511/15 2/151/15 4/153/15 6/155/15 7/15 8/15 9/15 10/13

10/14 10/13

