• Information Titlte Banner
  • Office Ribbon 6
     

  • Compact, High-Power and Efficient Ultraviolet Laser for Bio/Chem Detection

    March 04, 2014

    LUSTER seeks laser detection at LED prices and reliability 

    Raman spectroscopy uses lasers to measure molecular vibrations to quickly and accurately identify unknown substances. Ultraviolet (UV) lasers have the optimal wavelength for Raman spectroscopy at stand-off distances, but the Defense Department’s (DoD) current UV-based tactical detection systems are large and expensive and have limited functionality. A new DARPA program seeks technology that may make UV-based detection equipment more readily available in the field.

    DARPA’s Laser UV Sources for Tactical Efficient Raman (LUSTER) program seeks proposals for compact, efficient and low-cost deep-UV lasers for highly deployable biological and chemical agent detection. The goal is to create a new class of UV lasers that are more than 300 times smaller than current lasers and 10 times more efficient. The resulting technology could be dropped into current detection systems to save size, weight and power (SWaP) or to create new systems that are smaller and more sensitive.

    “Today’s standoff detection systems are so large and heavy that trucks are required to move them,” said Dan Green, DARPA program manager. “LUSTER seeks to develop new laser sources for breakthrough chemical and biological agent detection systems that are compact and light enough to be carried by an individual, while being more efficient than today’s systems. We also want to take a couple of zeroes off the price tag.”

    DARPA hopes LUSTER can build on the accomplishments from the recently completed Compact Mid-Ultraviolet Technology (CMUVT) program. CMUVT developed record high-power UV light emitting diodes (LEDs) with high efficiencies and wavelengths approaching those sought under LUSTER. LEDs, however, have limited sensitivity, which is required for discriminating among compounds. LUSTER seeks to develop a new laser technology that has the accuracy of today’s expensive lasers but with the low cost and high reliability of LEDs.

    “In addition to detecting chemical and biological agents in the field—or at home to protect against mass terror attacks—UV lasers have many other uses,” said Green. “The new class of UV lasers envisioned from the LUSTER program is expected to impact a broad range of applications such as point-of-need medical diagnostics, advanced manufacturing and compact atomic clocks.”

    LUSTER plans to consider a variety of technical approaches, as long as they operate within a 220-240 nanometer wavelength (deep UV) and have greater than 1 watt power production, wall-plug efficiencies greater than 10 percent and line widths less than 0.01 nanometers.

    DARPA will host a Proposers’ Day Workshop in support of the LUSTER program on March 18, 2014. More information is available at http://go.usa.gov/Kaz4.

  • Media Queries

    Please direct all media queries to Outreach@darpa.mil 

  • Images

    The Joint Biological Stand-Off Detection System (JBSDS) is an example of stand-off chemical and biological threat detection. JBSDS uses LIDAR to detect aerosol clouds at a distance. DARPA’s new LUSTER program seeks to provide similar capabilities by developing compact, high-power ultraviolet lasers. 

    Click for High-Resolution Image
    The Joint Biological Stand-Off Detection System (JBSDS) is an example of stand-off chemical and biological threat detection. JBSDS uses LIDAR to detect aerosol clouds at a distance. DARPA’s new LUSTER program seeks to provide similar capabilities by developing compact, high-power ultraviolet lasers.

     

  • Additional Info

    Share this page: