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Outline

• The Basic AIM-C Approach (as implemented)
– Understand and Classify Potential Uncertainty Sources
– Determine What’s Important
– Limit Uncertainty/Variation by Design and/or Process
– Quantify Variation (Monte Carlo Simulation or Test)

• Data from Knowledge, Analysis, and Test
– Previous Knowledge and Divergence Risk
– Analysis
– Test
– Combined Data Approaches
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Handling Uncertainty – The AIM-C Approach
• The First Step is Identifying and Understanding potential error 

sources 
– Maintains Visibility of potential errors
– Forces step-by-step breakdown of the analysis/test process
– Forces agreement on responses of interest

• Classifying them allows the team to determine appropriate 
strategies for addressing them.

• Types: 
– Aleatory Uncertainty (Variability, Stochastic Uncertainty)
– Epistemic Uncertainty (Lack of Knowledge, e.g., unknown geometry)
– Known Errors (e.g., mesh convergence, round-off error)
– Unknown Errors (Mistakes, e.g. wrong material inputs used)
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Errors in Coupon Geometry 
Definition or Improper 
Idealization of Loading or 
Boundary Conditions

Cured ply thickness 
variations, specimen 
dimensional tolerances, 
specimen curvatures due to 
residual stress/strain

Coupon Geometry 
and Load/BC Input
(COMPRO, User-
defined, Empirical)

Errors in material property 
definition, errors in coding, 
errors in integrating process 
and structural models.

The formulation is believed 
to be most accurate when the 
cure cycle temperature is 
higher than the Tg.  
Otherwise the residual stress 
calculated can be an 
overestimate.

Micro-stresses are 
considered to be 
independent of meso-
stresses; there are few 
independent measurements 
of residual stress.

Many parameters can 
affect residual stress: local 
fiber volume fraction, …

Stress-Free Temps/ 
Residual Curing 
Strain Input 
(COMPRO)

Laminate Stiffness 
Calculation
(CLPT)

Lamina Stiffness/ 
Thermal Properties
(CCA and/or 
Empirical)

Assumes thin plate with no 
shear deformation, material 
or geometric nonlinearity, or 
significant transverse strains.

Unmeasurable Constituent 
Properties (transverse fiber 
modulus, etc.)
Interphase effects

Uncertainty due to lack of 
knowledge 
(Epistemic 
uncertainty) 

inadequate physics 
models
information from 
expert opinions.

Use of model outside bounds 
for items listed under 
Epistemic uncertainty)

CCA: Use of model outside 
of bounds.(e.g., woven 3D 
preform)

Empirical: Extrapolation 
beyond test data (fiber 
volumes, temperatures, etc.)

Known Errors 
(acknowledged)

e.g. round-off 
errors from 
machine arithmetic, 
mesh size errors, 
convergence errors, 
error propagation 
algorithm

I/O errors (ply thickness, 
material, layup definition), 
code bugs

Variations in ply-thickness, 
ply angles, etc. 

CCA: I/O errors, code bugs

Empirical:Testing machine 
not calibrated. Poor 
specimen preparation; poor 
strain measurement 
techniques.

Variation in all fiber and 
resin moduli, Poisson’s 
ratio, and CTE properties.
Test uncertainties such as 
specimen misalignment, 
load/displacement 
measurement 

Mistakes (unacknowledged 
errors)

human errors e.g 
error in 
input/output, 
blunder in 
manufacturing

Inherent variations 
associated with physical 
system or the environment 
(Aleatory uncertainty)
Also known as  variability, 
stochastic uncertainty

E.G. manufacturing 
variations, loading

Identifying and Understanding Error Sources
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Handling Uncertainty – The AIM-C Approach
• Next we must know which variables are important to us

• Complex problems have hundreds of potential uncertainties. 
Its time-prohibitive to spend equal effort investigating each 
one. We must Focus on the important “few”:

1. Uncertainties which are likely to occur
2. Uncertainties with a large influence on the response(s) of interest

(This evaluation is similar to simple Risk Analyses, assessing Probability 
of occurrence and consequences of failure) 
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Handling Uncertainty – The AIM-C Approach
• Prior knowledge is useful in determining likelihood of 

occurrence.

• Tools such as DOE/ANOVA and Sensitivity Analysis are 
useful in quantifying a variable’s influence on the result.
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Example: Past experience with
Similar designs suggest that 3/4 of 
Stiffened panel defects are:

• Delaminations
• Cure Cycle Inconformities
• Ply wrinkles, or
• Voids/Porosity
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Handling Uncertainty – The AIM-C Approach

• Example – Fiber transverse modulus effect on Laminates 
• Other examples:

– Stress Free Temperature on laminates (variation was small)
– Stiffener Pull-off (some geometric variables had little effect)

42.8%

28.2%

24.1%

2.8%

0.9%

0.5%

0.7%

Load Orientation
Fiber Volume
Fiber E11
FE1:LO
Resin E
FV:FE1
Other

• As expected, Fiber Volume and Fiber E11 also have 
significant effects on laminate Modulus

• Fiber E22 and Resin E have very little effect (<1%)

• Transverse Fiber Modulus (E22) has very little 
effect 

ANOVA for Laminate Axial Modulus

Design Scan for Laminate Failure 
Load Using PASS Criteria
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Handling Uncertainty – The AIM-C Approach
• Where possible, some uncertainties can be eliminated or 

limited by design choices. Pick the material and design to play 
to your strengths!

• Allows negotiation between competing response variables
– E.g.,  Structural Performance and Producibility

• This is a major philosophical shift for Structures. Focus on 
Design Robustness rather than Absolute Mean Performance 
may generally yield a better “allowable” failure load.

• Tools such as DOE/ANOVA and Sensitivity Analysis are 
again useful. 



9

Approved for Public Release, Distribution Unlimited

HISTORY

YEARS

COST

Initial 
Design

Elimination of Failure 
Modes & Redesigns

Engineering
Support

Often, a majority of our development time and money is spent on fixing 
problems because we failed to choose a Robust Material, Design and/or 

Process the first time.

Handling Uncertainty – The AIM-C Approach
Minimizing Uncertainty by Design 

Design Robustness Avoiding Redesigns
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Handling Uncertainty – The AIM-C Approach
Minimizing Uncertainty by Design

• Example – Hat-Stiffened Panel Design

Problem 1:
• Bondline delaminations are commonly occurring defects
• They occur at structurally-critical locations
• The failure load can be very sensitive to bondline delaminations

Problem 2:
• All dimensions have manufacturing tolerances
• In some cases, failure can be very sensitive to off-nominal dimensions

Questions:
Can we formulate a design that is much less sensitive to delaminations?
Can we minimize the effect of off-nominal dimensions on the failure load?
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• Utilizes the following modules within AIM-C
– Fiber
– Resin
– Lamina
– Fabric

• Allows for both material and geometric variability
– Focused on length of stiffener, leg angle, and lower radius

• RDCS aided in the following tasks:
– Determining the sensitivity of embedded flaws to geometric parameters
– Pinpointing optimal geometric parameters that minimize SERR in

• Lower radius (multiple delamination locations at “nugget”)
• Length of horizontal stiffener section

Minimizing Uncertainty by Design
HSP Pull-off Modeling with Defects

alpha

Lstiff
r2 (inner radius)

End of flange (255),  
lower radius (295), &  
wrap ply (334) cracks

255 295 334
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Geometry Effect on Radius and Edge-of-Flange Delaminations
SERR Data, Leg Angle = 30 degrees

Red: GI EOF
Blue: GI Lower Radius
Green: GII/4 EOF
Brown: GII/4 Lower Radius 

A local SUBLAM model run suggests that the lower radius and stiffener leg 
angle could be designed to minimize the effect of potential radius delaminations. 

Sufficient stiffener Leg length controls Edge-of-Flange Delamination

Large Lstiff and 
smaller lower radius 

minimizes energy 
available to 

propagate a crack

Minimizing Uncertainty by Design
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Red: GI EOF
Blue: GI Heel
Green: GII/4 EOF
Brown: GII/4 Heel
Light Blue: GI Wrap/Plank
Purple: GII/4 Wrap/Plank

Adding wrap and shortening 
bay width reduces SERR 

magnitude trends similar to 
Wide Bay study.

With reduced bay width, wrap plies, and leg angle of 20º, GII is no longer 
critical and SERRs are all generally reduced.

Minimizing Uncertainty by Design
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Critical Load Case: 2

• Tall hats have lower J1 in all regions
• Shallow runout angle is better
• Tall hats are less sensitive to runout angle
• Shallow runout angles make design less 

sensitive to hat height

Bondline J1

Minimizing Uncertainty by Design
Hat Height, Width, and Runout Angle Study 

Runout J1

Hat J1

Bondline J1

Runout J1

Hat J1
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Robustness to Geometric Variability – Hat Height, Width, Runout

Effect of Runout Angle Tolerance on Stiffener Strain Variability
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Design on the Flat!
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are less sensitive to runout angle tolerance 

Minimizing Uncertainty by Design
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Handling Uncertainty – The AIM-C Approach
Quantifying Uncertainty

• If its important, and you can’t design it out, quantify it.
• Another change from current philosophy. Currently only done 

with coupon allowables. Other variation is considered covered 
in “material scatter”, covered by factors, or worst-case 
assumptions.

• Testing or Probabilistic Analysis Tools are applied. 
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Handling Uncertainty – The AIM-C Approach
Quantifying Uncertainty

Recent Enhancements

• Greatly expanded the operating space of uncertainty analysis
– Continuous, discrete and enumerated variable types
– Sensitivity analysis on mixed space and constrained design space

exploration
• Integration of external uncertainty analysis plug-ins with RDCS

• Advanced design of experiments – Design Explorer

• Probabilistic (Robust) Optimization
• A capability to define statistical parameters as design variables
• One of the tools for use in the current on-going model-test integration task   
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Handling Uncertainty – The AIM-C Approach
Quantifying Uncertainty

• Example – OHT Laminate Monte-Carlo Simulation

OHT - PASS criteria                Effect of Aleatory Uncertainty 
due to variations in:
•Resin Modulus
•Fiber Elastic Properties
•Fiber strength
•Ply angles
•Fiber Volume
•Load Orientation
•Hole diameter
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Handling Uncertainty – The AIM-C Approach
• Example – OHT Laminate Monte-Carlo Simulation

OHT - Hashin criteria                Effect of Aleatory Uncertainty 
due to variations in:
•Resin Modulus
•Fiber Elastic Properties
•Fiber strength
•Ply angles
•Fiber Volume
•Load Orientation
•Hole diameter
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Handling Uncertainty – The AIM-C Approach
• Example – OHT Laminate Monte-Carlo Simulation

.031.02801.04517Coefficient of 
Variation

1.45271.03711.683Std.Deviation

42.3934.23137.274Mean

Test Hashin Phase Avg.

37.02

35.69 10th Percentile

Average Cov = 0.028
10/80/10

Layup
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Geometry only
– Length of stiffener flange 

(Mean = 1.25”, SD = 0.015”)

– Leg angle (Mean = 20º, SD = 1.5º)

– Lower radius 
(Mean = 0.2”, SD = 0.015”)

Geometry + Material
– Length of stiffener (SD = 0.015”)

– Leg angle (SD = 0.015”)

– Lower radius (SD = 1.5º)

– Fiber volume (5% COV)

– Fiber modulus (5% COV)

– Resin modulus (5% COV)
Normal distributions were used for all input parameters, 

Problem Definition: Random variables listed below, all 
other parameters same as Study 09.

HSP Robustness to Flaws, Geometric and Material Variability
Probabilistic Analysis – Monte Carlo Simulation

Handling Uncertainty – The AIM-C Approach
Quantifying Uncertainty
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Probabilistic Analysis – RDCS Math Model

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty
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RDCS Results

Material and 
Geometry

Geometry

Material and 
Geometry

Geometry

• Numerical values reported for 90 
lb/in pull off load 

• Mode I and II SERR at end of  
flange drives failure results

• Variations in crack driving force 
increase significantly when 
variability in material elastic 
constants are added: 

•SDGI 0.036 0.068

•SDGII 0.026 0.041

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty
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Variation in Critical Failure Properties by Test 
Coupon (DCB and ENF) Experimental Results

Mean = 4.30
St. Dev. = 0.533
No. of Specimens = 5
Weibull B-Value = 2.24
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Mean = 1.51
St. Dev. = 0.132
No. of Specimens = 6
Weibull B-Value = 1.0

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty



25

Approved for Public Release, Distribution Unlimited

Comparison of Variabilities
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GIC from 
fracture data GIIC from 

fracture data

CDFs of SUBLAM SERRs and critical SERRs 
from experimental fracture data

Note: Materials measured resistance to crack growth (Critical 
SERR) is MUCH more variable than computed variations in 
crack driving force due to other Material/Geometry variation

Robustness to Flaws, Geometric and Material Variability
Quantifying Uncertainty


